WO2023207620A1 - 电池和用电设备 - Google Patents

电池和用电设备 Download PDF

Info

Publication number
WO2023207620A1
WO2023207620A1 PCT/CN2023/088166 CN2023088166W WO2023207620A1 WO 2023207620 A1 WO2023207620 A1 WO 2023207620A1 CN 2023088166 W CN2023088166 W CN 2023088166W WO 2023207620 A1 WO2023207620 A1 WO 2023207620A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
fiber
heat insulation
insulation layer
battery cells
Prior art date
Application number
PCT/CN2023/088166
Other languages
English (en)
French (fr)
Inventor
胥恩东
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020247009935A priority Critical patent/KR20240050401A/ko
Publication of WO2023207620A1 publication Critical patent/WO2023207620A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery and electrical equipment.
  • Embodiments of the present application provide a battery and electrical equipment that can effectively reduce the risk of thermal runaway spread in the battery, thereby improving the reliability of the battery.
  • a battery including: a plurality of battery cells, the plurality of battery cells including adjacent first battery cells and second battery cells, the first battery cell and the adjacent battery cells.
  • the second battery cells are arranged along a first direction; a heat insulation plate is disposed between the first battery cell and the second battery cell, wherein the heat insulation plate includes a A heat insulation layer, the first heat insulation layer is a polymer matrix composite fiber board.
  • a heat shielding plate is provided between the first battery cell and the second battery cell.
  • the heat shielding plate can reduce the risk of thermal runaway. The risk of a battery cell transferring heat to adjacent cells, thereby reducing the risk of thermal runaway propagation within the battery.
  • airgel felt or other sheets without structural strength are often used as insulation boards. Airgel felt or other sheets without structural strength will deform and become thinner when they are squeezed between battery cells. , its thermal insulation effect will also be greatly reduced.
  • the heat insulation board in this application solution includes a first heat insulation layer, and the first heat insulation layer is a polymer matrix composite fiber board.
  • the polymer matrix composite fiber board is a high-temperature-resistant, high-strength hard protective board that is not easily deformed at high temperatures. It is placed between battery cells, which can effectively reduce the risk of thermal runaway diffusion within the battery, thereby improving the reliability of the battery. .
  • the polymer matrix composite fiber board is a fiber-reinforced resin composite board.
  • Fiber-reinforced resin composite panels are prepared as protective panels using resins in polymer materials as the matrix. Compared with other polymer material matrices, fiber-reinforced resin composite panels have better high-temperature resistance, higher strength, and are not easily deformed.
  • the heat shielding plate is provided between the first wall of the first battery cell and the second wall of the second battery cell, and the first wall is the The wall of the first battery cell that has the largest surface area and is closest to the second battery cell, and the second wall is the wall of the second battery cell that has the largest surface area and is closest to the first battery cell.
  • the heat shield is disposed between the walls with the largest surface area of two adjacent battery cells. In this way, the heat shield can prevent the spread of thermal runaway of the battery cells to a larger extent, which is more conducive to reducing the risk of thermal runaway spread within the battery.
  • the heat insulation panel includes a second heat insulation layer and two first heat insulation layers, and the second heat insulation layer and the two first heat insulation layers are located along the The second heat insulation layer is arranged in the first direction, and the second heat insulation layer is located between the two first heat insulation layers.
  • the first thermal insulation layer is a fiber-reinforced resin composite board, which has the advantages of high strength and no deformation or damage at high temperatures.
  • the second thermal insulation layer is placed between the two first thermal insulation layers to form a "sandwich" structure. In this way, the first thermal insulation layer can protect the second thermal insulation layer from being extruded and deformed by the battery cells, allowing the second thermal insulation layer to better perform the role of thermal insulation, so that the thermal insulation board can effectively reduce the risk of thermal runaway spread within the battery. .
  • the ends of the two first heat insulation layers in a second direction are connected, and the second direction is perpendicular to the first direction.
  • the ends of the two first heat insulation layers are connected, and the second heat insulation layer is sealed between the two first heat insulation layers to protect the second heat insulation layer from being extruded and deformed by the battery cells.
  • the ends of the two first thermal insulation layers are connected, which improves the structural strength of the outer first thermal insulation layer.
  • the two first heat insulation layers are connected at at least one position other than the ends.
  • the connected positions of the two first heat insulation layers are evenly distributed in the second direction.
  • the dimension L1 of the heat insulation board in the first direction is 0.2mm ⁇ 5mm.
  • the size L1 of the heat insulation board in the first direction is set to 0.2 mm to 5 mm, which ensures that the strength of the heat shield is high and the heat insulation effect is good, while ensuring that the battery has a high energy density.
  • the dimension L1 of the heat insulation plate in the first direction is 3 mm.
  • the size L1 of the heat shield in the first direction is set to 3mm, so that the heat shield has high strength, is not easily extruded and deformed, and does not deform at high temperatures. It has good heat insulation effect and can effectively reduce the risk of thermal runaway spread of the battery. At the same time, it does not occupy too much space in the battery, ensuring that the battery has a high energy density.
  • the size L1 of the heat shield plate in the first direction and the energy Q of the battery cell satisfy: 2 ⁇ 10 -3 mm/Wh ⁇ L1/Q ⁇ 10 - 2mm /Wh.
  • the heat shield When the ratio of the size L1 of the heat shield in the first direction to the energy Q of the battery cell is too small, that is, the size L1 of the heat shield corresponding to the unit energy of the battery cell in the first direction is too small, the heat shield will The heat insulation effect is poor; when the energy Q of the battery cell is constant, the larger L1/Q, that is, the larger L1, it will occupy too much space in the battery and reduce the energy density of the battery. Therefore, the ratio of the size L1 of the heat shield in the first direction to the energy Q of the battery cell satisfies 2 ⁇ 10 -3 mm/Wh ⁇ L1/Q ⁇ 10 -2 mm/Wh. When the heat insulation effect is good, the battery can also ensure a high energy density.
  • L1/Q is 8 ⁇ 10 -3 mm/Wh.
  • the ratio of the size L1 of the heat shield in the first direction to the energy Q of the battery cell is set to 8 ⁇ 10 -3 mm/Wh, so that the heat shield has a good thermal insulation effect and can effectively reduce the risk of thermal runaway spread of the battery. At the same time, it will not occupy too much space in the battery, ensuring that the battery has a high energy density.
  • the size L2 of the second heat insulation layer in the first direction and the size L1 of the heat insulation plate in the first direction satisfy: 0.2 ⁇ L2/L1 ⁇ 0.6.
  • the second thermal insulation layer is thinner than the first thermal insulation layer, so the thermal insulation effect of the second thermal insulation layer is weak; when L2/L1 is too large, the second thermal insulation layer
  • the second heat insulation layer is thicker than the first heat insulation layer, that is, the second heat insulation layer occupies most of the heat insulation board, so the strength of the heat insulation board is lower, and it is easily squeezed and deformed by the battery cells, affecting the heat insulation.
  • the effect is therefore set to 0.2 ⁇ L2/L1 ⁇ 0.6. In this way, the heat insulation effect of the heat shield can be ensured and the risk of thermal runaway spread in the battery can be effectively reduced.
  • the dimension L3 of the first thermal insulation layer in the first direction is 1 mm
  • the dimension L2 of the second thermal insulation layer in the first direction is 1 mm
  • the total size of the heat insulation board formed by the assembly of one first heat insulation layer and two second heat insulation layers is 3mm in the first direction.
  • it ensures the high strength of the heat insulation board, its resistance to deformation and its good heat insulation.
  • it ensures that the heat shield does not occupy too much space in the battery and ensures that the battery has a high energy density.
  • the second thermal insulation layer is an airgel felt.
  • Airgel felt has the characteristics of light weight, easy to cut, low density, inorganic fire protection, overall hydrophobic, green and environmentally friendly.
  • the thermal insulation effect of airgel felt is 2-5 times that of traditional insulation materials.
  • the second thermal insulation layer is an air sandwich.
  • the heat insulation panels of this structure not only have a certain structural strength, are not easily extruded and deformed, are not easy to be deformed at high temperatures, and also have a certain heat insulation effect. , which can effectively reduce the risk of thermal runaway spread within the battery.
  • the first thermal insulation layer includes multiple layers of fiber-reinforced resin layers, and the fiber-reinforced resin layers are compositely formed of fiber materials and resin materials.
  • Fiber-reinforced resin composite materials have the characteristics of light weight, high strength, high rigidity, and high temperature resistance. Multiple layers of fiber-reinforced resin layers form the first insulation layer. Therefore, the first insulation layer has the characteristics of high strength and high temperature resistance, thus Ensure that the heat shield effectively reduces the risk of preventing the spread of thermal runaway within the battery.
  • the resin material is silicone-based aerogel modified resin or high-temperature resistant flame retardant resin.
  • Silicone-based airgel modified resin has the characteristics of low thermal conductivity, and high temperature resistant flame retardant resin has the characteristics of high temperature resistance and low thermal conductivity. Compared with general resin materials, silicone-based airgel modified resin has the characteristics of high temperature resistance and high temperature resistance. Flame-retardant resin is combined with fiber materials to form a fiber-reinforced resin composite material, which has better high-temperature resistance and high-strength properties. The first thermal insulation layer formed by the fiber-reinforced resin composite material can effectively reduce the risk of thermal runaway spread in the battery.
  • the fiber material is glass fiber, ceramic fiber, carbon fiber, quartz fiber, high silica fiber, aluminum silicate fiber, mullite fiber, silicon carbide fiber, silicon nitride fiber, oxide fiber, etc.
  • the fiber material is a ceramic fiber material.
  • Ceramic fiber materials have better high temperature resistance than other fiber materials.
  • the composite material of ceramic fiber materials and resin materials has better high temperature resistance and high strength properties.
  • the first heat insulation layer formed by the composite material can Effectively reduce the risk of thermal runaway spread within the battery.
  • the ceramic fiber material is silicon oxide or aluminum oxide.
  • the first thermal insulation layer made of silicon oxide or alumina ceramic fiber material and resin material has the best high temperature resistance.
  • an electrical device including: the battery in the above first aspect or any possible implementation of the first aspect, where the battery is used to provide electrical energy.
  • a heat insulation plate is provided between the adjacent first battery cells and the second battery cells.
  • the heat insulation plate can Reduce heat loss Control the risk of battery cells transferring heat to adjacent battery cells, thereby reducing the risk of thermal runaway spread within the battery.
  • airgel felt or other sheets without structural strength are often used as insulation boards. Airgel felt or other sheets without structural strength will deform and become thinner when they are squeezed between battery cells. , its thermal insulation effect will also be greatly reduced.
  • the heat insulation board in this application solution includes a first heat insulation layer.
  • the first heat insulation layer is a polymer matrix composite fiber board.
  • the polymer matrix composite fiber board is a high temperature resistant and high strength hard protective board. It is not easy to deform even when placed down, and is placed between battery cells, which can effectively reduce the risk of thermal runaway spread within the battery, thus improving the reliability of the battery.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a schematic exploded structural diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • Figure 5 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 6 is a cross-sectional view of a battery cell and a heat shield plate disclosed in an embodiment of the present application
  • Figure 7 is a cross-sectional view of a battery cell and a heat shield plate disclosed in an embodiment of the present application.
  • Figure 8 is a schematic exploded structural view of a heat insulation panel disclosed in an embodiment of the present application.
  • Figure 9 is an exploded structural diagram of a heat insulation panel disclosed in an embodiment of the present application.
  • Figure 10 is a cross-sectional view of a battery cell and a heat shield plate disclosed in an embodiment of the present application
  • Figure 11 is a cross-sectional view of a battery cell and a heat shield plate disclosed in an embodiment of the present application
  • Figure 12 is a schematic structural diagram of a fiber-reinforced resin layer disclosed in an embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE). Additionally, the electrode assembly may be wound
  • the structure may also be a laminated structure, and the embodiments of the present application are not limited to this.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • multiple battery cells can be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • the battery is further installed in the electrical equipment to provide electrical energy to the electrical equipment.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • a heat insulation plate is provided between adjacent first battery cells and second battery cells.
  • the heat shield can reduce the risk of thermal runaway battery cells transferring heat to adjacent battery cells, thereby reducing the risk of thermal runaway spreading within the battery.
  • the heat insulation board in this application solution includes a first heat insulation layer, which is a polymer matrix composite fiber board.
  • the polymer matrix composite fiber board is a high-temperature-resistant, high-strength hard protective board. It is not easy to deform and is placed between battery cells, which can effectively reduce the risk of thermal runaway spread within the battery, thus improving the reliability of the battery.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the operating power source of the vehicle 1 .
  • the driving power supply replaces or partially replaces fuel or natural gas to provide driving power for the vehicle 1.
  • the battery 10 may include multiple battery cells.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • a plurality of battery cells 20 are connected in parallel or in series or in a mixed combination and then placed in the box 11 .
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the electrically conductive means can also be part of the busbar.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 forms a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • the battery may include multiple battery modules, which may be connected in series, parallel or mixed connection.
  • FIG. 3 it is a schematic structural diagram of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover 212 .
  • Housing 211 and cover 212 form a housing or battery box 21 .
  • the wall of the casing 211 and the cover 212 are both called the wall of the battery cell 20 .
  • the wall of the casing 211 includes a bottom wall and four side walls.
  • the housing 211 is determined according to the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow rectangular parallelepiped, a cube, or a cylinder, and one surface of the housing 211 has an opening to accommodate one or more electrodes.
  • Component 22 may be placed within housing 211.
  • one of the planes of the housing 211 is an opening surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 are connected.
  • the end surface of the housing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the housing 211 are connected.
  • the cover plate 212 covers the opening and is connected with the housing 211 to form a closed cavity in which the electrode assembly 22 is placed.
  • the housing 211 is filled with electrolyte, such as electrolyte solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover 212 .
  • the cover plate 212 is generally in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212.
  • the two electrode terminals 214 are respectively a positive electrode terminal 214a and a negative electrode terminal 214b.
  • Each electrode terminal 214 is provided with a connecting member 23 , or it may also be called a current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 and is used to electrically connect the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • first pole The polarities of the lug 221a and the second lug 222a are opposite.
  • first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tab 221a of one or more electrode assemblies 22 is connected to one electrode terminal through one connecting member 23, and the second tab 222a of one or more electrode assemblies 22 is connected to another electrode terminal through another connecting member 23.
  • the positive electrode terminal 214a is connected to the positive electrode tab through one connecting member 23, and the negative electrode terminal 214b is connected to the negative electrode tab through another connecting member 23.
  • the electrode assembly 22 can be provided as a single or multiple electrode components according to actual usage requirements. As shown in FIG. 3 , the battery cell 20 is provided with four independent electrode assemblies 22 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is used to be activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 can be various possible pressure relief structures, which are not limited in the embodiments of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG 4 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 includes a plurality of battery cells 20.
  • the plurality of battery cells 20 include adjacent first battery cells 21 and second battery cells 22.
  • the first battery cell 21 and the second battery cell 20 are adjacent to each other.
  • the cells 22 are arranged along the first direction x.
  • the battery 10 also includes a heat insulation plate 101.
  • the heat insulation plate 101 is disposed between the first battery cell 21 and the second battery cell 22.
  • the heat insulation plate 101 includes a first The heat insulation layer 1011, the first heat insulation layer 1011 is a polymer matrix composite fiber board.
  • Polymer matrix composite fiber board is made of polymer material as matrix and fiber as reinforcement. It has the advantages of high temperature resistance, high strength and not easy to deform.
  • a heat shielding plate 101 is provided between the first battery cell 21 and the second battery cell 22. When some of the battery cells 20 in the battery 10 undergo thermal runaway, the heat shielding plate 101 can reduce the risk of thermal runaway of the battery. The risk of cells 20 transferring heat to adjacent battery cells 20 thereby reduces the risk of thermal runaway propagation.
  • the heat insulation board 101 includes a first heat insulation layer 1011.
  • the first heat insulation layer 1011 is a polymer matrix composite fiber board.
  • the polymer matrix composite fiber board is disposed between the battery cells 20, which can effectively reduce the risk of thermal runaway spread in the battery 10. , thereby improving the reliability of the battery 10 .
  • the polymer matrix composite fiber board is a fiber-reinforced resin composite board.
  • the fiber-reinforced resin composite board is a high-strength, high-temperature-resistant heat-insulating board that can withstand a high temperature of 1500°C. When squeezed, the board will not break. It can withstand a stress of 100MPa and has a thermal conductivity of 0.2W/(K ⁇ m). ⁇ 1W/(K ⁇ m).
  • Fiber-reinforced resin composite panels are prepared as protective panels using resins in polymer materials as the matrix. Compared with other polymer material matrices, fiber-reinforced resin composite panels have better high-temperature resistance and higher strength. Not easily deformed.
  • the heat shield 101 is disposed between the first wall 211 of the first battery cell 21 and the second wall 221 of the second battery cell 22 .
  • the first wall 211 is The wall of the first battery cell 21 has the largest surface area
  • the second wall 221 is the wall of the second battery cell 2222 that has the largest surface area.
  • the heat shield 101 is disposed between the walls with the largest surface areas of the two adjacent battery cells 20. In this way, the heat shield 101 can prevent the spread of thermal runaway in the battery cells 20 to a larger extent, which is more conducive to reducing thermal runaway in the battery 10. risk of proliferation.
  • the heat shield 101 can also be disposed between other walls of two adjacent battery cells 20. If a battery cell 20 is surrounded by adjacent battery cells 20, then its four side walls The heat shielding plate 101 opposite to the side wall may be provided, or may be provided according to the arrangement of the battery cells 20 in the battery 10 and space requirements, which is not limited in this application.
  • the heat insulation panel 101 includes a second heat insulation layer 1012 and two first heat insulation layers 1011.
  • the second heat insulation layer 1012 and the two first heat insulation layers 1011 are arranged along the They are arranged in the first direction x, and the second heat insulation layer 1012 is located between the two first heat insulation layers 1011 .
  • the first thermal insulation layer 1011 is a fiber-reinforced resin composite board, which has the advantages of high strength and no deformation or damage at high temperatures.
  • the second thermal insulation layer 1012 is disposed between the two first thermal insulation layers 1011 to form a "sandwich" ” structure, in this way, the first heat insulation layer 1011 can protect the second heat insulation layer 1012 from being extruded and deformed by the battery cells 20, so that the second heat insulation layer 1012 can better play the role of heat insulation, so that the heat insulation plate 101 can Effectively reduce the risk of thermal runaway spread within the battery 10 .
  • the ends of the two first heat insulation layers 1011 in the second direction y are connected, and the second direction y is perpendicular to the first
  • the direction x is only a schematic direction shown in (a) of FIG. 7 , but the second direction y is not limited to this.
  • the ends of the two first heat insulation layers 1011 are connected, and the second heat insulation layer 1012 is encapsulated between the two first heat insulation layers 1011 to protect the second heat insulation layer 1012 from being squeezed and deformed by the battery cells 20 .
  • the ends of the two first heat insulation layers 1011 are connected, which improves the structural strength of the outer first heat insulation layer 1011.
  • the two first heat insulation layers 1011 are at at least one position in other positions except the ends. connected.
  • the two first heat insulation layers 1011 can also be connected at other positions except the ends, and at least one position is connected, and the third direction is perpendicular to the first direction x. and the second direction y.
  • the two first thermal insulation layers are evenly distributed in the second direction y.
  • the ends of the two first heat insulation layers 1011 in the third direction z are connected.
  • the first heat insulation layer has a structure with convex sides and a concave center.
  • the ends of the two first heat insulation layers 1011 in the second direction y are connected, and the two first heat insulation layers 1011 are connected at their ends in the second direction y.
  • the ends of the heat insulation layer 1011 in the third direction z are also connected. That is to say, the four ends of the two first heat insulation layers 1011 are respectively connected to form a sealed cavity. Placing the second heat insulation layer 1012 in the cavity means that the second heat insulation layer 1012 is completely wrapped by the first heat insulation layer 1011 and is isolated from the outside world, which can more effectively prevent the second heat insulation layer 1012 from being squeezed. pressure.
  • two first heat insulation layers 1011 and one second heat insulation layer 1012 are arranged along the second direction y, and the second heat insulation layer 1012 is located between two Between the first heat insulation layers 1011, the ends of the two first heat insulation layers 1011 in the third direction z are connected.
  • the two first heat insulation layers 1011 are arranged along the second direction y, and the ends of the two first heat insulation layers 1011 in the third direction z are connected.
  • the two first heat insulation layers 1011 form a "mouth" shape
  • the second heat insulation layer 1012 is located between the two first heat insulation layers 1011, that is, the second heat insulation layer 1012 is separated by the two first heat insulation layers 1011 in both the second direction z and the third direction y. surrounded by the thermal layer 1011.
  • the thermal layer 1012 effectively plays the role of heat insulation.
  • the two first heat insulation layers 1011 can be integrally formed to form a "mouth"-shaped structure, which is not limited in this application.
  • the two first heat insulation layers 1011 are connected at at least one position except the ends.
  • the two first heat insulation layers 1011 can also be connected at other positions except the ends, and at least one position is connected.
  • the connected positions of the two first heat insulating layers 1011 are evenly distributed in the third direction z; or, the connected positions of the two first heat insulating layers 1011 are in Evenly distributed in the second direction y.
  • the size L1 of the heat insulation board 101 in the first direction x is 0.2 mm to 5 mm.
  • the size L1 of the heat insulation board 101 in the first direction x is the size of the first heat insulation layer 1011 in the first direction x. L3.
  • the size L1 of the heat shield 101 in the first direction When the dimension L1 of the heat shield 101 in the first direction , causing the heat insulation effect to deteriorate; when the size L1 of the heat shield 101 in the first direction x is too large, it will occupy too much space in the battery 10 and reduce the energy density of the battery 10 . Therefore, the size L1 of the heat shield 101 in the first direction .
  • the dimension L1 of the heat insulation panel 101 in the first direction x is 3 mm.
  • the size L1 of the heat shield 101 in the first direction The risk of diffusion is eliminated, and at the same time, it does not occupy too much space in the battery 10, ensuring that the battery 10 has a high energy density.
  • the size L1 of the heat shield 101 in the first direction x and the energy Q of the battery cell 20 satisfy: 2 ⁇ 10 -3 mm/Wh ⁇ L1/Q ⁇ 10 -2 mm/Wh.
  • the energy of a battery cell refers to the amount of energy stored in a battery cell.
  • the energy of a battery cell is one of the important performance indicators for measuring the performance of a battery cell.
  • the ratio of the size L1 of the heat shield 101 in the first direction x to the energy Q of the battery cell 20 is too small, that is, the size L1 of the heat shield 101 in the first direction x corresponding to the unit energy of the battery cell 20 is too small. hours, the heat insulation effect of the heat shield 101 is poor; when the energy Q of the battery cell 20 is constant, the larger L1/Q, that is, the larger L1, will occupy too much space in the battery 10 and reduce the energy of the battery 10 density. Therefore, the ratio of the size L1 of the heat shield 101 in the first direction x to the energy Q of the battery cell 20 satisfies 2 ⁇ 10 -3 mm/Wh ⁇ L1/Q ⁇ 10 -2 mm/Wh. When the thermal insulation effect of the hot plate 101 is good, the battery 10 is ensured to have a high energy density.
  • L1/Q is 8 ⁇ 10 -3 mm/Wh.
  • the ratio of the size L1 of the heat shield 101 in the first direction The risk of thermal runaway spread of 10 will not occupy too much space in the battery 10, ensuring that the battery 10 has a high energy density.
  • the size L2 of the second heat insulation layer 1012 in the first direction x and the size L1 of the heat insulation plate 101 in the first direction x satisfy: 0.2 ⁇ L2/L1 ⁇ 0.6.
  • the second thermal insulation layer 1012 is thinner than the first thermal insulation layer 1011, so the thermal insulation effect of the second thermal insulation layer 1012 is weak; when L2/L1 is too large
  • the second heat insulation layer 1012 is thicker than the first heat insulation layer 1011, that is, the second heat insulation layer 1012 occupies most of the heat insulation panel 101, then the strength of the heat insulation panel 101 is low and is easily damaged by battery cells.
  • the body 20 is extruded and deformed, which affects the heat insulation effect, so 0.2 ⁇ L2/L1 ⁇ 0.6 is set. In this way, the heat insulation effect of the heat insulation board 101 can be ensured, and the risk of thermal runaway spread in the battery 10 can be effectively reduced.
  • the size L3 of the first heat insulation layer 1011 in the first direction x is 1 mm
  • the size L3 of the second heat insulation layer 1012 in the first direction x is 1 mm
  • the size L2 is 1mm.
  • one first heat insulation layer 1011 and two second heat insulation layers 1012 are assembled to form the heat insulation panel 101
  • the total size in the first direction ensuring that the battery 10 has a high energy density.
  • the second thermal insulation layer 1012 is an airgel felt.
  • Airgel felt has the characteristics of light weight, easy to cut, low density, inorganic fire protection, overall hydrophobic, green and environmentally friendly.
  • the thermal insulation effect of airgel felt is 2-5 times that of traditional insulation materials.
  • the second thermal insulation layer 1012 is an air sandwich.
  • the heat insulation panels 101 of this structure not only have a certain structural strength, are not easy to be extruded and deformed, are not easy to be deformed at high temperatures, and also have a certain degree of insulation. The thermal effect can effectively reduce the risk of thermal runaway spread within the battery 10 .
  • the first thermal insulation layer 1011 includes multiple layers of fiber-reinforced resin layers 1013, and the fiber-reinforced resin layers 1013 are compositely formed of fiber materials and resin materials.
  • the single fiber material layer 1013a can be immersed in the resin material slurry, so that the resin material slurry is fully infiltrated into the fiber pores 1013b in the single fiber material layer 1013a, and then heated at 60°C-120 Bake at °C temperature for 3-30 minutes to prepare fiber-reinforced resin layer 1013.
  • 1-20 layers of fiber-reinforced resin layers 1013 are laminated and hot-pressed under a pressure of 0.1-10 MPa and a temperature of 100°C-200°C to form the first heat insulation layer 1011.
  • the resin material slurry can be made of water-based elastic coating, resin material, flame retardant, dispersant, coupling agent, silica powder, and short fibers according to the mass ratio (35-55): 15-34): (15-20): (1-3): (0.5-3): (1-3): (0.5-3) Composition.
  • the fiber-reinforced resin material in the embodiment of the present application is a material that is dark brown in color and has good acid resistance, mechanical properties, and heat resistance. Even at very high temperatures, it can maintain its structural integrity and Due to its dimensional stability, it is widely used in anti-corrosion engineering, adhesives and flame retardants.
  • Fiber-reinforced resin composite materials have the characteristics of light weight, high strength, high rigidity, and high temperature resistance. Multiple layers of fiber-reinforced resin layers form the first thermal insulation layer 1011. Therefore, the first thermal insulation layer 1011 has the characteristics of high strength and high temperature resistance. , thereby ensuring that the heat shield 101 effectively reduces the risk of thermal runaway spread within the battery.
  • the resin material is silicone-based airgel modified resin or high temperature resistant flame retardant resin.
  • Silicone-based airgel modified resin has the characteristics of low thermal conductivity, and high temperature resistant flame retardant resin has the characteristics of high temperature resistance and low thermal conductivity. Compared with general resin materials, silicone-based airgel modified resin has the characteristics of high temperature resistance and high temperature resistance.
  • the flame-retardant resin is combined with the fiber material to form a fiber-reinforced resin composite material, which has better high temperature resistance and high strength properties.
  • the first heat insulation layer 1011 formed by the fiber-reinforced resin composite material can effectively reduce the expansion of thermal runaway in the battery 10 risk of dispersion.
  • the fiber material is a ceramic fiber material.
  • the fiber can be glass fiber, carbon fiber, quartz fiber, high silica fiber, aluminum silicate fiber, mullite fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, boron nitride fiber, basalt fiber, One of the fibers such as brucite fiber. Ceramic fiber has outstanding high temperature resistance among various fiber materials.
  • Ceramic fiber materials have better high temperature resistance than other fiber materials.
  • the composite material of ceramic fiber materials and resin materials has better high temperature resistance and high strength properties.
  • the first heat insulation layer formed by the composite material can Effectively reduce the risk of thermal runaway spread within the battery.
  • the ceramic fiber material is silicon oxide or alumina.
  • the first thermal insulation layer made of silicon oxide or alumina ceramic fiber material and resin material has the best high temperature resistance.
  • the embodiment of the present application also provides an electrical device, which may include the battery 10 in the previous embodiment.
  • the electrical equipment may be a vehicle 1, a ship, a spacecraft, etc., but the embodiment of the present application is not limited to this.
  • the hardness test was conducted on the first thermal insulation layer with a thickness of 3 mm, and the test results were Shore D hardness 87 and Barcol hardness 46.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池和用电设备。该电池包括:多个电池单体,多个电池单体包括相邻的第一电池单体和第二电池单体,第一电池单体和第二电池单体沿第一方向排列;隔热板,隔热板设置于第一电池单体和第二电池单体之间,其中,隔热板包括第一隔热层,第一隔热层为高分子基体复合纤维板。本申请实施例的技术方案,能够有效降低电池内热失控扩散的风险,从而提升电池的可靠性。

Description

电池和用电设备
相关申请的交叉引用
本申请要求享有于2022年04月29日提交的名称为“电池和用电设备”的中国专利申请202210467669.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,电池的热失控问题也是一个不可忽视的问题。电池的热失控扩散,将会带来很大的安全隐患。因此,如何降低电池内热失控扩散的风险,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池和用电设备,能够有效降低电池内热失控扩散的风险,从而提升电池的可靠性。
第一方面,提供了一种电池,包括:多个电池单体,所述多个电池单体包括相邻的第一电池单体和第二电池单体,所述第一电池单体和所述第二电池单体沿第一方向排列;隔热板,所述隔热板设置于所述第一电池单体和所述第二电池单体之间,其中,所述隔热板包括第一隔热层,所述第一隔热层为高分子基体复合纤维板。
在本申请实施例中,在第一电池单体和第二电池单体之间设置有隔热板,当电池中的部分电池单体发生热失控时,该隔热板可以降低发生热失控的电池单体将热量传递给相邻的电池单体的风险,从而降低电池内热失控扩散的风险。现有技术中常将气凝胶毡或其他不具有结构强度的板材用作隔热板,气凝胶毡或其他不具有结构强度的板材在电池单体间受到挤压时会变形,厚度变薄,其隔热效果也会大大降低。而本申请方案中的隔热板包括第一隔热层,该第一隔热层为高分子基体复合纤维板, 高分子基体复合纤维板是一种耐高温、高强度的硬质防护板材,在高温下也不易变形,设置于电池单体之间,可以有效降低电池内热失控扩散的风险,从而提升电池的可靠性。
在一种可能的实现方式中,所述高分子基体复合纤维板为纤维增强树脂复合板。
以高分子材料中的树脂为基体制备纤维增强树脂复合板作为防护板,相较于其他的高分子材料基体,纤维增强树脂复合板的耐高温性能较好,具有更高的强度,不易变形。
在一种可能的实现方式中,所述隔热板设置于所述第一电池单体的第一壁和所述第二电池单体的第二壁之间,所述第一壁为所述第一电池单体中表面积最大且最靠近所述第二电池单体的壁,所述第二壁为所述第二电池单体中表面积最大且最靠近所述第一电池单体的壁。
隔热板设置于相邻的两个电池单体的表面积最大的壁之间,这样,隔热板阻止电池单体热失控的扩散的范围更大,更利于降低电池内热失控扩散的风险。
在一种可能的实现方式中,所述隔热板包括第二隔热层和两个所述第一隔热层,所述第二隔热层和两个所述第一隔热层沿所述第一方向排列,且所述第二隔热层位于两个所述第一隔热层之间。
第一隔热层为纤维增强树脂复合板,具有强度高,高温下不变形、不破损等优点,将第二隔热层设置于两个第一隔热层之间,形成“夹心”结构,这样,第一隔热层可以保护第二隔热层不被电池单体挤压变形,使第二隔热层更好发挥隔热的作用,使得隔热板能够有效降低电池内热失控扩散的风险。
在一种可能的实现方式中,两个所述第一隔热层在第二方向上的端部相连,所述第二方向垂直于所述第一方向。
两个第一隔热层的端部相连,将第二隔热层封装于两个第一隔热层之间,保护第二隔热层不被电池单体挤压变形。另外,两个第一隔热层的端部相连,提升了外部第一隔热层的结构强度。
在一种可能的实现方式中,在所述第二方向上,两个所述第一隔热层在除端部外的其他位置中的至少一个位置相连。
两个第一隔热层之间有多处相连,提升了第一隔热层的结构强度,对置于两个第一隔热层之间的第二隔热层起到更好的支撑作用,使第二隔热层不被电池单体挤压变形。
在一种可能的实现方式中,两个所述第一隔热层的相连的位置,在所述第二方向上均匀分布。
在一种可能的实现方式中,所述隔热板在所述第一方向上的尺寸L1为 0.2mm~5mm。
当隔热板在第一方向上的尺寸L1太小时,隔热板的隔热效果较差,且隔热板的强度较小,易被两侧的电池单体挤压变形,导致隔热效果变差;当隔热板在第一方向上的尺寸L1太大时,会占据电池内过多的空间,降低电池的能量密度。因此,设置隔热板在第一方向上的尺寸L1为0.2mm~5mm,在保证隔热板的强度较大和隔热效果好的情况下,同时保证电池具有较高的能量密度。
在一种可能的实现方式中,所述隔热板在所述第一方向上的尺寸L1为3mm。
设置隔热板在第一方向上的尺寸L1为3mm,使隔热板具有高强度,不易被挤压变形,高温下也不变形,隔热效果好,能够有效降低电池热失控扩散的风险,同时,不会占据电池内过多的空间,保证电池具有较高的能量密度。
在一种可能的实现方式中,所述隔热板在所述第一方向上的尺寸L1与所述电池单体的能量Q满足:2×10-3mm/Wh≤L1/Q≤10-2mm/Wh。
当隔热板在第一方向上的尺寸L1与电池单体的能量Q的比值太小,即电池单体单位能量对应的隔热板在第一方向上的尺寸L1太小时,隔热板的隔热效果较差;在电池单体的能量Q一定时,L1/Q越大,即L1越大,会占据电池内过多的空间,降低电池的能量密度。因此,设置隔热板在第一方向上的尺寸L1与电池单体的能量Q的比值满足2×10-3mm/Wh≤L1/Q≤10-2mm/Wh,在保证隔热板的隔热效果好的情况下,同时保证电池具有较高的能量密度。
在一种可能的实现方式中,L1/Q为8×10-3mm/Wh。
设置隔热板在第一方向上的尺寸L1与电池单体的能量Q的比值为8×10-3mm/Wh,使得隔热板具有好的隔热效果,能够有效降低电池热失控扩散的风险,同时,不会占据电池内过多的空间,保证电池具有较高的能量密度。
在一种可能的实现方式中,所述第二隔热层在所述第一方向上的尺寸L2与所述隔热板在所述第一方向上的尺寸L1满足:0.2≤L2/L1≤0.6。
当L2远小于L1,即L2/L1过小时,第二隔热层较第一隔热层很薄,那么第二隔热层发挥的隔热效果较弱;当L2/L1过大时,第二隔热层较第一隔热层很厚,即第二隔热层占据隔热板的绝大部分,那么隔热板的强度就较低,容易被电池单体挤压变形,影响隔热效果,因此设置0.2≤L2/L1≤0.6,这样,可以保证隔热板的隔热效果,有效降低电池内热失控扩散的风险。
在一种可能的实现方式中,所述第一隔热层在所述第一方向上的尺寸L3为1mm,所述第二隔热层在所述第一方向上的尺寸L2为1mm。
这样,一个第一隔热层和两个第二隔热层组装形成的隔热板在第一方向上的总尺寸为3mm,一方面保证隔热板的高强度,不易变形以及好的隔热效果,另一方面保证隔热板不会占据电池内过多的空间,保证电池具有较高的能量密度。
在一种可能的实现方式中,所述第二隔热层为气凝胶毡。
气凝胶毡具有质轻﹑易裁剪﹑密度小、无机防火﹑整体疏水、绿色环保等特性,气凝胶毡的隔热效果是传统隔热材料2-5倍。
在一种可能的实现方式中,所述第二隔热层为空气夹层。
这种情况下,两个第一隔热板之间形成空腔,这种结构的隔热板既具有一定的结构强度,不易被挤压变形,也不易高温变形,还具有一定的隔热效果,能够有效降低电池内热失控扩散的风险。
在一种可能的实现方式中,所述第一隔热层包括多层纤维增强树脂层,所述纤维增强树脂层由纤维材料和树脂材料复合形成。
纤维增强树脂复合材料具有质轻,高强度,高刚性,耐高温的特性,多层纤维增强树脂层形成第一隔热层,因此,第一隔热层具有强度高,耐高温的特性,从而保证隔热板有效降低阻止电池内热失控扩散的风险。
在一种可能的实现方式中,所述树脂材料为硅基气凝胶改性树脂或耐高温阻燃性树脂。
硅基气凝胶改性树脂具有低导热系数的特性,耐高温阻燃性树脂具有耐高温、低导热系数的特性,相较于一般的树脂材料,硅基气凝胶改性树脂和耐高温阻燃性树脂与纤维材料复合,形成纤维增强树脂复合材料,具有更好的耐高温和高强度的特性,纤维增强树脂复合材料形成的第一隔热层可以有效降低电池内热失控扩散的风险。
在一种可能的实施方式中,所述纤维材料为玻璃纤维、陶瓷纤维、碳纤维、石英纤维、高硅氧纤维、硅酸铝纤维、莫来石纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维、氮化硼纤维、玄武岩纤维、水镁石纤维、凹凸棒石纤维、硼纤维、碳纳米管纤维、芳纶纤维、聚酰亚胺纤维、超高分子量聚乙烯纤维等纤维中的至少一种。
在一种可能的实施方式中,所述纤维材料为陶瓷纤维材料。
陶瓷纤维材料较其他的纤维材料有着更优越的耐高温性能,陶瓷纤维材料与树脂材料复合而成的材料具有更好的耐高温和高强度的特性,该复合材料形成的第一隔热层可以有效降低电池内热失控扩散的风险。
在一种可能的实施方式中,所述陶瓷纤维材料为氧化硅或氧化铝。
采用氧化硅或氧化铝的陶瓷纤维材料与树脂材料复合制备出的第一隔热层,其耐高温性能最佳。
第二方面,提供了一种用电设备,包括:上述第一方面或第一方面的任意可能的实现方式中的电池,所述电池用于提供电能。
本申请实施例的技术方案中,在相邻的第一电池单体和第二电池单体之间设置有隔热板,当电池中的部分电池单体发生热失控时,该隔热板可以降低发生热失 控的电池单体将热量传递给相邻的电池单体的风险,从而降低电池内热失控扩散的风险。现有技术中常将气凝胶毡或其他不具有结构强度的板材用作隔热板,气凝胶毡或其他不具有结构强度的板材在电池单体间受到挤压时会变形,厚度变薄,其隔热效果也会大大降低。而本申请方案中的隔热板包括第一隔热层,该第一隔热层为高分子基体复合纤维板,高分子基体复合纤维板是一种耐高温、高强度的硬质防护板材,在高温下也不易变形,设置于电池单体之间,可以有效降低电池内热失控扩散的风险,从而提升电池的可靠性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的分解结构示意图;
图4是本申请一实施例公开的一种电池的分解结构示意图;
图5是本申请一实施例公开的一种电池的部分结构示意图;
图6是本申请一实施例公开的一种电池单体和隔热板的剖面图;
图7是本申请一实施例公开的一种电池单体和隔热板的剖面图;
图8是本申请一实施例公开的一种隔热板的分解结构示意图;
图9是本申请一实施例公开的一种隔热板的分解结构示意图;
图10是本申请一实施例公开的一种电池单体和隔热板的剖面图;
图11是本申请一实施例公开的一种电池单体和隔热板的剖面图;
图12是本申请一实施例公开的一种纤维增强树脂层的结构示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必 须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕 式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在电池技术的发展中,除了提高电池的性能外,电池的热失控问题也是一个不可忽视的问题。在电池使用过程中,电池热失控危险性极高,热失控的扩散将会带来很大的安全隐患,因此如何降低电池内热失控扩散的风险成为研究人员关注的重点。
鉴于此,本申请实施例提供了一种技术方案,在相邻的第一电池单体和第二电池单体之间设置有隔热板,当电池中的部分电池单体发生热失控时,该隔热板可以降低发生热失控的电池单体将热量传递给相邻的电池单体的风险,从而降低电池内热失控扩散的风险。本申请方案中的隔热板包括第一隔热层,该第一隔热层为高分子基体复合纤维板,高分子基体复合纤维板是一种耐高温、高强度的硬质防护板材,在高温下也不易变形,设置于电池单体之间,可以有效降低电池内热失控扩散的风险,从而提升电池的可靠性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1 的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。例如,多个电池单体20相互并联或串联或混联组合后置于箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极 耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图4示出了本申请一个实施例的电池10的结构示意图。如图4所示,电池10包括多个电池单体20,多个电池单体20包括相邻的第一电池单体21和第二电池单体22,第一电池单体21和第二电池单体22沿第一方向x排列,电池10还包括隔热板101,隔热板101设置于第一电池单体21和第二电池单体22之间,其中,隔热板101包括第一隔热层1011,第一隔热层1011为高分子基体复合纤维板。
高分子基体复合纤维板是以高分子材料为基体,以纤维为增强体复合而成,具有耐高温,强度高,不易变形等优点。
在第一电池单体21和第二电池单体22之间设置有隔热板101,当电池10中的部分电池单体20发生热失控时,该隔热板101可以降低发生热失控的电池单体20将热量传递给相邻的电池单体20的风险,从而降低热失控扩散的风险。该隔热板101包括第一隔热层1011,第一隔热层1011为高分子基体复合纤维板,高分子基体复合纤维板设置于电池单体20之间,可以有效降低电池10内热失控扩散的风险,从而提升电池10的可靠性。
可选地,在本申请实施例中,高分子基体复合纤维板为纤维增强树脂复合板。
纤维增强树脂复合板是一种高强度的耐高温隔热板材,能够承受1500℃高温,同时受挤压时,板材不会破碎,能耐100MPa的应力,导热系数为0.2W/(K·m)~1W/(K·m)。
以高分子材料中的树脂为基体制备纤维增强树脂复合板作为防护板,相较于其他的高分子材料基体,纤维增强树脂复合板的耐高温性能较好,具有更高的强度, 不易变形。
在本申请实施例中,如图5所示,隔热板101设置于第一电池单体21的第一壁211和第二电池单体22的第二壁221之间,第一壁211为第一电池单体21中表面积最大的壁,第二壁221为第二电池单体2222中表面积最大的壁。
隔热板101设置于相邻的两个电池单体20的表面积最大的壁之间,这样,隔热板101阻止电池单体20热失控的扩散的范围更大,更利于降低电池10内热失控扩散的风险。
应理解,隔热板101还可以设置于相邻的两个电池单体20的其他壁之间,若一个电池单体20的四周均有相邻的电池单体20,那么其四个侧壁均可以设置有与侧壁相对的隔热板101,也可根据电池10内电池单体20的排列情况和空间需求设置,本申请对此不做限定。
在本申请实施例中,如图6所示,隔热板101包括第二隔热层1012和两个第一隔热层1011,第二隔热层1012和两个第一隔热层1011沿第一方向x排列,且第二隔热层1012位于两个第一隔热层1011之间。
第一隔热层1011为纤维增强树脂复合板,具有强度高,高温下不变形、不破损等优点,将第二隔热层1012设置于两个第一隔热层1011之间,形成“夹心”结构,这样,第一隔热层1011可以保护第二隔热层1012不被电池单体20挤压变形,使第二隔热层1012更好发挥隔热的作用,使得隔热板101能够有效降低电池10内热失控扩散的风险。
可选地,在本申请实施例中,如图7中的(a)所示,,两个第一隔热层1011在第二方向y上的端部相连,第二方向y垂直于第一方向x,图7的(a)中仅示出了一个示意性的方向,但第二方向y不限于此。
两个第一隔热层1011的端部相连,将第二隔热层1012封装于两个第一隔热层1011之间,保护第二隔热层1012不被电池单体20挤压变形。另外,两个第一隔热层1011的端部相连,提升了外部第一隔热层1011的结构强度。
可选地,在本申请实施例中,如图7中的(b)所示,在第二方向y上,两个第一隔热层1011在除端部外的其他位置中的至少一个位置相连。
应理解,在本申请实施例中,在第三方向上,两个第一隔热层1011的除端部外的其他位置也可以相连,且至少一个位置相连,第三方向垂直于第一方向x和第二方向y。
两个第一隔热层1011之间有多处相连,提升了第一隔热层1011的结构强度,对置于两个第一隔热层1011之间的第二隔热层1012起到更好的支撑作用,使第二隔热层1012不被电池单体20挤压变形。
可选地,在本申请实施例中,继续参照图7中的(b),两个第一隔热层 1011的相连的位置,在第二方向y上均匀分布。
可选地,在本申请实施例中,,两个第一隔热层1011的在第三方向z上的端部相连。
具体地,如图8所示,第一隔热层为四周凸起,中心部位凹陷的结构,两个第一隔热层1011在第二方向y上的端部相连,并且,两个第一隔热层1011在第三方向z上的端部也相连。也就是说,两个第一隔热层1011的四个端部分别相连,形成密闭的空腔。将第二隔热层1012置于该空腔中,也就是说,第二隔热层1012完全被第一隔热层1011包裹,与外界隔绝,能够更有效避免第二隔热层1012被挤压。
可选地,在本申请实施例中,如图9所示,两个第一隔热层1011与一个第二隔热层1012沿第二方向y排列,且第二隔热层1012位于两个第一隔热层1011之间,两个第一隔热层1011在第三方向z上的端部相连。
具体地,两个第一隔热层1011沿第二方向y排列,且两个第一隔热层1011在第三方向z上的端部相连,这样,两个第一隔热层1011围合成“口”字形,而第二隔热层1012位于两个第一隔热层1011之间,也就是第二隔热层1012在第二方向z和第三方向y上均被两个第一隔热层1011包围,这种情况下,当电池单体20挤压第一隔热层1011和第二隔热层1012时,由于第一隔热层1011的强度高,不易变形,其在第一方向x上的尺寸基本不变,那么相邻的两个电池单体20就很难往中间的第二隔热层1012靠近,从而不会挤压第二隔热层1012,保证了第二隔热层1012有效发挥隔热的作用。
可选地,在本申请实施例中,两个第一隔热层1011可以一体成型形成“口”字形结构,本申请对此不做限定。
可选地,在本申请实施例中,如图10所示,在第三方向z上,两个第一隔热层1011在除端部外的其他位置中的至少一个位置相连。
应理解,在第二方向y上,两个第一隔热层1011在除端部外的其他位置的也可以相连,且至少一个位置相连。
两个第一隔热层1011之间有多处相连,提升了第一隔热层1011的结构强度,对置于两个第一隔热层1011之间的第二隔热层1012起到更好的支撑作用,使第二隔热层1012不被电池单体20挤压变形。
可选地,在本申请实施例中,,两个第一隔热层1011的相连的位置,在第三方向z上均匀分布;或者,两个第一隔热层1011的相连的位置,在第二方向y上均匀分布。
在本申请实施例中,如图6、图7以及图9-11所示,隔热板101在第一方向x上的尺寸L1为0.2mm~5mm。如图11所示,当隔热板101只包括第一隔热层1011时,隔热板101在第一方向x上的尺寸L1即为第一隔热层1011在第一方向x上的尺寸L3。
当隔热板101在第一方向x上的尺寸L1太小时,隔热板101的隔热效果较差,且隔热板101的强度较小,易被两侧的电池单体20挤压变形,导致隔热效果变差;当隔热板101在第一方向x上的尺寸L1太大时,会占据电池10内过多的空间,降低电池10的能量密度。因此,设置隔热板101在第一方向x上的尺寸L1为0.2mm~5mm,在保证隔热板101的强度较大和隔热效果好的情况下,同时保证电池10具有较高的能量密度。
可选地,在本申请实施例中,隔热板101在第一方向x上的尺寸L1为3mm。
设置隔热板101在第一方向x上的尺寸L1为3mm,使隔热板101具有高强度,不易被挤压变形,高温下也不变形,隔热效果好,能够有效降低电池10热失控扩散的风险,同时,不会占据电池10内过多的空间,保证电池10具有较高的能量密度。
在本申请实施例中,隔热板101在第一方向x上的尺寸L1与电池单体20的能量Q满足:2×10-3mm/Wh≤L1/Q≤10-2mm/Wh。
电池单体的能量是指电池单体存储能量的大小,电池单体能量是衡量电池单体性能的重要性能指标之一。
当隔热板101在第一方向x上的尺寸L1与电池单体20的能量Q的比值太小,即电池单体20单位能量对应的隔热板101在第一方向x上的尺寸L1太小时,隔热板101的隔热效果较差;在电池单体20的能量Q一定时,L1/Q越大,即L1越大,会占据电池10内过多的空间,降低电池10的能量密度。因此,设置隔热板101在第一方向x上的尺寸L1与电池单体20的能量Q的比值满足2×10-3mm/Wh≤L1/Q≤10-2mm/Wh,在保证隔热板101的隔热效果好的情况下,同时保证电池10具有较高的能量密度。
可选地,在本申请实施例中,L1/Q为8×10-3mm/Wh。
设置隔热板101在第一方向x上的尺寸L1与电池单体20的能量Q的比值为8×10-3mm/Wh,使得隔热板101具有好的隔热效果,能够有效降低电池10热失控扩散的风险,同时,不会占据电池10内过多的空间,保证电池10具有较高的能量密度。
在本申请实施例中,第二隔热层1012在第一方向x上的尺寸L2与隔热板101在第一方向x上的尺寸L1满足:0.2≤L2/L1≤0.6。
当L2远小于L1,即L2/L1过小时,第二隔热层1012较第一隔热层1011很薄,那么第二隔热层1012发挥的隔热效果较弱;当L2/L1过大时,第二隔热层1012较第一隔热层1011很厚,即第二隔热层1012占据隔热板101的绝大部分,那么隔热板101的强度就较低,容易被电池单体20挤压变形,影响隔热效果,因此设置0.2≤L2/L1≤0.6,这样,可以保证隔热板101的隔热效果,有效降低电池10内热失控扩散的风险。
可选地,在本申请实施例中,如图6和图7所示,第一隔热层1011在第一方向x上的尺寸L3为1mm,第二隔热层1012在第一方向x上的尺寸L2为1mm。
这样,一个第一隔热层1011和两个第二隔热层1012组装形成的隔热板101 在第一方向x上的总尺寸为3mm,一方面保证隔热板101的高强度,不易变形以及好的隔热效果,另一方面保证隔热板101不会占据电池10内过多的空间,保证电池10具有较高的能量密度。
可选地,在本申请实施例中,第二隔热层1012为气凝胶毡。
气凝胶毡具有质轻﹑易裁剪﹑密度小、无机防火﹑整体疏水、绿色环保等特性,气凝胶毡的隔热效果是传统隔热材料2-5倍。
可选地,在本申请实施例中,第二隔热层1012为空气夹层。
这种情况下,两个第一隔热板101之间形成空腔,这种结构的隔热板101既具有一定的结构强度,不易被挤压变形,也不易高温变形,还具有一定的隔热效果,能够有效降低电池10内热失控扩散的风险。
可选地,在本申请实施例中,第一隔热层1011包括多层纤维增强树脂层1013,纤维增强树脂层1013由纤维材料和树脂材料复合形成。
纤维材料和树脂材料之间的复合过程,本申请对此不作任何限定。例如,如图12所示,可以将单片纤维材料层1013a浸入树脂材料浆料中,使树脂材料浆料充分浸润在单片纤维材料层1013a中的纤维孔隙1013b中,然后在60℃-120℃温度条件下烘烤3-30分钟,制得纤维增强树脂层1013。将1-20层的纤维增强树脂层1013进行叠合,在0.1-10Mpa的压力条件下,100℃-200℃的温度条件下热压成型,制成第一隔热层1011。
本申请对树脂材料浆料的制备方法同样不做任何限定。例如,在本申请实施例中,树脂材料浆料可以由水性弹性涂料、树脂材料、阻燃剂、分散剂、偶联剂、二氧化硅粉、短纤维按质量比(35-55):(15-34):(15-20):(1-3):(0.5-3):(1-3):(0.5-3)组成。
本申请实施例中的纤维增强树脂材料是一种颜色为深棕色、具有良好的耐酸性能、力学性能、耐热性能的材料,即使在非常高的温度下,也能保持其结构的完整性和尺寸的稳定性,被广泛应用于防腐蚀工程、胶粘剂和阻燃剂。
纤维增强树脂复合材料具有质轻,高强度,高刚性,耐高温的特性,多层纤维增强树脂层形成第一隔热层1011,因此,第一隔热层1011具有强度高,耐高温的特性,从而保证隔热板101有效降低电池内热失控扩散的风险。
可选地,在本申请实施例中,树脂材料为硅基气凝胶改性树脂或耐高温阻燃性树脂。
硅基气凝胶改性树脂具有低导热系数的特性,耐高温阻燃性树脂具有耐高温、低导热系数的特性,相较于一般的树脂材料,硅基气凝胶改性树脂和耐高温阻燃性树脂与纤维材料复合,形成纤维增强树脂复合材料,具有更好的耐高温和高强度的特性,纤维增强树脂复合材料形成的第一隔热层1011可以有效降低电池10内热失控扩 散的风险。
可选地,在本申请实施例中,纤维材料为陶瓷纤维材料。
具体地,纤维可为玻璃纤维、碳纤维、石英纤维、高硅氧纤维、硅酸铝纤维、莫来石纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维、氮化硼纤维、玄武岩纤维、水镁石纤维等纤维中的一种。陶瓷纤维在多种纤维材料中的耐高温性能较为突出。
陶瓷纤维材料较其他的纤维材料有着更优越的耐高温性能,陶瓷纤维材料与树脂材料复合而成的材料具有更好的耐高温和高强度的特性,该复合材料形成的第一隔热层可以有效降低电池内热失控扩散的风险。
可选地,在本申请实施例中,陶瓷纤维材料为氧化硅或氧化铝。
采用氧化硅或氧化铝的陶瓷纤维材料与树脂材料复合制备出的第一隔热层,其耐高温性能最佳。
本申请实施例还提供了一种用电设备,该用电设备可以包括前述实施例中的电池10。可选地,该用电设备可以为车辆1、船舶或航天器等,但本申请实施例对此并不限定。
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
在GBT 1447-2005纤维增强塑料拉伸性能试验方法的测试标准下,对纤维增强树脂材料制成的第一隔热层进行拉伸性能测试,测试结果如表1所示;在GBT 5258-2008纤维增强塑料面内压缩性能试验方法的测试标准下,对第一隔热层进行压缩性能测试,测试结果如表2所示;在GBT 1449-2005纤维增强塑料弯曲性能试验方法的测试标准下,对第一隔热层进行弯曲性能测试,测试结果如表3所示;在GBT 30969-2014聚合物基复合材料短梁剪切强度试验方法的测试标准下,对第一隔热层进行断梁剪切性能测试,测试结果如表4所示;在GBT 1843-2008塑料悬臂梁冲击强度的测定的测试标准下,对第一隔热层进行冲击性能测试,测试结果如表5所示。
表1不同厚度的第一隔热层的拉伸性能测试

表2不同厚度的第一隔热层的压缩性能测试
表3不同厚度的第一隔热层的弯曲性能测试

表4不同厚度的第一隔热层的断梁剪切性能测试
表5不同厚度的第一隔热层的冲击性能测试

另外,对厚度为3mm的第一隔热层进行了硬度测试,测试结果为邵D硬度87,巴氏硬度46。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 一种电池(10),其特征在于,包括:
    多个电池单体(20),所述多个电池单体(20)包括相邻的第一电池单体(21)和第二电池单体(22),所述第一电池单体(21)和所述第二电池单体(22)沿第一方向(x)排列;
    隔热板(101),所述隔热板(101)设置于所述第一电池单体(21)和所述第二电池单体(22)之间,其中,所述隔热板(101)包括第一隔热层(1011),所述第一隔热层(1011)为高分子基体复合纤维板。
  2. 根据权利要求1所述的电池(10),其特征在于,所述高分子基体复合纤维板为纤维增强树脂复合板。
  3. 根据权利要求1或2所述的电池(10),其特征在于,所述隔热板(101)设置于所述第一电池单体(21)的第一壁(211)和所述第二电池单体(22)的第二壁(221)之间,所述第一壁(211)为所述第一电池单体(21)中表面积最大且最靠近所述第二电池单体(22)的壁,所述第二壁(221)为所述第二电池单体(22)中表面积最大且最靠近所述第一电池单体(21)的壁。
  4. 根据权利要求1至3中任一项所述的电池(10),其特征在于,所述隔热板(101)包括第二隔热层(1012)和两个所述第一隔热层(1011),所述第二隔热层(1012)和两个所述第一隔热层(1011)沿所述第一方向(x)排列,且所述第二隔热层(1012)位于两个所述第一隔热层(1011)之间。
  5. 根据权利要求4所述的电池(10),其特征在于,两个所述第一隔热层(1011)在第二方向(y)上的端部相连,所述第二方向(y)垂直于所述第一方向(x)。
  6. 根据权利要求5所述的电池(10),其特征在于,在所述第二方向(y)上,两个所述第一隔热层(1011)在除端部外的其他位置中的至少一个位置相连。
  7. 根据权利要求6所述的电池(10),其特征在于,两个所述第一隔热层(1011)相连的位置,在所述第二方向(y)上均匀分布。
  8. 根据权利要求4至7中任一项所述的电池(10),其特征在于,所述隔热板(101)在所述第一方向(x)上的尺寸L1为0.2mm~5mm。
  9. 根据权利要求8所述的电池,其特征在于,所述隔热板(1011)在所述第一方向 (x)上的尺寸L1为3mm。
  10. 根据权利要求8所述的电池,其特征在于,所述隔热板(101)在所述第一方向(x)上的尺寸L1与所述电池单体的能量Q满足:2×10-3mm/Wh≤L1/Q≤10-2mm/Wh。
  11. 根据权利要求10所述的电池,其特征在于,L1/Q为8×10-3mm/Wh。
  12. 根据权利要求8所述的电池(10),其特征在于,所述第二隔热层(1012)在所述第一方向(x)上的尺寸L2与所述隔热板(101)在所述第一方向(x)上的尺寸L1满足:0.2≤L2/L1≤0.6。
  13. 根据权利要求12所述的电池(10),其特征在于,所述第一隔热层(1011)在所述第一方向(x)上的尺寸L3为1mm,所述第二隔热层(1012)在所述第一方向(x)上的尺寸L2为1mm。
  14. 根据权利要求4至13中任一项所述的电池(10),其特征在于,所述第二隔热层(1012)为气凝胶毡。
  15. 根据权利要求4至13中任一项所述的电池(10),其特征在于,所述第二隔热层(1012)为空气夹层。
  16. 根据权利要求1至15中任一项所述的电池(10),其特征在于,所述第一隔热层(1011)包括多层纤维增强树脂层,所述纤维增强树脂层由纤维材料和树脂材料复合形成。
  17. 根据权利要求16所述的电池(10),其特征在于,所述树脂材料为硅基气凝胶改性树脂或耐高温阻燃性树脂。
  18. 根据权利要求16或17所述的电池(10),其特征在于,所述纤维材料为玻璃纤维、陶瓷纤维、碳纤维、石英纤维、高硅氧纤维、硅酸铝纤维、莫来石纤维、碳化硅纤维、氮化硅纤维、氧化铝纤维、氮化硼纤维、玄武岩纤维、水镁石纤维、凹凸棒石纤维、硼纤维、碳纳米管纤维、芳纶纤维、聚酰亚胺纤维、超高分子量聚乙烯纤维等纤维中的至少一种。
  19. 根据权利要求16至18中任一项所述的电池(10),其特征在于,所述纤维材料为陶瓷纤维材料。
  20. 根据权利要求19所述的电池(10),其特征在于,所述陶瓷纤维材料为氧化硅或氧化铝。
  21. 一种用电设备,其特征在于,包括:根据权利要求1至20中任一项所述的电池 (10),所述电池(10)用于提供电能。
PCT/CN2023/088166 2022-04-29 2023-04-13 电池和用电设备 WO2023207620A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247009935A KR20240050401A (ko) 2022-04-29 2023-04-13 배터리 및 전기 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210467669.6 2022-04-29
CN202210467669.6A CN117013187A (zh) 2022-04-29 2022-04-29 电池和用电设备

Publications (1)

Publication Number Publication Date
WO2023207620A1 true WO2023207620A1 (zh) 2023-11-02

Family

ID=88517365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088166 WO2023207620A1 (zh) 2022-04-29 2023-04-13 电池和用电设备

Country Status (3)

Country Link
KR (1) KR20240050401A (zh)
CN (1) CN117013187A (zh)
WO (1) WO2023207620A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317510A (zh) * 2023-11-29 2023-12-29 杭州卡涞复合材料科技有限公司 电池模组及储能箱

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119571A (zh) * 2018-07-27 2019-01-01 清华大学 电池系统及其应用方法
CN112382816A (zh) * 2021-01-15 2021-02-19 司诺瓦(北京)科技有限公司 灭火剂和电池
CN113228383A (zh) * 2018-12-27 2021-08-06 三洋电机株式会社 用于使相邻的电池单体绝缘的隔板和具备该隔板的电源装置
CN113443889A (zh) * 2020-03-27 2021-09-28 江苏泛亚微透科技股份有限公司 电动汽车蓄电池用二氧化硅气凝胶玻纤毡复合材料薄板、隔热垫制品及其应用
CN113614983A (zh) * 2019-03-27 2021-11-05 三洋电机株式会社 电源装置和电动车辆
CN113614986A (zh) * 2019-03-27 2021-11-05 三洋电机株式会社 电源装置和电动车辆
CN113906624A (zh) * 2019-06-28 2022-01-07 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置
CN113906615A (zh) * 2019-06-28 2022-01-07 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119571A (zh) * 2018-07-27 2019-01-01 清华大学 电池系统及其应用方法
CN113228383A (zh) * 2018-12-27 2021-08-06 三洋电机株式会社 用于使相邻的电池单体绝缘的隔板和具备该隔板的电源装置
CN113614983A (zh) * 2019-03-27 2021-11-05 三洋电机株式会社 电源装置和电动车辆
CN113614986A (zh) * 2019-03-27 2021-11-05 三洋电机株式会社 电源装置和电动车辆
CN113906624A (zh) * 2019-06-28 2022-01-07 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置
CN113906615A (zh) * 2019-06-28 2022-01-07 三洋电机株式会社 电源装置和具有该电源装置的电动车辆以及蓄电装置
CN113443889A (zh) * 2020-03-27 2021-09-28 江苏泛亚微透科技股份有限公司 电动汽车蓄电池用二氧化硅气凝胶玻纤毡复合材料薄板、隔热垫制品及其应用
CN112382816A (zh) * 2021-01-15 2021-02-19 司诺瓦(北京)科技有限公司 灭火剂和电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317510A (zh) * 2023-11-29 2023-12-29 杭州卡涞复合材料科技有限公司 电池模组及储能箱
CN117317510B (zh) * 2023-11-29 2024-03-19 杭州卡涞复合材料科技有限公司 电池模组及储能箱

Also Published As

Publication number Publication date
KR20240050401A (ko) 2024-04-18
CN117013187A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2023207620A1 (zh) 电池和用电设备
CN203326063U (zh) 一种具有控温功能的电池模组
WO2023045400A1 (zh) 用电装置、电池、加热膜及其制造方法和制造设备
WO2023185380A1 (zh) 电池模块、电池、用电设备
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
WO2023245924A1 (zh) 电池以及用电装置
WO2023060657A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2024001482A1 (zh) 电池和用电设备
CN220984585U (zh) 电池单体、电池、用电装置和制备电池单体的装置
CN219591517U (zh) 电池及用电设备
WO2023202348A1 (zh) 电池和用电设备
US11862776B2 (en) Battery, power consumption device, and method and device for producing battery
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
CN219203305U (zh) 电池和用电装置
CN219226401U (zh) 电池和用电装置
WO2023240462A1 (zh) 电池和用电装置
WO2023240797A1 (zh) 电池和用电装置
WO2023240460A1 (zh) 一种热管理组件、电池和用电装置
WO2023245330A1 (zh) 电池及用电设备
CN218602667U (zh) 一种防爆锂电池结构以及手机电池
WO2024092731A1 (zh) 端盖、电池单体、电池和用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247009935

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023795053

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023795053

Country of ref document: EP

Effective date: 20240327