WO2023206855A1 - 一种砌砖装置及控制方法 - Google Patents

一种砌砖装置及控制方法 Download PDF

Info

Publication number
WO2023206855A1
WO2023206855A1 PCT/CN2022/110882 CN2022110882W WO2023206855A1 WO 2023206855 A1 WO2023206855 A1 WO 2023206855A1 CN 2022110882 W CN2022110882 W CN 2022110882W WO 2023206855 A1 WO2023206855 A1 WO 2023206855A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot arm
bricklaying
axis
arm
industrial robot
Prior art date
Application number
PCT/CN2022/110882
Other languages
English (en)
French (fr)
Inventor
谢军
李卓雄
阳跃武
何文操
易馨娴
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2023206855A1 publication Critical patent/WO2023206855A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/18Adjusting tools; Templates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/18Adjusting tools; Templates
    • E04G21/1841Means for positioning building parts or elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/20Tools or apparatus for applying mortar
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/22Tools or apparatus for setting building elements with mortar, e.g. bricklaying machines

Definitions

  • the present application relates to the technical field of construction machinery, specifically, to a bricklaying device and a control method.
  • building walls are usually formed by cast-in-place concrete, brickwork, and prefabricated wall panel assembly, among which brickwork is the most commonly used method.
  • Traditional brick walls are manually aligned, and workers use mortar as a connecting agent to lay the bricks in an orderly manner at the required locations.
  • the overall labor intensity is high.
  • the flatness of the artificially built walls is low, which directly increases the follow-up time.
  • the difficulty of plastering and the amount of mortar used add to the weight and cost of the building.
  • the core of the bricklaying robot is to accurately lay the blocks to the target position.
  • the related solutions can only realize the function of building simple walls in a large range.
  • the related bricklaying robots can only realize the masonry of 1 or 2 faces at the first station or the last station, that is, they can build 1 to 2 faces and cannot build 3 faces. Masonry.
  • the purpose of the embodiments of the present application is to provide a bricklaying device and a control method that can realize bricklaying on three sides, thereby at least achieving the technical effect of improving the efficiency of bricklaying.
  • Some embodiments of the present application provide a bricklaying device, which may include a chassis mechanism, a column mechanism, and a robotic arm;
  • the column mechanism can be installed on the chassis mechanism, and the column mechanism can be disposed on the front side of the chassis mechanism, and the mechanical arm can be installed on the chassis mechanism;
  • the robotic arm may include an industrial robotic arm mechanism and a collaborative robotic arm mechanism, the industrial robotic arm mechanism may include a first-axis industrial robotic arm, the first-axis industrial robotic arm may be disposed on the column mechanism, and the The first-axis industrial robot arm can be rotated along the extension direction of the column mechanism, and the first-axis industrial robot arm can be used to rotate within the front, left and right sides of the chassis mechanism;
  • the cooperative robot arm mechanism may be installed on the industrial robot arm mechanism.
  • the end of the cooperative robot arm mechanism may be provided with an end cooperative robot arm and a bricklaying claw mechanism installed on the end cooperative robot arm.
  • the end The cooperative robot arm can be used to drive the brick-laying claw mechanism to rotate in a vertical direction.
  • the brick-laying claw mechanism can be used to clamp bricks.
  • the vertical direction can be parallel to the extension direction of the column mechanism.
  • the rotation of the end cooperative robot arm can be linked with the first axis industrial robot arm, so that the bricks clamped by the bricklaying claw mechanism are parallel to the wall to be built.
  • the robotic arm and column mechanism are set on the front side of the chassis mechanism to ensure the coverage of the robotic arm and avoid interference between various structures.
  • the first-axis industrial robotic arm can be on the front, left, and right sides of the chassis mechanism. Rotate within the side range to achieve three-sided masonry, thereby ensuring the masonry range; the rotation of the end collaborative robotic arm is linked to the first-axis industrial robotic arm to ensure that the bricks clamped by the bricklaying claw mechanism are in line with each other during masonry.
  • the walls to be built are parallel to improve the masonry accuracy; the robotic arm includes an industrial robotic arm mechanism and a collaborative robotic arm mechanism.
  • the load of the industrial robotic arm mechanism can meet the requirements for large loads, and the collaborative robotic arm mechanism can improve the accuracy of the operation, that is, through the industrial arm
  • the configuration combined with the collaborative arm realizes the functions of a large-load, high-speed, and high-precision robotic arm. Therefore, the bricklaying device can achieve a larger bricklaying range and can lay the front, left, and right sides of the bricklaying device. There are three sides on each side; therefore, this bricklaying device can achieve three sides of bricklaying to improve the technical effect of bricklaying efficiency.
  • the mechanical arm and the column mechanism may be disposed at the left front of the chassis mechanism.
  • the industrial robot arm mechanism may also include a second axis industrial robot arm and a third axis industrial robot arm connected in sequence, and the industrial robot arm mechanism may have a first horizontal line and a second horizontal line, the first The horizontal line may be perpendicular to the extension direction of the second-axis industrial robot arm, and the first horizontal line and the second horizontal line may be parallel;
  • the first horizontal line may be provided at the connection between the first-axis industrial robot arm and the second-axis industrial robot arm, and the second-axis industrial robot arm may be rotated along the first horizontal line;
  • the third Two horizontal lines may be provided at the connection between the second-axis industrial robot arm and the third-axis industrial robot arm, and the third-axis industrial robot arm may be rotated along the second horizontal line;
  • the first-axis industrial robot arm can be rotated along the extension direction of the column mechanism, and the second-axis industrial robot arm and the third-axis industrial robot arm can cooperate with each other to perform pitching movements.
  • the first-axis industrial robot arm can rotate around the vertical axis, thereby driving the entire robot arm to rotate around the vertical axis, realizing the rotation of the robot arm from left to right or from right to left; the second axis
  • the industrial robot arm and the third-axis industrial robot arm cooperate to realize the pitching motion of the second-axis industrial robot arm and the third-axis industrial robot arm.
  • the second-axis industrial robot arm is rotated along the first horizontal line
  • the third-axis industrial robot arm is rotated along the first horizontal line.
  • the second-axis industrial robot arm may be a plate-shaped robot arm.
  • the second-axis industrial robot arm adopts a plate-shaped robot arm.
  • the robot arm can be stored more compactly and will not exceed the edge.
  • the edge of the site mechanism allows the masonry device to occupy less space when stored.
  • the cooperative manipulator mechanism may include a fourth-axis cooperative manipulator and a fifth-axis cooperating manipulator connected in sequence, and the fourth-axis cooperating manipulator may be connected and installed with the third-axis industrial manipulator,
  • the fourth-axis cooperative robot arm may be rotated along an extension direction perpendicular to itself, the first horizontal line may be perpendicular to the extension direction of the fourth-axis cooperative robot arm, and the fourth-axis cooperative robot arm may be used for Adjust the pitch angle of the brick laying clamp mechanism;
  • the fifth-axis collaborative robot arm can be rotated along its own extension direction, and the extension direction of the fifth-axis collaborative robot arm can be perpendicular to the extension direction of the fourth-axis collaborative robot arm.
  • the fifth-axis collaborative robot arm The arm can be used to adjust the roll angle of the bricklaying jaw mechanism.
  • the extension direction of the fourth-axis cooperative robot arm may be the first rotation axis
  • the first rotation axis may be perpendicular to the first horizontal line
  • the fourth-axis cooperative robot arm may be rotated along the first rotation axis, so as to pass
  • the fourth axis cooperates with the robotic arm to adjust the pitch angle of the brick laying gripper mechanism at the end.
  • the extended end of the third-axis industrial robot arm can reach the front, left or right side of the chassis mechanism under the rotation of the first-axis industrial robot arm, and is installed on the third-axis industrial robot arm.
  • the cooperative robot arm mechanism at the end of the robot arm can move the bricks clamped by the bricklaying claw mechanism to a level lower than the chassis mechanism.
  • the fourth-axis cooperative robot arm and the fifth-axis cooperative robot arm Can be used to make bricks reach the corresponding position to be laid.
  • the end-cooperating robot arm may be rotated along its own extension direction, and the extension direction of the end-cooperating robot arm may be perpendicular to the extension direction of the fifth-axis cooperative robot arm.
  • the bricklaying device may further include a visual sensor, the visual sensor may be installed at the end of the cooperative robotic arm mechanism, and the visual sensor may be disposed adjacent to the bricklaying claw mechanism, so The visual sensor can be used to detect whether the bricks clamped by the bricklaying claw mechanism are parallel to the wall to be built, and when the bricks clamped by the bricklaying clamping mechanism are not parallel to the wall to be built In this case, the attitude of the bricklaying claw mechanism is adjusted through the cooperative robot arm mechanism.
  • fine-tuning the position and posture can ensure the positioning of the end, so that the bricks clamped by the bricklaying clamp mechanism remain parallel to the wall to be laid, thereby ensuring that the bricklaying clamping claws The masonry precision of the mechanism.
  • the bricklaying device may also include a plurality of laser positioning mechanisms, which may be disposed in the working area of the chassis mechanism, and the laser positioning mechanisms may be used to position the wall to be laid. , and guide the robotic arm to adjust the bricklaying claw mechanism to a preset position.
  • each wall relies on the absolute positioning of the laser line of the laser positioning mechanism and does not rely on the initial position accuracy of the chassis mechanism; the bricklaying device can build three walls at the same site, and the verticality of each wall can be obtained Guaranteed not to be affected by the absolute positioning accuracy of the robotic arm.
  • the bricklaying device may further include an inclination sensor.
  • the inclination sensor may be installed on the chassis mechanism.
  • the inclination sensor may be used to detect the deviation of the chassis mechanism relative to the horizontal plane; the chassis mechanism may A plurality of supporting feet is provided, and the chassis mechanism is adjusted to a horizontal attitude through the plurality of supporting feet according to the deviation of the chassis mechanism relative to the horizontal plane.
  • the plurality of support legs under the chassis mechanism may be height-adjustable devices, and the height of the plurality of support legs can be adjusted to keep the chassis mechanism in a horizontal attitude.
  • the column mechanism may be a lifting column mechanism.
  • the bricklaying device may further include a translation platform, the chassis mechanism is movably installed on the translation platform, and the translation platform may be used to move the chassis mechanism.
  • the chassis mechanism can move in the preset direction through the translation platform, which facilitates the adjustment of the site position of the bricklaying device.
  • the bricklaying device may further include an electrical cabinet mechanism, the electrical cabinet mechanism may be installed on the chassis mechanism, the column mechanism may be arranged adjacent to the electrical cabinet mechanism, and the electrical cabinet The mechanism may be provided on the rear side of the chassis mechanism.
  • the bricklaying device may further include a mortar turning mechanism, the mortar turning mechanism may be installed on the chassis mechanism, and the electrical cabinet mechanism may be arranged adjacent to the mortar turning mechanism,
  • the grouting turning mechanism can be used to perform grouting operations on bricks, and after flipping the bricks over, the bricklaying claw mechanism clamps the plastered bricks.
  • the bricklaying device may further include a plurality of laser sensors.
  • the plurality of laser sensors may be respectively installed on the bricklaying clamp mechanism.
  • the plurality of laser sensors may be used to detect the brickwork. The distance between the clamping claw mechanism and the position to be laid is adjusted to the preset laying position according to the distance.
  • the bricklaying device may further include a controller, and the controller may be connected to the robotic arm for controlling the attitude of the robotic arm.
  • the first axis industrial robot arm is controlled to rotate to the laying direction
  • the cooperating robot arm mechanism is used to adjust the brick laying clamp mechanism so that the attitude of the bricks clamped by the brick laying clamp mechanism is parallel to the wall to be built;
  • Figure 1 is a schematic structural diagram of a bricklaying device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the front laying state of the brick laying device provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the left laying state of the bricklaying device provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the right laying state of the brick laying device provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the bricklaying state of the bricklaying device provided by the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of the masonry device from the first perspective provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the masonry device from a second perspective provided by the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the masonry device from a third perspective provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the masonry device in the stowed state provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another masonry device provided by an embodiment of the present application.
  • FIG 11 is a schematic flowchart of the bricklaying control method provided by the embodiment of the present application.
  • Icon chassis mechanism 100; electrical cabinet mechanism 200; trowel turning mechanism 300; column mechanism 400; robotic arm 500; industrial robotic arm mechanism 510; first axis industrial robotic arm 511; second axis industrial robotic arm 512; third axis Industrial robotic arm 513; collaborative robotic arm mechanism 520; fourth-axis collaborative robotic arm 524; fifth-axis collaborative robotic arm 525; terminal collaborative robotic arm 526; bricklaying claw mechanism 530; wall to be built 600; front wall 610 ; Right wall 620; Left wall 630; Laser positioning mechanism 700; Vision sensor 800; Laser sensor 900; Vertical axis J1; First horizontal line J2; Second horizontal line J3; First rotation axis J4; Second rotation Axis J5; third rotation axis J6.
  • the terms “mounted,” “set,” “provided,” “connected,” and “connected” are to be construed broadly. For example, it can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or a point connection; it can be directly connected, or indirectly connected through an intermediate medium, or between two devices, components or components. internal communication.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • first means two or more.
  • the embodiment of the present application provides a bricklaying device that can be used in the process of building walls of buildings; the robotic arm and column mechanism are arranged on the front side of the chassis mechanism to ensure the coverage of the robotic arm and avoid the problem of interference between various structures.
  • the first-axis industrial robot arm can rotate within the front, left, and right sides of the chassis mechanism to achieve three-sided masonry, thereby ensuring the masonry range; the rotation of the end collaboration robot arm is consistent with the first-axis industrial robot arm Maintain linkage to ensure that the bricks clamped by the bricklaying claw mechanism are parallel to the wall to be laid during masonry, thereby improving the masonry accuracy;
  • the robotic arm includes an industrial robotic arm mechanism and a collaborative robotic arm mechanism, and the load of the industrial robotic arm mechanism can be To meet the requirements of using large loads, the collaborative robot arm mechanism can improve the accuracy of the operation.
  • the combination of the industrial arm and the collaborative arm can achieve large load, high speed, and high precision robotic arm functions. Therefore, the bricklaying device can achieve larger
  • the bricklaying device can lay bricks on the front, left and right sides of the bricklaying device; therefore, the bricklaying device can realize bricklaying on three sides to improve the technical effect of bricklaying efficiency.
  • Figure 1 is a schematic structural diagram of a bricklaying device provided by an embodiment of the present application.
  • the bricklaying device includes a chassis mechanism 100, a column mechanism 400 and a robotic arm 500.
  • the column mechanism 400 is installed on the chassis mechanism 100 , and the column mechanism 400 is disposed on the front side of the chassis mechanism 100 , and the robotic arm 500 is installed on the chassis mechanism 100 .
  • the robot arm 500 includes an industrial robot arm mechanism 510 and a collaborative robot arm mechanism 520.
  • the industrial robot arm mechanism 510 includes a first-axis industrial robot arm 511.
  • the first-axis industrial robot arm 511 is disposed on the column mechanism 400, and the first-axis industrial robot arm 511 is disposed on the column mechanism 400.
  • the axis industrial robot arm 511 is arranged to rotate along the extension direction of the column mechanism.
  • the first axis industrial robot arm 511 is used to rotate within the front, left and right sides of the chassis mechanism 100 .
  • the first-axis industrial robot arm 511 can rotate within the range of the front, left, and right sides of the chassis mechanism 100, and the column mechanism 400 is provided on the front side of the chassis mechanism 100 to avoid the problem of mutual interference between various structures, and achieve 3 sides of masonry.
  • the cooperative robot arm mechanism 520 is installed on the industrial robot arm mechanism 510.
  • the end of the cooperative robot arm mechanism 520 is provided with an end cooperative robot arm 526 and a bricklaying claw mechanism 530 installed on the end cooperative robot arm.
  • the end cooperative robot arm 526 is used to drive the bricklaying claw mechanism 530 to rotate in the vertical direction.
  • the bricklaying claw mechanism 530 is used to clamp the bricks.
  • the vertical direction is parallel to the extension direction of the column mechanism 400.
  • the rotation of the end cooperative mechanical arm 526 is in line with the direction of the extension of the column mechanism 400.
  • the one-axis industrial robot arm 511 maintains linkage, so that the bricks clamped by the bricklaying claw mechanism 530 are parallel to the wall 600 to be built.
  • the wall 600 to be built includes a front wall 610 , a right wall 620 and a left wall 630 .
  • the bricklaying clamping claw mechanism 530 can clamp the bricks after mortaring and flipping, and then lay the bricks with the cooperation of the industrial robot arm mechanism 510 and the collaborative robot arm mechanism 520 .
  • the first axis of the industrial robot arm 511 of the industrial robot arm mechanism 510 is rotated along the extension direction of the column mechanism 400.
  • the extension direction of the column mechanism 400 is the vertical axis J1, thereby driving the entire robot arm 500 to rotate around the vertical axis J1.
  • the rotation range includes the front, left and right sides of the chassis mechanism 100 .
  • the load of the industrial robot arm mechanism 510 can meet the requirements for using large loads, and the collaborative robot arm mechanism can improve the working accuracy, that is, the combination of the industrial arm and the collaborative arm can achieve large-load, high-speed, and high-precision robot arm functions. .
  • the robotic arm 500 and the column mechanism 400 are disposed at the left front of the chassis mechanism 100 .
  • the robotic arm 500 and the column mechanism 400 are arranged in front of the chassis mechanism 100, and the front is sheltered, so that the wall 600 to be built around the bricklaying device can be laid; as shown in Figure 1, the robotic arm 500, The column mechanism 400 is arranged at the left front of the chassis mechanism 100, which can ensure that the front wall 610 can be completely constructed, the right wall 620 can be constructed in a wide range, and the left wall 630 can be constructed in a certain range.
  • the industrial robot arm mechanism 510 also includes a second axis industrial robot arm 512 and a third axis industrial robot arm 513 connected in sequence.
  • the industrial robot arm mechanism 510 has a first horizontal line J2 and a second horizontal line J3.
  • the first horizontal line J2 Perpendicular to the extension direction of the second-axis industrial robot arm 512, the first horizontal line J2 and the second horizontal line J3 are parallel; the first horizontal line J2 is provided at the connection between the first-axis industrial robot arm 511 and the second-axis industrial robot arm 512.
  • the two-axis industrial robot arm 512 is rotated and arranged along the first horizontal line J2; the second horizontal line J3 is arranged at the connection between the second-axis industrial robot arm 512 and the third-axis industrial robot arm 513, and the third-axis industrial robot arm 513 is arranged along the second horizontal line J3 is rotated and set; the first-axis industrial robot arm 511 is rotated and set along the extension direction of the column mechanism, and the second-axis industrial robot arm and the third-axis industrial robot arm cooperate with each other to perform pitching actions.
  • the first-axis industrial robot arm 511 can rotate around the vertical axis J1, thereby driving the entire robot arm 500 to rotate around the vertical axis J1, and realize the rotation of the robot arm 500 from left to right or from right to left;
  • the second-axis industrial robot arm 512 and the third-axis industrial robot arm 513 cooperate to realize the pitching motion of the second-axis industrial robot arm 512 and the third-axis industrial robot arm 513, and realize the collaborative robot arm mechanism 520 and the bricklaying clamp at the end.
  • the lifting and telescopic freedom of the claw mechanism 530 can rotate around the vertical axis J1, thereby driving the entire robot arm 500 to rotate around the vertical axis J1, and realize the rotation of the robot arm 500 from left to right or from right to left;
  • the second-axis industrial robot arm 512 and the third-axis industrial robot arm 513 cooperate to realize the pitching motion of the second-axis industrial robot arm 512 and the third-axis industrial robot arm 513, and realize the collaborative robot arm mechanism 520 and
  • the industrial robot arm mechanism 510 has a first horizontal line J2 and a second horizontal line J3.
  • the first horizontal line J2 is perpendicular to the extension direction of the second axis industrial robot arm 512, and the first horizontal line J2 and the second horizontal line J3 are parallel;
  • the horizontal line J2 is set at the connection between the first-axis industrial robot arm 511 and the second-axis industrial robot arm 512.
  • the second-axis industrial robot arm 512 is rotated along the first horizontal line J2;
  • the second horizontal line J3 is set at the second-axis industrial robot arm 511. 512 and the third-axis industrial robot arm 513.
  • the third-axis industrial robot arm 513 is rotated along the second horizontal line J3.
  • the second-axis industrial robot arm 512 is rotated along the first horizontal line J2
  • the third-axis industrial robot arm 513 is rotated along the second horizontal line J3, so that the second-axis industrial robot arm 512 and the third-axis industrial robot arm 512 are rotated along the second horizontal line J3
  • the pitching action is realized to realize the lifting and telescopic freedom of the collaborative robotic arm mechanism 520 and the bricklaying claw mechanism 530 at the end.
  • the collaborative robot arm mechanism 520 includes a fourth-axis collaborative robot arm 524 and a fifth-axis collaborative robot arm 525 connected in sequence.
  • the fourth-axis collaborative robot arm 524 is connected and installed with the third-axis industrial robot arm 513.
  • the fourth-axis collaborative robot arm 524 is connected to the third-axis industrial robot arm 513.
  • the cooperative robot arm 524 is rotated along an extension direction perpendicular to itself.
  • the first horizontal line J2 is perpendicular to the extension direction of the fourth-axis cooperative robot arm 524 .
  • the fourth-axis cooperative robot arm 524 is used to adjust the pitch angle of the bricklaying claw mechanism 530 .
  • the fifth-axis cooperative robot arm 525 is rotated along its own extension direction.
  • the extension direction of the fifth-axis cooperative robot arm 525 is perpendicular to the extension direction of the fourth-axis cooperative robot arm 524.
  • the fifth-axis cooperative robot arm 525 uses To adjust the rolling angle of the bricklaying claw mechanism 530.
  • the extension direction perpendicular to the fourth-axis cooperative robot arm 524 is the first rotation axis J4.
  • the first rotation axis J4 is perpendicular to the first horizontal line J2.
  • the fourth-axis cooperative robot arm 524 is rotated along the first rotation axis J4. , thereby adjusting the pitch angle of the bricklaying claw mechanism 530 at the end through the fourth-axis cooperative robot arm 524 .
  • the fifth-axis cooperative robot arm 525 is arranged to rotate along its own extension direction, and the extension direction of the fifth-axis cooperative robot arm is perpendicular to the extension direction of the fourth-axis cooperative robot arm.
  • the extension direction of the fifth-axis cooperative robot arm 525 is the second rotation axis J5
  • the second rotation axis J5 is perpendicular to the first rotation axis J4
  • the fifth-axis cooperative robot arm 525 is rotated along the second rotation axis J5. Therefore, the fifth-axis cooperative robot arm 525 can be used to adjust the roll angle of the end bricklaying claw mechanism 530 .
  • the terminal cooperative robot arm is rotated along its own extension direction, and the extension direction of the terminal cooperative robot arm is perpendicular to the extension direction of the fifth-axis cooperative robot arm.
  • the extension direction of the end cooperation robot arm 526 is the third rotation axis J6, the third rotation axis J6 is perpendicular to the second rotation axis J5, and the end cooperation robot arm 526 is rotated along the third rotation axis J6, so that through the end cooperation
  • the robotic arm 526 can be used to adjust the heading angle of the end bricklaying claw mechanism 530 .
  • the extended end of the third-axis industrial robot arm 513 can reach the front, left or right side of the chassis mechanism 100 under the rotation of the first-axis industrial robot arm 511.
  • the cooperative robot arm mechanism 520 can move the bricks clamped by the bricklaying claw mechanism 530 to a level lower than the chassis mechanism 100.
  • the fourth-axis cooperative robot arm 524 and the fifth-axis cooperative robot arm 5625 are used to move the bricks to the corresponding position. The location to be laid.
  • direction 1 is the grabbing direction of the bricklaying claw mechanism 530
  • direction 2 is the transporting direction of the bricklaying claw mechanism 530 .
  • Figure 2 is a schematic diagram of the front laying state of the bricklaying device provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the left laying state of the bricklaying device provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the implementation of the present application.
  • Figure 5 is a schematic diagram of the bricklaying state of the bricklaying device provided by the embodiment of the present application.
  • the bricklaying device also includes a plurality of laser positioning mechanisms 700.
  • the plurality of laser positioning mechanisms 700 are arranged in the working area of the chassis mechanism 100.
  • the laser positioning mechanisms 700 are used to position the wall to be laid and guide the robotic arm 500 to The bricklaying claw mechanism 530 is adjusted to a preset position.
  • each wall relies on the absolute positioning of the laser line of the laser positioning mechanism 700 and does not rely on the initial position accuracy of the chassis mechanism 100; the bricklaying device can build three walls at the same site, and the verticality of each wall can be guaranteed. , not affected by the absolute positioning accuracy of the robot arm 500.
  • the preset posture is set parallel to the laser plane.
  • the bricklaying device also includes a visual sensor 800.
  • the visual sensor 800 is installed at the end of the collaborative robot arm mechanism 520, and the visual sensor 800 is arranged adjacent to the bricklaying clamp mechanism 530.
  • the visual sensor 800 is used to detect the bricklaying clamp. Whether the bricks clamped by the claw mechanism 530 are parallel to the wall to be laid, when the bricks clamped by the brick laying claw mechanism 530 are not parallel to the wall to be laid, the cooperative robot arm mechanism 520 is used to adjust the angle of the brick laying clamp mechanism 530 attitude.
  • the laser positioning mechanism 700 is used in conjunction with the visual sensor 800.
  • the laser positioning mechanism 700 emits a laser line (forming a laser surface).
  • the laser line can be sensed and received by the visual sensor 800; it is guided by the visual sensor 800 at the end of the robotic arm 500.
  • finely adjusting the position and posture can ensure the positioning of the end, so that the bricks clamped by the bricklaying claw mechanism 530 are parallel to the laser surface formed by the laser positioning mechanism 700, and then the bricks clamped by the bricklaying claw mechanism 530 are parallel to the laser plane.
  • the walls to be laid are kept parallel, thereby ensuring the laying accuracy of the brick laying clamp mechanism 530 .
  • the bricklaying device further includes an inclination sensor.
  • the inclination sensor is installed on the chassis mechanism 100.
  • the inclination sensor is used to detect the deviation of the chassis mechanism 100 relative to the horizontal plane; the chassis mechanism 100 is provided with a plurality of supporting feet 110. According to the chassis mechanism 100 relative to the horizontal plane, the chassis mechanism 100 is adjusted to a horizontal attitude through a plurality of supporting feet 110 .
  • the plurality of support legs 110 under the chassis mechanism 100 are height-adjustable devices, and the height of the plurality of support legs 110 is adjusted to maintain the chassis mechanism 100 in a horizontal posture.
  • column mechanism 400 is a lifting column mechanism.
  • the bricklaying device further includes a translation platform, and the chassis mechanism 100 is movably installed on the translation platform.
  • the chassis mechanism 100 can move in a preset direction through a translation platform to facilitate adjustment of the site position of the bricklaying device.
  • the bricklaying device when the bricklaying device is close to the left side of the wall 600 to be built, the bricklaying device can build the front wall 610 and the left wall 630; On the right side of the wall 600 , the brick laying device can lay bricks on the front wall 610 and the right wall 620 .
  • the plurality of bricklaying claw mechanisms 530 shown are the same bricklaying claw mechanism 530 , and the plurality of bricklaying claw mechanisms 530 are schematic representations of the bricklaying action.
  • Figure 6 is a schematic structural diagram of the masonry device from a first perspective provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the masonry device from a second perspective provided by an embodiment of the present application.
  • Figure 8 FIG. 9 is a schematic structural diagram of the masonry device in a stowed state provided by the embodiment of the present application.
  • the second-axis industrial robot arm 512 is a plate-shaped robot arm.
  • the robot arm can be stored more compactly. , will not exceed the edge of the edge site mechanism, making the masonry device occupy less space in the stowed state.
  • the bricklaying device also includes a plurality of laser sensors 900.
  • the plurality of laser sensors 900 are respectively installed on the bricklaying claw mechanism 530.
  • the plurality of laser sensors 900 are used to detect the bricklaying claw mechanism 530 and the position to be laid. distance between them, and adjust the brick laying clamp mechanism 530 to the preset laying position according to the distance.
  • the laser sensor 900 can be used as a distance sensor to detect the distance between the bricklaying claw mechanism 530 and the position to be laid, and adjust the bricklaying claw mechanism 530 so that the bricklaying claw mechanism 530 moves every time. Before masonry, it is in the preset masonry position to ensure the masonry accuracy at the end.
  • Figure 10 is a schematic structural diagram of another masonry device provided by an embodiment of the present application.
  • the bricklaying device further includes an electrical cabinet mechanism 200.
  • the electrical cabinet mechanism 200 is installed on the chassis mechanism 100.
  • the column mechanism 400 is disposed adjacent to the electrical cabinet mechanism 200, and the electrical cabinet mechanism 200 is disposed on the rear side of the chassis mechanism 100. .
  • the bricklaying device further includes a mortar turning mechanism 300.
  • the mortar turning mechanism 300 is installed on the chassis mechanism 100, and the electrical cabinet mechanism 200 is arranged adjacent to the mortar turning mechanism 300.
  • the mortar turning mechanism 300 is used to The bricks are subjected to a grouting operation, and after the bricks are turned over, the brick laying clamp mechanism 530 clamps the plastered bricks.
  • the electrical cabinet mechanism 200, the grout turning mechanism 300, and the column mechanism 400 are respectively installed on the chassis mechanism 100.
  • the column mechanism 400 is disposed on the front side of the chassis mechanism 100, and the electric cabinet mechanism 200 is disposed on the rear side of the chassis mechanism 100.
  • the electrical cabinet mechanism 200 and the grout turning mechanism 300 are arranged adjacent to each other.
  • the electrical cabinet mechanism 200 serves as a signal terminal to perform signal connections with other components such as the slurry turning mechanism 300 and the robotic arm 500 .
  • the mortar turning mechanism 300 is used to mortar the bricks, and then flip the mortared bricks to facilitate the subsequent bricklaying process.
  • the operations of taking bricks, mortaring, sending bricks and laying bricks can be easily completed.
  • the slurry turning mechanism 300 is disposed above the electrical cabinet mechanism 200 .
  • the bricklaying device further includes a controller, which is connected to the robotic arm 500 for controlling the posture of the robotic arm 500 .
  • the controller is connected with the laser sensor 900 and the visual sensor 800 via signals, and is used to determine the position and attitude information of the bricklaying claw mechanism 530 based on the laser sensor 900 and the visual sensor 800, and use the bricklaying claw mechanism to The position and attitude information of 530 adjusts the brick laying clamp mechanism 530 so that the bricks clamped by the brick laying clamp mechanism 530 are in the correct laying position and attitude, thereby ensuring the accuracy of laying.
  • Figure 11 is a schematic flow chart of a bricklaying control method provided by an embodiment of the present application.
  • the bricklaying control method is executed by the controller of the bricklaying device shown in Figures 1 to 10.
  • the bricklaying control method includes follow these steps:
  • S100 Obtain the location information of the wall to be built.
  • the location information includes the laying direction and height of the bricks.
  • S300 The collaborative robot arm mechanism is moved to the masonry height through the second-axis industrial robot arm and the third-axis industrial robot arm.
  • steps S200 and S300 can be exchanged, that is, S300 can be executed first and then S200, which is not limited here.
  • the controller is connected to the laser sensor 900 and the visual sensor 800 through signals, so that the controller can obtain the position and attitude information of the brick-laying clamp mechanism 530, and can detect the attitude of the bricks clamped by the brick-laying clamp mechanism 530. Whether it is parallel to the wall to be built, the bricks clamped by the bricklaying claw mechanism 530 are in the correct laying position and posture.
  • the fourth-axis cooperative robot arm 524 can be used to adjust the bricks.
  • the pitch angle of the brick-laying claw mechanism 530 and the rolling angle of the brick-laying claw mechanism 530 are adjusted through the fifth-axis cooperative robotic arm 525 to ensure that the brick-laying claw mechanism 530 is in the correct posture to ensure the masonry accuracy of the masonry device.
  • the bricklaying device and control method provided by the embodiments of the present application.
  • the bricklaying device includes a chassis mechanism, a column mechanism and a robotic arm; the column mechanism is installed on the chassis mechanism, and the column mechanism is set on the front side of the chassis mechanism; the robotic arm includes an industrial robotic arm mechanism and a collaborative robotic arm mechanism, and the industrial robotic arm mechanism includes The first-axis industrial robot arm is used to rotate within the front, left and right sides of the chassis mechanism; the collaborative robot arm mechanism is installed on the industrial robot arm mechanism, and the end of the collaborative robot arm mechanism is provided with The vertical direction of the terminal collaborative robot arm and the bricklaying clamping claw mechanism installed on the terminal collaborative robot arm is parallel to the extension direction of the column mechanism.
  • the rotation of the terminal collaborative robot arm is linked with the first-axis industrial robot arm to make the bricklaying clamp
  • the bricks clamped by the claw mechanism are parallel to the wall to be laid; the bricklaying device can realize three-sided laying to improve the technical effect of laying brickwork efficiency.
  • the bricklaying device and control method of the present application are reproducible and can be used in a variety of industrial applications.
  • the bricklaying device and control method of the present application can be used in the technical field of construction machinery.

Abstract

本申请实施例提供一种砌砖装置及控制方法,涉及建筑机械技术领域。该砌砖装置包括底盘机构、立柱机构和机械臂;立柱机构安装在底盘机构上,立柱机构设置在底盘机构的前侧;机械臂包括工业机械臂机构和协作机械臂机构,工业机械臂机构包括第一轴工业机械臂,第一轴工业机械臂用于在底盘机构的前侧、左侧、右侧范围内转动;协作机械臂机构安装在工业机械臂机构,协作机械臂机构的末端设置有末端协作机械臂和安装在末端协作机械臂的砌砖夹爪机构,竖直方向与立柱机构的延伸方向平行,末端协作机械臂的转动与第一轴工业机械臂保持联动,以使砌砖夹爪机构夹取的砖块与待砌筑墙壁平行;该砌砖装置可以实现3个面砌筑,以提高砌筑效率的技术效果。

Description

一种砌砖装置及控制方法
相关申请的交叉引用
本申请要求于2022年04月27日提交中国国家知识产权局的申请号为202210459062.3、名称为“一种砌砖装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及建筑机械技术领域,具体而言,涉及一种砌砖装置及控制方法。
背景技术
目前,建筑物墙面通常由混凝土现浇筑、砖砌、预制墙板组装等方式形成,其中砖砌墙面是最为常用的方式。传统砖砌墙面采用人工对齐,工人使用砂浆作为连接剂,将砖块有序砌筑在需求位置,整体劳动强度较大,同时人工砌筑的墙面平整度较低,直接加大了后续抹灰的难度和砂浆使用量,使得建筑物重量和成本增加。
相关技术中,砌砖机器人的核心是砌块的准确的砌筑到目标位置,相关方案仅能实现大范围简单墙体的砌筑功能。对于同一列的工作站点,相关的砌砖机器人在首站点或末站点都仅能实现1个面朝向或2个面朝向的砌筑,即砌筑一个1到2个面,无法实现3个面砌筑。
发明内容
本申请实施例的目的在于提供一种砌砖装置及控制方法,可以实现3个面砌筑,从而至少实现了提高砌筑效率的技术效果。
本申请的一些实施例提供了一种砌砖装置,砌砖装置可以包括底盘机构、立柱机构和机械臂;
所述立柱机构可以安装在所述底盘机构上,且所述立柱机构可以设置在所述底盘机构的前侧,所述机械臂可以安装在所述底盘机构;
所述机械臂可以包括工业机械臂机构和协作机械臂机构,所述工业机械臂机构可以包括第一轴工业机械臂,所述第一轴工业机械臂可以设置在所述立柱机构,且所述第一轴工业机械臂可以沿所述立柱机构的延伸方向转动设置,所述第一轴工业机械臂可以用于在所述底盘机构的前侧、左侧、右侧范围内转动;
所述协作机械臂机构可以安装在所述工业机械臂机构,所述协作机械臂机构的末端可以设置有末端协作机械臂和安装在所述末端协作机械臂的砌砖夹爪机构,所述末端协作机械臂可以用于带动所述砌砖夹爪机构沿竖直方向转动,所述砌砖夹爪机构可以用于夹取砖块,所述竖直方向可以与所述立柱机构的延伸方向平行,所述末端协作机械臂的转动可以 与所述第一轴工业机械臂保持联动,以使所述砌砖夹爪机构夹取的砖块与待砌筑墙壁平行。
在上述实现过程中,机械臂和立柱机构设置在底盘机构的前侧,保证机械臂覆盖范围且避免各个结构互相干涉问题,第一轴工业机械臂可以在底盘机构的前侧、左侧、右侧范围内转动,实现3个面砌筑,从而保证砌筑范围;末端协作机械臂的转动与第一轴工业机械臂保持联动,在砌筑时保证砌砖夹爪机构夹取的砖块与待砌筑墙壁平行,提高砌筑精度;机械臂包括工业机械臂机构和协作机械臂机构,工业机械臂机构的负载可以满足使用大负载要求,协作机械臂机构可以提高作业精度,即通过工业臂与协作臂结合的构型实现大负载、高速、高精度的机械臂功能,从而,该砌砖装置可以实现较大的砌砖范围,并且能够砌筑砌砖装置的前侧、左侧、右侧三个面;因此,该砌砖装置可以实现3个面砌筑,以提高砌筑效率的技术效果。
可选地,所述机械臂、所述立柱机构可以设置在所述底盘机构的左前方。
可选地,所述工业机械臂机构还可以包括依次连接的第二轴工业机械臂和第三轴工业机械臂,所述工业机械臂机构可以具有第一水平线和第二水平线,所述第一水平线可以与所述第二轴工业机械臂的延伸方向垂直,所述第一水平线和所述第二水平线可以平行;
所述第一水平线可以设置在所述第一轴工业机械臂与所述第二轴工业机械臂的连接处,所述第二轴工业机械臂可以沿所述第一水平线转动设置;所述第二水平线可以设置在所述第二轴工业机械臂与所述第三轴工业机械臂的连接处,所述第三轴工业机械臂可以沿所述第二水平线转动设置;
所述第一轴工业机械臂可以沿所述立柱机构的延伸方向转动设置,所述第二轴工业机械臂和所述第三轴工业机械臂可以相互配合执行俯仰动作。
在上述实现过程中,第一轴工业机械臂可实现绕竖直轴线旋转,从而驱动整个机械臂绕竖直轴线旋转,实现机械臂的从左向右或从右向左转动;第二轴工业机械臂和第三轴工业机械臂配合,可实现第二轴工业机械臂和第三轴工业机械臂的俯仰动作,第二轴工业机械臂沿第一水平线转动设置,第三轴工业机械臂沿第二水平线转动设置,从而在第二轴工业机械臂和第三轴工业机械臂的配合下实现俯仰动作,实现末端的协作机械臂机构、砌砖夹爪机构的升降和伸缩自由度。
可选地,所述第二轴工业机械臂可以为板状机械臂。
在上述实现过程中,第二轴工业机械臂采用板状机械臂,在保证结构强度的前提下,砌筑装置的机械臂处于收纳状态时,可以使机械臂的收纳更加紧凑,不会超出边缘地盘机构的边缘,使砌筑装置在收纳状态下所占空间更小。
可选地,所述协作机械臂机构可以包括依次连接的第四轴协作机械臂和第五轴协作机械臂,所述第四轴协作机械臂可以与所述第三轴工业机械臂连接安装,所述第四轴协作机 械臂可以沿垂直于自身的延伸方向转动设置,所述第一水平线可以与所述第四轴协作机械臂的延伸方向垂直,所述第四轴协作机械臂可以用于调整所述砌砖夹爪机构的俯仰角度;
所述第五轴协作机械臂可以沿自身的延伸方向转动设置,所述第五轴协作机械臂的延伸方向可以与所述第四轴协作机械臂的延伸方向垂直,所述第五轴协作机械臂可以用于调整所述砌砖夹爪机构的翻滚角度。
在上述实现过程中,第四轴协作机械臂的延伸方向可以为第一转轴线,第一转轴线可以与第一水平线垂直,第四轴协作机械臂可以沿第一转轴线转动设置,从而通过第四轴协作机械臂来调整末端的砌砖夹爪机构的俯仰角度。
可选地,所述第三轴工业机械臂的延伸末端在所述第一轴工业机械臂转动下可到达所述底盘机构的前侧、左侧或右侧,安装在所述第三轴工业机械臂末端的协作机械臂机构可将所述砌砖夹爪机构夹取的砖块移动至低于所述底盘机构的水平面,所述第四轴协作机械臂和所述第五轴协作机械臂可以用于使砖块到达对应的待砌筑位置。
可选地,所述末端协作机械臂可以沿自身的延伸方向转动设置,所述末端协作机械臂的延伸方向可以与所述第五轴协作机械臂的延伸方向垂直。
可选地,所述砌砖装置还可以包括视觉传感器,所述视觉传感器可以安装在所述协作机械臂机构的末端,且所述视觉传感器可以与所述砌砖夹爪机构相邻设置,所述视觉传感器可以用于检测所述砌砖夹爪机构所夹取的砖块是否与待砌筑墙壁平行,在所述砌砖夹爪机构所夹取的砖块与待砌筑墙壁不平行的情况下,通过所述协作机械臂机构来调整所述砌砖夹爪机构的姿态。
在上述实现过程中,通过机械臂末端的视觉传感器引导,微调位置姿态即可保证末端的定位,使砌砖夹爪机构夹取的砖块与待砌筑墙壁保持平行,从而保证砌砖夹爪机构的砌筑精度。
可选地,所述砌砖装置还可以包括多个激光定位机构,所述多个激光定位机构可以设置在所述底盘机构的作业区域,所述激光定位机构可以用于对待砌筑墙壁进行定位,并引导所述机械臂将所述砌砖夹爪机构调整至预设位姿。
在上述实现过程中,每面墙依靠激光定位机构的激光线绝对定位,不依赖于底盘机构的初始位置精度;砌砖装置在同一站点即可砌筑三面墙,每面墙的垂直度可以得到保证,不受机械臂的绝对定位精度影响。
可选地,所述砌砖装置还可以包括倾角传感器,所述倾角传感器可以安装在所述底盘机构,所述倾角传感器可以用于检测所述底盘机构相对于水平面的偏差;所述底盘机构可以设置有多个支撑脚,根据所述底盘机构相对于水平面的偏差,通过所述多个支撑脚将所述底盘机构调整至水平姿态。
示例性地,底盘机构下的多个支撑脚可以为可调节高度的器件,通过调整多个支撑脚的高低,以保持底盘机构处于水平姿态。
可选地,所述立柱机构可以为升降柱机构。
可选地,所述砌砖装置还可以包括平移台,所述底盘机构以可移动的方式安装在所述平移台上,所述平移台可以用于移动所述底盘机构。
在上述实现过程中,底盘机构通过平移台可以实现沿预设方向移动,方便调整砌砖装置的站点位置。
可选地,所述砌砖装置还可以包括电柜机构,所述电柜机构可以安装在所述底盘机构上,所述立柱机构可以与所述电柜机构相邻设置,且所述电柜机构可以设置在所述底盘机构的后侧。
可选地,所述砌砖装置还可以包括抹浆翻转机构,所述抹浆翻转机构可以安装在所述底盘机构上,且所述电柜机构可以与所述抹浆翻转机构相邻设置,所述抹浆翻转机构可以用于对砖块进行抹浆操作,并将砖块翻转后由所述砌砖夹爪机构夹取抹后的砖块。
可选地,所述砌砖装置还可以包括多个激光传感器,所述多个激光传感器可以分别安装在所述砌砖夹爪机构上,所述多个激光传感器可以用于检测所述砌砖夹爪机构与待砌筑位置之间的距离,并根据所述距离调整所述砌砖夹爪机构至预设砌筑位置。
可选地,所述砌砖装置还可以包括控制器,所述控制器可以与所述机械臂连接,以用于控制所述机械臂的姿态。
本申请的另一些实施例提供了一种砌砖控制方法,所述砌砖控制方法通过根据上述的控制器来执行,所述砌砖控制方法包括:
获取待砌筑墙壁的位置信息,所述位置信息包括砖块的砌筑方向和砌筑高度;
在所述砌砖夹爪模块夹取砖块后,将所述第一轴工业机械臂控制成转动至所述砌筑方向;
通过所述第二轴工业机械臂和所述第三轴工业机械臂将所述协作机械臂机构移动至所述砌筑高度;
检测所述砌砖夹爪机构所夹取的砖块姿态是否与所述待砌筑墙壁平行,在所述砌砖夹爪机构所夹取的砖块姿态与所述待砌筑墙壁不平行的情况下,通过所述协作机械臂机构调整所述砌砖夹爪机构,以使所述砌砖夹爪机构所夹取的砖块姿态与所述待砌筑墙壁平行;
将所述砌砖夹爪机构所夹取的砖块放置至所述待砌筑墙壁,完成砌筑并进行下一块砖块的砌筑。
本申请公开的其他特征和优点将在随后的说明书中阐述,或者,部分特征和优点可以从说明书推知或毫无疑义地确定,或者通过实施本申请公开的上述技术即可得知。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种砌砖装置的结构示意图;
图2为本申请实施例提供的砌砖装置的前砌状态示意图;
图3为本申请实施例提供的砌砖装置的左砌状态示意图;
图4为本申请实施例提供的砌砖装置的右砌状态示意图;
图5为本申请实施例提供的砌砖装置的砌砖状态示意图;
图6为本申请实施例提供的第一视角下砌筑装置的结构示意图;
图7为本申请实施例提供的第二视角下砌筑装置的结构示意图;
图8为本申请实施例提供的第三视角下砌筑装置的结构示意图;
图9为本申请实施例提供的收纳状态下砌筑装置的结构示意图;
图10为本申请实施例提供的另一种砌筑装置的结构示意图;
图11为本申请实施例提供的砌砖控制方法的流程示意图。
图标:底盘机构100;电柜机构200;抹浆翻转机构300;立柱机构400;机械臂500;工业机械臂机构510;第一轴工业机械臂511;第二轴工业机械臂512;第三轴工业机械臂513;协作机械臂机构520;第四轴协作机械臂524;第五轴协作机械臂525;末端协作机械臂526;砌砖夹爪机构530;待砌筑墙壁600;正面墙体610;右侧墙体620;左侧墙体630;激光定位机构700;视觉传感器800;激光传感器900;竖直轴线J1;第一水平线J2;第二水平线J3;第一转轴线J4;第二转轴线J5;第三转轴线J6。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、 “中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或点连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的联通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
本申请实施例提供了一种砌砖装置,可以应用于建筑物墙面的砌筑过程中;机械臂和立柱机构设置在底盘机构的前侧,保证机械臂覆盖范围且避免各个结构互相干涉问题,第一轴工业机械臂可以在底盘机构的前侧、左侧、右侧范围内转动,实现3个面砌筑,从而保证砌筑范围;末端协作机械臂的转动与第一轴工业机械臂保持联动,在砌筑时保证砌砖夹爪机构夹取的砖块与待砌筑墙壁平行,提高砌筑精度;机械臂包括工业机械臂机构和协作机械臂机构,工业机械臂机构的负载可以满足使用大负载要求,协作机械臂机构可以提高作业精度,即通过工业臂与协作臂结合的构型实现大负载、高速、高精度的机械臂功能,从而,该砌砖装置可以实现较大的砌砖范围,并且能够砌筑砌砖装置的前侧、左侧、右侧三个面;因此,该砌砖装置可以实现3个面砌筑,以提高砌筑效率的技术效果。
请参见图1,图1为本申请实施例提供的一种砌砖装置的结构示意图,该砌砖装置包括底盘机构100、立柱机构400和机械臂500。
示例性地,立柱机构400安装在底盘机构100上,且立柱机构400设置在底盘机构100的前侧,机械臂500安装在底盘机构100。
示例性地,机械臂500包括工业机械臂机构510和协作机械臂机构520,工业机械臂机构510包括第一轴工业机械臂511,第一轴工业机械臂511设置在立柱机构400,且第一轴工业机械臂511沿立柱机构的延伸方向转动设置,第一轴工业机械臂511用于在底盘机构100的前侧、左侧、右侧范围内转动。
示例性地,第一轴工业机械臂511可以在底盘机构100的前侧、左侧、右侧范围内转动,且立柱机构400设置在底盘机构100的前侧,避免各个结构互相干涉问题,实现3个 面砌筑。
示例性地,协作机械臂机构520安装在工业机械臂机构510,协作机械臂机构520的末端设置有末端协作机械臂526和安装在末端协作机械臂的砌砖夹爪机构530,末端协作机械臂526用于带动砌砖夹爪机构530沿竖直方向转动,砌砖夹爪机构530用于夹取砖块,竖直方向与立柱机构400的延伸方向平行,末端协作机械臂526的转动与第一轴工业机械臂511保持联动,以使砌砖夹爪机构530夹取的砖块与待砌筑墙壁600平行。示例性地,待砌筑墙壁600包括正面墙体610、右侧墙体620和左侧墙体630。
示例性地,砌砖夹爪机构530可以夹取完成抹浆及翻转后的砖块,然后在工业机械臂机构510和协作机械臂机构520的协同配合下将砖块进行砌筑。其中,工业机械臂机构510的第一轴工业机械臂511沿立柱机构400的延伸方向转动设置,立柱机构400的延伸方向即竖直轴线J1,从而可驱动整个机械臂500绕竖直轴线J1旋转,实现机械臂500的从左向右或者从右向左转动,转动范围囊括底盘机构100的前侧、左侧、右侧。
示例性地,工业机械臂机构510的负载可以满足使用大负载要求,协作机械臂机构可以提高作业精度,即通过工业臂与协作臂结合的构型实现大负载、高速、高精度的机械臂功能。
在一些实施方式中,机械臂500、立柱机构400设置在底盘机构100的左前方。
示例性地,将机械臂500、立柱机构400设置在底盘机构100的前方,前面避空,可以对砌砖装置周围的待砌筑墙壁600进行砌筑;如图1所示,机械臂500、立柱机构400设置在底盘机构100的左前方,可以保证正面墙体610可以完全砌筑,右侧墙体620可以大范围砌筑,左侧墙体630一定范围砌筑。
示例性地,工业机械臂机构510还包括依次连接的第二轴工业机械臂512和第三轴工业机械臂513,工业机械臂机构510具有第一水平线J2和第二水平线J3,第一水平线J2与第二轴工业机械臂512的延伸方向垂直,第一水平线J2和第二水平线J3平行;第一水平线J2设置在第一轴工业机械臂511与第二轴工业机械臂512的连接处,第二轴工业机械臂512沿第一水平线J2转动设置;第二水平线J3设置在第二轴工业机械臂512与第三轴工业机械臂513的连接处,第三轴工业机械臂513沿第二水平线J3转动设置;第一轴工业机械臂511沿立柱机构的延伸方向转动设置,第二轴工业机械臂和第三轴工业机械臂相互配合执行俯仰动作。
示例性地,第一轴工业机械臂511可实现绕竖直轴线J1旋转,从而驱动整个机械臂500绕竖直轴线J1旋转,实现机械臂500的从左向右或从右向左转动;第二轴工业机械臂512和第三轴工业机械臂513配合,可实现第二轴工业机械臂512和第三轴工业机械臂513的俯仰动作,实现末端的协作机械臂机构520、砌砖夹爪机构530的升降和伸缩自由度。
示例性地,工业机械臂机构510具有第一水平线J2和第二水平线J3,第一水平线J2与第二轴工业机械臂512的延伸方向垂直,第一水平线J2和第二水平线J3平行;第一水平线J2设置在第一轴工业机械臂511与第二轴工业机械臂512的连接处,第二轴工业机械臂512沿第一水平线J2转动设置;第二水平线J3设置在第二轴工业机械臂512与第三轴工业机械臂513的连接处,第三轴工业机械臂513沿第二水平线J3转动设置。
示例性地,第二轴工业机械臂512沿第一水平线J2转动设置,第三轴工业机械臂513沿第二水平线J3转动设置,从而在第二轴工业机械臂512和第三轴工业机械臂513的配合下实现俯仰动作,实现末端的协作机械臂机构520、砌砖夹爪机构530的升降和伸缩自由度。
示例性地,协作机械臂机构520包括依次连接的第四轴协作机械臂524和第五轴协作机械臂525,第四轴协作机械臂524与第三轴工业机械臂513连接安装,第四轴协作机械臂524沿垂直于自身的延伸方向转动设置,第一水平线J2与第四轴协作机械臂524的延伸方向垂直,第四轴协作机械臂524用于调整砌砖夹爪机构530的俯仰角度。
示例性地,第五轴协作机械臂525沿自身的延伸方向转动设置,第五轴协作机械臂525的延伸方向与第四轴协作机械臂524的延伸方向垂直,第五轴协作机械臂525用于调整砌砖夹爪机构530的翻滚角度。
示例性地,垂直于第四轴协作机械臂524的延伸方向为第一转轴线J4,第一转轴线J4与第一水平线J2垂直,第四轴协作机械臂524沿第一转轴线J4转动设置,从而通过第四轴协作机械臂524来调整末端的砌砖夹爪机构530的俯仰角度。
示例性地,第五轴协作机械臂525沿自身的延伸方向转动设置,第五轴协作机械臂的延伸方向与第四轴协作机械臂的延伸方向垂直。
示例性地,第五轴协作机械臂525的延伸方向为第二转轴线J5,第二转轴线J5与第一转轴线J4垂直,第五轴协作机械臂525沿第二转轴线J5转动设置,从而通过第五轴协作机械臂525可用来调整末端的砌砖夹爪机构530的翻滚角。
示例性地,末端协作机械臂沿自身的延伸方向转动设置,末端协作机械臂的延伸方向与第五轴协作机械臂的延伸方向垂直。
示例性地,末端协作机械臂526的延伸方向为第三转轴线J6,第三转轴线J6与第二转轴线J5垂直,末端协作机械臂526沿第三转轴线J6转动设置,从而通过末端协作机械臂526可用来调整末端的砌砖夹爪机构530的航向角。
示例性地,第三轴工业机械臂513的延伸末端在第一轴工业机械臂511转动下可到达底盘机构100的前侧、左侧或右侧,安装在第三轴工业机械臂513末端的协作机械臂机构520可将砌砖夹爪机构530夹取的砖块移动至低于底盘机构100的水平面,第四轴协作机 械臂524和第五轴协作机械臂5625用于使砖块到达对应的待砌筑位置。
在一些实施方式中,如图1所示,方向①为砌砖夹爪机构530的抓取方向,方向②为砌砖夹爪机构530的搬运方向。
请参见图2至图5,图2为本申请实施例提供的砌砖装置的前砌状态示意图,图3为本申请实施例提供的砌砖装置的左砌状态示意图,图4为本申请实施例提供的砌砖装置的右砌状态示意图,图5为本申请实施例提供的砌砖装置的砌砖状态示意图。
示例性地,砌砖装置还包括多个激光定位机构700,多个激光定位机构700设置在底盘机构100的作业区域,激光定位机构700用于对待砌筑墙壁进行定位,并引导机械臂500将砌砖夹爪机构530调整至预设位姿。
示例性地,每面墙依靠激光定位机构700的激光线绝对定位,不依赖于底盘机构100的初始位置精度;砌砖装置在同一站点可砌筑三面墙,每面墙的垂直度可以得到保证,不受机械臂500的绝对定位精度影响。
示例性地,在本申请实施例中预设位姿相对于激光面平行设置。
示例性地,砌砖装置还包括视觉传感器800,视觉传感器800安装在协作机械臂机构520的末端,且视觉传感器800与砌砖夹爪机构530相邻设置,视觉传感器800用于检测砌砖夹爪机构530夹取的砖块是否与待砌筑墙壁平行,在砌砖夹爪机构530夹取的砖块与待砌筑墙壁不平行时通过协作机械臂机构520调整砌砖夹爪机构530的姿态。
示例性地,激光定位机构700与视觉传感器800配合使用,激光定位机构700发射激光线(形成激光面),激光线可以由视觉传感器800进行感应并接收;通过机械臂500末端的视觉传感器800引导,微调位置姿态即可保证末端的定位,使砌砖夹爪机构530所夹取的砖块与激光定位机构700形成的激光面平行,进而使砌砖夹爪机构530所夹取的砖块与待砌筑墙壁保持平行,从而保证砌砖夹爪机构530的砌筑精度。
在一些实施方式中,砌砖装置还包括倾角传感器,倾角传感器安装在底盘机构100,倾角传感器用于检测底盘机构100相对于水平面的偏差;底盘机构100设置有多个支撑脚110,根据底盘机构100相对于水平面的偏差,通过多个支撑脚110将底盘机构100调整至水平姿态。
示例性地,底盘机构100下的多个支撑脚110为可调节高度的器件,通过调整多个支撑脚110的高低,以保持底盘机构100处于水平姿态。
在一些实施方式中,立柱机构400为升降柱机构。
在一些实施方式中,砌砖装置还包括平移台,底盘机构100以可移动的方式安装在平移台上。
示例性地,底盘机构100通过平移台可以实现沿预设方向移动,方便调整砌砖装置的 站点位置。
如图5所示,在砌砖装置靠近待砌筑墙壁600的左侧时,砌砖装置可以对正面墙体610、左侧墙体630的墙壁进行砌筑;在砌砖装置靠近待砌筑墙壁600的右侧时,砌砖装置可以对正面墙体610、右侧墙体620的墙壁进行砌筑。在图5的砌砖装置中,所示的多个砌砖夹爪机构530为同一个砌砖夹爪机构530,多个砌砖夹爪机构530为砌筑动作的示意。
请参见图6至图9,图6为本申请实施例提供的第一视角下砌筑装置的结构示意图,图7为本申请实施例提供的第二视角下砌筑装置的结构示意图,图8为本申请实施例提供的第三视角下砌筑装置的结构示意图,图9为本申请实施例提供的收纳状态下砌筑装置的结构示意图。
示例性地,如图9所示,第二轴工业机械臂512为板状机械臂,在保证结构强度的前提下,砌筑装置的机械臂处于收纳状态时,可以使机械臂的收纳更加紧凑,不会超出边缘地盘机构的边缘,使砌筑装置在收纳状态下所占空间更小。
示例性地,砌砖装置还包括多个激光传感器900,多个激光传感器900分别安装在砌砖夹爪机构530上,多个激光传感器900用于检测砌砖夹爪机构530与待砌筑位置之间的距离,并根据距离调整砌砖夹爪机构530至预设砌筑位置。
示例性地,激光传感器900可以作为测距传感器,检测检测砌砖夹爪机构530与待砌筑位置之间的距离,并调整砌砖夹爪机构530、使砌砖夹爪机构530在每一次砌筑前处于预设砌筑位置,从而来保证末端的砌筑精度。
请参见图10,图10为本申请实施例提供的另一种砌筑装置的结构示意图。
示例性地,砌砖装置还包括电柜机构200,电柜机构200安装在底盘机构100上,立柱机构400与电柜机构200相邻设置,且电柜机构200设置在底盘机构100的后侧。
示例性地,砌砖装置还包括抹浆翻转机构300,抹浆翻转机构300安装在底盘机构100上,且电柜机构200与抹浆翻转机构300相邻设置,抹浆翻转机构300用于对砖块进行抹浆操作,并将砖块翻转后由砌砖夹爪机构530夹取抹后的砖块。
示例性地,电柜机构200、抹浆翻转机构300、立柱机构400分别安装在底盘机构100上,立柱机构400设置在底盘机构100的前侧,电柜机构200设置在底盘机构100的后侧,电柜机构200与抹浆翻转机构300相邻设置。
示例性地,电柜机构200作为信号终端与抹浆翻转机构300、机械臂500等其他部件进行信号连接。
示例性地,抹浆翻转机构300用于对砖块进行抹浆,然后再对抹浆后的砖块进行翻转,方便后续的砌砖工序。通过抹浆翻转机构300、机械臂500的协同配合,可以很方便地完成取砖、抹浆、送砖和砌砖的操作。
在一些实施方式中,抹浆翻转机构300设置在电柜机构200的上方。
示例性地,砌砖装置还包括控制器,控制器与机械臂500连接,以用于控制机械臂500的姿态。
在一些实施方式中,控制器与激光传感器900、视觉传感器800进行信号连接,用于根据激光传感器900、视觉传感器800判断砌砖夹爪机构530的位置及姿态信息,并通过砌砖夹爪机构530的位置及姿态信息调整砌砖夹爪机构530,使砌砖夹爪机构530所夹取的砖块处于正确的砌筑位置及姿态,从而保证砌筑精度。
请参见图11,图11为本申请实施例提供的砌砖控制方法的流程示意图,砌砖控制方法通过图1至图10所示的砌筑装置的控制器来执行,该砌砖控制方法包括如下步骤:
S100:获取待砌筑墙壁的位置信息,位置信息包括砖块的砌筑方向和砌筑高度。
S200:在砌砖夹爪模块夹取砖块后,将第一轴工业机械臂控制成转动至砌筑方向。
S300:通过第二轴工业机械臂和第三轴工业机械臂将协作机械臂机构移动至砌筑高度。
S400:检测砌砖夹爪机构夹取的砖块姿态是否与待砌筑墙壁平行,在所述砌砖夹爪机构所夹取的砖块姿态与所述待砌筑墙壁不平行的情况下,通过协作机械臂机构调整砌砖夹爪机构,以使砌砖夹爪机构所夹取的砖块姿态与待砌筑墙壁平行。
S500:将砌砖夹爪机构所夹取的砖块放置至待砌筑墙壁,完成砌筑并进行下一块砖块的砌筑。
示例性地,在条件允许的情况下S200、S300的步骤顺序可以调换,即可以先执行S300、再执行S200,此处不作限定。
示例性地,控制器与激光传感器900、视觉传感器800进行信号连接,实现控制器获取砌砖夹爪机构530的位置及姿态信息,可以检测所述砌砖夹爪机构所夹取的砖块姿态是否与所述待砌筑墙壁平行,使砌砖夹爪机构530所夹取的砖块处于正确的砌筑位置及姿态。
在一些实施方式中,通过砌砖夹爪机构530的位置及姿态信息,还可以判断砌砖夹爪机构530所夹取的砖块是否处于正确姿态,通过第四轴协作机械臂524来调整砌砖夹爪机构530的俯仰角度、通过第五轴协作机械臂525来调整砌砖夹爪机构530的翻滚角度,保证砌砖夹爪机构530处于正确姿态,以保证砌筑装置的砌筑精度。
在本申请所有实施例中,“大”、“小”是相对而言的,“多”、“少”是相对而言的,“上”、“下”是相对而言的,对此类相对用语的表述方式,本申请实施例不再多加赘述。
应理解,说明书通篇中提到的“在本实施例中”、“本申请实施例中”或“作为一种可选的实施方式”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在本实施例中”、“本申请实施例中”或“作为一种可选的实施方式”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以 以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应与权利要求的保护范围为准。
工业实用性
本申请实施例所提供的砌砖装置及控制方法。该砌砖装置包括底盘机构、立柱机构和机械臂;立柱机构安装在底盘机构上,立柱机构设置在底盘机构的前侧;机械臂包括工业机械臂机构和协作机械臂机构,工业机械臂机构包括第一轴工业机械臂,第一轴工业机械臂用于在底盘机构的前侧、左侧、右侧范围内转动;协作机械臂机构安装在工业机械臂机构,协作机械臂机构的末端设置有末端协作机械臂和安装在末端协作机械臂的砌砖夹爪机构,竖直方向与立柱机构的延伸方向平行,末端协作机械臂的转动与第一轴工业机械臂保持联动,以使砌砖夹爪机构夹取的砖块与待砌筑墙壁平行;该砌砖装置可以实现3个面砌筑,以提高砌筑效率的技术效果。
此外,可以理解的是,本申请的砌砖装置及控制方法是可以重现的,并且可以用在多种工业应用中。例如,本申请的砌砖装置及控制方法可以用于建筑机械技术领域。

Claims (17)

  1. 一种砌砖装置,其特征在于,所述砌砖装置包括底盘机构、立柱机构和机械臂;
    所述立柱机构安装在所述底盘机构上,且所述立柱机构设置在所述底盘机构的前侧,所述机械臂安装在所述立柱机构;
    所述机械臂包括工业机械臂机构和协作机械臂机构,所述工业机械臂机构包括第一轴工业机械臂,所述第一轴工业机械臂设置在所述立柱机构,且所述第一轴工业机械臂沿所述立柱机构的延伸方向转动设置,所述第一轴工业机械臂用于在所述底盘机构的前侧、左侧、右侧范围内转动;
    所述协作机械臂机构安装在所述工业机械臂机构,所述协作机械臂机构的末端设置有末端协作机械臂和安装在所述末端协作机械臂的砌砖夹爪机构,所述末端协作机械臂用于带动所述砌砖夹爪机构沿竖直方向转动,所述砌砖夹爪机构用于夹取砖块,所述竖直方向与所述立柱机构的延伸方向平行,所述末端协作机械臂的转动与所述第一轴工业机械臂保持联动,以使所述砌砖夹爪机构夹取的砖块与待砌筑墙壁平行。
  2. 根据权利要求1所述的砌砖装置,其特征在于,所述机械臂、所述立柱机构设置在所述底盘机构的左前方。
  3. 根据权利要求1或2所述的砌砖装置,其特征在于,所述工业机械臂机构还包括依次连接的第二轴工业机械臂和第三轴工业机械臂,所述工业机械臂机构具有第一水平线和第二水平线,所述第一水平线与所述第二轴工业机械臂的延伸方向垂直,所述第一水平线和所述第二水平线平行;
    所述第一水平线设置在所述第一轴工业机械臂与所述第二轴工业机械臂的连接处,所述第二轴工业机械臂沿所述第一水平线转动设置;所述第二水平线设置在所述第二轴工业机械臂与所述第三轴工业机械臂的连接处,所述第三轴工业机械臂沿所述第二水平线转动设置;
    所述第一轴工业机械臂沿所述立柱机构的延伸方向转动设置,所述第二轴工业机械臂和所述第三轴工业机械臂相互配合执行俯仰动作。
  4. 根据权利要求3所述的砌砖装置,其特征在于,所述第二轴工业机械臂为板状机械臂。
  5. 根据权利要求4所述的砌砖装置,其特征在于,所述协作机械臂机构包括依次连接的第四轴协作机械臂和第五轴协作机械臂,所述第四轴协作机械臂与所述第三轴工业机械臂连接安装,所述第四轴协作机械臂沿垂直于自身的延伸方向转动设置,所述第一水平线与所述第四轴协作机械臂的延伸方向垂直,所述第四轴协作机械臂用于调整所述砌砖夹爪 机构的俯仰角度;
    所述第五轴协作机械臂沿自身的延伸方向转动设置,所述第五轴协作机械臂的延伸方向与所述第四轴协作机械臂的延伸方向垂直,所述第五轴协作机械臂用于调整所述砌砖夹爪机构的翻滚角度。
  6. 根据权利要求5所述的砌砖装置,其特征在于,所述第三轴工业机械臂的延伸末端在所述第一轴工业机械臂转动下能够到达所述底盘机构的前侧、左侧或右侧,安装在所述第三轴工业机械臂末端的协作机械臂机构能够将所述砌砖夹爪机构所夹取的砖块移动至低于所述底盘机构的水平面,所述第四轴协作机械臂和所述第五轴协作机械臂用于使砖块到达对应的待砌筑位置。
  7. 根据权利要求5或6所述的砌砖装置,其特征在于,所述末端协作机械臂沿自身的延伸方向转动设置,所述末端协作机械臂的延伸方向与所述第五轴协作机械臂的延伸方向垂直。
  8. 根据权利要求6或7所述的砌砖装置,其特征在于,所述砌砖装置还包括视觉传感器,所述视觉传感器安装在所述协作机械臂机构的末端,且所述视觉传感器与所述砌砖夹爪机构相邻设置,所述视觉传感器用于检测所述砌砖夹爪机构所夹取的砖块是否与待砌筑墙壁平行,在所述砌砖夹爪机构所夹取的砖块与待砌筑墙壁不平行的情况下,通过所述协作机械臂机构来调整所述砌砖夹爪机构的姿态。
  9. 根据权利要求1至8中的任一项所述的砌砖装置,其特征在于,所述砌砖装置还包括多个激光定位机构,所述多个激光定位机构设置在所述底盘机构的作业区域,所述激光定位机构用于对待砌筑墙壁进行定位,并引导所述机械臂将所述砌砖夹爪机构调整至预设位姿。
  10. 根据权利要求1至9中的任一项所述的砌砖装置,其特征在于,所述砌砖装置还包括倾角传感器,所述倾角传感器安装在所述底盘机构,所述倾角传感器用于检测所述底盘机构相对于水平面的偏差;所述底盘机构设置有多个支撑脚,根据所述底盘机构相对于水平面的偏差,通过所述多个支撑脚将所述底盘机构调整至水平姿态。
  11. 根据权利要求1至10中的任一项所述的砌砖装置,其特征在于,所述立柱机构为升降柱机构。
  12. 根据权利要求1至11中的任一项所述的砌砖装置,其特征在于,所述砌砖装置还包括平移台,所述底盘机构以可移动的方式安装在所述平移台上,所述平移台用于移动所述底盘机构。
  13. 根据权利要求1至12中的任一项所述的砌砖装置,其特征在于,所述砌砖装置还包括电柜机构,所述电柜机构安装在所述底盘机构上,所述立柱机构与所述电柜机构相邻 设置,且所述电柜机构设置在所述底盘机构的后侧。
  14. 根据权利要求13所述的砌砖装置,其特征在于,所述砌砖装置还包括抹浆翻转机构,所述抹浆翻转机构安装在所述底盘机构上,且所述电柜机构与所述抹浆翻转机构相邻设置,所述抹浆翻转机构用于对砖块进行抹浆操作,并将砖块翻转后由所述砌砖夹爪机构夹取抹后的砖块。
  15. 根据权利要求1至14中的任一项所述的砌砖装置,其特征在于,所述砌砖装置还包括多个激光传感器,所述多个激光传感器分别安装在所述砌砖夹爪机构上,所述多个激光传感器用于检测所述砌砖夹爪机构与待砌筑位置之间的距离,并根据所述距离将所述砌砖夹爪机构调整至预设砌筑位置。
  16. 根据权利要求1至15中的任一项所述的砌砖装置,其特征在于,所述砌砖装置还包括控制器,所述控制器与所述机械臂连接,以用于控制所述机械臂的姿态。
  17. 一种砌砖控制方法,其特征在于,所述砌砖控制方法通过根据权利要求16所述的控制器来执行,所述砌砖控制方法包括:
    获取待砌筑墙壁的位置信息,所述位置信息包括砖块的砌筑方向和砌筑高度;
    在所述砌砖夹爪模块夹取砖块后,将所述第一轴工业机械臂控制成转动至所述砌筑方向;
    通过所述工业机械臂机构将所述协作机械臂机构移动至所述砌筑高度;
    检测所述砌砖夹爪机构所夹取的砖块姿态是否与所述待砌筑墙壁平行,在所述砌砖夹爪机构所夹取的砖块姿态与所述待砌筑墙壁不平行的情况下,通过所述协作机械臂机构来调整所述砌砖夹爪机构,以使所述砌砖夹爪机构所夹取的砖块姿态与所述待砌筑墙壁平行;
    将所述砌砖夹爪机构所夹取的砖块放置至所述待砌筑墙壁,完成砌筑并进行下一块砖块的砌筑。
PCT/CN2022/110882 2022-04-27 2022-08-08 一种砌砖装置及控制方法 WO2023206855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210459062.3A CN116696091A (zh) 2022-04-27 2022-04-27 一种砌砖装置及控制方法
CN202210459062.3 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023206855A1 true WO2023206855A1 (zh) 2023-11-02

Family

ID=87829932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110882 WO2023206855A1 (zh) 2022-04-27 2022-08-08 一种砌砖装置及控制方法

Country Status (2)

Country Link
CN (1) CN116696091A (zh)
WO (1) WO2023206855A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465068A (en) * 1973-09-20 1977-02-23 Laing & Son Ltd John Apparatus for the positioning of elements more particularly building elements
SU1490240A1 (ru) * 1987-05-19 1989-06-30 Московское научно-производственное объединение по строительному и дорожному машиностроению "ВНИИстройдормаш" Устройство дл кладки кирпичных стен
DE4207384A1 (de) * 1992-03-09 1993-09-16 Elmar Pinkhaus Bauroboter
DE4417928A1 (de) * 1994-05-24 1995-11-30 Lissmac Maschb & Diamantwerkz Vorrichtung zum Versetzen von Bausteinen
CN108222527A (zh) * 2018-01-19 2018-06-29 郑军生 一种全自动砌砖机器人
CN110094073A (zh) * 2019-06-04 2019-08-06 沈洋 一种砌墙机械爪
US20190316369A1 (en) * 2016-07-15 2019-10-17 Fastbrick Ip Pty Ltd Brick/block laying machine incorporated in a vehicle
CN113187238A (zh) * 2021-06-08 2021-07-30 广东博智林机器人有限公司 砌砖设备及建筑系统
CN113969669A (zh) * 2021-09-30 2022-01-25 同济大学 一种智能砌筑机器人系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465068A (en) * 1973-09-20 1977-02-23 Laing & Son Ltd John Apparatus for the positioning of elements more particularly building elements
SU1490240A1 (ru) * 1987-05-19 1989-06-30 Московское научно-производственное объединение по строительному и дорожному машиностроению "ВНИИстройдормаш" Устройство дл кладки кирпичных стен
DE4207384A1 (de) * 1992-03-09 1993-09-16 Elmar Pinkhaus Bauroboter
DE4417928A1 (de) * 1994-05-24 1995-11-30 Lissmac Maschb & Diamantwerkz Vorrichtung zum Versetzen von Bausteinen
US20190316369A1 (en) * 2016-07-15 2019-10-17 Fastbrick Ip Pty Ltd Brick/block laying machine incorporated in a vehicle
CN108222527A (zh) * 2018-01-19 2018-06-29 郑军生 一种全自动砌砖机器人
CN110094073A (zh) * 2019-06-04 2019-08-06 沈洋 一种砌墙机械爪
CN113187238A (zh) * 2021-06-08 2021-07-30 广东博智林机器人有限公司 砌砖设备及建筑系统
CN113969669A (zh) * 2021-09-30 2022-01-25 同济大学 一种智能砌筑机器人系统

Also Published As

Publication number Publication date
CN116696091A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN101360873B (zh) 一种用于由多块砖建造建筑物的自动砌砖系统
CN107605167B (zh) 砌砖机器人直角墙体砌筑方法
JP4466785B2 (ja) 移送ロボットおよび移送ロボットの制御方法
CN111219069B (zh) 砌砖机器人
CN107740591B (zh) 砌砖机器人t型墙体砌筑方法
WO2006092867A1 (ja) コークス炉の補修装置
CN106150049B (zh) 喷涂机器人
WO2023273581A1 (zh) 砌砖设备
CN104044924A (zh) 有关堆垛机械手的多轴桥架式玻璃在线堆垛机
WO2023206855A1 (zh) 一种砌砖装置及控制方法
WO2023010906A1 (zh) 墙砖铺贴设备及墙砖铺贴方法
WO2023206991A1 (zh) 供砖总成、砌砖系统以及砌砖方法
JP3446900B2 (ja) 鉄骨仕口部の自動溶接装置
WO2024027595A1 (zh) 焦炉炉体砌筑系统
WO2022257948A1 (zh) 砌砖方法、砌砖装置、砌砖设备及建筑系统
WO2023207012A1 (zh) 翻转机构、砌砖机器人及砌砖方法
WO2023274137A1 (zh) 抹浆设备及砌砖系统
CN210210460U (zh) 施工机器人机械臂
CN112694022A (zh) 一种水下方块安装装置
RU2813384C1 (ru) Башенный кран и способ для возведения конструкций с помощью строительных блоков
CN116657938A (zh) 砌筑方法、砌砖机器人、砌筑系统及存储介质
JPH0453686A (ja) 壁面作業用ロボットの移動方法
Ambrosino et al. Full-Scale Prototype for Bricklaying Activity
CN215252872U (zh) 一种用于斜坡预制桩沉桩自调平导向装置
JP7264123B2 (ja) 炉建設方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939681

Country of ref document: EP

Kind code of ref document: A1