WO2022257948A1 - 砌砖方法、砌砖装置、砌砖设备及建筑系统 - Google Patents

砌砖方法、砌砖装置、砌砖设备及建筑系统 Download PDF

Info

Publication number
WO2022257948A1
WO2022257948A1 PCT/CN2022/097524 CN2022097524W WO2022257948A1 WO 2022257948 A1 WO2022257948 A1 WO 2022257948A1 CN 2022097524 W CN2022097524 W CN 2022097524W WO 2022257948 A1 WO2022257948 A1 WO 2022257948A1
Authority
WO
WIPO (PCT)
Prior art keywords
bricklaying
bricks
arm
brick
grouted
Prior art date
Application number
PCT/CN2022/097524
Other languages
English (en)
French (fr)
Inventor
谢军
曹耿
肖国新
阳跃武
郭崇
易俊
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110640061.4A external-priority patent/CN113323423B/zh
Priority claimed from CN202110645032.7A external-priority patent/CN113187238B/zh
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Priority to GB2300067.2A priority Critical patent/GB2621648A/en
Publication of WO2022257948A1 publication Critical patent/WO2022257948A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/22Tools or apparatus for setting building elements with mortar, e.g. bricklaying machines
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work

Definitions

  • the present application relates to the technical field of bricklaying, for example, to a bricklaying method, a bricklaying device, a bricklaying equipment and a building system.
  • building walls is an extremely labor-intensive construction operation.
  • larger block bricks are used to build walls to achieve space isolation.
  • the blocks need to be lifted onto the scaffolding. Therefore, the wall-building method of the related technology consumes physical strength of the workers, affects the efficiency of the wall, and also faces major safety hazards such as falling bricks and being injured. Hidden danger.
  • the embodiments of the present application provide a bricklaying method, a bricklaying device, a bricklaying equipment and a building system, which are used to solve the problem that the wall-laying method in the related art consumes physical strength of workers and affects the efficiency of wall-laying.
  • An embodiment of the present application provides a bricklaying method, which is used for a bricklaying device to perform bricklaying operations in an environment.
  • the bricklaying device includes a bricklaying robot and a control module for controlling the operation of the bricklaying robot.
  • the control module A bricklaying sequence is preset, and the bricklaying sequence defines the first and last positions of each row of bricks, and the method is executed by the control module, and the method includes:
  • the embodiment of the present application also provides a bricklaying device, which adopts the bricklaying method described in any of the above embodiments to perform bricklaying operations in the environment, and the bricklaying device includes a bricklaying robot and controls the operation of the bricklaying robot
  • the control module of the bricklaying robot includes a support part, a turning mechanism and a bricklaying mechanical arm arranged on the support part, and the control module is electrically connected to the turning mechanism and the bricklaying mechanical arm respectively.
  • the embodiment of the present application also provides a bricklaying equipment configured to stack bricks into a wall, each of the bricks forms a stacking position on the wall, and the bricklaying equipment includes:
  • a turning mechanism including a mounting part and a picking part, the mounting part is connected to the support part, the picking part is pivotally connected to the mounting part along a first axis, and the picking part can pick up the the bricks, and flip the bricks along the first axis, and the turned bricks are set with the grouted side facing down and the non-smeared side facing up;
  • a bricklaying mechanical arm comprising a base, an articulated arm extending forward from the base, and a hand connected to the front end of the articulated arm, the base is mounted on the support, and the articulated arm is configured to have multiple degrees of freedom , the hand can pick up the overturned bricks downwards and release them at the stacking position.
  • the embodiment of the present application also provides a building system, including:
  • Chassis the chassis is provided with a brick transporting track and a moving track, the brick transporting track is used to transport the bricks after plastering along the first direction, and the support part can reciprocate and is set on the moving track, so that The bricklaying equipment can reciprocate on the moving track, and the overturning mechanism in the bricklaying equipment picks up the plastered bricks from the brick transporting track;
  • the reciprocating movement direction of the bricklaying equipment is parallel to the first direction and the direction of the wall, and the height of the brick transporting track is higher than that of the moving track.
  • Fig. 1 is the schematic flow sheet of the bricklaying method that the embodiment of the present application provides;
  • Fig. 2 is the structural representation of the brick laying device that the embodiment of the present application provides;
  • Fig. 3 is a schematic structural view of another angle of the bricklaying device shown in Fig. 2;
  • Fig. 4 is a schematic structural view of a bricklaying device provided by another embodiment of the present application.
  • Fig. 5 is a partial structural schematic diagram of the bricklaying device provided by the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a building system provided by an embodiment of the present application.
  • Fig. 7 is the schematic structural view of the bricklaying equipment provided by the embodiment of the present application.
  • Fig. 8 is a structural schematic diagram of another angle of the bricklaying equipment provided by the embodiment of the present application.
  • Fig. 9 is a structural schematic diagram of another angle of the bricklaying equipment provided by the embodiment of the present application.
  • Fig. 10 is a structural schematic diagram of another angle of the bricklaying equipment provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural view of bricklaying equipment provided by another embodiment of the present application.
  • Fig. 12 is a partial structural schematic diagram of the bricklaying equipment shown in Fig. 11;
  • Fig. 13 is a structural schematic diagram of another angle of the bricklaying equipment shown in Fig. 12;
  • Fig. 14 is a structural schematic diagram of another part of the bricklaying equipment shown in Fig. 11;
  • Fig. 15 is another partial structural schematic view of the bricklaying equipment shown in Fig. 11;
  • Fig. 16 is a schematic structural diagram of a bricklaying robot arm provided in an embodiment of the present application.
  • Fig. 17 is a partial structural schematic diagram of the bricklaying mechanical arm shown in Fig. 16;
  • Fig. 18 is a schematic structural diagram of the chassis provided by the embodiment of the present application.
  • Fig. 19 is a partial structural schematic diagram of the chassis shown in Fig. 18;
  • Fig. 20 is another structural schematic diagram of the bricklaying device provided by the embodiment of the present application.
  • Fig. 21 is a schematic diagram of the angle of the bricklaying device V1 shown in Fig. 20;
  • Fig. 22 is a partial structural schematic diagram of the bricklaying device shown in Fig. 20 .
  • Second lifting mechanism 111. Fixed frame; 1111. First-level driving part; 1112. First-level active part; 1113. First-level guide rail; 1114. Top limit switch sensor; 1115. Bottom Limit switch sensor; 1116, vertical rod; 1117, horizontal rod; 1118, give way groove; 1119, first fixed part; 112, first-level lifting; 1121, annular belt; , first-level driven part; 1124, first-level sliding block; 1125, top limit switch; 1126, bottom limit switch; 1127, rotating wheel; 113, second-level lifting; Fixed part; 1133, second-level guide rail; 1134, third-level driven part; 114, third-level lifting; 1141, third-level driving part; 1142, third-level moving part; 1143, third-level sliding block; 140, second lifting mechanism ; 121, installation part; 160, pick-up part; 123, connecting plate; 222, clamping part; 230, in-position sensor; 240, blocking limit block; 3223, third arm body
  • the terms “installed”, “disposed”, “provided”, “connected”, “connected” are to be interpreted broadly. For example, it may be a fixed connection, a detachable connection, or an integral structure; it may be a mechanical connection, or a point connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, components or components. internal communication. Those skilled in the art can understand the meanings of the above terms in this application according to the situation.
  • first means two or more.
  • a bricklaying method is used for a bricklaying device to perform bricklaying operations in an environment to form bricks into a wall, and each brick forms a stacking position on the wall, the bricklaying device It includes a bricklaying robot and a control module that controls the operation of the bricklaying robot, the control module is preset with a bricklaying sequence, and the bricklaying sequence defines the first and last positions of each row of bricks, and the method consists of the Executed by the control module, the method includes: controlling the bricklaying robot to lay bricks in sequence; transporting the plastered bricks from the initial position to the position to be grasped, and making the horizontal plastering of the plastered bricks
  • the grouting surface is set up, and the horizontal non-plastering surface of the bricks after grouting is set down; the horizontal grouting surface and the horizontal non-plastering surface of the grouting bricks are controlled to turn up and down;
  • the vertical grouting surface of the brick after grouting is close to the end position relative to the vertical non-plastering face; the
  • a bricklaying method is used for bricklaying device 10 to perform bricklaying operations in the environment, please refer to Figure 2, which is one of the embodiments of the bricklaying device 10, the bricklaying of this embodiment
  • the device 10 includes a bricklaying robot 100 and a control module for controlling the operation of the bricklaying robot 100. Please refer to FIG. ' and a control module for controlling the operation of the bricklaying robot, the method comprising:
  • the control module is preset with a bricklaying sequence, and the control module is configured to control the bricklaying robot 100 to lay bricks in sequence, and the bricklaying sequence defines the first and last positions of each row of bricks.
  • the bricklaying robot 100 lays bricks sequentially through the bricklaying sequence, so that the bricklaying robot 100 can lay out multiple rows of bricks until a wall is formed.
  • the brick laying device 10 includes a conveying mechanism for transporting the bricks to the to-be-caught position 220 of the turning mechanism 120 .
  • the conveying mechanism is configured as a conveying track 200, which is a device for conveying bricks, and the conveying track 200 has an initial position 210 and a position to be grasped 220, through which The conveying track 200 transports the grouted bricks 20 from the initial position 210 to the to-be-grabbed position 220.
  • the horizontal grouting surface 21 of the grouted bricks 20 is set upwards, horizontally
  • the non-smearing surface 22 is set downwards, that is, the horizontal non-sloping surface 22 is in contact with the conveying track 200 , so as to prevent the horizontal grouting surface 21 from sticking to the conveying track 200 and polluting the conveying track 200 .
  • the conveying track 200 described here is set in one of the following modes: a belt conveying mechanism, a roller conveying mechanism, or a clamp conveying line and the like.
  • FIG. 18 shows that the conveying track 200 is configured as a roller conveying mechanism.
  • FIG. 20 and FIG. 21 shows that the conveying track 200 is configured as a clamp conveying line, and the conveying track 200 includes a brick upper clamp T1 and a traverse driving member T2, and the traverse driving member includes a traverse output end, the upper brick clamp T1 is connected to the traverse output end, and the traverse drive member T2 drives the upper brick clamp T1 to move between the initial position 210 and the position to be grasped 220 through the traverse output end.
  • the traversing driving member T2 is configured as a telescopic element that can be telescopically arranged along the traversing direction.
  • the conveying mechanism is configured as a transporting robot arm, and the plastered bricks 20 are transported to the position to be grasped by the transporting robot arm.
  • the bricklaying robot 100/100' controls the grouted brick 20 to turn up and down so that the horizontal grouting surface 21 faces downward. This can facilitate subsequent grabbing of the brick for transport, and it can be directly placed on the horizontal placement surface S2 with the horizontal grouting surface 21 facing down.
  • the turning mechanism 120 of the bricklaying robot 100 is controlled to grab and turn over the grouted brick 20 from the position 220 to be grasped, so that the turned over grouted brick
  • the horizontal grouting surface 21 of 20 and the horizontal non-graining surface 22 are turned up and down, so that the brick 20 after the grouting is conveniently turned over to the horizontal grouting surface 21 facing down.
  • the overturning mechanism 120 is controlled to move downward at the position 220 to grab the grouted brick 20 , and then the overturning mechanism 120 is controlled to overturn the grouted brick 20 .
  • the overturning mechanism 120 grabs the grouted bricks 20, control the overturning mechanism 120 to rise for a certain distance and then overturn the grouted bricks 20, so as to avoid turning over the bricks,
  • the turning mechanism 120 or the bricks interfere with the conveying track 200 .
  • the position of the turning mechanism 120 is not fixed relative to the environment, at the same time, the position of the initial position 210 is fixed relative to the environment, so the distance between the turning mechanism 120 and the initial position 210 is not fixed. Since the position 220 to be grasped is below the turning mechanism 120, The distance between the initial position 210 and the grasping position 220 is not fixed.
  • the movement of the turning mechanism 120 is controlled until the in-position switch of the turning mechanism 120 is triggered by the vertical non-plastering surface 24 of the brick 20 after plastering, and it is confirmed that the turning mechanism 120 reaches the position 220 to be grasped.
  • the brick 20 after grouting reaches the position 220 to be grasped and triggers the in-position switch, so that the vertical non-plastering surface 24 of the brick 20 after grouting triggers the in-position switch, which can After confirming whether the overturning mechanism 120 has reached the ready position, the movement of the overturning mechanism 120 can be controlled until the overturning mechanism 120 reaches the position 220 to be grasped.
  • the entire bricklaying device 10 does not need to use an additional detection device to detect the real-time position of the bricks 20 after grouting at all times.
  • the distance between the to-be-grabbed position 220 and the initial position 210 of the bricklaying robot 100 at different stations is monitored at all times, thereby simplifying the control strategy of the job control process and helping to speed up the bricklaying cycle.
  • the two splints 124 of the overturning mechanism 120 are controlled to be connected with the plastered
  • the other two vertical sides of the brick 20 perpendicular to the vertical grouting surface 23 are parallel, and the distance between the two clamping plates 124 is greater than the distance between the two vertical sides parallel to the clamping plates 124.
  • flip Mechanism 120 is equipped with two clamping plates 124, and the brick 20 after plastering is clamped by two clamping plates 124, wherein owing to control clamping plate 124 and two vertical sides of the brick 20 after plastering are parallel, and this vertical side is with The vertical plastering surfaces 23 are adjacent and vertical, so that the two splints 124 clamp the two vertical faces of the brick 20 after plastering without plastering, so as to prevent the slurry from sticking to the splints 124. It is convenient for subsequent transfer of the bricks 20 after plastering.
  • the overturning mechanism 120 in one embodiment of controlling the overturning mechanism 120 to clamp and overturn the brick 20 after the grouting, the overturning mechanism 120 is controlled to rise until the clamping plate 124 The bottom surface is higher than the top surface of the grouted brick 20, and the turning mechanism 120 is controlled to translate until the clamping plate 124 clamps the center of the grouted brick 20, so that the clamping plate 124 can reach the grouted brick.
  • the clamping plate 124 it is convenient for the clamping plate 124 to adjust the position so that the clamping plate 124 is located directly above the brick 20 after plastering, so that the translation mechanism 120 can be guaranteed to move until the clamping plate 124 clamps the center of the brick 20 after plastering , so as to ensure that the turning mechanism 120 can stably grab the bricks 20 after plastering and turn them over stably.
  • the overturning mechanism 120 is lowered to control the two splints 124 shrinks the spacing to abut against the two vertical sides respectively, and then controls the turning mechanism 120 to rotate along the horizontal line as the axis, so that the two horizontal surfaces of the brick 20 after the grouting are turned over by 180°, which is convenient for the turning mechanism 120 Turn the vertical grouted side 23 of the grouted block 20 from up to down.
  • the turning mechanism 120, the conveying track 200 and the bricklaying robot 100' are all installed on the movable chassis 400, and the bricklaying robot is carried by the movable chassis 400 100', the turning mechanism 120, and the conveying track 200 perform bricklaying operations at different stations, and the distance between the turning mechanism 120 and the initial position 210 in the working state is the transportation distance of bricks, and the transportation distance is fixed.
  • the transportation distance fixedly, even if the bricklaying robot 100' is at different stations, the transportation time of the bricks can be equalized through the fixed transportation distance and there is no need to monitor the position to be grasped 220 and the initial position all the time The distance between 210 thus simplifies the control strategy.
  • Fig. 20 and Fig. 21 another embodiment in which the conveying track 200 transports the bricks from the initial position 210 to the position 220 to be grasped, the upper brick clamp is driven to the initial position 210 by the traverse driving member, and the grouted
  • the bricks 20 are placed in the upper brick fixture at the initial position 210, and the bricks 20 after the plastering are transferred from the initial position 210 to the to-be-grabbed position 220 of the turning mechanism 120 by driving the upper brick fixture through the traverse driving member.
  • the grabbing position 220 is located below the turning mechanism 120 .
  • the control module knows the transportation distance from the grouted bricks 20 to the to-be-caught position 220 , and controls the grouted bricks to be transported to the to-be-caught position 220 according to the transportation distance.
  • the overturning mechanism 120 in one embodiment of controlling the overturning mechanism 120 to clamp and overturn the grouted brick 20 , after the grouted brick 20 is transported to the position 220 to be grasped, Control the overturning mechanism 120 to clamp down the grouted brick 20, then control the two splints 124 of the overturning mechanism 120 to shrink the distance to respectively abut against the two vertical sides of the grouted brick 20, and then control the overturning mechanism 120 rotates along the horizontal axis, so that the horizontal grouting surface 21 and the horizontal non-graining surface 22 of the grouted brick 20 form a 180° flip.
  • the bricklaying robot 130 of the bricklaying robot 100 is controlled to swing along the first clockwise direction R to above the horizontal non-plastering surface 22, and the free end of the bricklaying robot 130
  • the tangent direction of swinging at the last position is opposite to the first and last direction D (the direction opposite to the first and last direction D, that is, the direction from the last position to the first position), so that the bricklaying mechanical arm 130 can reach the back of the trowel grabbed by the turning mechanism 120
  • the top of the brick 20, that is, the top of the horizontal non-plastering surface 22, at the last moment of the process of reaching the top of the horizontal non-plastering surface 22, the free end of the mechanical arm moves in the direction opposite to the first and last direction D , at this time, the hand 133 of the bricklaying mechanical arm 130 can just reach the top of the horizontal non-plastering surface 22 .
  • the bricklaying robot arm 130 after the bricklaying robot arm 130 picks up the bricks that have been troweled and turned over on the turning mechanism 120, the bricklaying robot arm 130 is controlled to move along with the first bricklaying mechanism. Swing in the second clockwise direction opposite to the clockwise direction R to turn the vertical grouting surface 23 and the vertical non-graining surface 24 left and right, so that the vertical grouting surface 23 is relatively close to and towards the end position , so that after the bricklaying mechanical arm 130 grabs the plastered bricks 20, it starts to swing along the direction of transporting the plastered bricks 20, that is, the free end of the bricklaying mechanical arm 130 starts to swing at this time.
  • the tangent direction is the same as the first and last direction D, and then continues to swing along the second clockwise direction, so that the trajectory of the brick 20 after plastering is a coherent trajectory during the entire process of conveying and being transported by the mechanical arm, so that the entire masonry
  • the flow of bricks is relatively smooth, which improves the efficiency of bricklaying.
  • the bricklaying surface 23 when the vertical grouting surface 23 is turned and approaches the final position, that is, when the bricklaying mechanical arm 130 swings to the final position along the second clockwise direction, the bricklaying The tangential direction of the swing of the free end of the brick robot arm 130 is opposite to the first-to-end direction D. Since at this time, the vertical grouting surface 23 has moved towards the end position, the bricks 20 after grouting can be controlled to move in translation.
  • the turning mechanism 120 is arranged on the side of the support part 110 of the bricklaying robot 100 away from the initial position 210, and the bricklaying robot arm 130 is positioned on the support part 110.
  • the space movement of the side of the part 110 away from the initial position 210, the direction from the initial position 210 to the position 220 to be grasped is the same as the direction D from the beginning to the end, so that the brick 20 after plastering can be guaranteed to move from the initial
  • the turning mechanism 120 grasps and turns over, and then the bricklaying mechanical arm 130 grasps and transfers, and the transfer is in a direction away from the initial position 210, so that the bricks after plastering can be ensured 20.
  • the trajectory of the entire process of conveying and being transferred by the mechanical arm is a coherent trajectory line, which makes the entire bricklaying process smoother and improves the efficiency of bricklaying.
  • the brick 20 after plastering is controlled by the bricklaying mechanical arm 130 to continue to move
  • the vertical placement surface S1 is the last vertical surface of the previous bricklaying block.
  • the horizontal placement surface S2 is the last and upward horizontal surface of the previous row of bricks.
  • the step of "reversely moving along the first-to-end direction D to stick the vertical grouting surface 23 to the vertical placement surface S1" is no later than the step of "moving downward to The step of sticking the horizontal grouting surface 21 to the horizontal placement surface S2", so that after the vertical grouting surface 23 and the vertical placement surface S1 are aligned and bonded, or after the vertical grouting surface 23 and the vertical placement surface While the surface S1 is well bonded, the horizontal grouting surface 21 and the horizontal surface S2 are well bonded, and the relative friction between the vertical grouting surface and the vertical surface S1 is higher than that of the horizontal grouting surface and the horizontal surface S2 Compared with friction, there is less slurry falling off, and better bricklaying effect can be guaranteed.
  • the first arm 131, the second arm 132 and the hand 133 connected to the bricklaying mechanical arm 130 are controlled to rotate horizontally in turn, so that the second arm 132 goes around the first arm 131 along the
  • the first clockwise direction R is rotated to the top of the turning mechanism 120, the first arm 131 is controlled to descend, and then the hand 133 is controlled to grab the plastered bricks 20 on the turning mechanism 120, and then the second arm 132 is controlled to rotate around the second arm 132.
  • One arm 131 rotates 180° along the second clockwise direction, so that the hand 133 reaches the stacking position, and makes the vertical grouting surface 23 parallel to the last vertical placement surface S1 and faces the last vertical placement surface S1, it is convenient for the bricklaying mechanical arm 130 to perform operations of grabbing, transferring and laying bricks 20 after plastering.
  • the first arm 131 is controlled to translate along the direction from the last position to the first position on the support portion 110 of the bricklaying robot 100 until the vertical grouting surface 23 is parallel to the vertical placement surface S1 of the last position and partially abut, and then control the first arm 131 to descend on the support part 110 until the horizontal plastering surface 21 of the brick 20 after plastering is in close contact with the horizontal placement surface S2 at the last position, so that "the The step of moving in reverse to stick the vertical grouting surface 23 to the vertical placement surface S1" is earlier than the step of "moving downwards to stick the horizontal grouting surface 21 to the horizontal placement surface S2", After the vertical grouting surface 23 is aligned with the vertically placed surface S1 or when the vertical grouted surface 23 is aligned with the vertically placed surface S1, the horizontal grouted surface 21 can be aligned with the horizontally placed surface S2. Good adhesion, the relative friction between the vertical grouting surface and the vertical surface S1 is less than the relative friction between the horizontal grouting surface and
  • the articulated arm 320 of the bricklaying mechanical arm 130 includes a base 134 , a first arm 131 , a second arm 132 , and a hand that are sequentially rotatably connected along a horizontal elbow joint 324 133, the end of the first arm 131 away from the second arm 132 is rotationally connected with the base 134 along the horizontal elbow joint 324 and is connected with the first supporting part 110a through the base 134, the base 134 is along The vertically arranged shoulder joint 323 is rotatably connected to the first support part 110a, and the end of the second arm 132 away from the first arm 131 is rotatably connected to the hand 133 through a vertical wrist joint 325, so
  • the handle 133 is configured to grasp the grouted and turned brick.
  • the base 134 By controlling the base 134 to rotate about the vertical axis along the first clockwise direction R so that the articulated arm 320 drives the hand 133 to face the grouted brick 20, and then controls the first The arm 131 and/or the second arm 132 rotates so that the hand 133 moves towards the brick 20 after the grouting, and then controls the hand 133 to clamp the grout from the turning mechanism 120 and then control the first arm 131 to rotate around the vertical axis along the second clockwise direction so that the hand 133 transfers the plastered bricks 20 to the stacking position,
  • the vertical grouting surface 23 of the grouted bricks 20 at the stacking position faces the vertical placement surface at the last position.
  • a fine positioning calibration step is performed, and the fine positioning calibration step is configured as Control the rotation angle adjustment mechanism of the bricklaying mechanical arm 130 to adjust the grouted bricks 20 to a target posture, and the target posture means that the grouted bricks 20 are parallel to the wall surface and parallel to the horizontal plane.
  • the fine positioning calibration step is beneficial to the bricklaying effect and improves the pass rate of the wall.
  • the fine positioning calibration step is located before the "continuous movement of the bricklaying mechanical arm" in step M5, or the fine positioning calibration step and the "continuous movement of the bricklaying mechanical arm” in step M5 are alternately run, or the fine positioning calibration
  • the step and step M5 of "continuing the movement of the bricklaying mechanical arm” are carried out simultaneously.
  • the rotation angle adjustment mechanism is as shown in Figure 16 and Figure 17 or as shown in Figure 20, the bricklaying mechanical arm 130 has a rotation angle adjustment mechanism in the XYZ direction, which has an XYZ rotation axis configured to form an XYZ direction
  • the three drive joints include X-direction drive joint 326, Y-direction drive joint 327, and Z-direction drive joint 328, which are connected in sequence so that the rotation angle adjustment mechanism can perform attitude adjustments of pitching up and down, rolling left and right, and swinging left and right.
  • the bricklaying robot 100 of the bricklaying device 10 is controlled by the control module of the bricklaying device 10 to perform the bricklaying operation.
  • the bricklaying sequence is preset in the control module, so that each time the bricklaying robot 100 can Operation, by transporting the grouted brick 20 to the position 220 to be grasped, in the process of conveying, the horizontal grouting surface 21 of the grouted brick 20 is set upwards, so that the horizontal grouting surface can be avoided 21 is adhered to the track for conveying bricks.
  • the bricklaying robot 100 controls the bricks 20 after plastering to turn up and down so that the horizontal plastering surface 21 faces down, and then Begin to transport the bricks 20 after the grouting, so that the vertical grouting surface 23 of the bricks 20 after the grouting is close to the last position, that is, close to the last position of the previous brick, and then control the bricks after the grouting 20 continues to move, so that the vertical grouting surface 23 adheres to the vertical surface S1 of the previous brick, and the horizontal grouting surface 21 adheres to the horizontal surface S2 of the previous brick, thus completing the bricklaying Operation, the entire bricklaying process is simple and easy to operate, saves a lot of manpower, takes a short time, improves the efficiency of bricklaying, that is, improves the efficiency of walllaying.
  • a bricklaying device 10 adopts the bricklaying method described in any of the above-mentioned embodiments to perform bricklaying operations in an environment, and the bricklaying device 10 includes a bricklaying robot 100/100' And the control module for controlling the operation of the bricklaying robot 100, the bricklaying robot 100/100' includes a support part 110, a turning mechanism 120 and a bricklaying mechanical arm 130 arranged on the support part 110, the control module and the turning over The mechanism 120 and the bricklaying robot arm 130 are electrically connected respectively.
  • one of the embodiments of the bricklaying device 10 the bricklaying robot arm 130 and the turning mechanism 120 of the bricklaying robot 100 are installed on the same support part 110, along with the support part 110 along the preset Tracks carry out bricklaying work on different stations.
  • One embodiment of the preset track is configured as the moving track 600 shown in FIG. 6 and FIG. 10 .
  • the bricklaying mechanical arm 130 and the turning mechanism 120 are installed on different support parts 110, and the different support parts 110 include a first support part 110a and a second support part 110b, the bricklaying mechanical arm 130 is installed on the first support part 110a, and the turning mechanism 120 is installed on the second support part 110b.
  • the above-mentioned bricklaying device 10 adopts the above-mentioned bricklaying method to perform bricklaying operations in the environment.
  • the bricklaying device 10 includes a control module and a bricklaying robot 100.
  • the control module controls the bricklaying robot 100 of the bricklaying device 10 to perform bricklaying operations. , first preset the bricklaying sequence in the control module, so that the bricklaying robot 100 can operate in sequence each time, by transporting the bricks 20 after plastering to the position 220 to be grasped, during the conveying process, the plastering
  • the horizontal grouting surface 21 of the finished brick 20 is arranged upwards, which can avoid the horizontal grouting surface 21 and the track adhesion of the conveying bricks.
  • the bricklaying robot The overturn mechanism 120 of 100 controls the brick 20 after plastering to turn up and down, so that the horizontal plastering surface 21 faces downward, and then the bricklaying mechanical arm 130 starts to transfer the brick 20 after plastering, so that the brick 20 after plastering
  • the vertical grouting surface 23 is close to the end position, that is, the end position close to the previous block of bricks, and then the bricklaying mechanical arm 130 controls the brick 20 after the grouting to continue to move, so that the vertical grouting surface 23 is the same as the previous block.
  • the vertical placement surface S1 of the already laid bricks is adhered, so that the horizontal plastering surface 21 is adhered to the horizontal placement surface S2 of the previous bricks, thereby completing the bricklaying operation.
  • the whole bricklaying process is simple and easy to operate, saving a lot of time. Manpower, time-consuming, improves the efficiency of bricklaying, that is, improves the efficiency of wall-laying.
  • the bricklaying device 10 further includes a conveying track 200, and the conveying track 200 has an initial position 210 for starting to lay bricks and a brick to be grabbed.
  • the position 220 to be grasped the support part 110 is set adjacent to the position 220 to be grasped, the turning mechanism 120 is set on the side of the support part 110 away from the initial position 210, the bricklaying mechanical arm 130 During the spatial movement of the side of the supporting part 110 away from the initial position 210 , the direction from the initial position 210 to the position to be grasped 220 is parallel to the direction D from the initial position 210 .
  • the brick laying device 10 further includes a conveying track 200, and the conveying mechanism includes an upper brick clamp and a traversing driving member, and the traversing driving member drives the upper brick clamp to Move between the initial position 210 and the position to be grasped 220, the initial position 210 is used to start placing bricks and the position to be grasped 220 is used for the turning mechanism 120 to grasp bricks, the first support portion 110a is adjacent to all The position to be grabbed 220 is set, the initial position 210 is set on the second support part 110b and is located on one side of the first support part 110a, and the turning mechanism 120 is set on the second support part 110b and located on the side away from the initial position 210, the bricklaying mechanical arm 130 moves in the space on the side of the first support part 110a away from the initial position 210, and the initial position 210 reaches the The direction in which the position 220 is taken is the same as the direction D from the beginning to the end.
  • the direction from the initial position 210 to the to-be-grabbed position 220 is parallel to the direction D from the beginning to the end. This can ensure that after the bricks 20 after plastering arrive at the position to be grasped 220 from the initial position 210, the overturning mechanism 120 will grasp and overturn, and then the bricklaying mechanical arm 130 will grasp and transfer, and deviate from the initial position 210 This can ensure that the trajectory of the bricks 20 after plastering is a coherent trajectory during the entire process of conveying and being transported by the mechanical arm, making the entire bricklaying process smoother and improving the efficiency of bricklaying.
  • the turning mechanism 120 includes a mounting part 121, a rotating part 122, a connecting plate 123 and two parallel clamping plates 124 arranged on the connecting plate 123.
  • the mounting part 121 Lifting is arranged on the support part 110, and the rotating part 122 is connected to the mounting part 121 and the connecting plate 123 along the first axis A.
  • the first axis A is a horizontal axis and is perpendicular to the initial position 210 to the position to be grasped.
  • the two splints 124 are arranged at intervals relative to each other along the extension direction of the first axis A, and the distance between them can be adjusted to clamp and release the grouted bricks 20, and the turning mechanism 120 passes through
  • the mounting part 121 lifts up and down on the support part 110 to realize the descent to grab the grouted bricks 20, and the distance between the two splints 124 on the connecting plate 123 is adjustable, so that the two splints 124 can be controlled to grab the grouted bricks Block 20, through the rotation of the rotating part 122, the connecting plate 123, the two splints 124 and the clamped bricks 20 after plastering can be turned over, so that the turning mechanism 120 can vertically plaster the bricks 20 after plastering.
  • the surface 23 is turned from upward to downward.
  • the rotation axis of the installation part 121 is horizontal.
  • the turning mechanism 120 includes a mounting part 121, a rotating part 122, a connecting plate 123 and two parallel clamping plates 124 arranged on the connecting plate 123.
  • the mounting part 121 The rotating part 122 is arranged on the second supporting part 110b in a liftable manner, and the rotating part 122 connects the mounting part 121 and the connecting plate 123 along the first axis A.
  • the first axis A is a horizontal axis and is perpendicular to the initial position 210 to In the direction of the to-be-caught position 220 , the two splints 124 are arranged at intervals relative to each other along the extension direction of the first axis A, and the distance between them can be adjusted to clamp and release the grouted bricks 20 .
  • the bricklaying mechanical arm 130 includes a first arm 131 , a second arm 132 and a hand 133 which are sequentially rotatably connected along a vertical elbow joint 324 .
  • One end of the arm 131 away from the second arm 132 is rotationally connected with the base 134 along the vertical shoulder joint 323 and is connected with the support part 110 through the base 134, and the second arm 132 is far away from the first arm.
  • One end of 131 is rotatably connected to the hand 133 through the vertical wrist joint 325, and the hand 133 is configured to grab the bricks after the plastering and flipping, so that the bricklaying mechanical arm 130 is convenient for the bricks after the plastering.
  • Block 20 performs the operations of grabbing, transferring and laying bricks.
  • the bricklaying mechanical arm 130 includes a first arm 131 , a second arm 132 and a hand 133 that are sequentially rotatably connected along a horizontal elbow joint 324 , and the first arm 131, one end away from the second arm 132 is rotationally connected with the base 134 along the horizontal elbow joint 324 and is connected with the first supporting part 110a through the base 134, and the base 134 is arranged along the vertical shoulder joint 323 is rotatably connected with the first support part 110a, and the end of the second arm 132 away from the first arm 131 is rotatably connected with the hand 133 through the vertical wrist joint 325, and the hand 133 is configured as Grabbing the grouted and overturned bricks 20 facilitates the operations of the bricklaying robot 130 to grab, transfer and bricklay the grouted bricks 20 .
  • the first support part 110a is a column with a fixed height, but in another embodiment, the first support part 110a may be a column that can
  • the bricklaying device 10 further includes a grout brick feeding mechanism 300, the grout brick feeding mechanism 300 is arranged adjacent to the initial position 210, and the grout brick feeding mechanism 300 It is used to grout the bricks, and then place the grouted bricks 20 on the initial position 210 on the conveying track 200 .
  • a bricklaying device 40 is configured to stack bricks into a wall, each of the bricks forms a stacking position on the wall, and the bricklaying device 40 includes a support part 410, a turning mechanism 120 and a bricklaying mechanical arm 130.
  • the turning mechanism 120 includes a mounting part 121 and a picking part 160, the mounting part 121 is connected to the support part 410, the picking part 160 is pivotally connected to the mounting part 121 along a first axis A, so The pick-up unit 160 can pick up the bricks after plastering, and turn over the bricks along the first axis.
  • the bricklaying mechanical arm 130 includes a base 310, an articulated arm 320 extending forward from the base 310, and a hand 133 connected to the front end of the articulated arm 320, the base 310 is installed on the support 410, the The articulated arm 320 is configured to have multiple degrees of freedom, and the hand 133 can pick up the overturned bricks downwards and release them at the stacking position.
  • the bricklaying equipment 40 is used to stack bricks into a wall, and each of the bricks forms a stacking position on the wall, so
  • the bricklaying equipment 40 includes a supporting part 410 , a turning mechanism 120 and a bricklaying mechanical arm 130 .
  • the turning mechanism 120 includes a mounting portion 121 and a pick-up portion 160, the mounting portion 121 is connected to the support portion 410, the pick-up portion 160 is pivotally connected to the mounting portion 121 along a first axis A, that is, The picking part 160 rotates on the mounting part 121 around the first axis A, and the picking part 160 can pick up the bricks after plastering and flip the bricks along the first axis A.
  • the turned over bricks are arranged with the grouting surface 31 facing down and the non-plastering face 32 facing up.
  • the bricklaying mechanical arm 130 includes a base 310, an articulated arm 320 extending forward from the base 310, and a hand 133 connected to the front end of the articulated arm 320, the base 310 is mounted on the support 410, and the articulated arm 320 is configured with multiple degrees of freedom, and the hand 133 can pick up the overturned bricks downwards and release them in the stacking position.
  • the bricklaying equipment 40 mentioned above can grasp the bricks 20 after plastering through the pick-up part 160 of the turning mechanism 120, and the bricklaying mechanical arm 130 is used to pick up the bricks 20 after plastering picked up by the pick-up part 160 Afterwards, it is transferred to the stacking position for bricklaying operation, wherein, the hand 133 is used to grab the bricks 20 after plastering, and the articulated arm 320 has multiple degrees of freedom, which can drive the hand 133 to the pick-up part 160.
  • the hand 133 can also be brought to the stacking position; the above-mentioned bricklaying operation does not require manual handling and bricklaying, which saves manpower and avoids possible safety hazards such as bricks falling and being injured, and the machine is automatically operated to lift improve the efficiency of bricklaying; wherein, the horizontal grouting surface 21 needs to face up when the grouted bricks 20 are transported or placed, so as to avoid the slurry on the horizontal grouting surface 21 from sticking to the conveying mechanism or the placing mechanism , and avoid the slurry on the horizontal grouting surface 21 from contaminating the conveying mechanism or the placement mechanism.
  • Rotation turns the grouted bricks 20 180° so that the horizontal grouting surface 21 faces down, so that the bricklaying manipulator 130 can grab the grouted bricks 20 on the pick-up part 160 and transport the grouted bricks 20.
  • the bricks 20 after the plastering can be directly put to the stacking position with the horizontal grouting surface 21 facing down, and the bricklaying is completed, so that the bricklaying mechanical arm 130 is placing the bricks on the In the stacking position, the grouting surface 31 of the bricks is set downwards, sticking to the horizontal placement of the stacking position, so as to prevent the grouting surface 31 of the bricks from being exposed when it is placed in the stacking position, waiting for the next brick to finish.
  • the function of the turning mechanism 120 can also make the plastering surface 31 face up during the brick conveying process , so that the process of transferring the bricks to the bricklaying mechanical arm 130 after the bricks are plastered reduces the scraping of the slurry, thereby also avoiding the uneven distribution of the slurry on the plastering surface 31 or excessive slurry due to the scraping.
  • the overturning mechanism 120 performs overturning operation on the next plastered brick 20 to be stacked, so that the bricklaying mechanical arm 130 needs to pick up the next plastered brick to be stacked after the bricklaying is completed.
  • Block 20 does not require too long waiting time, thereby saving operation time, so it is very convenient and efficient.
  • the bricklaying equipment 40 of this embodiment also ensures the bricklaying effect while ensuring the plastering effect in the brick conveying process, and also speeds up the bricklaying time of laying bricks.
  • the bricklaying equipment 40 also Including a control module
  • the hand 133 includes a position detection device 331, the position detection device 331 is configured to detect the posture of the brick after being turned over, and the position detection device 331 is connected by telecommunication with the control module; the control The module generates an action instruction based on the pose of the turned brick, the action instruction is used to control the hand 133 to adjust to a parallel pose parallel to the brick, and the control module controls the hand Part 133 grabs the brick from top to bottom with the parallel posture, so that the posture of the turned brick is detected by the position detection device 331, and fed back to the control module, and the control module according to the posture of the brick
  • the information controls the movement of the hand 133 until the hand 133 is parallel to the brick, so as to realize the alignment operation before the hand 133 grabs the brick, so that the hand 133 can translate and lift to grab the
  • the position detection device 331 of the hand 133 detects the posture of the turned brick, the hand 133 and the position detection device 331 are located directly above the brick. This ensures that the position detection device 331 can detect the pose of the brick, so that the hand 133 is aligned with the brick.
  • the position detection device 331 is a laser ranging sensor 331a/ 331b
  • the number of the laser ranging sensors 331a/331b is at least three.
  • the number of the laser distance measuring sensors is three, and when the hand 133 is located above the pick-up part 160, each of the three laser distance measuring sensors faces the non-wiping
  • the slurry surface 32 emits laser lines and forms three laser points on the non-smearing surface 32.
  • the three laser points are not on the same straight line, and the connecting line between the three laser points forms a triangle.
  • the plane where it is located forms a first reference S
  • the control module controls the hand 133 to adjust to be parallel to the first reference S, and controls the hand 133 to grasp in a posture parallel to the first reference S Described brick
  • the first reference S is formed by connecting three laser points emitted by three laser distance measuring sensors on the non-smearing surface 32, and the information of the laser points transmitted by each laser distance measuring sensor is sent to the control module,
  • the control module obtains the information of the first reference S composed of each laser point, and then the control module can control the hand 133 to adjust to be parallel to the first reference S, and control the hand 133 to grasp the bricks in a posture parallel to the first reference S , so it is convenient for the position detection device 331 to detect the pose of the overturned and grouted brick 20 .
  • the connecting line between the three laser points forms a triangle, viewed from top to bottom, the projection of the centroid of the brick is located in the triangle, so that
  • the area detected by the position detection device 331 is the flatness of the central area of the brick, so that the flatness of the first reference S is the flatness of the central area of the brick, and the adjustment of the hand 133
  • the posture is based on the flatness of the central area of the brick, so that when the hand 133 picks up the brick, the posture of the brick is roughly the same as that of the hand 133, so that the hand 133 is controlled.
  • the posture of the portion 133 is equivalent to controlling the posture of the bricks, which is beneficial to control the accuracy of placing the bricks at the stacking position.
  • One side of the hand 133 is provided with two laser ranging sensors 331a, and the other side of the hand 133 is provided with the remaining laser ranging sensor 331b, and the control module is based on the space coordinates of the brick centroid
  • the spatial coordinates of the hand 133 confirm that the hand 133 rotates to the path planning above the central area of the brick, and three of the laser ranging sensors are respectively arranged on both sides of the hand 133, Therefore, when the hand 133 is located above the central area of the brick, the three laser distance measuring sensors are respectively located on the left and right sides of the centroid of the brick, and the three laser sensors are also respectively located on the left and right sides of the brick center.
  • the laser distance measuring sensor 331b in this embodiment is aligned with one of the laser distance measuring sensors 331a along the left and right directions, so as to ensure that the brick centroid is located in the three
  • the laser sensor is within the triangle formed on the non-soiled face 32 of the block.
  • the quantity of the laser ranging sensor in the present embodiment can be four, five or more, as long as it can be realized that the connecting line of a plurality of laser points on the non-plastering surface 32 of the brick can form a polygon,
  • the flatness of the plane where the polygon is located is the first reference S, and similarly, the centroid of the brick is located in the polygon, thereby facilitating the hand 133 to stack the brick on the wall.
  • the bricklaying equipment 40 further includes a control module, which can control The bricklaying robotic arm 130 swings between the first pose P1 and the second pose P2, and the bricklaying robotic arm 130 picks up the turned bricks downwards in the first pose P1, so
  • the bricklaying robotic arm 130 is calibrated and positioned with the bricklaying block in the second pose P2, the end arm of the articulated arm 320 in the first pose P1 is aligned with the joint in the second pose P2
  • the end arm of the arm 320 is 180° symmetrical along the front-back direction, so that the bricklaying mechanical arm 130 can be controlled by the control module to transfer the bricks on the picking part 160 on one side of the support part 410 to the brick on the other side of the support part 410. stacking position, and the vertical plastering surface 23 of the bricks can be turned 180°, so that it can be paralleled with another vertical surface of the bricks.
  • the articulated arm 320 has a shoulder joint 323, an elbow joint 324, and a wrist joint 325, and the control module only applies action instructions to the elbow joint 324 for the control of the bricklaying mechanical arm 130,
  • the action instruction makes the terminal arm of the articulated arm 320 swing forward 180° along the horizontal direction.
  • the articulated arm 320 is rotatably connected to the base 310 through the shoulder joint 323 , the articulated arm 320 itself is rotatably connected to the end arm through the elbow joint 324 , and the articulated arm 320 is rotatably connected to the hand 133 through the wrist joint 325 , under the control of the control module, since the articulated arm 320 has a shoulder joint 323, an elbow joint 324, and a wrist joint 325, the rotation of the end arm of the articulated arm 320 can be adjusted in the horizontal direction, and only the action command is applied to the elbow joint 324 , that is, to control the bricklaying robotic arm 130 to switch from the first pose P1 to the second pose P2.
  • the turning mechanism 120 turns over the bricks 20 after plastering to the same height each time, so that the height of the bricks 20 after plastering remains at a fixed height after turning over. , so that the hand 133 of the bricklaying mechanical arm 130 reaches the top of the pick-up unit 160 every time it is consistent with the height difference of the overturned bricks, so that the grabbing position of the hand 133 can be reached only by lifting and lowering the fixed height difference, There is no need to adjust the lifting height of the bricklaying mechanical arm 130 every time, and the fixed height difference adjustment value greatly saves the time required for transferring bricks and improves the bricklaying efficiency.
  • the hand 133 grabs the bricks at the same height every time, so that the height and horizontal position of the hand 133 remain unchanged each time. Then lift the fixed height to grab the bricks, which saves the process of adjusting the height and horizontal position of the hand 133 before getting bricks each time, and greatly improves the bricklaying efficiency.
  • the bricks are transported to the picked-up position along a conveying direction , the picked-up position can be independently or integrated in the bricklaying equipment 40, the bricks 20 after the plastering in the picked-up position are used for picking up by the turning mechanism 120, and the turning mechanism 120 has In-position sensor 230, the in-position sensor 230 is installed on the pick-up part 160, and is used to sense the position of the brick in the conveying direction, so that the in-position sensor 230 senses whether the brick is in place, such as reaching a
  • the sensing position is located before the picked-up position so that the turning mechanism 120 starts to adjust the position, and then grabs and turns over the grouted bricks 20 .
  • the blocking limit block 240 is arranged on the pick-up part 160, the in-position sensor 230 is set on the block limit block 240 or the pick-up part 160, and the block limit block 240 has a function for facing toward the wiper.
  • the blocking surface of the brick 20 after paste, the sensing surface of the in-position sensor 230 is parallel to the blocking surface, or the sensing surface protrudes from the blocking surface, and the in-position sensor 230 is a contact sensor, By blocking the limit block 240 to block the bricks 20 after limit plastering, the bricks are put in place and reach a sensing position.
  • the bricks are in contact with the in-position sensor 230 at this time, and the in-position sensor 230 feeds back to the control Module, the control module starts to control the turning mechanism 120 to adjust the position and operate, wherein, because the sensing surface is parallel to the blocking surface or protrudes from the blocking surface, the in-position sensor 230 can be effectively arranged on the blocking limit block 240 and the pick-up part 160
  • the grouted brick 20 is sensed by touch.
  • the picking part 160 includes a connecting plate 123 and two clamping parts 222,
  • the connecting plate 123 is rotatably connected to the mounting portion 121 through a rotating shaft, the axis of the rotating shaft is the first axis A, and two clamping portions 222 are arranged on the connecting plate 123 at intervals.
  • At least one of the clamping parts 222 is slidably connected with the connecting plate 123, so that a brick clamping space is formed between the two clamping parts 222, so that the connecting plate 123 rotates, driving the two clamping parts 222 Turn over, and then drive the bricks sandwiched by the two clamping parts 222 in the brick clamping space to turn over.
  • the two clamping parts 222 have two opposite clamping surfaces, at least one of the two clamping surfaces is set There is a contact sensor, and the contact part of the contact sensor protrudes into the clamping space, so that the pressure between the two clamping parts 222 and the brick can be judged by setting the contact sensor, and then whether the two clamping parts 222 can be judged.
  • the bricks are clamped without falling, and the distance between the two clamping parts 222 can be effectively adjusted until the two clamping parts 222 clamp the bricks.
  • contact sensors are respectively provided on the two clamping surfaces.
  • the contact sensor is a pressure sensor.
  • the articulated arm 320 includes a first arm 131 and a second arm 132.
  • One arm 131 is connected to the base 310 through a shoulder joint 323, and the end of the first arm 131 away from the base 310 is connected to the second arm 132 through an elbow joint 324.
  • the rotation axes are parallel to each other and perpendicular to the extension direction of the first arm 131 respectively, so that the first arm 131 can be controlled to rotate relative to the base 310 through the shoulder joint 323, the elbow joint 324 and the wrist joint 325, and the second arm 132 can be controlled to rotate relative to the base 310.
  • the rotation of the first arm 131 and the control of the rotation of the hand 133 relative to the second arm 132 can control the articulated arm 320 to drive the hand 133 to perform multi-level horizontal displacement, which improves the flexibility of the translation of the hand 133 .
  • the hand 133 includes a hand plate 332 and two splints 124 connected to the hand plate 332.
  • the two splints 124 are arranged at intervals and parallel to each other.
  • At least one of the splints 124 is slidably arranged on the hand plate 332, so that the distance between the two splints 124 is adjustable, and the opposite surfaces of the two splints 124 are respectively provided with a clamping pad 334, and the clamping pads 334 are used for Butt against the grouted bricks 20 .
  • the bricklaying robot arm 130 has a rotation angle adjustment mechanism in the XYZ direction, wherein the articulated arm
  • the wrist joint 325 of 320 is the Z-direction R-axis of the rotation angle adjustment mechanism
  • the XY-direction R-axis of the rotation angle adjustment mechanism is located between the wrist joint 325 and the elbow joint 324 or near the front end relative to the wrist joint 325 , located between the hand 133 and the wrist joint 325 .
  • the hand 133 By setting the rotation angle adjustment mechanism in the XYZ direction, the hand 133 can be moved in all directions, in addition to the rotation on the horizontal plane and the rotation on the vertical plane, so that it is more convenient to adjust the spatial posture of the hand 133 in the work space , so that it is beneficial to adjust the hand 133 to the target posture.
  • the target posture means that the bricks 20 after plastering are parallel to the wall surface and parallel to the horizontal plane, and are released at the stacking position with this target posture, ensuring that the masonry Yield of brick quality.
  • the XY direction R axis includes the X direction R axis and the Y direction R axis
  • the second arm 132 includes The arm body 3221, the second arm body 3222, the third arm body 3223, the X-direction R axis and the Y-direction R axis, the first arm body 3221, the second arm body 3222 and the third arm body 3221
  • the extension direction of the arm body 3223 is the same as the overall extension direction of the second arm 132
  • the first arm body 3221 is connected to the elbow joint 324
  • the X-axis R axis is rotated on the first arm body 3221
  • the axis of the X-direction R-axis is perpendicular to the axis of the elbow joint 324 and the extension direction of the first arm body 3221 respectively
  • the second arm body 3222 passes through the X-direction R-axis and the
  • the extension direction of the arm body 3222 is parallel, the third arm body 3223 is rotationally connected with the second arm body 3222 through the Y-direction R axis, and the third arm body 3223 is connected with the wrist joint 325, so that the third arm body 3223
  • One arm 3221 can swing around the Z direction, so that the hand 133 can improve the flexibility of swinging around the Z direction
  • the second arm 3222 can rotate relative to the first arm 3221 around the X direction
  • the third arm 3223 It can rotate around the Y direction relative to the second arm body 3222, so that the hand 133 and the wrist joint 325 can rotate around the Y direction with the third arm body 3223, so that the hand 133 can rotate around the axis in the XYZ direction, improving the The flexibility of the bricklaying robot arm 130 to transfer bricks.
  • the first arm body 3221 is provided with an X-direction driving joint 326 , the rotation axis of the X-direction drive joint 326 is along the X-direction, and the output shaft of the X-direction drive joint 326 is covered with a driving wheel 3261, and the driving wheel 3261 is connected to a driven wheel 3262 through a synchronous belt transmission.
  • the driven wheel 3262 is connected to the X-direction R-axis;
  • the second arm body 3222 is provided with a Y-direction driving joint 327, and the output shaft of the Y-direction driving joint 327 is connected to the Y-direction R-axis;
  • the three-arm body 3223 is provided with a Z-direction drive joint 328, the output shaft of the Z-direction drive joint 328 is connected to the Z-direction R-axis, so that the X-direction R-axis, the Y-direction R-axis and the Z-direction R-axis can be respectively driven Rotation, each rotation can be implemented individually or together, which greatly improves the flexibility of the hand 133 movement.
  • the Z-direction driving joint 328 is located at the end of the second arm 132 away from the first arm 131 and is rotatably connected to the hand 133 , so the Z-direction driving joint 328 forms the wrist joint 325 of the bricklaying mechanical arm 130 .
  • the bricklaying equipment 40 further includes a control module, and the control module sends a first action command and a second action command at the same time, and the first action command makes the The bricklaying mechanical arm 130 performs the bricklaying action, and the second action command makes the turning mechanism 120 grab and turn over the bricks after plastering, so that the control module can send the first action command and the second action command at the same time , so the operation of flipping bricks and transferring bricks can be carried out at the same time, and the two bricks 20 after plastering can be operated respectively, and the previous bricks 20 after plastering can be bricked.
  • the latter brick 20 after plastering is grasped and turned over, and then the bricklaying mechanical arm 130 can turn around and grab the last brick 20 after the grouting that has been turned over, which greatly improves the bricklaying efficiency.
  • the duration of the second action command is less than or equal to the duration of the first action command, so that it can After the brick 20 is ready to turn around to carry out the transfer operation to the next brick 20 after plastering, the turning mechanism 120 has turned over the next brick 20 after plastering at this time, and the bricklaying mechanical arm 130 does not need to wait The overturning mechanism 120 overturns the bricks 20 after plastering, which improves the efficiency of bricklaying.
  • the support part 410 has a first lifting mechanism 420 and a second lifting mechanism 140, the first lifting mechanism 420 is connected to the bricklaying mechanical arm 130 to lift the bricklaying mechanical arm 130, and the second lifting mechanism 140 Connect the turning mechanism 120 to lift the turning mechanism 120, and the second lifting mechanism 140 is set behind the first lifting mechanism 420, so that the lifting of the turning mechanism 120 and the bricklaying mechanical arm 130 can be controlled, thereby facilitating Grab the bricks 20 after plastering, and the second elevating mechanism 140 is set behind the first elevating mechanism 420, so that the overturning mechanism 120 can be prevented from affecting the bricklaying mechanical arm 130 for transferring bricks and laying bricks.
  • the first lifting mechanism 420 includes a fixed frame 111, One-level lift 112, two-level lift 113 and three-level lift 114, the first level lift 112 lifts on the fixed frame 111, the first level lift 112 is provided with an annular belt 1121, and the annular belt 1121
  • the two ends of the belt are respectively located on the front and rear sides of the primary lifting mechanism 112, the first end of the annular belt 1121 is fixedly connected to the upper part of the fixed frame 111, and the second end of the annular belt 1121 end is fixedly connected with the lower part of the secondary lift 113, while the primary lift 112 rises, the ring-shaped belt 1121 of fixed length drives the secondary lift 113 and the secondary lift 113 upwards.
  • the three-level lift 114 rises synchronously, and the base 310 is connected to the three-level lift 114.
  • the three-level lift 114 lifts on the two-level lift 113, and the two-level lift 113 is raised and lowered on the first-level lift 112, so that multi-level lifts are realized, and the height requirement that the bricklaying mechanical arm 130 can rise and fall is guaranteed, so that when the first-level lift 112 moves vertically, only the ring
  • the belt 1121 can drive the secondary lifting 113, the tertiary lifting 114 and the base 310 to move up synchronously, which is very convenient.
  • the primary lifting 112 includes a primary moving frame 1122 and a primary driven part 1123, so
  • the fixed frame 111 is provided with a primary driving part 1111
  • the primary moving frame 1122 is slidably arranged on the fixed frame 111 along the vertical direction
  • the primary driving part 1111 is drivingly connected with a primary active part 1112.
  • the first-level active part 1112 is in transmission connection with the first-level driven part 1123
  • the first-level driven part 1123 is connected with the first-level moving frame 1122
  • the first-level driven part 1123 drives the first-level moving frame 1122 slides on the fixed frame 111 along the vertical direction, so that the first-level driving part 1111 drives the first-level active part 1112 to drive the first-level driven part 1123 to move, and the first-level driven part 1123 drives the first-level moving frame 1122 to move
  • the fixed frame 111 slides up, so that the first-level lift 112 moves up and down, and then can drive the second-level lift 113 to move up and down.
  • the first-level driving part 1111 is arranged on the side of the fixed frame 111 away from the One side of the first-level mobile frame 1122, so that the first-level driving part 1111 will not hinder the movement of the first-level lift 112, and avoid setting a wider space between the first-level mobile frame 1122 and the fixed frame 111 for setting a Level driving part 1111 causes the level-one lifting 112 mechanism structure is not compact, and volume is bigger.
  • the two sides of the primary mobile frame 1122 are respectively provided with a primary sliding block 1124, at least one of the one
  • the top limit switch 1125 and the bottom limit switch 1126 are set at the upper and lower intervals of the side of the first-level sliding block 1124, and the first-level guide rail 1113 is provided on the fixed frame 111, and the first-level sliding block 1124 is slidably matched with the first-level guide rail 1113
  • the upper and lower ends of one side of the fixed frame 111 are respectively provided with a top limit switch sensor 1114 and a bottom limit switch sensor 1115, which are respectively used to sense the top limit switch 1125 and the bottom limit switch 1126
  • the top limit switch sensor 1114 senses the top limit switch 1125
  • the bottom limit switch sensor 1115 senses the bottom limit switch 1126, which can control the highest point and the lowest point that the first-level lift 112 can rise, that is,
  • the lifting range of the lifting range of the top limit switch sensor 1114 senses the top limit switch 1125
  • the fixed frame 111 includes two vertical rods 1116 and a plurality of horizontal rods 1117 vertically arranged between two vertical rods 1116, each of the horizontal rods 1117 is provided with a relief groove 1118 vertically penetrating through the horizontal rods 1117, and the primary active part 1112 is a
  • the first-stage gear, the first-stage driven part 1123 is a first-stage rack, the first-stage gear meshes with the first-stage rack, and the first-stage rack passes through each of the step-by-step grooves 1118 in turn, so that through The first-level gear drives the first-level rack to move up and down, so as to facilitate the movement of the first-level mobile frame 1122, and the relief groove 1118 can accommodate at least part of the first-level rack, so as to prevent the first-level rack from protruding too much and affecting the first-level mobile
  • a rotating wheel 1127 is provided on the top of the primary moving frame 1122, and the endless belt 1121 is sheathed on the rotating wheel 1127, the first end of the annular belt 1121 is located on the side of the primary mobile frame 1122 facing the fixed frame 111, The first fixed part 1119 is connected, and the second end of the annular belt 1121 is located on the side of the primary moving frame 1122 away from the fixed frame 111, and is connected with the secondary lifting 113, and the secondary lifting 113 is slidably arranged on the first-level mobile frame 1122.
  • the fixed frame 111 and the second-level lift 113 are respectively located on both sides of the first-level lift 112, so that the first-level lift 112 is fixed
  • the frame 111 is lifted up and down, and the first end of the annular belt 1121 is connected with the fixed frame 111, and the second end of the annular belt 1121 is connected with the secondary elevator 113, so when the primary elevator 112 lifts, the annular belt
  • the length of 1121 is fixed, so the length of the annular belt 1121 on both sides of the primary elevator 112 is changed, thereby changing the height of the secondary elevator 113, so that the annular belt 1121 drives the secondary elevator 113 to move.
  • the secondary lift 113 includes a secondary mobile frame 1131 and a secondary mobile frame 1131
  • the second fixed part 1132 on the top, the second end of the annular belt 1121 is connected with the second fixed part 1132, the secondary mobile frame 1131 is provided with a secondary guide rail 1133, and the tertiary lift 114 includes A tertiary driving part 1141, a tertiary active part and a tertiary moving part 1142.
  • the secondary moving frame 1131 is also provided with a tertiary driven part 1134, and the tertiary moving part 1142 is slidably arranged on the secondary guide rail.
  • the tertiary driving part 1141 is drivingly connected with the tertiary active part
  • the tertiary active part is in transmission connection with the tertiary driven part 1134
  • the tertiary driven part 1134 drives the three
  • the first-level moving part 1142 slides on the second-level guide rail 1133
  • the base part 310 is connected with the third-level lift 114.
  • the second fixed part 1132 and the second-level moving frame 1131 are driven up and down by the rolling of the annular belt 1121, even if Lifting and lowering is carried out at the second-level lifting 113, and the third-level active part is driven by the third-level driving part 1141, and the third-level active part drives the third-level moving part 1142 to move, and the third-level moving part 1142 drives the base part 310 to move, even in the third-level lifting 114 Lift and lower.
  • the tertiary moving part 1142 is slidably connected to the secondary guide rail 1133 through a tertiary sliding block 1143 .
  • the bricklaying mechanical arm 130 faces the first side and swings backward to the top of the turning mechanism 120, and the base 310 is set toward the first side, that is, the bricklaying mechanical arm
  • the motion trajectory of 130 reaches the rear from the front where it is located toward the first side, that is, after passing through the side of the support part 410 facing the first side, it reaches the rear.
  • the wrist joint 325 of the first arm 131 protrudes from the support part 410 on the first side by a certain amount.
  • the second arm 132 can have a range of motion of 180° swing forward and backward in the working space on the first side of the support part 410, and limit the base part 310 to be biased to the first side, so that the first arm 131 is set shorter
  • the length of the wrist can be realized to protrude from the support part 410 at a certain distance on the first side, thereby reducing the overall length of the articulated arm 320 and benefiting the overall rigidity of the articulated arm 320 .
  • the wrist joint 325 protrudes from the support portion 410 with a certain distance, and the certain distance makes the wrist joint 325 and the turning mechanism 120 lie on the same vertical plane extending back and forth, so
  • the control module only controls the 180° rotation of the wrist joint 325 forward and backward, so that the hand 133 can be rotated between the pick-up position and the calibration position.
  • the pick-up position is located in the turning mechanism 120 directly above, as shown in Figures 9 and 10
  • the calibration position is the preparation position placed before the wall stacking position, as shown in the position of the brick in the second pose P2 in Figure 10 .
  • This embodiment not only helps to reduce the overall length of the bricklaying mechanical arm 130, strengthens the overall rigidity, but also facilitates the operation of the bricklaying mechanical arm 130 to grab the bricks 20 after plastering on the turning mechanism 120, and facilitates the bricks after plastering.
  • the bricks 20 are transferred to the stacking location.
  • the left-right direction is the conveying direction of the grouted bricks 20 , and the first side points to the grouted bricks 20 .
  • the base part 310 and the installation part 121 have a fixed position along the left-right direction in the coordinate system of the bricklaying equipment 40.
  • the relative position of the installation part 121 is located on the first side of the base part 310 , which ensures the continuity of the movement of the hand part 133 driven by the articulated arm 320 to the top of the pick-up part 160 .
  • said bricklaying equipment 40 includes a chassis 400, a support part 410 installed on the chassis 400 and a conveyor installed on the support part 410 Mechanism 200, turning mechanism 120 and bricklaying mechanical arm 130.
  • the supporting part 410 includes a first supporting part 410a installed in the rear area of the chassis 400 and a second supporting part 410b in the front area 410b of the chassis 400, the first supporting part 410a is used for the installation of the conveying mechanism 200 and the turning mechanism 120, The second supporting part 410b is used for the installation of the bricklaying mechanical arm 130 .
  • a building system 50 includes a chassis 400 and the bricklaying equipment 40 described in any of the above-mentioned embodiments, the chassis 400 is provided with a brick transporting track 500 and a moving track 600, the The brick conveying track 500 is used to transport the grouted bricks 20 along the first direction D, and is reciprocally movable on the moving track 600, so that the bricklaying equipment 40 can reciprocally move on the moving track 600, so The overturning mechanism 120 picks up the grouted bricks 20 from the brick transporting track 500; wherein, the reciprocating direction of the bricklaying equipment 40 is parallel to the first direction D and the direction of the wall, The height of the brick conveying track 500 is higher than that of the moving track 600 .
  • the construction system 50 works on the ground G.
  • the above-mentioned construction system 50 includes bricklaying equipment 40, and the pick-up part 160 of the turning mechanism 120 can grab the plastered bricks 20, and the bricklaying robot arm 130 is used to pick up the pick-up part 160.
  • the blocks 20 are grasped and transported to the stacking position for bricklaying operations, wherein the hand 133 is used to grasp the bricks 20 after plastering, and the joint arm 320 has multiple degrees of freedom, which can drive the hand 133 To the position of the picking part 160, the hand 133 can also be brought to the stacking position; the above-mentioned bricklaying operation does not need manual handling and bricklaying, which saves manpower and avoids possible safety hazards such as bricks falling and being injured.
  • the efficiency of bricklaying is improved through the automatic operation of the machine; among them, when the bricks 20 after plastering are transported or placed, the horizontal grouting surface 21 needs to face up, so as to avoid the slurry on the horizontal grouting surface 21 and the conveying mechanism Or the placement mechanism sticks, and avoids the slurry on the horizontal grouting surface 21 from contaminating the conveying mechanism or the placement mechanism.
  • the rotation on the mounting part 121 turns the grouted brick 20 over 180° so that the horizontal grouting surface 21 faces downward, so that the bricklaying mechanical arm 130 can grab the grouted brick 20 on the pick-up part 160 and After transferring the grouted bricks 20, the grouted bricks 20 can be directly placed in the stacking position with the horizontal grouting surface 21 facing downwards to complete the bricklaying, so that the bricklaying mechanical arm 130 can place all the bricks in the stacking position.
  • the plastering surface 31 of the bricks is set downwards, sticking to the horizontal placement of the stacking position, so as to prevent the plastering surface 31 of the bricks from being exposed when placed in the stacking position.
  • the stickiness of the next brick avoids the bad effect of bricklaying caused by the solidification of the slurry during the waiting process; while ensuring the above effects, the function of the turning mechanism 120 can also make the bricks in the process of conveying.
  • the slurry surface 31 faces upward, so that the process of transferring the bricks to the bricklaying mechanical arm 130 after the bricks are plastered reduces the scraping of the slurry, thereby also avoiding the uneven distribution of the slurry on the plastering surface 31 caused by the scraping.
  • the bricklaying equipment 40 of this embodiment not only ensures the effect of plastering during the brick conveying process, but also ensures the bricklaying effect, and also speeds up the bricklaying time.
  • the bricklaying equipment 40 can move on the moving track 600 through the brick conveying track 500 for transporting the bricks 20 after plastering, and the moving direction of the bricklaying equipment 40 is parallel to the conveying direction of the bricks, that is, it is parallel to the conveying direction of the bricks.
  • One direction D is parallel, so that it is convenient for the bricklaying equipment 40 to perform operations such as picking up, turning over, transferring and stacking the bricks 20 after plastering.
  • the turning mechanism 120 is located directly above the brick transporting track 500, so that the turning mechanism 120 The picking part 160 can directly descend to grab the grouted bricks 20 on the brick transporting track 500 , that is, it is convenient for the picking part 160 of the turning mechanism 120 to grab the grouted bricks 20 .
  • the brick conveying track 500 transports the delivered bricks 20 to the The position to be picked up
  • the turning mechanism 120 at the position to be picked up is located at the downstream of the delivery of the bricks 20 after the plastering
  • the position where the turning mechanism 120 is used to prepare to pick up the plastered bricks is the position to be picked up, so
  • the in-position sensor 230 has a sensing position located on the conveying track and somewhere other than the picked-up position.
  • the sensing position is located upstream of the turning mechanism 120 and located on the conveyed Downstream of the bricks; the construction system 50 includes a control module, and when the bricks reach the sensing position, the control module controls the brick conveying track 500 to decelerate to a stop state, so that the conveyed slurry
  • the bricks 20 stop at the picked-up position, the picked-up position is located between the turning mechanism 120 and the sensing position, when the in-position sensor 230 is a touch sensor, the sensing position is the pressure of the touch sensor
  • a blocking limit block 240 is arranged on the side of the in-position sensor 230, and the side facing the brick forms a stop surface.
  • the control module controls the brick conveying track 500 to stop conveying
  • the bricks are stopped by the stop surface of the stopper 240, and the stop surface defines the picked-up position of the bricks.
  • the end of the detection arm of the in-position sensor 230 slightly exceeds the stop surface along the direction toward the brick, which is beneficial for the detection arm of the in-position sensor 230 to detect the brick.
  • the picked-up position is one of the positions of the grouted brick 20
  • the to-be-picked position is one of the positions of the turning mechanism 120 .
  • the picked-up position is defined by a part installed on the bricklaying equipment 40, and the part can be a plate-shaped platform installed on the support part 410 and located in the turning mechanism Below 120.
  • the means for carrying bricks in this implementation is to transport them through the above-mentioned brick transporting track 500, the picked-up position is located on the downstream path of conveying the bricks, and non-contact sensors such as laser sensors in the in-position sensor 230, when When the laser of the laser sensor detects that the brick is at a certain distance from the picked-up position, the certain distance defines the sensing position of the in-position sensor 230, the control module controls the brick conveying track 500 to stop the conveying action, and By controlling the stop pulse signal of the driving motor of the conveying track, the bricks are stopped in the picked-up position through a deceleration distance.
  • the means of conveying bricks in this embodiment may be to transfer bricks from the outside to the picked-up position through a transfer manipulator, and when the in-position sensor 230 senses that the bricks are at the picked-up position, the The control module controls the turning mechanism 120 to pick up the bricks; the in-position sensor 230 described here can be installed on the turning mechanism 120, and can also be installed on a plate-like platform that defines the picked-up position.
  • the turning mechanism 120 at the position to be picked up is higher than the transported grouted bricks, so
  • the overturning mechanism 120 has a sensing position, the sensing position is located below the overturning mechanism 120 and is located downstream of the transported bricks 20 after the slurry is transported;
  • the construction system 50 includes a control module, when the When the bricks reach the sensing position, the control module controls the brick conveying track 500 to decelerate to a stop state, so that the transported bricks 20 after plastering stop at the picked-up position, and the picked-up position is located at the Below the turning mechanism 120 and located downstream of the sensing position, when the brick 20 after plastering reaches the sensing position before the picked position, that is, when it reaches the sensing position upstream of the picking position, it can pass through the in-position sensor 230.
  • the induction is fed back to the control module, and the control module controls the brick conveying track 500 to decelerate to a stop state, so that the brick 20 after plastering can just stop at the picked-up position. Since the turning mechanism 120 is higher than the brick 20 after plastering, the sensing Both the location and the picked location can be located under the flipping mechanism 120 .
  • FIG 7 it is one of the embodiments of the bricklaying equipment 40, as shown in Figure 20 and Figure 21, it is another embodiment of the bricklaying equipment 40, in the above two embodiments, in order to avoid overturning
  • the overturning mechanism 120 or the bricks 20 after plastering interfere with the brick transporting track 500.
  • the support part 410 has a second lifting mechanism 140, and the second lifting mechanism 140 Connect the turning mechanism 120 to lift the turning mechanism 120, the second lifting mechanism 140 drives the turning mechanism 120 to lift between the first position to be picked up and the second position to be picked up, the first position to be picked up
  • the turning mechanism 120 is used to pick up the bricks 20 after the slurry from the brick transporting track 500, and rise from the first position to be picked up to the second position to be picked up, and the second position to be picked up
  • the height of the position allows the turning mechanism 120 to rotate 180° along the first axis without interfering with the brick conveying track 500, and the plastered bricks 20 turned over at the second position to be picked up provide
  • the bricklaying mechanical arm 130 picks up, so that the to-be-picked-up portion 160 of the turning mechanism 120 can grab the plastered bricks 20 at the first to-be-picked-up position, and then when rising to the second to-be-picked-up position, the grouted bricks 20 can be picked
  • the track 510 is provided with a plurality of conveying rollers 511 and a plurality of conveying gears 512, the conveying gears 512 are sheathed on the ends of the conveying rollers 511, and a plurality of the conveying gears 512 are set and connected by transmission belts 513.
  • An intermediate gear 520 is engaged between the delivery gear 512 at the tail of the sub-transmission track 510 and the delivery gear 512 at the head of another adjacent sub-transmission track 510, and one of the two sub-transmission tracks 510 is provided with a mounting Block 530, the installation block 530 can be adjusted on the side of the sub-transmission track 510 along the direction perpendicular to the sub-transmission track 510, the intermediate gear 520 is arranged on the installation block 530, the sub-transmission track 510 After splicing, there is a certain error in the center distance between the conveying gear 512 at the front end and the conveying gear 512 at the rear end, and the center distance between the intermediate gear 520 and the conveying gear 512 at the front end and the conveying gear 512 at the rear end is adjusted by adjusting the installation block 530 to move up and down to ensure The three gears mesh to ensure power transmission.
  • multiple sub-transmission tracks 510 can be quickly assembled, and at the same time, power is transmitted through the transmission gear 512 and the conveyor belt 513.
  • the conveyor belt 513 is a chain, and the precise alignment is performed through the mechanical stop limit , Through the hook mechanism, it can be quickly connected and disconnected without any tools.
  • the mounting block 530 slides relative to the side of the sub-transmission track 510, and the adjustable setting method of the mounting block 530 is:
  • the side of the sub-transmission track 510 is provided with an installation hole
  • the installation block 530 is provided with a long hole 531 extending in a direction perpendicular to the sub-transmission track 510.
  • the long hole 531 communicates with the installation hole.
  • a locking member passes through the elongated hole 531 and penetrates in the installation hole, for fixing the installation block 530 on the side of the sub-transmission track 510; or, the side of the sub-transmission track 510
  • the protrusion is provided with an adjustment plate, which is screwed through the adjustment plate and connected with the installation block 530 through an adjustment rod.
  • the extension direction of the adjustment rod is perpendicular to the sub-transmission track 510, which is convenient for adjusting the installation block 530 Moving up and down.
  • the moving track 600 is used for the base of the bricklaying equipment 40 to reciprocate along the first direction.
  • the base of the bricklaying equipment 40 is the bottom plate of the fixed frame 111, and the bottom of the base is provided with rollers and the The moving track 600 can be moved and adapted.
  • the moving track 600 includes a straight line rack.
  • the straight line rack is formed by splicing end to end of multi-section sub-racks along the first direction.
  • the base has a through hole , the delivery end of the motor is connected to a gear, which passes through the through hole from top to bottom to the bottom of the base to drive and cooperate with the linear rack, and the gear is driven by the motor to rotate, so that the base can move along the moving track 600
  • the moving track 600 moves back and forth.
  • sequence numbers of the above-mentioned processes do not necessarily mean the order of execution.
  • the implementation process of the example constitutes a limitation.

Abstract

本申请提供一种砌砖方法、砌砖装置、砌砖设备及建筑系统,砌砖方法用于砌砖装置执行砌砖作业,砌砖装置包括砌砖机器人和控制砌砖机器人作业的控制模块,控制模块预设有砌砖顺序,砌砖顺序定义出每一行砖块的首位和末位,该方法由控制模块执行,包括:控制砌砖机器人依序砌砖;将抹浆后的砖块从初始位置输送至待抓取位置,且使得抹浆后的砖块的水平抹浆面朝上设置,抹浆后的砖块的水平非抹浆面朝下设置;控制抹浆后的砖块的水平抹浆面和水平非抹浆面上下翻转;控制抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近末位;控制抹浆后的砖块沿末位至首位的方向移动以将竖直抹浆面粘粘至竖直放置面,且朝下移动以将水平抹浆面粘粘至水平放置面。

Description

砌砖方法、砌砖装置、砌砖设备及建筑系统
本公开要求在2021年6月8日提交中国专利局、申请号为202110640061.4的中国专利申请的优先权,以及在2021年6月8日提交中国专利局、申请号为202110645032.7的中国专利申请,上述两个申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及砌砖技术领域,例如涉及一种砌砖方法、砌砖装置、砌砖设备及建筑系统。
背景技术
在建筑施工领域,砌墙是一项及其高强度劳动的施工作业。特别是随着建筑施工工艺的改进,在混凝土框架浇筑完成之后,改用较大的砌块砖砌墙以实现空间的隔离。跟随着砌筑过程中墙体的不断升高,需要将砌块抬上脚手架,因此相关技术的砌墙方式耗费工人体力,影响砌墙效率,同时也面临着砖块掉落砸伤等重大安全隐患。
发明内容
本申请实施例提供一种砌砖方法、砌砖装置、砌砖设备及建筑系统,用于解决相关技术的砌墙方式耗费工人体力,影响砌墙效率的问题。
本申请实施例提供了一种砌砖方法,用于砌砖装置于环境中执行砌砖作业,所述砌砖装置包括砌砖机器人和控制所述砌砖机器人作业的控制模块,所述控制模块预设有砌砖顺序,所述砌砖顺序定义出每一行砖块的首位和末位,所述方法由所述控制模块执行,所述方法包括:
控制所述砌砖机器人依序砌砖;
将抹浆后的砖块从初始位置输送至待抓取位置,且使得所述抹浆后的砖块的水平抹浆面朝上设置,所述抹浆后的砖块的水平非抹浆面朝下设置;
控制所述抹浆后的砖块的水平抹浆面和水平非抹浆面上下翻转;
控制所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位;
控制所述抹浆后的砖块沿所述末位至所述首位的方向移动以将所述竖直抹 浆面粘粘至竖直放置面,且朝下移动以将所述水平抹浆面粘粘至水平放置面。
本申请实施例还提供了一种砌砖装置,采用上述任一实施例所述的砌砖方法于环境中执行砌砖作业,所述砌砖装置包括砌砖机器人和控制所述砌砖机器人作业的控制模块,所述砌砖机器人包括支撑部和设置于支撑部上的翻转机构和砌砖机械臂,所述控制模块与所述翻转机构和砌砖机械臂分别电连接。
本申请实施例还提供了一种砌砖设备,被配置为将砖块堆砌成墙体,每一所述砖块于所述墙体上形成一个堆砌位置,所述砌砖设备包括:
一支撑部;
一翻转机构,包括一安装部和一拾取部,所述安装部连接所述支撑部,所述拾取部沿着一第一轴线枢接于所述安装部,所述拾取部能够拾取抹浆后的所述砖块,且沿着所述第一轴线翻转所述砖块,被翻转后的所述砖块呈抹浆面朝下设置和非抹浆面朝上设置;
一砌砖机械臂,包括一基部、自基部向前延伸的关节臂以及连接于关节臂前端的手部,所述基部安装于所述支撑部,所述关节臂被构造成具有多个自由度,所述手部能够向下拾取翻转后的所述砖块,且将其释放于所述堆砌位置。
本申请实施例还提供了一种建筑系统,包括:
如上述任一实施例所述的砌砖设备;
底盘,所述底盘上设有输砖轨道和移动轨道,所述输砖轨道用于沿着第一方向传输抹浆后的砖块,所述支撑部可往复移动设于所述移动轨道,使所述砌砖设备可往复移动于所述移动轨道,所述砌砖设备中的翻转机构自所述输砖轨道拾取所述抹浆后的砖块;
其中,所述砌砖设备往复移动的方向平行于所述第一方向且平行于墙体的方向,所述输砖轨道的高度高于所述移动轨道的高度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的砌砖方法的流程示意图;
图2为本申请实施例提供的砌砖装置的结构示意图;
图3为图2所示砌砖装置的另一角度的结构示意图;
图4为本申请另一实施例提供的砌砖装置的结构示意图;
图5为本申请实施例提供的砌砖装置的部分结构示意图;
图6为本申请实施例提供的建筑系统的结构示意图;
图7为本申请实施例提供的砌砖设备的结构示意图;
图8为本申请实施例提供的砌砖设备的另一角度的结构示意图;
图9为本申请实施例提供的砌砖设备的又一角度的结构示意图;
图10为本申请实施例提供的砌砖设备的又一角度的结构示意图;
图11为本申请另一实施例提供的砌砖设备的结构示意图;
图12为图11所示砌砖设备的部分结构示意图;
图13为图12所示砌砖设备的另一角度的结构示意图;
图14为图11所示砌砖设备的另一部分结构示意图;
图15为图11所示砌砖设备的又一部分结构示意图;
图16为本申请实施例提供的砌砖机械臂的结构示意图;
图17为图16所示砌砖机械臂的部分结构示意图;
图18为本申请实施例提供的底盘的结构示意图;
图19为图18所示底盘的部分结构示意图;
图20为本申请实施例提供的砌砖装置的另一结构示意图;
图21为图20所示砌砖装置V1角度的示意图;
图22为图20所示砌砖装置的部分结构示意图。
说明书附图标号说明:
20、抹浆后的砖块;21、水平抹浆面;22、水平非抹浆面;23、竖直抹浆面;24、竖直非抹浆面;S1、竖直放置面;S2、水平放置面;R、第一时针方向;10、砌砖装置;100/100’、砌砖机器人;110/410、支撑部;120、翻转机构;121、安装部;122、转动部;123、连接板;124、夹板;130、砌砖机械臂;131、第一臂;132、第二臂;133、手部;134/310、基部;200、输送轨道;210、初始位置;220、待抓取位置;300、抹浆送砖机构;
40、砌砖设备;420、第一升降机构;111、固定架;1111、一级驱动部;1112、一级主动部;1113、一级导轨;1114、顶部限位开关感应器;1115、底部限位开关感应器;1116、竖直杆;1117、横向杆;1118、让位槽;1119、第一固定部;112、一级升降;1121、环状带;1122、一级移动架;1123、一级从动部;1124、一级滑动块;1125、顶部限位开关;1126、底部限位开关;1127、转动轮;113、二级升降;1131、二级移动架;1132、第二固定部;1133、二级导轨;1134、三级从动部;114、三级升降;1141、三级驱动部;1142、三级移动部;1143、三级滑动块;140、第二升降机构;121、安装部;160、拾取部;123、连接板;222、夹取部;230、到位感应器;240、阻挡限位块;320、关节臂;3221、第一臂体;3222、第二臂体;3223、第三臂体;323、肩关节;324、肘关节;325、腕关节;326、X向驱动关节;3261、主动轮;3262、从动轮;327、Y向驱动关节;328、Z向驱动关节;133、手部;331、位置检测装置;331a/331b、激光测距传感器;332、手板;334、夹垫;S、第一基准;P1、第一位姿;P2、第二位姿;50、建筑系统;G、地面;400、底盘;500、输砖轨道;510、子传输轨道;511、输送辊;512、输送齿轮;513、传送带;520、中间齿轮;530、安装块;531、长条孔;600、移动轨道。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或 连接关系。对于本领域普通技术人员而言,可以根据情况理解这些术语在本申请中的含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或点连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的联通。对于本领域普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
在一个实施例中,一种砌砖方法,用于砌砖装置于环境中执行砌砖作业以将砖块形成墙体,每一砖块于墙体上形成一个堆砌位置,所述砌砖装置包括砌砖机器人和控制所述砌砖机器人作业的控制模块,所述控制模块预设有砌砖顺序,所述砌砖顺序定义出每一行砖块的首位和末位,所述方法由所述控制模块执行,所述方法包括:控制所述砌砖机器人依序砌砖;将抹浆后的砖块从初始位置输送至待抓取位置,且使得所述抹浆后的砖块的水平抹浆面朝上设置,所述抹浆后的砖块的水平非抹浆面朝下设置;控制所述抹浆后的砖块的水平抹浆面和水平非抹浆面上下翻转;控制所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位;控制所述抹浆后的砖块沿所述末位至所述首位的方向移动以将所述竖直抹浆面粘粘至竖直放置面,且朝下移动以将所述水平抹浆面粘粘至水平放置面。
如图1所示,一种砌砖方法,用于砌砖装置10于环境中执行砌砖作业,请参阅图2,其为所述砌砖装置10其中一个实施例,该实施例的砌砖装置10包括砌砖机器人100和控制砌砖机器人100作业的控制模块,请参阅图20,其为所述砌砖装置10的另一实施例,该实施例的砌砖装置10包括砌砖机器人100’以及控制所述砌砖机器人作业的控制模块,所述方法包括:
M1、控制模块预设有砌砖顺序,控制模块被配置为控制所述砌砖机器人100依序砌砖,所述砌砖顺序定义出每一行砖块的首位和末位。通过砌砖顺序使得 砌砖机器人100依序砌砖,使得砌砖机器人100可以砌出多行砖块,直至形成墙体。
M2、将抹浆后的砖块20从初始位置210输送至待抓取位置220,且使得所述抹浆后的砖块20的水平抹浆面21朝上设置,所述抹浆后的砖块20的水平非抹浆面22朝下设置。通过将抹浆后的砖块20输送到待抓取位置220,在输送的过程中,使得抹浆后的砖块20的水平抹浆面21朝上设置,这样可以避免水平抹浆面21和输送砖块的装置粘连。
可选的,所述砌砖装置10包括有一个输送机构,用于将砖块运输至翻转机构120的待抓取位置220。
在其中一个实施例中,请参阅图2和图4,输送机构被构造成输送轨道200,其为输送砖块的装置,所述输送轨道200具有初始位置210和待抓取位置220,通过所述输送轨道200将抹浆后的砖块20从所述初始位置210输送至所述待抓取位置220,可选的,抹浆后的砖块20的水平抹浆面21朝上设置,水平非抹浆面22朝下设置,即水平非抹浆面22与输送轨道200接触,这样可以避免水平抹浆面21朝下时和输送轨道200粘连以及污染输送轨道200。这里所述的输送轨道200从以下模式中择一设置:皮带输送机构、辊筒输送机构、或者夹具输送线等。
请参阅图18,其为所述输送轨道200被构造成辊筒输送机构。
请参阅图20和图21,其为所述输送轨道200被构造成夹具输送线,所述输送轨道200包括上砖夹具T1和横移驱动件T2,所述横移驱动件包括一横移输出端,上砖夹具T1连接横移输出端,所述横移驱动件T2通过所述横移输出端驱动所述上砖夹具T1在初始位置210和待抓取位置220之间移动。所述横移驱动件T2被构造成沿着横移方向可伸缩设置的伸缩件。
在另外的实施例中,所述输送机构被构造成搬运机械臂,通过搬运机械臂将抹浆后的砖块20搬运至待抓取位置。
M3、控制所述抹浆后的砖块20的水平抹浆面21和水平非抹浆面22上下翻转。在抹浆后的砖块20到达待抓取位置220时,砌砖机器人100/100’控制抹浆后的砖块20上下翻转,使得水平抹浆面21朝下。这样可以方便后续抓取该砖块转运,并且可以直接以水平抹浆面21朝下的位姿放置在水平放置面S2上。
在其中一个实施例中,控制砌砖机器人100的翻转机构120自所述待抓取位 置220抓取且翻转所述抹浆后的砖块20,使得翻转后的所述抹浆后的砖块20的水平抹浆面21和水平非抹浆面22上下翻转,这样便于将抹浆后的砖块20翻转至水平抹浆面21朝下。
在其中一个实施例中,控制所述翻转机构120在待抓取位置220向下运动抓取抹浆后的砖块20,而后控制所述翻转机构120翻转抹浆后的砖块20。
在其中一个实施例中,在所述翻转机构120抓取抹浆后的砖块20之后,控制所述翻转机构120上升一段距离再翻转抹浆后的砖块20,这样避免翻转砖块时,翻转机构120或者砖块与输送轨道200发生干涉。
在其中一个实施例中,请参阅图2、图3和图4,由于所述砌砖机器人100需要在不同站点上进行砌砖作业,故所述翻转机构120的位置相对于环境是非固定设置,同时所述初始位置210的位置相对于环境固定,因此所述翻转机构120和所述初始位置210之间的距离为非固定设置,由于待抓取位置220为所述翻转机构120的下方,故所述初始位置210和所述抓取位置220之间的距离为非固定设置。此时控制所述翻转机构120运动,直至所述翻转机构120的到位开关被抹浆后的砖块20的竖直非抹浆面24触发,确认所述翻转机构120到达待抓取位置220前的准备位置,在本实施例中,抹浆后的砖块20到达待抓取位置220后触发到位开关,这样通过抹浆后的砖块20的竖直非抹浆面24触发到位开关,可以确认翻转机构120是否到达准备位置,而后可以控制翻转机构120运动直至翻转机构120到达待抓取位置220。通过控制所述翻转机构120被动地被输送的抹浆后的砖块20触发,从而使得整个砌砖装置10不用使用额外的检测装置来时刻检测抹浆后的砖块20的实时位置,从而不用时刻监控砌砖机器人100在不同站点时的所述待抓取位置220和所述初始位置210之间的距离,从而简化了作业控制过程的控制策略,有利于加快砌砖节拍。
请参阅图2、图3和图4,控制所述翻转机构120夹取并且翻转所述抹浆后的砖块20的其中一个实施例中,控制翻转机构120的两个夹板124与抹浆后的砖块20的垂直于竖直抹浆面23的另外两个竖直侧面平行,两个夹板124的间距大于夹板124所平行的两个竖直侧面之间的距离,本实施例中,翻转机构120具备两个夹板124,通过两个夹板124夹取抹浆后的砖块20,其中由于控制了夹板124与抹浆后的砖块20的两个竖直侧面平行,该竖直侧面与竖直抹浆面23是相邻且垂直的,这样两个夹板124夹住的是抹浆后的砖块20的两个没有抹浆的竖直面,避免 浆料与夹板124粘连,而且也便于后续转运抹浆后的砖块20。
请参阅图2、图3和图4,控制所述翻转机构120夹取并且翻转所述抹浆后的砖块20的其中一个实施例中,控制所述翻转机构120上升直至所述夹板124的底面高于所述抹浆后的砖块20的顶面,控制所述翻转机构120平移直至夹板124夹取所述抹浆后的砖块20的中心,这样可以使得夹板124到达抹浆后的砖块20的上方,且便于夹板124调节位置使得夹板124位于抹浆后的砖块20的正上方,从而可以保证翻转机构120平移直至夹板124夹取所述抹浆后的砖块20的中心,进而可以保证翻转机构120稳定抓取抹浆后的砖块20且稳定进行翻转。
请参阅图2、图3和图4,控制所述翻转机构120夹取并且翻转所述抹浆后的砖块20的其中一个实施例中,下降所述翻转机构120,控制两个所述夹板124收缩间距以分别抵接两个所述竖直侧面,而后控制所述翻转机构120沿水平线为轴线自转,使得所述抹浆后的砖块20的两个水平面180°翻转,这样便于翻转机构120将抹浆后的砖块20的竖直抹浆面23从朝上翻转至朝下。
在其中一个实施例中,请参阅图20和图21,翻转机构120、输送轨道200和所述砌砖机器人100’均安装于可移动的底盘400上,通过可移动的底盘400运载砌砖机器人100’和翻转机构120、输送轨道200在不同站点进行砌砖作业,作业状态下的翻转机构120和初始位置210之间的距离为砖块的运输距离,该运输距离固定设置。通过将运输距离固定设置,从而使得砌砖机器人100’即使在不同的站点,通过固定的运输距离使得所述砖块的运输时间均等以及不用时刻监控所述待抓取位置220和所述初始位置210之间的距离从而简化了控制策略。
请参阅图20和图21,输送轨道200将砖块自初始位置210输送至待抓取位置220的另一个实施例,通过横移驱动件驱动上砖夹具到达初始位置210,将抹浆后的砖块20放置于初始位置210的上砖夹具中,通过横移驱动件驱动上砖夹具将所述抹浆后的砖块20自初始位置210传输至翻转机构120的待抓取位置220,待抓取位置220位于所述翻转机构120的下方。所述控制模块获知所述抹浆后的砖块20到所述待抓取位置220的运输距离,根据所述运输距离控制所述抹浆后的砖块运输至待抓取位置220。
请参阅图20和图21,控制所述翻转机构120夹取并且翻转所述抹浆后的砖块20的其中一个实施例中,抹浆后的砖块20运输至待抓取位置220后,控制翻转机 构120向下夹取抹浆后的砖块20,而后控制翻转机构120的两个夹板124收缩间距以分别抵接抹浆后的砖块20的两个竖直侧面,而后控制翻转机构120沿水平轴线自转,使得抹浆后的砖块20的水平抹浆面21和水平非抹浆面22形成180°翻转。
M4、控制所述抹浆后的砖块20的竖直抹浆面23相对于竖直非抹浆面24靠近所述末位。即控制抹浆后的砖块20的竖直抹浆面23朝向且靠近正在砌的那一行砖块的末位,也即朝向且靠近上一块已砌砖块的末位,如果是竖直非抹浆面24朝向末位,则控制砖块左右翻转使得竖直抹浆面23朝向末位。
在其中一个实施例中,控制所述砌砖机器人100的砌砖机械臂130沿着第一时针方向R摆动至所述水平非抹浆面22的上方,所述砌砖机械臂130的自由端于最后位置处摆动的切线方向与首末方向D相反(首末方向D相反的方向,即从末位至首位的方向),这样砌砖机械臂130可以到达翻转机构120抓取的抹浆后的砖块20的上方,也即到达水平非抹浆面22的上方,在到达水平非抹浆面22的上方的过程的最后时刻,机械臂的自由端沿与首末方向D相反的方向运动,此时可以使得砌砖机械臂130的手部133正好可以到达水平非抹浆面22的上方。
在其中一个实施例中,自所述砌砖机械臂130拾取所述翻转机构120上被抹浆且翻转后的所述砖块后,控制所述砌砖机械臂130沿着与所述第一时针方向R相反的第二时针方向摆动以将所述竖直抹浆面23和所述竖直非抹浆面24左右调转,使得所述竖直抹浆面23相对靠近且朝向所述末位,这样可以在砌砖机械臂130抓取抹浆后的砖块20后,沿着与抹浆后的砖块20输送的方向开始摆动,即此时砌砖机械臂130的自由端开始摆动的切线方向与首末方向D相同,而后继续沿着第二时针方向摆动,这样使得抹浆后的砖块20在输送和被机械臂转运的整个过程的轨迹是一个连贯的轨迹线,使得整个砌砖的流程较为流畅,提升了砌砖的效率。
在其中一个实施例中,在所述竖直抹浆面23调转后靠近且朝向所述末位时,即所述砌砖机械臂130沿第二时针方向摆动至最后位置处时,所述砌砖机械臂130的自由端的摆动的切线方向与所述首末方向D相反。由于此时,竖直抹浆面23已经朝向末位,因此后续可以控制抹浆后的砖块20进行平移。
在其中一个实施例中,如图5所示,所述翻转机构120设置于所述砌砖机器人100的支撑部110的背离所述初始位置210的一侧,砌砖机械臂130于所述支撑 部110的背离所述初始位置210的一侧的空间运动,所述初始位置210至所述待抓取位置220的方向与首末方向D相同,这样可以保证抹浆后的砖块20从初始位置210到达待抓取位置220后,翻转机构120进行抓取和翻转,而后砌砖机械臂130进行抓取和转运,且是背离初始位置210的方向转运,这样可以保证抹浆后的砖块20在输送和被机械臂转运的整个过程的轨迹是一个连贯的轨迹线,使得整个砌砖的流程较为流畅,提升了砌砖的效率。
M5、同时参阅图3,控制所述抹浆后的砖块20移动,沿首末方向D的反向移动以将所述竖直抹浆面23粘粘至竖直放置面S1,朝下移动以将所述水平抹浆面21粘粘至水平放置面S2。在本实施例中,通过砌砖机械臂130控制所述抹浆后的砖块20继续移动,所述竖直放置面S1为上一块已砌砖块的位于末位的竖直面,所述水平放置面S2为上一行砖块的位于末位且朝上的水平面。当抹浆后的砖块20的竖直抹浆面23朝向且靠近末位时,控制砌砖机器人100带动抹浆后的砖块20继续运动,此时需要沿与首末方向D相反的方向带动抹浆后的砖块20移动,直至竖直抹浆面23与竖直放置面S1抵接且粘连,同时控制抹浆后的砖块20向下运动,直至水平抹浆面21与水平放置面S2抵接且粘连。
在其中一个实施例中,所述“沿首末方向D的反向移动以将所述竖直抹浆面23粘粘至竖直放置面S1”的步骤不晚于所述“朝下移动以将所述水平抹浆面21粘粘至水平放置面S2”的步骤,这样可以在竖直抹浆面23与竖直放置面S1对好粘连后或者在竖直抹浆面23与竖直放置面S1对好粘连的同时,将水平抹浆面21与水平放置面S2对好粘连,竖直抹浆抹浆面与竖直放置面S1相对摩擦比水平抹浆抹浆面与水平放置面S2相对摩擦掉落的浆料更少,且能保证更好的砌砖效果。
在其中一个实施例中,同时参阅图5,控制所述砌砖机械臂130依次水平转动连接的第一臂131、第二臂132和手部133,使得第二臂132绕第一臂131沿所述第一时针方向R转动至翻转机构120的上方,控制第一臂131下降,再控制手部133抓取翻转机构120上的抹浆后的砖块20,而后控制第二臂132绕第一臂131沿所述第二时针方向旋转180°,使得手部133到达堆砌位置,且使得竖直抹浆面23与末位的竖直放置面S1平行,且朝向末位的竖直放置面S1,这样便于砌砖机械臂130将抹浆后的砖块20进行抓取、转运以及砌砖的操作。
在其中一个实施例中,控制第一臂131在砌砖机器人100的支撑部110上沿末位至首位的方向平移,直至竖直抹浆面23与末位的竖直放置面S1平行且部分抵 接,而后控制第一臂131在支撑部110上下降,直至抹浆后的砖块20的水平抹浆面21与末位的水平放置面S2抵紧,这样使得“沿首末方向D的反向移动以将所述竖直抹浆面23粘粘至竖直放置面S1”的步骤早于“朝下移动以将所述水平抹浆面21粘粘至水平放置面S2”的步骤,可以在竖直抹浆面23与竖直放置面S1对好粘连后或者在竖直抹浆面23与竖直放置面S1对好粘连的同时,将水平抹浆面21与水平放置面S2对好粘连,竖直抹浆抹浆面与竖直放置面S1相对摩擦比水平抹浆抹浆面与水平放置面S2相对摩擦掉落的浆料更少,且能保证更好的砌砖效果。
在另一个实施例中,如图20所示,所述砌砖机械臂130的关节臂320包括沿着水平肘关节324依次转动连接的基部134、第一臂131、第二臂132和手部133,所述第一臂131的远离所述第二臂132的一端与所述基部134沿着水平肘关节324转动连接且通过基部134与所述第一支撑部110a连接,所述基部134沿着竖直设置的肩关节323与所述第一支撑部110a转动连接,所述第二臂132远离所述第一臂131的一端通过竖直腕关节325与所述手部133转动连接,所述手部133被配置为抓取抹浆且翻转后的砖块。通过控制所述基部134绕竖直轴线沿着第一时针方向R转动以使得所述关节臂320驱动所述手部133至与所述抹浆后的砖块20相对,再控制所述第一臂131和/或所述第二臂132转动以使得所述手部133朝向所述抹浆后的砖块20移动,再控制手部133自所述所述翻转机构120夹取所述抹浆后的砖块20,再控制所述第一臂131绕竖直轴线沿着第第二时针方向转动以使得所述手部133将所述抹浆后的砖块20转运至所述堆砌位置,堆砌位置的所述抹浆后的砖块20的竖直抹浆面23朝向所述末位的所述竖直放置面。
在步骤M4的“通过机械臂控制所述抹浆后的砖块20的竖直抹浆面23相对于竖直非抹浆面24靠近所述末位”后以及在步骤M5的“将所述竖直抹浆面23粘粘至竖直放置面S1,朝下移动以将所述水平抹浆面21粘粘至水平放置面S2”之前,进行精定位校准步骤,精定位校准步骤被配置为控制砌砖机械臂130的旋转角度调整机构将所述抹浆后的砖块20调整成目标姿态,所述目标姿态是指所述抹浆后的砖块20平行于墙面且平行于水平面。精定位校准步骤有利于砌砖效果,提供墙体合格率。
在其中一个实施例,精定位校准步骤位于步骤M5的“砌砖机械臂继续运动”之前,或者精定位校准步骤和步骤M5的“砌砖机械臂继续运动”交替运行,又或者,精定位校准步骤和步骤M5的“砌砖机械臂继续运动”同时进行。
在其中一个实施例中,旋转角度调整机构如图16和图17所示或者如图20所示,砌砖机械臂130具有XYZ向的旋转角度调整机构,其具有XYZ向转轴被构造形成XYZ向的三个驱动关节包括X向驱动关节326、Y向驱动关节327、Z向驱动关节328,依次相连从而使得旋转角度调整机构可进行上下俯仰、左右翻滚以及左右摆动的姿态调节。
上述的砌砖方法,通过砌砖装置10的控制模块控制砌砖装置10的砌砖机器人100进行砌砖作业,首先在控制模块预设砌砖顺序,这样使得每次砌砖机器人100可以按序操作,通过将抹浆后的砖块20输送到待抓取位置220,在输送的过程中,使得抹浆后的砖块20的水平抹浆面21朝上设置,这样可以避免水平抹浆面21和输送砖块的轨道粘连,在抹浆后的砖块20到达待抓取位置220时,砌砖机器人100控制抹浆后的砖块20上下翻转,使得水平抹浆面21朝下,而后开始转运抹浆后的砖块20,使得抹浆后的砖块20的竖直抹浆面23靠近末位,即靠近上一块已砌砖块的末位,再然后控制抹浆后的砖块20继续运动,使得竖直抹浆面23与上一块已砌砖块的竖直放置面S1粘连,使得水平抹浆面21与上一块已砌砖块的水平放置面S2粘连,从而完成砌砖操作,整个砌砖流程简单易操作,节省了大量的人力,耗时短,提升了砌砖的效率,即提升了砌墙的效率。
如图2和图20所示,一种砌砖装置10,采用上述任一实施例所述的砌砖方法于环境中执行砌砖作业,所述砌砖装置10包括砌砖机器人100/100’和控制所述砌砖机器人100作业的控制模块,砌砖机器人100/100’包括支撑部110和设置于支撑部110上的翻转机构120和砌砖机械臂130,所述控制模块与所述翻转机构120和砌砖机械臂130分别电连接。
请参阅图2,其砌砖装置10的其中一个实施例,砌砖机器人100的砌砖机械臂130和翻转机构120安装于同一个支撑部110上,随着该支撑部110沿着预设的轨道在不同站点上进行砌砖作业。预设的轨道的其中一个实施例被构造成如图6和图10的移动轨道600所示。
请参阅图20,其砌砖装置10的另一个实施例,砌砖机械臂130和翻转机构120安装于不同的支撑部110上,不同的支撑部110包括第一支撑部110a和第二支撑部110b,砌砖机械臂130安装于第一支撑部110a上,翻转机构120安装于第二支撑部110b上。
上述的砌砖装置10,采用上述的砌砖方法于环境中执行砌砖作业,砌砖装置10包括控制模块和砌砖机器人100,控制模块控制砌砖装置10的砌砖机器人100进行砌砖作业,首先在控制模块预设砌砖顺序,这样使得每次砌砖机器人100可以按序操作,通过将抹浆后的砖块20输送到待抓取位置220,在输送的过程中,使得抹浆后的砖块20的水平抹浆面21朝上设置,这样可以避免水平抹浆面21和输送砖块的轨道粘连,在抹浆后的砖块20到达待抓取位置220时,砌砖机器人100的翻转机构120控制抹浆后的砖块20上下翻转,使得水平抹浆面21朝下,而后砌砖机械臂130开始转运抹浆后的砖块20,使得抹浆后的砖块20的竖直抹浆面23靠近末位,即靠近上一块已砌砖块的末位,再然后砌砖机械臂130控制抹浆后的砖块20继续运动,使得竖直抹浆面23与上一块已砌砖块的竖直放置面S1粘连,使得水平抹浆面21与上一块已砌砖块的水平放置面S2粘连,从而完成砌砖操作,整个砌砖流程简单易操作,节省了大量的人力,耗时短,提升了砌砖的效率,即提升了砌墙的效率。
在其中一个实施例中,如图2至图4所示,所述砌砖装置10还包括输送轨道200,所述输送轨道200具有用于开始放砖块的初始位置210和被抓取砖块的待抓取位置220,所述支撑部110邻近所述待抓取位置220设置,所述翻转机构120设置于所述支撑部110的背离所述初始位置210的一侧,砌砖机械臂130于所述支撑部110的背离所述初始位置210的一侧的空间运动,所述初始位置210至所述待抓取位置220的方向与首末方向D平行。这样可以保证抹浆后的砖块20从初始位置210到达待抓取位置220后,翻转机构120进行抓取和翻转,而后砌砖机械臂130进行抓取和转运,且是背离初始位置210的方向转运,这样可以保证抹浆后的砖块20在输送和被机械臂转运的整个过程的轨迹是一个连贯的轨迹线,使得整个砌砖的流程较为流畅,提升了砌砖的效率。
在另一个实施例中,如图22所示,所述砌砖装置10还包括输送轨道200,所述输送机构包括上砖夹具和横移驱动件,横移驱动件驱动所述上砖夹具在初始位置210和待抓取位置220之间移动,初始位置210用于开始放砖块和待抓取位置220用于供所述翻转机构120抓取砖块,所述第一支撑部110a邻近所述待抓取位置220设置,所述初始位置210设置于所述第二支撑部110b上且位于所述第一支撑部110a的一侧,所述翻转机构120设置于所述第二支撑部110b上且位于背离所述初始位置210的一侧,砌砖机械臂130于所述第一支撑部110a的背离所述初始 位置210的一侧的空间运动,所述初始位置210至所述待抓取位置220的方向与首末方向D相同。所述初始位置210至所述待抓取位置220的方向与首末方向D平行。这样可以保证抹浆后的砖块20从初始位置210到达待抓取位置220后,翻转机构120进行抓取和翻转,而后砌砖机械臂130进行抓取和转运,且是背离初始位置210的方向转运,这样可以保证抹浆后的砖块20在输送和被机械臂转运的整个过程的轨迹是一个连贯的轨迹线,使得整个砌砖的流程较为流畅,提升了砌砖的效率。
在其中一个实施例中,如图5所示,所述翻转机构120包括安装部121、转动部122、连接板123和设置于连接板123上的两个平行的夹板124,所述安装部121升降设置于所述支撑部110上,所述转动部122沿第一轴线A转动连接安装部121和连接板123,第一轴线A为水平轴线且垂直于所述初始位置210至所述待抓取位置220的方向,两个所述夹板124沿着第一轴线A的延伸方向相对间隔设置且两者之间的间距可调以夹取、释放抹浆后的砖块20,翻转机构120通过安装部121在支撑部110上升降可以实现下降以抓取抹浆后的砖块20,通过两个夹板124在连接板123上间距可调,可以控制两个夹板124夹取抹浆后的砖块20,通过转动部122旋转可以带动连接板123、两个夹板124及被夹取的抹浆后的砖块20进行翻转,便于翻转机构120将抹浆后的砖块20的竖直抹浆面23从朝上翻转至朝下,本实施例中,所述安装部121的转动轴线水平。
在其中一个实施例中,如图22所示,所述翻转机构120包括安装部121、转动部122、连接板123和设置于连接板123上的两个平行的夹板124,所述安装部121可升降地设置于所述第二支撑部110b上,所述转动部122沿第一轴线A转动连接安装部121和连接板123,第一轴线A为水平轴线且垂直于所述初始位置210至所述待抓取位置220的方向,两个所述夹板124沿着第一轴线A的延伸方向相对间隔设置且两者之间的间距可调以夹取、释放抹浆后的砖块20。
在其中一个实施例中,如图5所示,所述砌砖机械臂130包括沿着竖直肘关节324依次转动连接的第一臂131、第二臂132和手部133,所述第一臂131的远离所述第二臂132的一端与所述基部134沿着竖直肩关节323转动连接且通过基部134与所述支撑部110连接,所述第二臂132远离所述第一臂131的一端通过竖直腕关节325与所述手部133转动连接,所述手部133被配置为抓取抹浆且翻转后的砖块,这样便于砌砖机械臂130将抹浆后的砖块20进行抓取、转运以及砌砖的操 作。
在另一个实施例中,如图20所示,所述砌砖机械臂130包括沿着水平肘关节324依次转动连接的第一臂131、第二臂132和手部133,所述第一臂131的远离所述第二臂132的一端与所述基部134沿着水平肘关节324转动连接且通过基部134与所述第一支撑部110a连接,所述基部134沿着竖直设置的肩关节323与所述第一支撑部110a转动连接,所述第二臂132远离所述第一臂131的一端通过竖直腕关节325与所述手部133转动连接,所述手部133被配置为抓取抹浆且翻转后的砖块20,这样便于砌砖机械臂130将抹浆后的砖块20进行抓取、转运以及砌砖的操作。在本实施例中,所述第一支撑部110a为固定高度的立柱,但是在另外的实施例中,所述第一支撑部110a可以是竖直方向上升降伸缩的立柱。
在其中一个实施例中,如图4所示,所述砌砖装置10还包括抹浆送砖机构300,所述抹浆送砖机构300邻近所述初始位置210设置,抹浆送砖机构300用于对砖块进行抹浆,而后将抹浆后的砖块20放置于输送轨道200上的初始位置210。
在一个实施例中,一种砌砖设备40,被配置为将砖块堆砌成墙体,每一所述砖块于所述墙体上形成一个堆砌位置,所述砌砖设备40包括一支撑部410、一翻转机构120以及一砌砖机械臂130。所述翻转机构120包括一安装部121和一拾取部160,所述安装部121连接所述支撑部410,所述拾取部160沿着一第一轴线A枢接于所述安装部121,所述拾取部160能够拾取抹浆后的所述砖块,且沿着所述第一轴线翻转所述砖块,被翻转后的所述砖块呈抹浆面朝下设置和非抹浆面朝上设置;所述砌砖机械臂130包括一基部310、自基部310向前延伸的关节臂320以及连接于关节臂320前端的手部133,所述基部310安装于所述支撑部410,所述关节臂320被构造成具有多个自由度,所述手部133能够向下拾取翻转后的所述砖块,且将其释放于所述堆砌位置。
如图6、图7和图8所示,其中一实施例的砌砖设备40,用于将砖块堆砌成墙体,每一所述砖块于所述墙体上形成一个堆砌位置,所述砌砖设备40包括一支撑部410、一翻转机构120以及一砌砖机械臂130。所述翻转机构120包括一安装部121和一拾取部160,所述安装部121连接所述支撑部410,所述拾取部160沿着一第一轴线A枢接于所述安装部121,即所述拾取部160在所述安装部121上绕所述第一轴线A自转,所述拾取部160能够拾取抹浆后的所述砖块,且沿着所述第一轴线A翻转所述砖块,被翻转后的所述砖块呈抹浆面31朝下设置和非抹浆面32 朝上设置,在本实施例中,抹浆后的所述砖块在被拾取部160拾取之前,其水平抹浆面21是朝上的,水平非抹浆面22是朝下的。所述砌砖机械臂130包括一基部310、自基部310向前延伸的关节臂320以及连接于关节臂320前端的手部133,所述基部310安装于所述支撑部410,所述关节臂320被构造成具有多个自由度,所述手部133能够向下拾取翻转后的所述砖块,且将其释放于所述堆砌位置。
上述的砌砖设备40,通过翻转机构120的拾取部160可以抓取抹浆后的砖块20,砌砖机械臂130用于将拾取部160抓取的抹浆后的砖块20再抓取后转运至堆砌位置,以进行砌砖操作,其中,通过手部133用于抓取抹浆后的砖块20,关节臂320具有多个自由度,可以将手部133带动到拾取部160的位置,也可以将手部133带动到堆砌位置;上述砌砖操作无需人工搬运和砌砖,节省了人力,也避免了可能发生的砖块掉落砸伤等安全隐患,而且通过机器自动操作提升了砌砖的效率;其中,由于抹浆后的砖块20输送时或者放置时需要将水平抹浆面21朝上,以避免水平抹浆面21上的浆料与输送机构或者放置机构发生粘连,以及避免水平抹浆面21上的浆料污染输送机构或者放置机构,在此情况下,在拾取部160抓取了抹浆后的砖块20后可以通过拾取部160在安装部121上的自转将抹浆后的砖块20进行180°翻转,使得水平抹浆面21朝下,这样便于砌砖机械臂130抓取拾取部160上的抹浆后的砖块20且转运抹浆后的砖块20后可以直接以水平抹浆面21朝下的位姿将抹浆后的砖块20放至堆砌位置,完成砌砖,从而使得在砌砖机械臂130在将所述砖块放置于堆砌位置时,所述砖块的抹浆面31朝下设置,与堆砌位置的水平放置粘粘,从而避免砖块的抹浆面31在放置于堆砌位置时显露在外,等待下一块砖块的粘粘,从而避免了在等待的过程中,浆料凝固造成砌砖效果不佳;在保证上述效果的同时,翻转机构120的作用还可以使得砖块输送的过程中,抹浆面31朝上,从而在砖块抹浆后转运至砌砖机械臂130的过程,减少了浆料的刮擦,从而也避免了由于刮擦而造成的抹浆面31的浆料分布不均或者浆料过少,进而也避免了由于所述抹浆面31的浆料分布不均或者浆料过少而导致的砌砖效果不佳;再者在砌砖机械臂130将所述砖块放置于所述堆砌位置的同时,翻转机构120对下一块待堆砌的抹浆后的砖块20进行翻转操作,从而使得砌砖机械臂130在砌砖完成后,需要拾取下一块待堆砌的抹浆后的砖块20时不需要过长的等待时间,从而节约了操作时间,因此非常方便高效。本实施例的砌砖设备40在保证砖块输送过程中抹浆效果的同时也保证了砌砖效果,同时也加快 了砌砖的砌筑时间。
为了便于手部133抓取抹浆后的砖块20前与抹浆后的砖块20进行对准,在其中一个实施例中,如图8和图16所示,所述砌砖设备40还包括控制模块,所述手部133包括位置检测装置331,位置检测装置331被设置为检测翻转后的所述砖块的位姿,位置检测装置331且与所述控制模块电信连接;所述控制模块基于翻转后的所述砖块的位姿生成动作指令,所述动作指令用于控制所述手部133调整至与所述砖块平行的平行位姿,且所述控制模块控制所述手部133以所述平行位姿自上而下抓取所述砖块,这样通过位置检测装置331检测翻转后的所述砖块的位姿,反馈给控制模块,控制模块根据砖块的位姿信息控制手部133运动,直至手部133至与砖块平行,从而实现手部133抓取砖块前的对准操作,以便于接下来手部133进行平移和升降以抓取拾取部160上的抹浆后的砖块20,值得一提的是,在手部133的位置检测装置331检测翻转后的砖块的位姿时,手部133和位置检测装置331是位于砖块的正上方的,这样保证了位置检测装置331能够检测到砖块的位姿,以便于手部133与砖块对准。
为了便于位置检测装置331检测翻转后的抹浆后的砖块20的位姿,在其中一个实施例中,如图8和图16所示,所述位置检测装置331为激光测距传感器331a/331b,所述激光测距传感器331a/331b的数量为至少三个。在本实施例中,所述激光测距传感器的数量为三个,当所述手部133位于所述拾取部160上方时,三个所述激光测距传感器的每一均朝向所述非抹浆面32发射激光线且于所述非抹浆面32上形成三个激光点,三个所述激光点不在同一直线上,三个所述激光点之间的连线形成一个三角形,该三角形所在的平面形成一第一基准S,所述控制模块控制所述手部133调整至与第一基准S平行,且控制所述手部133以平行于所述第一基准S的位姿抓取所述砖块,这样通过三个激光测距传感器发射在非抹浆面32上的三个激光点连线形成第一基准S,各激光测距传感器传输的激光点的信息发送给控制模块,控制模块获取各激光点组成的第一基准S信息,而后控制模块可以控制手部133调整至与第一基准S平行,且控制手部133以平行于第一基准S的位姿抓取砖块,因此便于位置检测装置331检测翻转后的抹浆后的砖块20的位姿。
在其中一个实施例中,如图8所示,所述三个激光点之间的连线形成一个三角形,自上而下观察,所述砖块的质心的投影位于所述三角形内,从而使得所 述位置检测装置331检测的区域为所述砖块的中心区域的平面度,从而使得所述第一基准S的平面度为所述砖块中心区域的平面度,所述手部133调整的姿态以所述砖块中心区域的平面度为基准,从而使得所述手部133拾取所述砖块时,所述砖块的姿态与所述手部133的姿态大致相同,从而控制所述手部133的姿态相当于控制所述砖块的姿态,有利于控制所述砖块的放置于所述堆砌位置的精确度。
为了便于所述位置检测装置331检测所述砖块中心区域的平面度,在其中一个实施例中,如图16所示,三个所述激光测距传感器设于所述手部133的左右两侧,所述手部133的一侧设置其中两个激光测距传感器331a,所述手部133的另一侧设置其余的一个激光测距传感器331b,控制模块基于所述砖块质心的空间坐标以及所述手部133的空间坐标确认所述手部133旋转至所述砖块中心区域的上方的路径规划,限定三个所述激光测距传感器分别设于所述手部133的两侧,从而使得所述手部133位于所述砖块中心区域的上方时,三个所述激光测距传感器分别位于所述砖块质心的左右两侧,且三个所述激光传感器也分别位于所述砖块质心的前后两侧,本实施例中所述激光测距传感器331b与其中一个所述激光测距传感器331a沿着左右方向对齐设置,从而有利于保证所述砖块质心位于三个所述激光传感器于所述砖块的非抹浆面32上形成的三角形内。在本实施例的激光测距传感器的数量可以是四个、五个或者更多,只要可以实现在所述砖块的非抹浆面32上的多个激光点的连线可以形成一个多边形,所述多边形所在的平面的平面度为所述第一基准S,同样的,所述砖块的质心位于所述多边形内,从而有利于手部133堆砌所述砖块于所述墙体上的精确度。
为了便于砌砖机械臂130自动转运抹浆后的砖块20,在其中一个实施例中,如图7和图10所示,所述砌砖设备40还包括控制模块,所述控制模块能够控制所述砌砖机械臂130自第一位姿P1和第二位姿P2之间摆动,所述砌砖机械臂130以所述第一位姿P1向下拾取翻转后的所述砖块,所述砌砖机械臂130以所述第二位姿P2与已砌砖块校准定位,所述第一位姿P1的所述关节臂320的末端臂与所述第二位姿P2的所述关节臂320的末端臂沿着前后方向成180°对称,这样通过控制模块可以控制砌砖机械臂130将位于支撑部410一侧的拾取部160上的砖块转运到位于支撑部410另一侧的堆砌位置,且能将砖块的竖直抹浆面23进行180°调转,从而可以与另一个已砌砖块的竖直面平行对接。
为了便于砌砖机械臂130自第一位姿P1和第二位姿P2之间摆动,在其中一个实施例中,如图8至图10所示,自所述第一位姿P1切换至所述第二位姿P2,所述关节臂320具有肩关节323、肘关节324和腕关节325,所述控制模块针对所述砌砖机械臂130的控制仅对所述肘关节324施加动作指令,所述动作指令使得所述关节臂320的末端臂沿着水平方向向前摆动180°。在本实施例中,所述关节臂320通过肩关节323与基部310转动连接,所述关节臂320自身通过肘关节324转动末端臂,所述关节臂320通过腕关节325与手部133转动连接,这样在控制模块的控制下,由于关节臂320具有肩关节323、肘关节324和腕关节325,因此可以在水平方向调节关节臂320的末端臂转动,仅对肘关节324施加所述动作指令,即可控制砌砖机械臂130从第一位姿P1转换到第二位姿P2。
为了提升砌砖效率,在其中一个实施例中,所述翻转机构120每一次翻转抹浆后的砖块20至相同高度,这样抹浆后的砖块20在翻转后的高度保持在一个固定高度,使得砌砖机械臂130的手部133每次到达拾取部160的上方时与翻转后的砖块的高度差一致,这样只需升降固定的高度差即可到达手部133的抓取位置,无需每次调节砌砖机械臂130需要升降的高度,固定的高度差调节数值大大节约了转运砖块所需的时间,提升了砌砖效率。
为了提升砌砖效率,在其中一个实施例中,所述手部133每次均以相同的高度位置向下抓取砖块,这样每次手部133所在的高度和在水平的位置不变,而后再升降固定的高度进行砖块的抓取,节约了每次取砖前调节手部133高度和水平位置的流程,大大提升了砌砖效率。
为了准确判断抹浆后的砖块20是否到达拾取部160抓取的位置,在其中一个实施例中,如图6和图11所示,所述砖块沿着一输送方向输送至被拾取位置,所述被拾取位置可独立或者一体设于所述砌砖设备40,所述被拾取位置的所述抹浆后的砖块20用于供所述翻转机构120拾取,所述翻转机构120具有到位感应器230,所述到位感应器230安装于所述拾取部160,用于感应所述砖块于所述输送方向上的位置,这样通过到位感应器230感应砖块是否到位,例如到达一个感应位置,位于被拾取位置之前以便翻转机构120开始调整位置,而后对抹浆后的砖块20进行抓取和翻转操作。
为了便于设置到位感应器230且便于到位感应器230感应抹浆后的砖块20到位,在其中一个实施例中,如图11所示,所述拾取部160上设有阻挡限位块240, 所述阻挡限位块240设置于所述拾取部160上,所述阻挡限位块240或者所述拾取部160上设置所述到位感应器230,所述阻挡限位块240具有用于朝向抹浆后的砖块20的阻挡面,所述到位感应器230的感应面与所述阻挡面平行,或者所述感应面凸出于所述阻挡面,所述到位感应器230为接触感应器,通过阻挡限位块240阻挡限位抹浆后的砖块20,使得砖块到位,到达一个感应位置,位于被拾取位置之前此时砖块与到位感应器230接触,到位感应器230反馈给控制模块,控制模块开始控制翻转机构120调整位置并且运转,其中,由于感应面与阻挡面平行或者凸出于阻挡面,因此到位感应器230设置在阻挡限位块240和拾取部160上都可以有效接触感应到抹浆后的砖块20。
为了便于拾取部160抓取和翻转抹浆后的砖块20,在其中一个实施例中,如图7和图11所示,所述拾取部160包括连接板123和两个夹取部222,所述连接板123通过旋转轴与所述安装部121转动连接,所述旋转轴的轴线为所述第一轴线A,两个所述夹取部222间隔设置于所述连接板123上,两个所述夹取部222中的至少一个与所述连接板123滑动连接,使两个所述夹取部222之间形成夹砖空间,这样使得连接板123转动,带动两个夹取部222翻转,进而带动被两个夹取部222夹设在夹砖空间中的砖块翻转。
为了便于两个夹取部222将砖块夹紧,在其中一个实施例中,两个所述夹取部222具有相对的两个夹取面,两个所述夹取面中的至少一个设有接触传感器,所述接触传感器的接触部凸伸至夹取空间内,这样通过设置接触传感器可以判断两个夹取部222与砖块之间的压力,进而判断两个夹取部222能否将砖块夹住而不掉落,进而可以有效调节两个夹取部222的间距,直至两个夹取部222将砖块夹紧。在其中一个实施例中,两个所述夹取面中分别设有接触传感器。在其中一个实施例中,所述接触传感器为压力传感器。
为了能够保证关节臂320具有多个自由度,在其中一个实施例中,如图8、图9及图16所示,所述关节臂320包括第一臂131和第二臂132,所述第一臂131与所述基部310之间通过肩关节323转动连接,所述第一臂131的远离所述基部310的一端和所述第二臂132之间通过肘关节324转动连接,所述手部133和所述第二臂132的远离所述第一臂131的一端通过腕关节325转动连接,所述肩关节323的转动轴线、所述肘关节324的转动轴线和所述腕关节325的转动轴线相互平行,且分别与所述第一臂131的延伸方向垂直,这样通过肩关节323、肘关节324和腕 关节325可以控制第一臂131相对基部310转动,以及控制第二臂132相对第一臂131转动,以及控制手部133相对第二臂132转动,这样可以控制关节臂320带动手部133进行多级水平位移,提升了手部133平移的灵活性。
在其中一个实施例中,如图16所示,所述手部133包括手板332和连接于所述手板332上的两个夹板124,两个所述夹板124间隔设置且相互平行,两个所述夹板124的至少一个滑动设置于所述手板332上,使两个所述夹板124的间距可调,两个所述夹板124相对的面分别设有一夹垫334,所述夹垫334用于抵接抹浆后的砖块20。
为了有效提升砌砖机械臂130的自由度,在其中一个实施例中,如图16和图17所示,所述砌砖机械臂130具有XYZ向的旋转角度调整机构,其中,所述关节臂320的腕关节325为旋转角度调整机构的Z向R轴,旋转角度调整机构的XY向R轴位于所述腕关节325和所述肘关节324之间或者相对于所述腕关节325靠近前端设置,位于所述手部133和所述腕关节325之间。通过设置XYZ向的旋转角度调整机构可以使得手部133沿各个方向运动,除了在水平面的转动还有在竖直面的转动,从而更加便于调整所述手部133在作业空间中的空间位姿,从而有利于将手部133调整目标位姿,目标位姿是指抹浆后的砖块20平行于墙面且平行于水平面,且以该目标位姿释放于所述堆砌位置,保证了砌砖质量的良率。
为了便于关节臂320在XY向调节,在其中一个实施例中,如图16和图17所示,XY向R轴包括X向R轴和Y向R轴,所述第二臂132包括第一臂体3221、第二臂体3222、第三臂体3223、所述X向R轴和所述Y向R轴,所述第一臂体3221、所述第二臂体3222和所述第三臂体3223的延伸方向分别与所述第二臂132整体的延伸方向相同,所述第一臂体3221与所述肘关节324连接,所述X向R轴转动设置于所述第一臂体3221上,所述X向R轴的轴线与所述肘关节324的轴线及所述第一臂体3221的延伸方向分别垂直,所述第二臂体3222通过所述X向R轴与所述第一臂体3221转动连接;所述Y向R轴转动设置于所述第二臂体3222上,所述Y向R轴的轴线与所述肘关节324的轴线垂直,且与所述第二臂体3222的延伸方向平行,所述第三臂体3223通过所述Y向R轴与所述第二臂体3222转动连接,所述第三臂体3223与所述腕关节325连接,这样第一臂体3221可以绕Z向摆动,使得手部133可以提升绕Z向摆动的灵活性,第二臂体3222可以绕X向相对所述第一臂体3221转动,所述第三臂体3223可以绕Y向相对所述第二臂体3222转动,使得手部 133及腕关节325可以随第三臂体3223绕Y向转动,这样使得手部133可以在绕XYZ向的轴线转动,提升了砌砖机械臂130转运砖块的灵活性。
为了便于带动X向R轴、Y向R轴和Z向R轴转动,在其中一个实施例中,如图16和图17所示,所述第一臂体3221上设有X向驱动关节326,所述X向驱动关节326的转动轴线沿X向,所述X向驱动关节326的输出轴上套设有主动轮3261,所述主动轮3261通过同步带传动连接有一从动轮3262,所述从动轮3262与所述X向R轴连接;所述第二臂体3222上设有Y向驱动关节327,所述Y向驱动关节327的输出轴与所述Y向R轴连接;所述第三臂体3223上设有Z向驱动关节328,所述Z向驱动关节328的输出轴与所述Z向R轴连接,这样可以分别带动X向R轴、Y向R轴和Z向R轴转动,实现各个转动可以单独或者一起实行,极大地提升了手部133运动的灵活性。其中所述Z向驱动关节328位于所述第二臂132的远离所述第一臂131的一端且转动连接手部133,故Z向驱动关节328形成砌砖机械臂130的腕关节325。
为了提升砌砖效率,在其中一个实施例中,所述砌砖设备40还包括一控制模块,所述控制模块同时发送第一动作指令和第二动作指令,所述第一动作指令使得所述砌砖机械臂130进行砌砖动作,所述第二动作指令使得所述翻转机构120抓取且翻转抹浆后的所述砖块,这样控制模块可以同时发送第一动作指令和第二动作指令,因此可以同时进行翻转砖块和转运砖块的操作,可以对一前一后两个抹浆后的砖块20分别操作,对前一个抹浆后的砖块20进行砌砖操作,同时对后一个抹浆后的砖块20进行抓取和翻转操作,而后砌砖机械臂130又可以回转抓取后一个翻转了的抹浆后的砖块20,大大提升了砌砖效率。
为了保证操作的连贯性,在其中一个实施例中,所述第二动作指令的时长小于或者等于所述第一动作指令的时长,这样可以在砌砖机械臂130砌完前一个抹浆后的砖块20后,准备回转以进行对后一个抹浆后的砖块20的转运操作时,翻转机构120此时已经翻转好了后一个抹浆后的砖块20,砌砖机械臂130无需等待翻转机构120翻转抹浆后的砖块20,提升了砌砖效率。
为了控制翻转机构120和砌砖机械臂130进行升降以及避免翻转机构120影响砌砖机械臂130进行转运砖块和砌砖的操作,在其中一个实施例中,如图6和图11所示,所述支撑部410具有第一升降机构420和第二升降机构140,所述第一升降机构420连接所述砌砖机械臂130以升降所述砌砖机械臂130,所述第二升降 机构140连接所述翻转机构120以升降翻转机构120,所述第二升降机构140相比于所述第一升降机构420靠后设置,这样可以控制翻转机构120和砌砖机械臂130的升降,从而便于抓取抹浆后的砖块20,而且第二升降机构140相比于第一升降机构420靠后设置,这样能够避免翻转机构120影响砌砖机械臂130进行转运砖块和砌砖的操作。
为了便于第一升降机构420带动基部310升降,在其中一个实施例中,如图11、图14和图15所示,所述第一升降机构420包括自后向前依次设置的固定架111、一级升降112、二级升降113和三级升降114,所述一级升降112于所述固定架111上升降,所述一级升降112上设有环状带1121,所述环状带1121的两端分别位于所述一级升降机构112的前后两侧,所述环状带1121的第一端与所述固定架111相对靠上的部分固定连接,所述环状带1121的第二端与所述二级升降113相对靠下的部分固定连接,所述一级升降112上升的同时,固定长度的所述环状带1121带动所述二级升降113及所述二级升降113上的所述三级升降114同步上升,所述基部310与所述三级升降114连接,在本实施例中,所述三级升降114于所述二级升降113上升降,所述二级升降113于所述一级升降112上升降,这样实现多级升降,保证了砌砖机械臂130的能够上升和下降的高度要求,这样在一级升降112进行竖直运动时,只需通过环状带1121即可带动二级升降113、三级升降114和基部310同步上升运动,非常方便。
为了便于一级升降112在固定架111上升降,在其中一个实施例中,如图11至图15所示,所述一级升降112包括一级移动架1122和一级从动部1123,所述固定架111上设有一级驱动部1111,所述一级移动架1122沿竖直方向滑动设置于所述固定架111上,所述一级驱动部1111驱动连接有一级主动部1112,所述一级主动部1112与所述一级从动部1123传动连接,所述一级从动部1123与所述一级移动架1122连接,所述一级从动部1123带动所述一级移动架1122沿竖直方向于所述固定架111上滑动,这样一级驱动部1111驱动一级主动部1112带动一级从动部1123运动,一级从动部1123则带动一级移动架1122可以在固定架111上滑动,使得一级升降112上下运动,进而可以带动二级升降113上下运动。
为了避免一级驱动部1111对一级升降112造成干涉,在其中一个实施例中,如图11至图15所示,所述一级驱动部1111设置于所述固定架111的背离所述一级移动架1122的一侧,这样一级驱动部1111不会对一级升降112的运动造成阻碍, 同时避免一级移动架1122和固定架111之间设置较宽的让位空间以供设置一级驱动部1111而导致一级升降112机构结构不紧凑,体积较大。
为了便于控制一级升降112的升降范围,在其中一个实施例中,如图11至图15所示,所述一级移动架1122的两侧分别设有一级滑动块1124,至少一所述一级滑动块1124的侧面的上下间隔设置顶部限位开关1125和底部限位开关1126,所述固定架111上设有一级导轨1113,所述一级滑动块1124与所述一级导轨1113滑动配合,所述固定架111的一侧的上下端分别设有顶部限位开关感应器1114和底部限位开关感应器1115,分别用于感应所述顶部限位开关1125和所述底部限位开关1126,这样通过顶部限位开关感应器1114感应顶部限位开关1125,底部限位开关感应器1115感应底部限位开关1126,可以控制一级升降112所能上升的最高点和下降的最低点,即可以控制一级升降112的升降范围,同时能防止一级升降112脱离出固定架111。
为了便于驱动一级移动架1122运动以及避免一级从动部1123占用较多空间,在其中一个实施例中,如图11至图15所示,所述固定架111包括两个竖直杆1116和垂直设置于两个竖直杆1116之间的多个横向杆1117,各所述横向杆1117开设有竖向贯通所述横向杆1117的让位槽1118,所述一级主动部1112为一级齿轮,所述一级从动部1123为一级齿条,所述一级齿轮与所述一级齿条啮合,所述一级齿条依次穿设各所述让位槽1118,这样通过一级齿轮驱动一级齿条升降,从而便于驱动一级移动架1122运动,而且让位槽1118可以容置至少部分一级齿条,避免一级齿条突出过多而影响一级移动架1122的升降运动,以及避免一级齿条突出而占用过多空间导致一级升降112机构结构不紧凑,体积过大。
为了便于环状带1121带动二级升降113运动,在其中一个实施例中,如图11至图15所示,所述一级移动架1122的顶部转动设有转动轮1127,所述环状带1121套设于所述转动轮1127上,所述环状带1121的第一端位于所述一级移动架1122的朝向所述固定架111的一面,且与所述固定架111上凸设的第一固定部1119连接,所述环状带1121的第二端位于所述一级移动架1122的背离所述固定架111的一面,且与所述二级升降113连接,所述二级升降113滑动设置于所述一级移动架1122上,在本实施例中,所述固定架111和所述二级升降113分别位于所述一级升降112的两侧,这样一级升降112在固定架111上升降,而环状带1121的第一端与固定架111连接,所述环状带1121的第二端与二级升降113连接,因此在一 级升降112进行升降时,环状带1121长度固定,因此使得一级升降112两侧的环状带1121部分的长度发生改变,进而改变二级升降113的高度,因此便于环状带1121带动二级升降113运动。
为了便于二级升降113和三级升降114分别升降,在其中一个实施例中,如图11至图15所示,所述二级升降113包括二级移动架1131和设于二级移动架1131上的第二固定部1132,所述环状带1121的第二端与所述第二固定部1132连接,所述二级移动架1131上设有二级导轨1133,所述三级升降114包括三级驱动部1141、三级主动部和三级移动部1142,所述二级移动架1131上还设有三级从动部1134,所述三级移动部1142滑动设置于所述二级导轨1133上,所述三级驱动部1141与所述三级主动部驱动连接,所述三级主动部与所述三级从动部1134传动连接,所述三级从动部1134带动所述三级移动部1142于所述二级导轨1133上滑动,所述基部310与所述三级升降114连接,这样,通过环状带1121滚动带动第二固定部1132及二级移动架1131升降,即便于二级升降113进行升降,以及通过三级驱动部1141驱动三级主动部运动,三级主动部驱动三级移动部1142运动,三级移动部1142带动基部310运动,即便于三级升降114进行升降。在其中一个实施例中,如图15所示,所述三级移动部1142通过三级滑动块1143与所述二级导轨1133滑动连接。
为了便于砌砖机械臂130操作抓取翻转机构120上的抹浆后的砖块20以及便于将抹浆后的砖块20转运至堆砌位置,在其中一个实施例中,沿着左右方向定义第一侧和第二侧,所述砌砖机械臂130朝向所述第一侧且向后摆动至所述翻转机构120的上方,所述基部310偏向所述第一侧设置,即砌砖机械臂130的运动轨迹从其自身所在的前方朝着第一侧的方向到达后方,即经过支撑部410的朝向第一侧的一面后到达后方,由于关节臂320相对于支撑部410朝向第一侧摆动,在关节臂320在旋转至所述翻转机构120上方的过程,为了使得关节臂320具有较大的活动范围,使得第一臂131的腕关节325在第一侧凸出所述支撑部410一定的间距,从而使得第二臂132可以在支撑部410的第一侧的作业空间内具有前后180°摆动的活动范围,而限定基部310偏向第一侧设置,从而使得第一臂131设置较短的长度便可实现腕部在第一侧凸出所述支撑部410一定的间距,从而减小了所述关节臂320的整体长度,有利于所述关节臂320的整体刚性。在一个实施例中,所述腕关节325凸出于所述支撑部410一定的间距,该一定的间距使得所述腕关 节325与所述翻转机构120位于同一前后延伸的竖直平面上,所述控制模块针对于关节臂320的控制仅控制所述腕关节325前后180°转动,即可实现于所述手部133于拾取位置和校准位置之间转动,该拾取位置位于所述翻转机构120的正上方,如图9和图10所示,该校准位置为放置于墙体堆砌位置之前的准备位置,如图10的第二位姿P2的所述砖块位置所示。本实施例不仅有利于减少砌砖机械臂130的整体长度,加强整体刚性,还便于砌砖机械臂130操作抓取翻转机构120上的抹浆后的砖块20,以及便于将抹浆后的砖块20转运至堆砌位置。在其中一个实施例中,所述左右方向为抹浆后的砖块20的输送方向,所述第一侧指向抹浆后的砖块20。
为了便于关节臂320带动手部133运动至拾取部160的上方,在其中一个实施例中,所述基部310和所述安装部121于所述砌砖设备40的坐标系沿着左右方向具有固定的相对位置,所述安装部121位于所述基部310的第一侧,这样保证了关节臂320带动手部133运动至拾取部160的上方的连贯性。
如图20和图21所示,其为另一种实施例的砌砖设备40,所述砌砖设备40包括底盘400,安装于底盘400的支撑部410以及安装于所述支撑部410的输送机构200、翻转机构120和砌砖机械臂130。所述支撑部410包括安装于底盘400后方区域的第一支撑部410a和底盘400前方区域410b的第二支撑部410b,第一支撑部410a供所述输送机构200和所述翻转机构120安装,第二支撑部410b供所述砌砖机械臂130安装。
如图6和图18所示,一种建筑系统50,包括底盘400和上述任一实施例所述的砌砖设备40,所述底盘400上设有输砖轨道500和移动轨道600,所述输砖轨道500用于沿着第一方向D传输抹浆后的砖块20,可往复移动设于所述移动轨道600,使所述砌砖设备40可往复移动于所述移动轨道600,所述翻转机构120自所述输砖轨道500拾取所述抹浆后的砖块20;其中,所述砌砖设备40往复移动的方向平行于所述第一方向D且平行于墙体的方向,所述输砖轨道500的高度高于所述移动轨道600的高度。本实施例中,所述建筑系统50于地面G上进行作业。
上述的建筑系统50,包括砌砖设备40,通过翻转机构120的拾取部160可以抓取抹浆后的砖块20,砌砖机械臂130用于将拾取部160抓取的抹浆后的砖块20再抓取后转运至堆砌位置,以进行砌砖操作,其中,通过手部133用于抓取抹浆后的砖块20,关节臂320具有多个自由度,可以将手部133带动到拾取部160的位 置,也可以将手部133带动到堆砌位置;上述砌砖操作无需人工搬运和砌砖,节省了人力,也避免了可能发生的砖块掉落砸伤等安全隐患,而且通过机器自动操作提升了砌砖的效率;其中,由于抹浆后的砖块20输送时或者放置时需要将水平抹浆面21朝上,以避免水平抹浆面21上的浆料与输送机构或者放置机构发生粘连,以及避免水平抹浆面21上的浆料污染输送机构或者放置机构,在此情况下,在拾取部160抓取了抹浆后的砖块20后可以通过拾取部160在安装部121上的自转将抹浆后的砖块20进行180°翻转,使得水平抹浆面21朝下,这样便于砌砖机械臂130抓取拾取部160上的抹浆后的砖块20且转运抹浆后的砖块20后可以直接以水平抹浆面21朝下的位姿将抹浆后的砖块20放至堆砌位置,完成砌砖,从而使得在砌砖机械臂130在将所述砖块放置于堆砌位置时,所述砖块的抹浆面31朝下设置,与堆砌位置的水平放置粘粘,从而避免砖块的抹浆面31在放置于堆砌位置时显露在外,等待下一块砖块的粘粘,从而避免了在等待的过程中,浆料凝固造成砌砖效果不佳;在保证上述效果的同时,翻转机构120的作用还可以使得砖块输送的过程中,抹浆面31朝上,从而在砖块抹浆后转运至砌砖机械臂130的过程,减少了浆料的刮擦,从而也避免了由于刮擦而造成的抹浆面31的浆料分布不均或者浆料过少,进而也避免了由于所述抹浆面31的浆料分布不均或者浆料过少而导致的砌砖效果不佳;再者在砌砖机械臂130将所述砖块放置于所述堆砌位置的同时,翻转机构120对下一块待堆砌的抹浆后的砖块20进行翻转操作,从而使得砌砖机械臂130在砌砖完成后,需要拾取下一块待堆砌的抹浆后的砖块20时不需要过长的等待时间,从而节约了操作时间,因此非常方便高效。本实施例的砌砖设备40在保证砖块输送过程中抹浆效果的同时也保证了砌砖效果,同时也加快了砌砖的砌筑时间。此外,通过输砖轨道500用于输送抹浆后的砖块20,砌砖设备40可在移动轨道600上移动,且砌砖设备40的移动方向与输送砖块的输送方向平行,即与第一方向D平行,从而方便砌砖设备40对抹浆后的砖块20进行拾取、翻转、转运和堆砌等操作。
为了方便翻转机构120的拾取部160对抹浆后的砖块20进行抓取操作,在其中一个实施例中,所述翻转机构120位于所述输砖轨道500的正上方,这样翻转机构120的拾取部160可以直接下降抓取输砖轨道500上的抹浆后的砖块20,即方便翻转机构120的拾取部160对抹浆后的砖块20进行抓取操作。
为了便于控制输送中的抹浆后的砖块20准确到达被拾取位置,在其中一个 实施例中,所述输砖轨道500沿着输送方向将所述抹浆后的砖块20输送至所述被拾取位置,待拾取位置的所述翻转机构120位于所述抹浆后的砖块20的输送下游,所述翻转机构120用于准备拾取抹浆砖块的位置为所述待拾取位置,所述到位感应器230具有感应位置在于输送轨道上且不同于所述被拾取位置的某处,于所述输送方向上,所述感应位置位于所述翻转机构120的上游且位于被输送的所述砖块的下游;所述建筑系统50包括控制模块,当所述砖块到达所述感应位置,所述控制模块控制所述输砖轨道500减速至停止状态,使被输送的所述抹浆后的砖块20停止于被拾取位置,所述被拾取位置位于所述翻转机构120和感应位置之间,当所述到位感应器230为接触式传感器时,所述感应位置为接触式传感器的压力检测臂末端,于所述到位感应器230的旁侧设置阻挡限位块240,其朝向所述砖块的一面形成止挡面,当所述控制模块控制所述输砖轨道500停止输送时,所述砖块被阻挡限位块240的止挡面止挡,所述止挡面定义出所述砖块的被拾取位置。所述到位感应器230的检测臂末端沿着朝向所述砖块的方向略微超过所述止挡面,有利于所述到位感应器230的检测臂检测到所述砖块。值得一提的是,所述被拾取位置为抹浆后的砖块20的其中一个位置,所述待拾取位置为所述翻转机构120的其中一个位置。
或者在其他的实施例中,所述被拾取位置为安装于所述砌砖设备40上的零部件所定义,该零部件可以是一个板状平台,安装于所述支撑部410且位于翻转机构120的下方。本实施输送砖块的手段是通过上述的输砖轨道500输送,所述被拾取位置位于所述砖块的输送下游路径上,所述到位感应器230中激光传感器等非接触式的传感器,当激光传感器的激光检测到所述砖块距离所述被拾取位置一定间距时,该一定间距定义所述到位感应器230的感应位置,所述控制模块控制所述输砖轨道500停止输送动作,且通过控制所述输送轨道驱动电机的停止脉冲信号,从而使得所述砖块通过一段减速距离停止于所述被拾取位置中。又或者,本实施中的输送砖块的手段可以是通过一个转运机械手自外部转运砖块至被拾取位置,所述到位感应器230感应到到所述砖块位于所述被拾取位置时,所述控制模块控制所述翻转机构120拾取所述砖块;这里所述的到位感应器230可以安装于所述翻转机构120,也可以安装于定义出被拾取位置的板状平台上。
为了便于控制输送中的抹浆后的砖块20准确到达被拾取位置,在其中一个实施例中,待拾取位置的所述翻转机构120高于被输送的抹浆后的所述砖块,所 述翻转机构120具有感应位置,所述感应位置位于所述翻转机构120的下方且位于被输送的所述抹浆后的砖块20的输送下游;所述建筑系统50包括控制模块,当所述砖块到达所述感应位置,所述控制模块控制所述输砖轨道500减速至停止状态,使被输送的所述抹浆后的砖块20停止于被拾取位置,所述被拾取位置位于所述翻转机构120下方且位于所述感应位置输送下游,在抹浆后的砖块20到达被拾取位置之前的感应位置时,即到达拾取位置输送上游的感应位置时,可以通过到位感应器230的感应反馈给控制模块,控制模块控制输砖轨道500减速至停止状态,使得抹浆后的砖块20可以正好停止于被拾取位置,由于翻转机构120高于抹浆后的砖块20,因此感应位置和被拾取位置均可位于翻转机构120下方。
如图7所示,其为砌砖设备40的其中一个实施例,如图20和图21所示,其为砌砖设备40的另一个实施例,在上述两个实施例中,为了避免翻转机构120翻转抹浆后的砖块20时导致翻转机构120或者抹浆后的砖块20与输砖轨道500发生干涉,所述支撑部410具有第二升降机构140,所述第二升降机构140连接所述翻转机构120以升降所述翻转机构120,所述第二升降机构140驱动所述翻转机构120自第一待拾取位置和第二待拾取位置之间升降,所述第一待拾取位置的所述翻转机构120用于自所述输砖轨道500拾取所述抹浆后的砖块20,自所述第一待拾取位置上升至所述第二待拾取位置,所述第二待拾取位置的高度可供所述翻转机构120沿着第一轴线旋转180°且不与所述输砖轨道500干涉,于所述第二待拾取位置翻转后的所述抹浆后的砖块20供所述砌砖机械臂130拾取,这样翻转机构120的待拾取部160可以在第一待拾取位置抓取抹浆后的砖块20,而后上升到第二待拾取位置时,可以对抹浆后的砖块20进行翻转操作,此时翻转机构120或者抹浆后的砖块20不会与输砖轨道500发生干涉。
为了实现多个子传输轨道510的拼接,且保证动力的传递稳定性,在其中一个实施例中,如图19所示,所述输砖轨道500包括多个子传输轨道510,每个所述子传输轨道510设有多个输送辊511和多个输送齿轮512,所述输送齿轮512套设于所述输送辊511的端部,多个所述输送齿轮512通过传送带513套设传动连接,一所述子传输轨道510的尾部的输送齿轮512与另一相邻的子传输轨道510的头部的输送齿轮512之间啮合一中间齿轮520,两个所述子传输轨道510中的一个设有一安装块530,所述安装块530沿垂直于所述子传输轨道510的方向可调节设于所述子传输轨道510的侧面,所述中间齿轮520设置于所述安装块530上,子传 输轨道510拼接后,前端的输送齿轮512与后端的输送齿轮512的中心距存在一定误差,通过调整安装块530上下移动来调节中间齿轮520与前端的输送齿轮512以及后端的输送齿轮512的中心距,确保三个齿轮啮合进而保证动力传递,通过这个设计,可以实现多个子传输轨道510的快速拼装,同时通过输送齿轮512和传送带513传递动力,例如传送带513为链条,通过机械止口限位进行精确对齐,通过卡勾机构实现不需要任何工具徒手操作即可快速连接和断开。
为了便于调节安装块530上下移动,在其中一个实施例中,如图19所示,所述安装块530相对所述子传输轨道510的侧面滑动,所述安装块530的可调节设置方式为:所述子传输轨道510的侧面开设有安装孔,所述安装块530开设有延伸方向与所述子传输轨道510垂直的长条孔531,所述长条孔531与所述安装孔连通,通过一锁紧件穿过所述长条孔531并穿设于所述安装孔中,用于固定所述安装块530于所述子传输轨道510的侧面;或者,所述子传输轨道510的侧面的凸设有调节板,通过一调节杆螺接穿过所述调节板并与所述安装块530连接,所述调节杆的延伸方向与所述子传输轨道510垂直,这样便于调节安装块530上下移动。
所述移动轨道600供所述砌砖设备40的底座沿着第一方向往复行驶,所述砌砖设备40的底座为所述固定架111的底部板体,所述底座下方设置有滚轮与所述移动轨道600可移动适配,所述移动轨道600之间包括一直线齿条,所述直线齿条由多节子齿条沿着第一方向首尾依次拼接形成,所述底座上具有通孔,电机的输送端连接一个齿轮,自上而下越过该通孔到达底座下方与所述直线齿条驱动配合,通过电机驱动齿轮转动,从而使得所述底座于所述移动轨道600上可沿所述移动轨道600往复移动。
在本申请所有实施例中,“大”、“小”是相对而言的,“多”、“少”是相对而言的,“上”、“下”是相对而言的,对此类相对用语的表述方式,本申请实施例不再多加赘述。
应理解,说明书通篇中提到的“在本实施例中”、“本申请实施例中”或“作为一种可选的实施方式”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在本实施例中”、“本申请实施例中”或“作为一种可选的实施方式”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均 属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成限定。

Claims (53)

  1. 一种砌砖方法,用于砌砖装置于环境中执行砌砖作业,所述砌砖装置包括砌砖机器人和控制所述砌砖机器人作业的控制模块,所述控制模块预设有砌砖顺序,所述砌砖顺序定义出每一行砖块的首位和末位,所述方法由所述控制模块执行,所述方法包括:
    控制所述砌砖机器人依序砌砖;
    将抹浆后的砖块从初始位置输送至待抓取位置,且使得所述抹浆后的砖块的水平抹浆面朝上设置,所述抹浆后的砖块的水平非抹浆面朝下设置;
    控制所述抹浆后的砖块的水平抹浆面和水平非抹浆面上下翻转;
    控制所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位;
    控制所述抹浆后的砖块沿所述末位至所述首位的方向移动以将所述竖直抹浆面粘粘至竖直放置面,且朝下移动以将所述水平抹浆面粘粘至水平放置面。
  2. 根据权利要求1所述的砌砖方法,其中,所述控制所述抹浆后的砖块的水平抹浆面和水平非抹浆面上下翻转,包括:
    控制所述砌砖机器人的翻转机构自所述待抓取位置抓取且翻转所述抹浆后的砖块,使得翻转后的所述抹浆后的砖块的水平抹浆面和水平非抹浆面上下翻转。
  3. 根据权利要求1所述的砌砖方法,其中,所述控制所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位,包括:
    控制所述砌砖机器人的砌砖机械臂自所述翻转机构转运所述抹浆后的砖块以使得所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位。
  4. 根据权利要求3所述的砌砖方法,其中,所述控制所述抹浆后的砖块沿所述末位至所述首位的方向移动以将所述竖直抹浆面粘粘至竖直放置面,且朝下移动以将所述水平抹浆面粘粘至水平放置面,包括:
    控制所述砌砖机械臂继续运动以使得所述抹浆后的砖块沿所述末位至所述首位的方向移动以将所述竖直抹浆面粘粘至竖直放置面,朝下移动以将所述水平抹浆面粘粘至水平放置面。
  5. 根据权利要求4所述的砌砖方法,在所述抹浆后的砖块的竖直抹浆面相对于所述竖直非抹浆面靠近所述末位之后,且在将所述竖直抹浆面粘粘至竖直放置面,朝下移动以将所述水平抹浆面粘粘至水平放置面之前,还包括:
    控制所述砌砖机械臂的旋转角度调整机构将所述抹浆后的砖块调整成目标姿态,所述目标姿态是指所述抹浆后的砖块平行于墙面且平行于水平面。
  6. 根据权利要求3所述的砌砖方法,所述控制所述砌砖机器人的砌砖机械臂自所述翻转机构转运所述抹浆后的砖块之前,还包括:
    控制所述砌砖机械臂沿着第一时针方向摆动至所述水平非抹浆面的上方,所述砌砖机械臂的自由端摆动至所述水平非抹浆面的上方时,所述砌砖机械臂的自由端的摆动切线方向与所述首位至所述末位的方向相反。
  7. 根据权利要求3所述的砌砖方法,其中,所述控制所述砌砖机器人的砌砖机械臂自所述翻转机构转运所述抹浆后的砖块以使得所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位,包括:
    控制所述砌砖机械臂沿着第一时针方向摆动至与所述水平非抹浆面相对设置,且控制所述砌砖机械臂拾取所述翻转机构上被翻转后的所述抹浆后的砖块;
    自所述砌砖机械臂拾取所述翻转机构上被翻转后的所述抹浆后的砖块后,控制所述砌砖机械臂沿着与所述第一时针方向相反的第二时针方向摆动,以将所述竖直抹浆面和所述竖直非抹浆面左右调转,使得所述竖直抹浆面相对靠近且朝向所述末位。
  8. 根据权利要求4所述的砌砖方法,其中,所述砌砖机械臂包括多关节设 置的关节臂以及连接于关节臂末端的手部,所述控制所述砌砖机器人的砌砖机械臂自所述翻转机构转运所述抹浆后的砖块,包括:
    控制所述关节臂驱动所述手部沿第一时针方向转动至与所述抹浆后的砖块相对,而后控制所述关节臂驱动所述手部朝向所述抹浆后的砖块移动以自所述翻转机构拾取所述抹浆后的砖块,再控制所述关节臂驱动所述手部及所述手部拾取的所述抹浆后的砖块沿第二时针方向旋转,使得所述手部将所述抹浆后的砖块放置于堆砌位置且使得所述抹浆后的砖块的竖直抹浆面相对于竖直非抹浆面靠近所述末位。
  9. 根据权利要求8所述的砌砖方法,其中,所述关节臂包括沿着竖直关节依次转动连接的第一臂和第二臂,所述第二臂连接所述手部,所述方法还包括:
    控制所述第二臂绕所述第一臂沿第一时针方向转动至所述翻转机构的上方,且控制所述第一臂下降,再控制所述手部抓取所述翻转机构上的所述抹浆后的砖块,而后控制所述第二臂绕所述第一臂沿所述第二时针方向旋转,以使得所述手部及所述抹浆后的砖块到达堆砌位置,且使得所述竖直抹浆面与所述末位的竖直放置面平行,且朝向所述末位的竖直放置面。
  10. 根据权利要求9所述的砌砖方法,所述控制所述砌砖机械臂继续运动以使得所述抹浆后的砖块沿所述末位至所述首位的方向移动以将所述竖直抹浆面粘粘至竖直放置面,朝下移动以将所述水平抹浆面粘粘至水平放置面,包括:
    控制所述第一臂在所述砌砖机器人的支撑部上沿所述末位至所述首位的方向平移,直至所述竖直抹浆面与所述末位的竖直放置面平行且部分抵接,而后控制所述第一臂在支撑部上下降,直至所述抹浆后的砖块的所述水平抹浆面与所述末位的所述水平放置面抵紧。
  11. 根据权利要求8所述的砌砖方法,其中,所述关节臂包括绕水平关节依 次转动连接的基部、第一臂和第二臂,所述基部能够绕竖直轴线转动,所述第二臂连接所述手部,所述方法还包括:
    控制所述基部绕竖直轴线沿着第一时针方向转动以使得所述关节臂驱动所述手部至与所述抹浆后的砖块相对,再控制所述第一臂和/或所述第二臂转动以使得所述手部朝向所述抹浆后的砖块移动,再控制所述手部自所述所述翻转机构夹取所述抹浆后的砖块,再控制所述第一臂绕竖直轴线沿着第二时针方向转动以使得所述手部将所述抹浆后的砖块转运至所述堆砌位置,堆砌位置的所述抹浆后的砖块的竖直抹浆面朝向所述末位的竖直放置面。
  12. 根据权利要求2所述的砌砖方法,其中,所述砌砖装置还包括输送机构,所述方法还包括:
    通过所述输送机构将所述抹浆后的砖块自初始位置传输至所述翻转机构的待抓取位置;
    当所述初始位置与所述待抓取位置的相对位置关系为非固定设置时,控制所述翻转机构向下运动,直至所述翻转机构的到位开关能够被所述抹浆后的砖块的所述竖直非抹浆面触发后,确认所述翻转机构到达所述待抓取位置前的准备位置。
  13. 根据权利要求12所述的砌砖方法,所述方法还包括:
    确认所述翻转机构到达所述待抓取位置前的准备位置后,控制所述翻转机构上升直至夹板的底面高于所述抹浆后的砖块的顶面,控制所述翻转机构平移直至所述翻转机构与所述抹浆后的砖块的中心对准,而后控制所述翻转机构向下夹取所述抹浆后的砖块。
  14. 根据权利要求13所述的砌砖方法,其中,控制所述翻转机构向下夹取所述抹浆后的砖块,包括:
    下降所述翻转机构,控制所述翻转机构的两个夹板收缩间距以分别抵接所述抹浆后的砖块的两个竖直侧面,而后控制所述翻转机构沿水平轴线自转,使得所述抹浆后的砖块的水平抹浆面和水平非抹浆面180°翻转。
  15. 根据权利要求2所述的砌砖方法,所述砌砖装置还包括一输送机构,所述方法还包括:
    通过所述输送机构将所述抹浆后的砖块自初始位置传输至所述翻转机构的待抓取位置,所述待抓取位置位于所述翻转机构的下方;
    当所述初始位置与所述待抓取位置的相对位置关系为固定设置时,控制所述抹浆后的砖块放置于所述初始位置,所述控制模块获知所述抹浆后的砖块到所述待抓取位置的运输距离,根据所述运输距离控制所述抹浆后的砖块运输至待抓取位置。
  16. 根据权利要求15所述的砌砖方法,在所述抹浆后的砖块运输至待抓取位置之后,所述方法还包括:
    控制所述翻转机构向下夹取所述抹浆后的砖块,而后控制所述翻转机构的两个夹板收缩间距以分别抵接所述抹浆后的砖块的两个竖直侧面,而后控制所述翻转机构沿水平轴线自转,使得所述抹浆后的砖块的水平抹浆面和水平非抹浆面180°翻转。
  17. 一种砌砖装置,采用权利要求1至16中任一项所述的砌砖方法于环境中执行砌砖作业,所述砌砖装置包括砌砖机器人和控制所述砌砖机器人作业的控制模块,所述砌砖机器人包括支撑部和设置于支撑部上的翻转机构和砌砖机械臂,所述控制模块与所述翻转机构和所述砌砖机械臂分别电连接。
  18. 根据权利要求17所述的砌砖装置,所述砌砖装置还包括底盘和设于底盘上的输送机构,所述砌砖机械臂通过支撑部安装于所述底盘,所述输送机构 具有用于开始放砖块的初始位置和被抓取砖块的待抓取位置,所述初始位置安装于所述支撑部的一侧,所述翻转机构设置于所在支撑柱的背离所述初始位置的另一侧,所述砌砖机械臂于所述支撑部的背离所述初始位置的一侧的空间运动,所述初始位置至所述待抓取位置的方向与首位至末位的方向平行。
  19. 根据权利要求17所述的砌砖装置,其中,所述翻转机构包括:
    一安装部、转动部、连接板和设置于所述连接板上的两个平行的所述夹板,所述安装部能够升降驱动所述转动部以升降所述抹浆后的砖块,所述转动部沿水平轴线转动连接所述安装部和所述连接板,所述水平轴线垂直于所述初始位置至所述待抓取位置的方向以使得抹浆后的砖块上下翻转,两个所述夹板沿着平行于所述水平轴线的方向相对设置且两者之间的间距可调以夹取、释放所述抹浆后的砖块。
  20. 根据权利要求17所述的砌砖装置,其中,所述砌砖机械臂包括依次转动连接的第一臂、第二臂和手部,所述第一臂远离所述第二臂的一端通过基部与所述支撑部连接,所述手部被设置为抓取抹浆且翻转后的砖块。
  21. 根据权利要求18所述的砌砖装置,所述砌砖装置还包括抹浆送砖机构,所述抹浆送砖机构邻近所述初始位置设置。
  22. 一种砌砖设备,被设置为将砖块堆砌成墙体,每一所述砖块于所述墙体上形成一个堆砌位置,包括:
    一支撑部;
    一翻转机构,包括一安装部和一拾取部,所述安装部连接所述支撑部,所述拾取部沿着一第一轴线枢接于所述安装部,所述拾取部能够拾取抹浆后的所述砖块,且沿着所述第一轴线翻转所述砖块,被翻转后的所述砖块呈抹浆面朝下设置和非抹浆面朝上设置;
    一砌砖机械臂,包括一基部、自基部向前延伸的关节臂以及连接于关节臂前端的手部,所述基部安装于所述支撑部,所述关节臂被构造成具有多个自由度,所述手部能够向下拾取翻转后的所述砖块,且将其释放于所述堆砌位置。
  23. 根据权利要求22所述的砌砖设备,还包括控制模块,所述手部包括位置检测装置,所述位置检测装置被设置为检测翻转后的所述砖块的位姿,且所述位置检测装置与所述控制模块电信连接;
    所述控制模块基于翻转后的所述砖块的位姿生成动作指令,所述动作指令用于控制所述手部调整至与所述砖块平行的平行位姿,且所述控制模块控制所述手部以所述平行位姿自上而下抓取所述砖块。
  24. 根据权利要求23所述的砌砖设备,其中,所述位置检测装置为激光测距传感器,所述激光测距传感器的数量为至少三个;
    当所述手部位于所述拾取部上方时,至少三个所述激光测距传感器的每一均朝向所述非抹浆面发射激光线且于所述非抹浆面上形成至少三个激光点,至少三个所述激光点之间的连线形成一第一基准,所述控制模块控制所述手部调整至与第一基准平行,且控制所述手部以平行于所述第一基准的位姿抓取所述砖块。
  25. 根据权利要求24所述的砌砖设备,其中,所述至少三个激光点之间的连线形成一多边形,自上而下观察,所述砖块的质心的投影位于所述多边形内。
  26. 根据权利要求22所述的砌砖设备,所述砌砖设备还包括控制模块,所述控制模块能够控制所述砌砖机械臂自第一位姿和第二位姿之间摆动,所述砌砖机械臂以所述第一位姿向下拾取翻转后的所述砖块,所述砌砖机械臂以所述第二位姿与已砌砖块校准定位,所述第一位姿的所述关节臂的末端臂与所述第二位姿的所述关节臂的末端臂沿着前后方向成180°对称。
  27. 根据权利要求26所述的砌砖设备,其中,自所述第一位姿切换至所述第二位姿,所述关节臂具有肩关节、肘关节和腕关节,所述控制模块针对所述砌砖机械臂的控制仅对所述肘关节施加动作指令,所述动作指令使得所述关节臂的末端臂沿着水平方向向前摆动180°。
  28. 根据权利要求22所述的砌砖设备,其中,所述翻转机构每一次翻转抹浆后的砖块至相同高度。
  29. 根据权利要求22所述的砌砖设备,其中,所述手部每次均以相同的位置向下抓取砖块。
  30. 根据权利要求22所述的砌砖设备,其中,所述砖块沿着一输送方向输送至被拾取位置,所述被拾取位置独立或者一体设于所述砌砖设备,所述被拾取位置的所述抹浆后的砖块用于供所述翻转机构拾取,所述翻转机构具有到位感应器,所述到位感应器安装于所述拾取部,用于感应所述砖块于所述输送方向上的位置。
  31. 根据权利要求30所述的砌砖设备,其中,所述拾取部上设有阻挡限位块,所述阻挡限位块设置于所述拾取部上,所述阻挡限位块或者所述拾取部上设置所述到位感应器,所述阻挡限位块具有用于朝向抹浆后的砖块的阻挡面,所述到位感应器的感应面与所述阻挡面平行,或者所述感应面凸出于所述阻挡面,所述到位感应器为接触感应器。
  32. 根据权利要求22所述的砌砖设备,其中,所述拾取部包括连接板和两个夹取部,所述连接板通过旋转轴与所述安装部转动连接,所述旋转轴的轴线为所述第一轴线,两个所述夹取部间隔设置于所述连接板上,两个所述夹取部中的至少一个与所述连接板滑动连接,使两个所述夹取部之间形成夹砖空间。
  33. 根据权利要求32所述的砌砖设备,其中,两个所述夹取部具有相对的 两个夹取面,两个所述夹取面中的至少一个设有接触传感器,所述接触传感器的接触部凸伸至夹取空间内。
  34. 根据权利要求22所述的砌砖设备,其中,所述关节臂包括第一臂和第二臂,所述第一臂与所述基部之间通过肩关节转动连接,所述第一臂的远离所述基部的一端和所述第二臂之间通过肘关节转动连接,所述手部和所述第二臂的远离所述第一臂的一端通过腕关节转动连接,所述肩关节的转动轴线、所述肘关节的转动轴线和所述腕关节的转动轴线相互平行,且分别与所述第一臂的延伸方向垂直。
  35. 根据权利要求34所述的砌砖设备,其中,所述砌砖机械臂具有XYZ向的旋转角度调整机构,其中,所述关节臂的腕关节为Z向R轴,XY向R轴位于所述腕关节和所述肘关节之间或者相对于所述腕关节靠近前端设置。
  36. 根据权利要求35所述的砌砖设备,其中,XY向R轴包括X向R轴和Y向R轴,所述第二臂包括第一臂体、第二臂体、第三臂体、所述X向R轴和所述Y向R轴,所述第一臂体、所述第二臂体和所述第三臂体的延伸方向分别与所述第二臂整体的延伸方向相同,所述第一臂体与所述肘关节连接,所述X向R轴转动设置于所述第一臂体上,所述X向R轴的轴线与所述肘关节的轴线及所述第一臂体的延伸方向分别垂直,所述第二臂体通过所述X向R轴与所述第一臂体转动连接;所述Y向R轴转动设置于所述第二臂体上,所述Y向R轴的轴线与所述肘关节的轴线垂直,且与所述第二臂体的延伸方向平行,所述第三臂体通过所述Y向R轴与所述第二臂体转动连接,所述第三臂体与所述腕关节连接。
  37. 根据权利要求36所述的砌砖设备,其中,所述第一臂体上设有X向驱动关节,所述X向驱动关节的转动轴线沿X向,所述X向驱动关节的输出轴上 套设有主动轮,所述主动轮通过同步带传动连接有一从动轮,所述从动轮与所述X向R轴连接;所述第二臂体上设有Y向驱动关节,所述Y向驱动关节的输出轴与所述Y向R轴连接;所述第三臂体上设有Z向驱动关节,所述Z向驱动关节的输出轴与所述Z向R轴连接。
  38. 根据权利要求22所述的砌砖设备,还包括一控制模块,所述控制模块同时发送第一动作指令和第二动作指令,所述第一动作指令使得所述砌砖机械臂进行砌砖动作,所述第二动作指令使得所述翻转机构抓取且翻转抹浆后的所述砖块。
  39. 根据权利要求38所述的砌砖设备,其中,所述第二动作指令的时长小于或者等于所述第一动作指令的时长。
  40. 根据权利要求22所述的砌砖设备,其中,所述支撑部具有第一升降机构和第二升降机构,所述第一升降机构连接所述砌砖机械臂以升降所述砌砖机械臂,所述第二升降机构连接所述翻转机构以升降翻转机构,所述第二升降机构相比于所述第一升降机构靠后设置。
  41. 根据权利要求40所述的砌砖设备,其中,所述第一升降机构包括自后向前依次设置的固定架、一级升降、二级升降和三级升降,所述一级升降于所述固定架上升降,所述一级升降上设有环状带,所述环状带的两端分别位于所述一级升降机构的前后两侧,所述环状带的第一端与所述固定架相对靠上的部分固定连接,所述环状带的第二端与所述二级升降相对靠下的部分固定连接,所述一级升降上升的同时,固定长度的所述环状带带动所述二级升降及所述二级升降上的所述三级升降同步上升,所述基部与所述三级升降连接。
  42. 根据权利要求41所述的砌砖设备,其中,所述一级升降包括一级移动架和一级从动部,所述固定架上设有一级驱动部,所述一级移动架沿竖直方向 滑动设置于所述固定架上,所述一级驱动部驱动连接有一级主动部,所述一级主动部与所述一级从动部传动连接,所述一级从动部与所述一级移动架连接,所述一级从动部带动所述一级移动架沿竖直方向于所述固定架上滑动。
  43. 根据权利要求42所述的砌砖设备,其中,所述一级移动架的两侧分别设有一级滑动块,至少一所述一级滑动块的侧面的上下间隔设置顶部限位开关和底部限位开关,所述固定架上设有一级导轨,所述一级滑动块与所述一级导轨滑动配合,所述固定架的一侧的上下端分别设有顶部限位开关感应器和底部限位开关感应器,分别用于感应所述顶部限位开关和所述底部限位开关。
  44. 根据权利要求41所述的砌砖设备,其中,所述固定架包括两个竖直杆和垂直设置于两个竖直杆之间的多个横向杆,各所述横向杆开设有竖向贯通所述横向杆的让位槽,所述一级主动部为一级齿轮,所述一级从动部为一级齿条,所述一级齿轮与所述一级齿条啮合,所述一级齿条依次穿设各所述让位槽。
  45. 根据权利要求41所述的砌砖设备,其中,所述一级移动架的顶部转动设有转动轮,所述环状带套设于所述转动轮上,所述环状带的第一端位于所述一级移动架的朝向所述固定架的一面,且与所述固定架上凸设的第一固定部连接,所述环状带的第二端位于所述一级移动架的背离所述固定架的一面,且与所述二级升降连接,所述二级升降滑动设置于所述一级移动架上。
  46. 根据权利要求45所述的砌砖设备,其中,所述二级升降包括二级移动架和设于二级移动架上的第二固定部,所述二级移动架上设有二级导轨,所述三级升降包括三级驱动部、三级主动部和三级移动部,所述二级移动架上还设有三级从动部,所述三级移动部滑动设置于所述二级导轨上,所述三级驱动部与所述三级主动部驱动连接,所述三级主动部与所述三级从动部传动连接,所述三级从动部带动所述三级移动部于所述二级导轨上滑动,所述基部与所述三 级升降连接。
  47. 根据权利要求22所述的砌砖设备,其中,沿着左右方向定义第一侧和第二侧,所述砌砖机械臂朝向所述第一侧且向后摆动至所述翻转机构的上方,所述基部偏向所述第一侧设置。
  48. 根据权利要求47所述的砌砖设备,其中,所述基部和所述安装部于所述砌砖设备的坐标系沿着左右方向具有固定的相对位置,所述安装部位于所述基部的第一侧。
  49. 一种建筑系统,包括:
    如权利要求22至48任一所述的砌砖设备;
    底盘,所述底盘上设有输砖轨道和移动轨道,所述输砖轨道用于沿着第一方向传输抹浆后的砖块,所述支撑部可往复移动设于所述移动轨道,使所述砌砖设备可往复移动于所述移动轨道,所述砌砖设备中的翻转机构自所述输砖轨道拾取所述抹浆后的砖块;
    其中,所述砌砖设备往复移动的方向平行于所述第一方向且平行于墙体的方向,所述输砖轨道的高度高于所述移动轨道的高度。
  50. 根据权利要求49所述的建筑系统,其中,所述翻转机构位于所述输砖轨道的正上方。
  51. 根据权利要求50所述的建筑系统,其中,所述输砖轨道沿着输送方向将所述抹浆后的砖块输送至所述被拾取位置,所述被拾取位置独立或者一体设于所述砌砖设备,所述被拾取位置的所述抹浆后的砖块用于供所述翻转机构拾取,待拾取位置的所述翻转机构位于所述抹浆后的砖块的输送下游,所述翻转机构用于准备拾取抹浆砖块的位置为所述待拾取位置,所述翻转机构具有到位感应器,所述到位感应器安装于所述翻转机构的拾取部,用于感应所述抹浆后 的砖块于所述输送方向上的位置,所述到位感应器具有感应位置,于所述输送方向上,所述感应位置位于所述翻转机构的上游且位于被输送的所述抹浆后的砖块的下游;
    所述建筑系统包括控制模块,当所述抹浆后的砖块到达所述感应位置,所述控制模块控制所述输砖轨道减速至停止状态,使被输送的所述抹浆后的砖块停止于被拾取位置,所述被拾取位置位于所述翻转机构和感应位置之间。
  52. 根据权利要求49所述的建筑系统,其中,待拾取位置的所述翻转机构高于被输送的所述抹浆后的砖块,所述翻转机构具有感应位置,所述感应位置位于所述翻转机构的下方且位于被输送的所述抹浆后的砖块的输送下游;
    所述建筑系统包括控制模块,当所述抹浆后的砖块到达所述感应位置,所述控制模块控制所述输砖轨道减速至停止状态,使被输送的所述抹浆后的砖块停止于被拾取位置,所述被拾取位置位于所述翻转机构下方且位于所述感应位置输送下游。
  53. 根据权利要求49所述的建筑系统,其中,所述支撑部具有第一升降机构和第二升降机构,所述第一升降机构连接所述砌砖设备中的砌砖机械臂以升降所述砌砖机械臂,所述第二升降机构连接所述翻转机构以升降所述翻转机构,所述第二升降机构相比于所述第一升降机构靠后设置,所述第二升降机构驱动所述翻转机构自第一待拾取位置和第二待拾取位置之间升降,所述第一待拾取位置的所述翻转机构用于自所述输砖轨道拾取所述抹浆后的砖块,自所述第一待拾取位置上升至所述第二待拾取位置,所述第二待拾取位置的高度可供所述翻转机构沿着第一轴线旋转180°且不与所述输砖轨道干涉,于所述第二待拾取位置翻转后的所述抹浆后的砖块供所述砌砖机械臂拾取。
PCT/CN2022/097524 2021-06-08 2022-06-08 砌砖方法、砌砖装置、砌砖设备及建筑系统 WO2022257948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2300067.2A GB2621648A (en) 2021-06-08 2022-06-08 Bricklaying method, bricklaying apparatus, bricklaying device, and building system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110645032.7 2021-06-08
CN202110640061.4A CN113323423B (zh) 2021-06-08 2021-06-08 砌砖方法及砌砖装置
CN202110645032.7A CN113187238B (zh) 2021-06-08 2021-06-08 砌砖设备及建筑系统
CN202110640061.4 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022257948A1 true WO2022257948A1 (zh) 2022-12-15

Family

ID=84424773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097524 WO2022257948A1 (zh) 2021-06-08 2022-06-08 砌砖方法、砌砖装置、砌砖设备及建筑系统

Country Status (2)

Country Link
GB (1) GB2621648A (zh)
WO (1) WO2022257948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116201381A (zh) * 2023-05-05 2023-06-02 烟台市建设工程质量和安全监督站 砌筑工程施工装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB317708A (en) * 1928-08-17 1929-08-22 Achille Andre Improved process and apparatus for building walls
US5284000A (en) * 1992-11-30 1994-02-08 Redwall Engineering Corp. Automating bricklaying
CN104141391A (zh) * 2013-12-03 2014-11-12 殷家土 一种砌墙机器人
CN105952165A (zh) * 2016-05-12 2016-09-21 南宁市富久信息技术有限公司 一种砌墙砖机
CN107083845A (zh) * 2017-06-22 2017-08-22 厦门华蔚物联网科技有限公司 一种自动砌墙方法及自动砌墙系统
CN206844687U (zh) * 2017-06-30 2018-01-05 重庆中渝固立智能科技有限公司 一种自动砌砖机器人
CN111155771A (zh) * 2020-01-07 2020-05-15 广东博智林机器人有限公司 一种旋转传送机构及砌砖机器人
CN113187238A (zh) * 2021-06-08 2021-07-30 广东博智林机器人有限公司 砌砖设备及建筑系统
CN113323423A (zh) * 2021-06-08 2021-08-31 广东博智林机器人有限公司 砌砖方法及砌砖装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB317708A (en) * 1928-08-17 1929-08-22 Achille Andre Improved process and apparatus for building walls
US5284000A (en) * 1992-11-30 1994-02-08 Redwall Engineering Corp. Automating bricklaying
CN104141391A (zh) * 2013-12-03 2014-11-12 殷家土 一种砌墙机器人
CN105952165A (zh) * 2016-05-12 2016-09-21 南宁市富久信息技术有限公司 一种砌墙砖机
CN107083845A (zh) * 2017-06-22 2017-08-22 厦门华蔚物联网科技有限公司 一种自动砌墙方法及自动砌墙系统
CN206844687U (zh) * 2017-06-30 2018-01-05 重庆中渝固立智能科技有限公司 一种自动砌砖机器人
CN111155771A (zh) * 2020-01-07 2020-05-15 广东博智林机器人有限公司 一种旋转传送机构及砌砖机器人
CN113187238A (zh) * 2021-06-08 2021-07-30 广东博智林机器人有限公司 砌砖设备及建筑系统
CN113323423A (zh) * 2021-06-08 2021-08-31 广东博智林机器人有限公司 砌砖方法及砌砖装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116201381A (zh) * 2023-05-05 2023-06-02 烟台市建设工程质量和安全监督站 砌筑工程施工装置
CN116201381B (zh) * 2023-05-05 2023-06-30 烟台市建设工程质量和安全监督站 砌筑工程施工装置

Also Published As

Publication number Publication date
GB202300067D0 (en) 2023-02-15
GB2621648A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
CN113187238B (zh) 砌砖设备及建筑系统
CN111088895B (zh) 砌砖装置及砌砖机器人
US10689864B2 (en) Automated brick laying system and method of use thereof
WO2019136996A1 (zh) 一种瓷砖桁架机械手及其行走方式
WO2023273581A1 (zh) 砌砖设备
WO2022257948A1 (zh) 砌砖方法、砌砖装置、砌砖设备及建筑系统
US20060099064A1 (en) On-the-fly robotic stacking system for flat glass
CN104806028B (zh) 一种高自由度高精度全自动砌砖机
JP2019085580A (ja) コークス炉定型耐火物積みシステムおよびコークス炉定型耐火物積み方法
WO2023060932A1 (zh) 一种具有精定位功能的自动搬运系统、自动化系统及方法
CN113323423B (zh) 砌砖方法及砌砖装置
JP2010058978A (ja) パレタイズ装置
US20030229998A1 (en) Apparatus for producing wall panels
WO2022267515A1 (zh) 板材铺贴设备及板材铺贴方法
WO2023206991A1 (zh) 供砖总成、砌砖系统以及砌砖方法
CN210192757U (zh) 一种卫生陶瓷隧道窑装卸窑系统
CN114873263A (zh) 一种侧板上料设备、涂胶以及积放链输送设备
CN113276143B (zh) 拾取执行终端及输送拾取系统
WO2023207012A1 (zh) 翻转机构、砌砖机器人及砌砖方法
RU2803337C1 (ru) Робототехнический комплекс укладки газобетона
CN116696014A (zh) 瓷砖铺贴机器人
CN115110785A (zh) 执行终端及抹浆砌筑机器人
RU2754505C1 (ru) Способ возведения конструкций из мелкоштучных изделий, робот-манипулятор и комплекс для его осуществления
CN210622349U (zh) 一种全自动砌墙系统
CN110158978B (zh) 一种全自动砌墙系统及砌墙方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202300067

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220608

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE