WO2023206977A1 - 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构 - Google Patents

防止因漏装滤芯导致垃圾吸入清洁设备的保护结构 Download PDF

Info

Publication number
WO2023206977A1
WO2023206977A1 PCT/CN2022/124488 CN2022124488W WO2023206977A1 WO 2023206977 A1 WO2023206977 A1 WO 2023206977A1 CN 2022124488 W CN2022124488 W CN 2022124488W WO 2023206977 A1 WO2023206977 A1 WO 2023206977A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
channel
sucked
protective structure
filter element
Prior art date
Application number
PCT/CN2022/124488
Other languages
English (en)
French (fr)
Inventor
曹鑫
Original Assignee
淮安普乐菲智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮安普乐菲智能科技有限公司 filed Critical 淮安普乐菲智能科技有限公司
Publication of WO2023206977A1 publication Critical patent/WO2023206977A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/24Hand-supported suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/12Dry filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/04Cleaning by suction, with or without auxiliary action

Definitions

  • the invention belongs to the field of cleaning equipment, and specifically relates to a protective structure that prevents garbage from being sucked into the cleaning equipment due to missing filter elements.
  • a vacuum cleaner suitable for underwater operations including a vacuum cleaner equipped with a pump device and a filter device.
  • the support frame has a channel for garbage to pass through.
  • the pump body device includes an impeller for creating negative pressure. There is a one-way valve between the filter device and the impeller.
  • the filter device and the one-way valve there is a garbage bin for storing dirt. Therefore, the garbage will pass through the front body, impeller, and one-way valve in sequence until it reaches the filter element as a filtering device. The garbage in this structure will contaminate the impeller and cause impact to the impeller.
  • the underwater cleaning robot pumping structure including a shell assembly, and a first cavity is provided inside the shell assembly. and a second cavity.
  • An outlet opening to the housing assembly is provided above the first cavity.
  • a passage is provided between the first cavity and the second cavity.
  • An impeller is fixed in the first cavity.
  • the impeller includes a direction facing The impeller of the discharge port; the bottom of the second cavity is provided with a dirt suction port opening to the housing assembly, and the second cavity is provided with a filter device docked with the dirt suction port. There is a gap between the inner wall of the second cavity and the filter device.
  • Garbage enters the filter device through the suction port and remains in the filter device, while the filtered water enters the first cavity through the channel until it is discharged from the discharge port.
  • the advantage is that large particles of garbage will not cause direct impact and pollution to the impeller, and will not cause direct pollution to the first and second chambers.
  • the technical problem to be solved by the present invention is to provide a protective structure with a reasonable structure and convenient cleaning and maintenance to prevent garbage from being sucked into the cleaning equipment due to missing filter elements.
  • the technical solution adopted by the present invention to solve the above technical problems is: a protective structure to prevent garbage from being inhaled into the cleaning equipment due to missing filter elements.
  • the first cavity is connected with a discharge port
  • the second cavity is connected with a suction port
  • the first cavity and the second cavity are connected through a first channel, and there is also a connection between the second cavity and the outside world.
  • Second channel the number of the second channel is more than one
  • the filter element is provided with a plug for blocking the second channel.
  • the structure of the invention is suitable for dry land vacuum cleaners and also for underwater garbage cleaners.
  • the cleaning robot with an impeller relies on the negative pressure generated in the first cavity by the rotation of the impeller, so that the external fluid is forced into the second cavity through the suction port.
  • the garbage will be blocked by the filter element, and the filtered water or air will enter.
  • the first cavity is discharged from the discharge port to the outside world.
  • the cavity between the filter element and the suction port is used to collect garbage.
  • the casing includes a main casing and a auxiliary casing.
  • the main casing and the auxiliary casing are connected through a detachable structure.
  • the first cavity and the discharge port are located on the main casing, and the sewage suction port is located on the auxiliary housing.
  • the main shell is provided with a partition, and the first channel is located on the partition.
  • detachable structures Common ones include concave and convex snap-on types, threaded coupling types, etc., which all belong to the existing technology.
  • the partition serves as a boundary between the first cavity and the second cavity.
  • annular space is provided between the auxiliary housing and the partition plate, the annular space is connected to the second channel, and the plug is annular and is sandwiched between the annular space.
  • Both water and air are fluids.
  • the filter element When the filter element is not installed, the external fluid will pass through the second channel, the annular interval, the first channel, the first cavity, and the discharge port in sequence; when the filter element is installed, the plugging piece on the filter element will It will seal the annular interval and block the influx of fluid from the second channel. Since the impeller creates negative pressure for the first cavity and the second cavity, external fluid will influx from the suction port. After the fluid passes through the second channel and enters the cavity with a larger annular spacing than the second channel, the flow rate of the fluid can be weakened and impact on the equipment can be avoided.
  • the number of the second channels is more than two, and they are arranged around the periphery of the second cavity. Two or more second channels can cause the fluid entering the annular space to produce an opposing recoil effect, thus weakening the impact of the fluid on the interior of the equipment.
  • the number of discharge ports and second channels is the same, and corresponding to the second channels, the outer circumference of the first cavity is provided.
  • the main housing is provided with a groove body that communicates the discharge ports and the second channels, that is, the discharge ports.
  • the two channels are arranged adjacent to each other in pairs on the main housing, and the main housing is provided with a groove body that communicates with the discharge port and the second channel.
  • the role of the tank is very large.
  • the outer end of the second channel is higher than the discharge port, so that a large part of the fluid discharged from the discharge port will escape to the second channel, thereby preventing the second channel from absorbing too much new fluid from the outside. , ultimately minimizing the disturbance of the equipment to the external fluid.
  • the distance from the bottom of the tank to the center of the first channel is less than the distance from the discharge port to the center of the first channel, that is, the bottom of the tank is lower than the discharge port, and the tank is closer to the first cavity than the discharge port. center.
  • the partition plate is provided with an annular protrusion toward the direction of the dirt suction port at the edge of the first channel.
  • the annular protrusion can guide part of the fluid flowing in from the second channel to the direction of the suction port, thereby counteracting the garbage slightly sucked by the suction port.
  • the sum of the minimum cross-sectional areas of all second channels is greater than the minimum cross-sectional area of the dirt suction port. External fluid will preferentially flow in from the second channel.
  • the distance between the second channel and the first channel is smaller than the distance between the dirt suction port and the first channel. Since the negative pressure on the far end is smaller, external fluid will preferentially flow in from the second channel.
  • the main housing includes an annular portion that is wrapped around the auxiliary housing, and the detachable structure includes an L-shaped notch provided on the annular portion, and a limiting post provided on the auxiliary housing. The bit post snaps into the L-shaped notch to connect the auxiliary housing and the main housing.
  • the second channel is located on the auxiliary housing, and the plug is attached to the inner end of the second channel.
  • the present invention can open the equipment for operation even if the filter element is forgotten to be installed, without worrying about garbage entering the equipment.
  • the structure of the present invention effectively creates a fault-tolerant mechanism, which is more convenient for users. It is user-friendly and thoughtfully protects the equipment. There is no need to add electronic monitoring equipment, saving electronic detection costs.
  • Figure 1 is a schematic structural diagram of a cleaning device according to Embodiment 1 of the present invention.
  • Figure 2 is an exploded schematic diagram of Figure 1;
  • FIG. 3 is a schematic diagram of the prior art in which garbage enters the interior of the equipment through the suction port and pollutes the equipment when the filter element is missing during operation;
  • Figure 4 is a schematic diagram of the operation of the first implementation of the present invention to effectively avoid garbage contamination of the inside of the equipment when operating with a missing filter element;
  • Figure 5 is a schematic structural diagram of the handheld cleaning equipment of Embodiment 2 and Embodiment 3;
  • Figure 6 is a schematic diagram of the internal structure of Figure 5;
  • Figure 7 is an exploded schematic diagram of Figure 6;
  • Figure 8 is a schematic structural diagram of Figure 6 when the filter element is missing
  • Figure 9 is a schematic perspective view of the internal structure of the main housing in Figure 7;
  • Figure 10 is an enlarged structural schematic diagram of part A in Figure 6;
  • Figure 11 is an enlarged structural schematic diagram of part B in Figure 8.
  • Figure 12 is an enlarged structural schematic diagram of part C in Figure 9;
  • Figure 13 is a schematic three-dimensional structural diagram of Figure 5;
  • Figure 14 is an enlarged structural schematic diagram of part D in Figure 13;
  • Figure 15 is an exploded schematic diagram of Figure 14;
  • Figure 16 is a further simplified structural schematic diagram of Figure 10.
  • Figure 17 is a further simplified structural schematic diagram of Figure 11;
  • Figure 18 is a schematic structural diagram of Figure 17 with the impeller removed;
  • Figure 19 is a further simplified structural schematic diagram of Figure 14;
  • Figure 20 is a schematic diagram of the positional relationship between the discharge port, the first channel, the tank body and the second channel in Embodiment 3;
  • Figure 21 is a schematic diagram of the operation of the third embodiment when the filter element is missing
  • Figure 22 is a schematic structural diagram of the second channel position in Embodiment 4.
  • Figure 23 is a schematic diagram of the annular spacing structure formed between the auxiliary housing and the partition when the main housing does not have an annular portion in the fifth embodiment.
  • the reference numbers are: casing 1, main casing 11, annular portion 111, tank 112, auxiliary casing 12, annular spacer 121, first cavity 21, discharge port 211, second cavity 22 , dirt suction port 221, second channel 222, first channel 23, impeller 3, filter element 4, plug 41, partition 5, annular protrusion 51, detachable structure 6, L-shaped gap 61, limiting column 62 .
  • Embodiment 1 as shown in Figures 1, 2 and 4:
  • a protective structure to prevent garbage from being sucked into the cleaning equipment due to missing filter elements including a casing 1.
  • the casing 1 is provided with a first cavity 21 for accommodating the impeller 3, and a second cavity 22 for accommodating the filter element 4.
  • the first cavity 21 is connected with a discharge port 211, and the second cavity 22 is connected with a suction port 221.
  • the first cavity 21 and the second cavity 22 are connected through the first channel 23, and there is also a connection between the second cavity 22 and the outside world.
  • the number of the second channels 222 is more than one, and the filter element 4 is provided with a plug 41 for blocking the second channels 222.
  • the cleaning robot with impeller 3 relies on the negative pressure generated in the first cavity 21 by the rotation of the impeller 3, so that the external fluid is forced into the second cavity 22 through the dirt suction port 221, and the garbage will be blocked by the filter element 4, filtering The remaining fluid will enter the first cavity 21 until it is discharged to the outside through the discharge port 211.
  • the cavity between the filter element 4 and the dirt suction port 221 is used to collect garbage.
  • the traditional cleaning equipment is as shown in Figure 3.
  • garbage will quickly and massively pour into the second cavity 22 from the suction port 221, and quickly contaminate the first cavity 21. Not only will the second cavity 22 and the first cavity 21 be polluted, but the impeller 3 will also be polluted, and the garbage will be embedded in all the gaps in the first cavity 21 .
  • Embodiment 2 is suitable for long tubular negative pressure cleaning equipment, such as handheld negative pressure cleaners. It is optimized on the basis of Embodiment 1, as shown in Figures 5 to 15:
  • a protective structure to prevent garbage from being sucked into the cleaning equipment due to missing filter elements including a casing 1.
  • the casing 1 is provided with a first cavity 21 for accommodating the impeller 3, and a second cavity 22 for accommodating the filter element 4.
  • the first cavity 21 is connected with a discharge port 211, and the second cavity 22 is connected with a suction port 221.
  • the first cavity 21 and the second cavity 22 are connected through the first channel 23, and there is also a connection between the second cavity 22 and the outside world.
  • the number of the second channels 222 is more than one, and the filter element 4 is provided with a plug 41 for blocking the second channels 222.
  • the casing 1 includes a main housing 11 and an auxiliary housing 12, and the main housing 11 and the auxiliary housing 12 are connected through a detachable structure 6; as shown in Fig.
  • the first cavity 21 and the discharge port 211 are located on the main housing 11; as shown in Figures 6, 7, and 8, the suction port 221 is located on the auxiliary housing 12; as shown in Figures 10 to 12
  • the main housing 11 is provided with a partition 5, and the first channel 23 is located on the partition 5.
  • the partition 5 serves as a boundary between the first cavity 21 and the second cavity 22 .
  • annular spacer 121 is provided between the auxiliary housing 12 and the partition plate 5.
  • the annular spacer 121 communicates with the second channel 222.
  • the plug 41 is annular and sandwiched. Located in annular space 121. Both water and air are fluids.
  • the impeller 3 creates negative pressure for the first cavity 21 and the second cavity 22, the outside world
  • the fluid will flow in from the suction port 221. After the fluid passes through the second channel 222 and enters the annular interval 121 that is larger in the cavity than the second channel 222, the flow rate of the fluid can be weakened and impact on the equipment can be avoided.
  • the number of the second channels 222 is more than two, and they are arranged around the periphery of the second cavity 22 .
  • Two or more second channels 222 can cause the fluid entering the annular space 121 to produce a counterflush effect, thereby weakening the impact of the fluid on the interior of the device.
  • Figures 16 to 19, as well as Figures 21 and 22 are simplified structural diagrams of the cleaning equipment that only retain two second channels 222 and two discharge ports 211.
  • Embodiment 3 is an optimization based on Embodiment 2, as shown in Figure 5 to Figure 21:
  • the number of discharge ports 211 and second channels 222 is the same.
  • the second channels 222 are arranged around the outer periphery of the first cavity 21.
  • the main housing 11 is provided with a connecting discharge port 211 and the second channel 222.
  • the groove body 112 of the channel 222 that is, the discharge port 211 and the second channel 222 are adjacently arranged in pairs on the main housing 11.
  • the main housing 11 is provided with a groove body 112 that communicates with the discharge port 211 and the second channel 222.
  • Figures 16 to 19 show the structure of the tank body 112. For convenience of expression, the positional relationship between the tank body 112, the discharge port 211, the second channel 222 and the first channel 23 is shown in Figure 20.
  • the role of the tank body 112 is very large.
  • the external fluid will pass through the second channel 222, the annular spacer 121, the first channel 23, the first cavity 21, and the discharge port 211 in sequence. Since the tank body 112 existence, the fluid discharged from the discharge port 211 will enter the second channel 222 again through the groove body 112, thereby preventing the second channel 222 from absorbing too much new external fluid, and ultimately minimizing the disturbance of the equipment to the external fluid.
  • the outer end of the second channel 222 is higher than the discharge port 211, so that a large part of the fluid discharged from the discharge port 211 will escape to the second channel 222, thereby avoiding the second
  • the channel 222 absorbs too much new fluid from the outside, ultimately minimizing the disturbance of the device to the outside fluid.
  • the distance N from the bottom of the tank 112 to the center of the first channel 23 is less than the distance M from the discharge outlet 211 to the center of the first channel 23, that is, the bottom of the tank 112 is lower than the discharge outlet 211.
  • the groove body 112 is closer to the center of the first cavity 21 than the discharge port 211 .
  • Such a structure allows part of the fluid in the first cavity 21 to escape from the tank 112 to the second channel 222 or even the annular space 121 before reaching the discharge port 211, thereby preventing the second channel 222 from being excessively Absorb new fluid from the outside, ultimately minimizing the disturbance of the equipment to the outside fluid.
  • FIG. 21 it is a schematic diagram of the working of the deeper groove body 112 and the higher second channel 222 in the third embodiment to complete fluid circulation.
  • the partition plate 5 is provided with an annular protrusion 51 on the edge of the first channel 23 toward the dirt suction port 221 .
  • the annular protrusion 51 can guide part of the fluid flowing in from the second channel 222 in the direction of the dirt suction port 221, thereby counteracting the garbage slightly sucked by the dirt suction port 221.
  • the main housing 11 includes an annular portion 111 sleeved on the outer periphery of the auxiliary housing 12 .
  • the sum of the minimum cross-sectional areas of all the second channels 222 is greater than the minimum cross-sectional area of the dirt suction port 221 . External fluid will flow in from the second channel 222 preferentially.
  • the distance between the second channel 222 and the first channel 23 is smaller than the distance between the dirt suction port 221 and the first channel 23 . Since the negative pressure received by the far end is smaller, external fluid will preferentially flow in from the second channel 222 .
  • the detachable structure 6 includes an L-shaped notch 61 provided on the annular portion 111, and a limiting column 62 provided on the auxiliary housing 12. Through the limiting column 62 snaps into the L-shaped notch 61 to make the auxiliary housing 12 and the main housing 11 butt together.
  • Embodiment 4 as shown in Figure 22:
  • Embodiment 4 a protective structure to prevent garbage from being sucked into the cleaning equipment due to missing filter elements, including a casing 1.
  • the casing 1 is provided with a first cavity 21 for accommodating the impeller 3;
  • the first cavity 21 is connected with a discharge port 211, and the second cavity 22 is connected with a suction port 221.
  • the first cavity 21 and the second cavity 22 are connected by a first passage 23.
  • the number of the second channel 222 is more than one.
  • the filter element 4 is provided with a plug 41 for blocking the second channel 222.
  • the structures of the fourth embodiment and the second embodiment also include: the casing 1 includes a main housing 11 and an auxiliary housing 12, and the main housing 11 and the auxiliary housing 12 are connected through a detachable structure 6; as shown in Figure 10 to As shown in Figure 12, the first cavity 21 and the discharge port 211 are located on the main housing 11; as shown in Figures 6, 7, and 8, the suction port 221 is located on the auxiliary housing 12; as shown in Figures 10 to 12 , the main housing 11 is provided with a partition 5, and the first channel 23 is located on the partition 5.
  • the partition 5 serves as a boundary between the first cavity 21 and the second cavity 22 .
  • the main housing 11 includes an annular portion 111 sleeved on the outer periphery of the auxiliary housing 12 .
  • the sum of the minimum cross-sectional areas of all the second channels 222 is greater than the minimum cross-sectional area of the dirt suction port 221 . External fluid will flow in from the second channel 222 preferentially.
  • the difference between the fourth embodiment and the second embodiment is that the second channel 222 is located on the auxiliary housing 12 , and the plug 41 is attached to the inner end of the second channel 222 .
  • Embodiment 5 as shown in Figure 23:
  • the fifth embodiment has a different structure from the third embodiment in terms of the connection method between the main housing 11 and the auxiliary housing 12. That is, the main housing 11 does not have an annular portion 111 covering the outer periphery of the auxiliary housing 12.
  • the casing 11 and the auxiliary casing 12 are connected through end butt joints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)

Abstract

防止因漏装滤芯(4)导致垃圾吸入清洁设备的保护结构,包括机壳(1),机壳(1)内设有容纳叶轮(3)的第一腔体(21),以及容纳滤芯(4)的第二腔体(22),第一腔体(21)连通有排出口(211),第二腔体(22)连通有吸污口(221),第一腔体(21)和第二腔体(22)之间通过第一通道(23)相连,还设有连通第二腔体(22)和外界的第二通道(222),滤芯(4)设有用于阻断第二通道(222)的堵件(41)。当忘记装入滤芯(4)进行清洁作业时,外界的流体会通过第二通道(222)涌入第二腔体(22)和第一腔体(21),直至从排出口(211)排回外界,由于叶轮(3)产生的负压会被第二通道(222)涌入的流体所填补,所以吸污口(221)受到的负压会大幅削弱,从而减小或避免垃圾污染设备内部。本结构有效创造了一种容错机制,对使用者友好,对设备的保护周到,无需增加电子监测设备,节省了电子检测成本。

Description

防止因漏装滤芯导致垃圾吸入清洁设备的保护结构 技术领域
本发明属于清洁设备领域,具体涉及防止因漏装滤芯导致垃圾吸入清洁设备的保护结构。
背景技术
在两个连通的空间之间,如果彼此之间的内容物的密度不等,则高密度内容物会流向向低密度内容物,利用这一原理制造出了吸尘器和水下清洁机器人,它们都是利用电机和叶轮的工作产生负压,吸尘器的叶轮促使外界的空气涌向叶轮,同时将灰尘和垃圾带进设备内的滤芯中,水下清洁机器人则是通过叶轮促使外界的水涌向叶轮,同时水底的垃圾带进设备内的滤芯中,再将过滤后的水排出设备。
在公开号为CN208228904U,专利名为“一种适用于水下作业的吸尘器”的中国发明专利中,就公开了一种适用于水下作业的吸尘器,包括配装有泵体装置和过滤装置的后机体,以及安装在后机体前端并用于输送污物的前机体,泵体装置的尾端配接有电源组件,过滤装置为罩状结构且配接于后机体的尾端,后机体的内壁设有用于固定泵体装置的支撑架,支撑架设有供垃圾通过的通道,泵体装置包括用于制造负压的叶轮,过滤装置和叶轮之间设有单向阀,过滤装置和单向阀之间构成有用于存储污物的垃圾仓。因此,垃圾会顺次通过前机体、叶轮、单向阀,直至到达作为过滤装置的滤芯,这种结构的垃圾会污染叶轮,对叶轮造成冲击。
在公开号为CN208153389U,专利名为“水下清洁机器人泵水结构”的中国发明专利中,就公开了水下清洁机器人泵水结构,包括壳体组件,壳体组件内部设有第一腔体和第二腔体,第一腔体的上方设有开口于壳体组件的排出口,第一腔体和第二腔体之间设有通道,第一腔体内固设有叶轮,叶轮包括朝向排出口的叶轮;第二腔体底部设有开口于壳体组件的吸污口,第二腔体中设有对接于吸污口的过滤装置。第二腔体的内壁与过滤装置之间设有间隙。垃圾通过吸污口进入过滤装置,并滞留在过滤装置内,而过滤后的水则经通道进入第一腔体,直至从排出口排出。相较于公开号为CN208228904U的专利,优点是大颗粒垃圾不会对叶轮造成直接冲击和污染,也不会对第一腔体和第二腔体造成直接污染。
但是,公开号为CN208153389U的结构缺点是一旦忘记安装过滤装置,在工作时,外界的垃圾会大量涌入第一腔体和第二腔体,造成严重的、难以清理的污染。
发明内容
本发明所要解决的技术问题是针对上述现有技术的现状,而提供结构合理、清洁维护维护方便的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构。
本发明解决上述技术问题所采用的技术方案为:防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,包括机壳,机壳内设有容纳叶轮的第一腔体,以及容纳滤芯的第二腔体,第一腔体连通有排出口,第二腔体连通有吸污口,第一腔体和第二腔体之间通过第一通道相连,还设有连通第二腔体和外界的第二通道,第二通道的数量为1个以上,滤芯设有用于阻断第二通道的堵件。
本发明结构适用于旱地吸尘器,也适用于水下垃圾清洁器。拥有叶轮的清洁机器人是靠叶轮的转动在第一腔体内产生的负压,使外界的流体通过吸污口压入第二腔体,垃圾会被滤芯阻挡,过滤后的水或空气则会进入第一腔体,直至从排出口排至外界。滤芯和吸污口之间的容腔是用来聚集垃圾的。
吸尘器和水下清洁机器人这类负压式清洁设备的工作原理是靠负压将外界流体压入设备内,但人们通常习惯称为“将流体吸进设备内”,本发明迁就通常习惯,凡出现“吸”的概念都通“压”。
以水下清洁器为例,当第二腔体中忘记装入滤芯,在叶轮工作时,外界的水会通过第二通道涌入第二腔体,随即通过第一通道涌入第一腔体,直至从排出口排回外界水体中,由于叶轮产生的负压会被第二通道涌入的水体所填补,所以吸污口受到的负压会大幅削弱,从而减小或避免垃圾从吸污口吸入第二腔体甚至垃圾涌入第一腔体污染叶轮。本发明能有效避免因漏装滤芯导致垃圾吸入清洁机器人。
在优选的方案中,机壳包括主壳体和副壳体,主壳体和副壳体之间通过可拆卸结构对接,第一腔体和排出口位于主壳体上,吸污口位于副壳体上;主壳体设有隔板,第一通道位于隔板上。可拆卸结构的实施方案有很多,常见的有凹凸卡扣式、螺纹配接形式等都属于现有技术。隔板作为第一腔体和第二腔体的分界。
在优选的方案中,副壳体和隔板之间设有环状间隔,环状间隔连通第二通道,堵件为环状,并且夹设于环状间隔。水和空气都属于流体,当未安装滤芯时,外界流体会顺次通过第二通道、环状间隔、第一通道、第一腔体、排出口;当安装了滤芯,则滤芯上的堵件会封住环状间隔,阻断流体从第二通道涌入,由于叶轮为第一腔体和第二腔体制造的负压,所以外界的流体会从吸污口涌入。流体穿过第二通道进入容腔相对于第二通道更大的环状间隔后,能削弱流体的流速,避免对设备产生冲击。
在优选的方案中,第二通道的数量为2个以上,并且环设于第二腔体的外围。2个以 上的第二通道能使进入环状间隔的流体产生对向反冲效果,从而削弱流体对设备内部的冲击。
在优选的方案中,排出口和第二通道的数量相同,对应于第二通道环设于第一腔体的外周,主壳体设有连通排出口和第二通道的槽体,即排出口和第二通道是成对相邻设置在主壳体上的,主壳体设有连通排出口和第二通道的槽体。槽体的作用非常大,当未安装滤芯时,外界流体会顺次通过第二通道、环状间隔、第一通道、第一腔体、排出口,由于槽体的存在,从排出口排出的流体会通过槽体再一次进入第二通道,从而避免第二通道过多地吸取外界新流体,最终将设备对外界流体的扰动减小到最小。
在优选的方案中,第二通道的外端高于所述的排出口,这样从排出口排出的流体会有很大一部分逃逸至第二通道,从而避免第二通道过多地吸取外界新流体,最终将设备对外界流体的扰动减小到最小。
在优选的方案中,槽体的底部到第一通道中心的距离小于排出口到第一通道中心的距离,即槽体的底部低于排出口,槽体比排出口更贴近第一腔体的中心。这样的结构使第一腔体内的流体有一部分在还未到达排出口时就从槽体中逃逸到第二通道甚至环状间隔中,从而避免第二通道过多地吸取外界新流体,最终将设备对外界流体的扰动减小到最小。
在优选的方案中,隔板在第一通道的边缘设有朝向吸污口方向的环状凸起。环状凸起能将从第二通道涌入的一部分流体导向吸污口方向,从而能抵消吸污口轻微吸入的垃圾。
在优选的方案中,所有第二通道的最小截面积之和大于吸污口的最小截面积。外界的流体会优先从第二通道涌入。
在优选的方案中,第二通道至第一通道之间的距离小于吸污口至第一通道之间的距离。由于远端受到的负压较小,所以外界的流体会优先从第二通道涌入。
在优选的方案中,主壳体包括套在副壳体外周的环状部,可拆卸结构包括设置在环状部上的L形缺口,以及设置在副壳体上的限位柱,通过限位柱卡入L形缺口使副壳体和主壳体对接。
在另一种方案中,第二通道位于副壳体上,堵件贴设于第二通道的内端部。
综上所述,相较于现有技术,本发明能在忘记安装滤芯的情形下,开启设备进行作业,而不用担心垃圾会进入设备内,本发明结构有效创造了一种容错机制,对使用者友好,对设备的保护周到,无需增加电子监测设备,节省了电子检测成本。
附图说明
图1是本发明实施例一在清洁设备上的结构示意图;
图2是图1的分解示意图;
图3是现有技术在漏装滤芯情况下进行作业时垃圾经吸污口进入设备内部污染设备的示意图;
图4是本发明实施一在漏装滤芯情况下进行作业时有效避免垃圾污染设备内部的作业示意图;
图5是实施例二和实施例三的手持式清洁设备的结构示意图;
图6是图5的内部结构示意图;
图7是图6的分解示意图;
图8是图6漏装滤芯时的结构示意图;
图9是图7主壳体的内部结构立体示意图;
图10是图6中A部的放大结构示意图;
图11是图8中B部的放大结构示意图;
图12是图9中C部的放大结构示意图;
图13是图5的立体结构示意图;
图14是图13中D部的放大结构示意图;
图15是图14的分解示意图;
图16是图10的进一步简化结构示意图;
图17是图11的进一步简化结构示意图;
图18是图17去除叶轮的结构示意图;
图19是图14的进一步简化结构示意图;
图20是实施例三中排出口、第一通道、槽体和第二通道的位置关系示意图;
图21是实施例三漏装滤芯时的工作示意图;
图22是实施例四的第二通道位置结构示意图;
图23是实施例五中主壳体不具有环状部时副壳体和隔板之间形成的环状间隔结构示意图。
具体实施方式
以下结合附图对本发明的实施例作进一步详细描述。
其中的附图标记为:机壳1、主壳体11、环状部111、槽体112、副壳体12、环状间隔121、第一腔体21、排出口211、第二腔体22、吸污口221、第二通道222、第一通道23、叶轮3、滤芯4、堵件41、隔板5、环状凸起51、可拆卸结构6、L形缺口61、限位柱62。
实施例一,如图1、2和图4所示:
防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,包括机壳1,机壳1内设有容纳叶轮3的第一腔体21,以及容纳滤芯4的第二腔体22,第一腔体21连通有排出口211,第二腔体22连通有吸污口221,第一腔体21和第二腔体22之间通过第一通道23相连,还设有连通 第二腔体22和外界的第二通道222,第二通道222的数量为1个以上,滤芯4设有用于阻断第二通道222的堵件41。
拥有叶轮3的清洁机器人是靠叶轮3的转动在第一腔体21内产生的负压,使外界的流体通过吸污口221压入第二腔体22,垃圾则会被滤芯4阻挡,过滤后的流体则会进入第一腔体21,直至从排出口211排至外界。滤芯4和吸污口221之间的容腔是用来聚集垃圾的。
当第二腔体22中忘记装入滤芯4,在叶轮3工作时,外界的流体会通过第二通道222涌入第二腔体22,随即通过第一通道23涌入第一腔体21,直至从排出口211排回外界水体中,实施例一在漏装滤芯4状态下的工作原理如图4所示,由于叶轮3产生的负压会被第二通道222涌入的流体所填补,所以吸污口221受到的负压会大幅削弱,从而减小或避免垃圾从吸污口221吸入第二腔体22甚至垃圾涌入第一腔体21污染叶轮3。本发明能有效避免因漏装滤芯4导致垃圾吸入清洁机器人。
而传统的清洁设备是如图3所示,当忘记装滤芯4进行清洁作业时,垃圾会从吸污口221迅速而大量地涌入第二腔体22,并迅速污染第一腔体21,不仅造成第二腔体22和第一腔体21的污染,还会污染叶轮3,垃圾还会嵌入第一腔体21内的所有缝隙中。
实施例二,实施例二适用于长管状的负压清洁设备,例如手持式负压清洁器,它是在实施例一的基础上进行的优化,具体如图5至图15所示:
防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,包括机壳1,机壳1内设有容纳叶轮3的第一腔体21,以及容纳滤芯4的第二腔体22,第一腔体21连通有排出口211,第二腔体22连通有吸污口221,第一腔体21和第二腔体22之间通过第一通道23相连,还设有连通第二腔体22和外界的第二通道222,第二通道222的数量为1个以上,滤芯4设有用于阻断第二通道222的堵件41。
实施例中,如图5、13、14、15所示,机壳1包括主壳体11和副壳体12,主壳体11和副壳体12之间通过可拆卸结构6对接;如图10至图12所示,第一腔体21和排出口211位于主壳体11上;如图6、7、8所示,吸污口221位于副壳体12上;如图10至图12所示,主壳体11设有隔板5,第一通道23位于隔板5上。隔板5作为第一腔体21和第二腔体22的分界。
实施例中,如图11、17、18所示,副壳体12和隔板5之间设有环状间隔121,环状间隔121连通第二通道222,堵件41为环状,并且夹设于环状间隔121。水和空气都属于流体,当未安装滤芯4时,外界流体会顺次通过第二通道222、环状间隔121、第一通道23、 第一腔体21、排出口211;当安装了滤芯4,则滤芯4上的堵件41会封住环状间隔121,阻断流体从第二通道222涌入,由于叶轮3为第一腔体21和第二腔体22制造的负压,所以外界的流体会从吸污口221涌入。流体穿过第二通道222进入容腔相对于第二通道222更大的环状间隔121后,能削弱流体的流速,避免对设备产生冲击。
实施例中,第二通道222的数量为2个以上,并且环设于第二腔体22的外围。2个以上的第二通道222能使进入环状间隔121的流体产生对向反冲效果,从而削弱流体对设备内部的冲击。为了便于观察,图16至19,以及图21和图22都是仅保留2个第二通道222和2个排出口211的简化版清洁设备结构图。
实施例三,实施例三是在实施例二的基础上进行的优化,如图5至图21所示:
在实施例二的基础上,排出口211和第二通道222的数量相同,对应于第二通道222环设于第一腔体21的外周,主壳体11设有连通排出口211和第二通道222的槽体112,即排出口211和第二通道222是成对相邻设置在主壳体11上的,主壳体11设有连通排出口211和第二通道222的槽体112。图16至图19显示了槽体112的结构,为了表达方便,槽体112、排出口211、第二通道222和第一通道23之间的位置关系请参照图20所示。槽体112的作用非常大,当未安装滤芯4时,外界流体会顺次通过第二通道222、环状间隔121、第一通道23、第一腔体21、排出口211,由于槽体112的存在,从排出口211排出的流体会通过槽体112再一次进入第二通道222,从而避免第二通道222过多地吸取外界新流体,最终将设备对外界流体的扰动减小到最小。
实施例中,如图20所示,第二通道222的外端高于所述的排出口211,这样从排出口211排出的流体会有很大一部分逃逸至第二通道222,从而避免第二通道222过多地吸取外界新流体,最终将设备对外界流体的扰动减小到最小。
实施例中,如图20所示,槽体112的底部到第一通道23中心的距离N小于排出口211到第一通道23中心的距离M,即槽体112的底部低于排出口211,槽体112比排出口211更贴近第一腔体21的中心。这样的结构使第一腔体21内的流体有一部分在还未到达排出口211时就从槽体112中逃逸到第二通道222甚至环状间隔121中,从而避免第二通道222过多地吸取外界新流体,最终将设备对外界流体的扰动减小到最小。如图21所示,是实施例三中较深的槽体112配合较高的第二通道222一同完成流体循环的工作示意图。
实施例中,如图16至图19所示,隔板5在第一通道23的边缘设有朝向吸污口221方向的环状凸起51。环状凸起51能将从第二通道222涌入的一部分流体导向吸污口221方向,从而能抵消吸污口221轻微吸入的垃圾。
实施例中,如图16至18所示,主壳体11包括套在副壳体12外周的环状部111。
实施例中,所有的第二通道222的最小截面积之和大于吸污口221的最小截面积。外界的流体会优先从第二通道222涌入。
实施例中,如图6所示,第二通道222至第一通道23之间的距离小于吸污口221至第一通道23之间的距离。由于远端受到的负压较小,所以外界的流体会优先从第二通道222涌入。
实施例中,如图5、14、15所示,可拆卸结构6包括设置在环状部111上的L形缺口61,以及设置在副壳体12上的限位柱62,通过限位柱62卡入L形缺口61使副壳体12和主壳体11对接。
实施例四,如图22所示:
实施例四的以下结构和实施例二一致:防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,包括机壳1,机壳1内设有容纳叶轮3的第一腔体21,以及容纳滤芯4的第二腔体22,第一腔体21连通有排出口211,第二腔体22连通有吸污口221,第一腔体21和第二腔体22之间通过第一通道23相连,还设有连通第二腔体22和外界的第二通道222,第二通道222的数量为1个以上,滤芯4设有用于阻断第二通道222的堵件41。
实施例四和实施例二一致的结构还包括:机壳1包括主壳体11和副壳体12,主壳体11和副壳体12之间通过可拆卸结构6对接;如图10至图12所示,第一腔体21和排出口211位于主壳体11上;如图6、7、8所示,吸污口221位于副壳体12上;如图10至图12所示,主壳体11设有隔板5,第一通道23位于隔板5上。隔板5作为第一腔体21和第二腔体22的分界。主壳体11包括套在副壳体12外周的环状部111。
实施例中,所有的第二通道222的最小截面积之和大于吸污口221的最小截面积。外界的流体会优先从第二通道222涌入。
但是实施例四和实施例二不同之处在于:第二通道222位于副壳体12上,堵件41贴设于第二通道222的内端部。
实施例五,如图23所示:
实施例五是对主壳体11和副壳体12之间的连接方式作出和实施例三不同的结构,即主壳体11没有环状部111套在副壳体12的外周,而是主壳体11和副壳体12之间通过端部对接方式连接。
本发明的最佳实施例已阐明,由本领域普通技术人员做出的各种变化或改型都不会脱离本发明的范围。

Claims (10)

  1. 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,包括机壳(1),所述的机壳(1)内设有容纳叶轮(3)的第一腔体(21),以及容纳滤芯(4)的第二腔体(22),第一腔体(21)连通有排出口(211),第二腔体(22)连通有吸污口(221),第一腔体(21)和第二腔体(22)之间通过第一通道(23)相连,其特征在于:还设有连通第二腔体(22)和外界的第二通道(222),所述的第二通道(222)的数量为1个以上,所述的滤芯(4)设有用于阻断第二通道(222)的堵件(41)。
  2. 根据权利要求1所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的机壳(1)包括主壳体(11)和副壳体(12),所述的主壳体(11)和副壳体(12)之间通过可拆卸结构(6)对接,所述的第一腔体(21)和排出口(211)位于主壳体(11)上,所述的吸污口(221)位于副壳体(12)上;所述的主壳体(11)设有隔板(5),所述的第一通道(23)位于所述的隔板(5)上。
  3. 根据权利要求2所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的副壳体(12)和所述的隔板(5)之间设有环状间隔(121),环状间隔(121)连通第二通道(222),所述的堵件(41)为环状,并且夹设于环状间隔(121)。
  4. 根据权利要求3所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的第二通道(222)的数量为2个以上,并且环设于所述的第二腔体(22)的外围。
  5. 根据权利要求4所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的排出口(211)和第二通道(222)的数量相同,对应于第二通道(222)环设于第一腔体(21)的外周,所述的主壳体(11)设有连通排出口(211)和第二通道(222)的槽体(112)。
  6. 根据权利要求5所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的第二通道(222)的外端高于所述的排出口(211)。
  7. 根据权利要求6所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的槽体(112)的底部到第一通道(23)中心的距离小于排出口(211)到第一通道(23)中心的距离。
  8. 根据权利要求7所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的隔板(5)在第一通道(23)的边缘设有朝向吸污口(221)方向的环状凸起(51)。
  9. 根据权利要求2所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的第二通道(222)位于所述的副壳体(12)上,所述的堵件(41)贴设于所述的第二通道(222)的内端部。
  10. 根据权利要求1至9任一权利要求所述的防止因漏装滤芯导致垃圾吸入清洁设备的保护结构,其特征在于:所述的主壳体(11)包括套在副壳体(12)外周的环状部(111);所有第二通道(222)的最小截面积之和大于吸污口(221)的最小截面积。
PCT/CN2022/124488 2022-04-29 2022-10-11 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构 WO2023206977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210474434.XA CN114747975B (zh) 2022-04-29 2022-04-29 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构
CN202210474434.X 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023206977A1 true WO2023206977A1 (zh) 2023-11-02

Family

ID=82332530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124488 WO2023206977A1 (zh) 2022-04-29 2022-10-11 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构

Country Status (2)

Country Link
CN (1) CN114747975B (zh)
WO (1) WO2023206977A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747975B (zh) * 2022-04-29 2024-02-27 淮安普乐菲智能科技有限公司 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068403A1 (en) * 2004-12-22 2006-06-29 Yujin Robotics Co., Ltd. Cleaning robot having double suction device
KR20090000527A (ko) * 2007-06-28 2009-01-07 엔백 주식회사 쓰레기 자동집하시설의 음식물 쓰레기 수거 시스템
CN107142911A (zh) * 2017-05-22 2017-09-08 贵州大学 一种河湖中垃圾清理及回收装置
CN208152636U (zh) * 2018-05-11 2018-11-27 宁波普乐菲智能科技有限公司 水下清洁机器人泵水和滤水结构
CN110397313A (zh) * 2019-07-29 2019-11-01 中山市天石电器有限公司 一种垃圾收集装置
CN211187047U (zh) * 2019-12-05 2020-08-07 浙江绍兴苏泊尔生活电器有限公司 吸尘盒及吸尘器
US20220001308A1 (en) * 2021-08-13 2022-01-06 NingBo Poolstar Pool Products Co.,Ltd Water cleaner
CN114747975A (zh) * 2022-04-29 2022-07-15 淮安普乐菲智能科技有限公司 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200459413Y1 (ko) * 2009-12-28 2012-03-23 주식회사 부강샘스 전기청소기용 필터교환 알람장치
CN208228904U (zh) * 2017-09-22 2018-12-14 宁波普乐菲智能科技有限公司 一种适用于水下作业的吸尘器
CN208153389U (zh) * 2018-05-11 2018-11-27 宁波普乐菲智能科技有限公司 水下清洁机器人泵水结构
CN108670120B (zh) * 2018-08-17 2023-12-22 天佑电器(苏州)有限公司 吸尘器
KR102170414B1 (ko) * 2018-10-31 2020-10-28 (주)아이포바인 필터 오염 알림장치
CN112120604A (zh) * 2020-09-17 2020-12-25 广东博智林机器人有限公司 一种地面清洁设备
CN215914421U (zh) * 2021-07-13 2022-03-01 厦门鸿景扬区块链科技有限公司 一种方便清理的清洁器具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068403A1 (en) * 2004-12-22 2006-06-29 Yujin Robotics Co., Ltd. Cleaning robot having double suction device
KR20090000527A (ko) * 2007-06-28 2009-01-07 엔백 주식회사 쓰레기 자동집하시설의 음식물 쓰레기 수거 시스템
CN107142911A (zh) * 2017-05-22 2017-09-08 贵州大学 一种河湖中垃圾清理及回收装置
CN208152636U (zh) * 2018-05-11 2018-11-27 宁波普乐菲智能科技有限公司 水下清洁机器人泵水和滤水结构
CN110397313A (zh) * 2019-07-29 2019-11-01 中山市天石电器有限公司 一种垃圾收集装置
CN211187047U (zh) * 2019-12-05 2020-08-07 浙江绍兴苏泊尔生活电器有限公司 吸尘盒及吸尘器
US20220001308A1 (en) * 2021-08-13 2022-01-06 NingBo Poolstar Pool Products Co.,Ltd Water cleaner
CN114747975A (zh) * 2022-04-29 2022-07-15 淮安普乐菲智能科技有限公司 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构

Also Published As

Publication number Publication date
CN114747975B (zh) 2024-02-27
CN114747975A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023206977A1 (zh) 防止因漏装滤芯导致垃圾吸入清洁设备的保护结构
WO2020108492A1 (zh) 手持清洁设备
JP3654330B2 (ja) 低騒音真空掃除機
WO2019173423A8 (en) Vacuum cleaner
CN107348894A (zh) 一种表面清洁器
CN216823306U (zh) 污水收集组件及用于清洁机器人的基站
KR20070010517A (ko) 진공청소기용 사이클론 집진장치
CN207843274U (zh) 水下清洗机器人
CN217365692U (zh) 水箱组件及清洁设备
WO2021109415A1 (zh) 具有空气净化功能的排污桶及护理系统
CN209969159U (zh) 一种通风柜用带喷淋功能的集气机构
CN208371718U (zh) 一种表面清洁器
CN220608246U (zh) 清洁设备
CN218492674U (zh) 一种水箱及其清洁装置
KR100821625B1 (ko) 이동통신단말기 사출케이스 사상기에서의 슬러지 흡입장치
CN218220117U (zh) 一种污水箱及具有其的清洁机器人
WO2023124845A1 (zh) 清洁设备
CN219848409U (zh) 一种液体除渣机
JP6688516B1 (ja) 掃除機及び袋
CN213462741U (zh) 一种微区块链节点在物联网通讯上的安全处理机
CN217938115U (zh) 一种用于湿式表面清洁装置的污水箱
CN220864337U (zh) 一种吸灰环结构
CN212307699U (zh) 一种具有水气分离结构的吸水刷
CN212079658U (zh) 一种下吸上出式大流量便携式液压潜水泵
CN218166255U (zh) 气液分离件、储液结构及清洁设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939799

Country of ref document: EP

Kind code of ref document: A1