WO2023206683A1 - 空调器及其补气控制方法、空调控制器、存储介质 - Google Patents
空调器及其补气控制方法、空调控制器、存储介质 Download PDFInfo
- Publication number
- WO2023206683A1 WO2023206683A1 PCT/CN2022/095136 CN2022095136W WO2023206683A1 WO 2023206683 A1 WO2023206683 A1 WO 2023206683A1 CN 2022095136 W CN2022095136 W CN 2022095136W WO 2023206683 A1 WO2023206683 A1 WO 2023206683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air supply
- opening
- air conditioner
- compressor
- ambient temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000001502 supplementing effect Effects 0.000 title abstract 4
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 72
- 238000001816 cooling Methods 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 44
- 238000004378 air conditioning Methods 0.000 claims description 14
- 239000003507 refrigerant Substances 0.000 description 24
- 238000005265 energy consumption Methods 0.000 description 14
- 230000001276 controlling effect Effects 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
- F24F2110/12—Temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/65—Concentration of specific substances or contaminants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present disclosure relates to the technical field of air conditioning, and in particular to an air supply control method for an air conditioner, an air conditioning controller, a computer-readable storage medium and an air conditioner.
- air conditioners have been widely used as a device for regulating indoor temperature.
- the compressor plays an important role in the cooling and heating of the air conditioner.
- the conventional cooling or heating capabilities of air conditioners can no longer meet user needs.
- the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
- the first purpose of the present disclosure is to propose an air supply control method for an air conditioner, which determines whether the air conditioner needs a jet enthalpy increase based on the outdoor ambient temperature, and when it is determined that the air conditioner needs a jet enthalpy increase, the air conditioner determines whether the air conditioner needs a jet enthalpy increase.
- the operation mode determines which air supply branch is controlled to open, and after controlling the opening of the air supply branch, adjust the opening degree of the branch according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner, thereby improving the air conditioner.
- the device can reduce energy consumption on the premise of cooling capacity in high-temperature environments and heating capacity in low-temperature environments.
- the second object of the present disclosure is to provide an air conditioning controller.
- a third object of the present disclosure is to provide a computer-readable storage medium.
- the fourth object of the present disclosure is to provide an air conditioner.
- the first embodiment of the present disclosure proposes an air supply control method for an air conditioner.
- the air conditioner includes a condenser, a compressor, an evaporator, a throttling element, a first air supply branch and a second air supply branch. air branch, one end of the first air supply branch is connected to one end of the throttling element, the other end of the first air supply branch is connected to the air supply port of the compressor, and one end of the second air supply branch is connected to the throttling element The other end of the second air supply branch is connected to the air supply port of the compressor.
- the method includes: determining the operating mode of the air conditioner and detecting the outdoor ambient temperature; determining based on the outdoor ambient temperature when the air conditioner needs to spray air to increase enthalpy. Control opening of one of the first air supply branch and the second air supply branch according to the operating mode, and adjust the opening degree of the opening branch according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner.
- the operating mode of the air conditioner is first determined, and the outdoor ambient temperature is detected. Then, when it is determined based on the outdoor ambient temperature that the air conditioner needs to eject air to increase enthalpy, the first air supply is controlled according to the operating mode. One of the branch circuit and the second air supply branch circuit is opened, and the opening degree of the branch circuit is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner.
- this method determines whether the air conditioner needs to increase the jet enthalpy based on the outdoor ambient temperature, and when it is determined that the air conditioner needs to increase the jet enthalpy, determines which air supply branch to control to open based on the operating mode of the air conditioner, and when controlling the air supply After the branch circuit is opened, the degree of opening of the branch circuit is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner, thereby improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments. Under the premise, reduce energy consumption.
- the air supply control method of the air conditioner according to the above embodiments of the present disclosure may also have the following additional technical features:
- the operating mode of the air conditioner is the cooling mode
- the first air supply branch is controlled to open.
- the first gas supply branch includes a first gas-liquid separator and a first control valve, and the gas outlet of the first gas-liquid separator is connected to the gas supply port of the compressor through the first control valve, wherein , adjusting the opening degree of the opening branch according to the outdoor ambient temperature, including: when the outdoor ambient temperature is greater than the first preset temperature and less than the second preset temperature, determining the first opening adjustment based on the outdoor ambient temperature and the operating frequency of the compressor rate, and adjust the opening of the first control valve according to the first opening adjustment rate; when the outdoor ambient temperature is greater than or equal to the second preset temperature, the second opening adjustment is determined based on the outdoor ambient temperature and the operating frequency of the compressor. rate, and adjust the opening of the first control valve according to the second opening adjustment rate, wherein the second opening adjustment rate is greater than the first opening adjustment rate.
- the first opening adjustment rate is calculated according to the following formula:
- Q1 is the first opening adjustment rate
- K1 is the first adjustment coefficient
- K2 is the second adjustment coefficient
- T4 is the outdoor ambient temperature
- f is the operating frequency of the compressor
- the second opening adjustment rate is calculated according to the following formula:
- Q2 is the second opening adjustment rate
- K3 is the third adjustment coefficient
- K4 is the fourth adjustment coefficient
- K3>K1 K2>K4.
- the second air supply branch is controlled to open.
- the second air supply branch includes a second gas-liquid separator and a second control valve, and the air outlet of the second gas-liquid separator is connected to the air supply port of the compressor through the second control valve, wherein , adjusting the opening degree of the opening branch according to the outdoor ambient temperature, including: when the outdoor ambient temperature is greater than the fourth preset temperature and less than the third preset temperature, determining the third opening adjustment based on the outdoor ambient temperature and the operating frequency of the compressor rate, and adjust the opening of the second control valve according to the third opening adjustment rate; when the outdoor ambient temperature is less than or equal to the fourth preset temperature, the fourth opening adjustment is determined based on the outdoor ambient temperature and the operating frequency of the compressor. rate, and adjust the opening of the second control valve according to the fourth opening adjustment rate, where the fourth opening adjustment rate is greater than the third opening adjustment rate.
- the third opening adjustment rate is calculated according to the following formula:
- Q3 is the third opening adjustment rate
- K5 is the fifth adjustment coefficient
- K6 is the sixth adjustment coefficient
- T4 is the outdoor ambient temperature
- f is the operating frequency of the compressor
- the fourth opening adjustment rate is calculated according to the following formula:
- Q4 is the fourth opening adjustment rate
- K7 is the seventh adjustment coefficient
- K8 is the eighth adjustment coefficient
- K7>K5 K6>K8.
- the compressor includes a body and a liquid storage tank.
- the liquid storage tank is provided below the body and is fixedly connected to the body.
- the upper part of the body defines an exhaust port of the compressor, and the lower part of the body is connected by a connecting pipe.
- the lower part of the liquid storage tank Connected to the upper side of the liquid storage tank, the lower part of the liquid storage tank defines the air return port of the compressor, and the other side of the upper part of the liquid storage tank defines the air supply port of the compressor.
- an air conditioning controller including a memory, a processor, and an air supply control program of the air conditioner stored in the memory and executable on the processor.
- the processor executes the air conditioning control program.
- the air conditioning controller of the embodiment of the present disclosure can reduce energy consumption while improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments by executing the above air supply control method of the air conditioner.
- a third embodiment of the present disclosure proposes a computer-readable storage medium on which an air supply control program of an air conditioner is stored.
- the air supply control program of the air conditioner is executed by a processor, the above mentioned tasks are realized.
- Air conditioner air supply control method When the air supply control program of the air conditioner is executed by a processor, the above mentioned tasks are realized. Air conditioner air supply control method.
- the computer-readable storage medium of the embodiment of the present disclosure can reduce energy consumption on the premise of improving the cooling capacity of the air conditioner in high-temperature environments and the heating capacity in low-temperature environments by executing the above-mentioned air supply control method of the air conditioner. .
- a fourth embodiment of the present disclosure proposes an air conditioner, including: a condenser, a compressor, an evaporator, a throttling element, a first air supply branch and a second air supply branch.
- One end of the air supply branch is connected to one end of the throttling element
- the other end of the first air supply branch is connected to the air supply port of the compressor
- one end of the second air supply branch is connected to the other end of the throttling element
- the second end of the second air supply branch is connected to the other end of the throttling element.
- the other end of the air supply branch is connected to the air supply port of the compressor; a temperature detector is used to detect the outdoor ambient temperature; a controller is used to determine the operating mode of the air conditioner and determine the need for injection enthalpy increase of the air conditioner based on the outdoor ambient temperature At this time, one of the first air supply branch and the second air supply branch is controlled to open according to the operating mode, and the opening degree of the opening branch is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner.
- the outdoor ambient temperature is detected by the temperature detector
- the controller determines the operating mode of the air conditioner, and determines according to the outdoor ambient temperature that the air conditioner needs to eject air to increase enthalpy, and controls the first air supply branch according to the operating mode.
- One of the air supply branch and the second air supply branch is opened, and the opening degree of the opening branch is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner.
- the air conditioner determines whether the air conditioner needs to increase the jet enthalpy based on the outdoor ambient temperature, and when it is determined that the air conditioner needs to increase the jet enthalpy, it determines which air supply branch to control to open based on the operating mode of the air conditioner, and when controlling the air supply. After the air branch is opened, the opening degree of the branch is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner, thereby improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments. On the premise of reducing energy consumption.
- the air conditioner according to the above embodiments of the present disclosure may also have the following additional technical features:
- the compressor includes a body and a liquid storage tank.
- the liquid storage tank is provided below the body and is fixedly connected to the body.
- the upper part of the body defines an exhaust port of the compressor, and the lower part of the body is connected by a connecting pipe.
- the lower part of the liquid storage tank Connected to the upper side of the liquid storage tank, the lower part of the liquid storage tank defines the air return port of the compressor, and the other side of the upper part of the liquid storage tank defines the air supply port of the compressor.
- Figure 1 is a flow chart of an air supply control method for an air conditioner according to an embodiment of the present disclosure
- Figure 2 is a schematic structural diagram of an air conditioner according to an embodiment of the present disclosure
- Figure 3 is a schematic structural diagram of the compressor in Figure 2;
- Figure 4 is a flow chart of an air supply control method of an air conditioner according to a specific example of the present disclosure
- FIG. 5 is a block diagram of an air conditioning controller according to an embodiment of the present disclosure.
- the air conditioner may include a condenser 1, a compressor 2, an evaporator 3, a throttling element 4, a first air supply branch 5 and a second air supply branch. 6.
- a condenser 1 a compressor 2, an evaporator 3, a throttling element 4, a first air supply branch 5 and a second air supply branch. 6.
- one end of the first air supply branch 5 is connected to one end of the throttling element 4
- the other end of the first air supply branch 5 is connected to the air supply port of the compressor 2
- one end of the second air supply branch 6 is connected to The other end of the throttling element 4 and the other end of the second air supply branch 6 are connected to the air supply port of the compressor 2 .
- the high-temperature and high-pressure gas refrigerant compressed in the compressor 2 passes through the four-way valve 11 and exchanges heat with the surrounding air in the condenser 1 (outdoor heat exchanger) to become liquid refrigerant.
- the liquid refrigerant is decompressed into a two-phase state (gas-liquid mixed state) through the throttling element 4 and then enters the evaporator 3. It exchanges heat with the surrounding air through the evaporator 3 (indoor heat exchanger) and then evaporates into a low-temperature and low-pressure gas refrigerant. .
- the gaseous refrigerant passes through the four-way valve 11 and returns to the compressor 2 to continue circulation, so as to achieve continuous cooling of the air conditioner.
- the high-temperature and high-pressure gas refrigerant compressed in the compressor 2 passes through the four-way valve 11 and then exchanges with the surrounding air in the condenser (the condenser serves as an indoor heat exchanger at this time).
- the heat is then condensed and becomes a liquid refrigerant.
- the liquid refrigerant is decompressed after passing through the throttling element 4 and becomes a two-phase state. It exchanges heat with the surrounding air in the evaporator (the evaporator at this time is used as an outdoor heat exchanger) and then evaporates, becoming a gas refrigerant.
- the gas refrigerant passes through the four-way valve 1 and returns to the compressor 2 to continue circulation to achieve continuous heating by the air conditioner.
- the present disclosure adopts an integrated jet enthalpy-increasing compressor.
- the liquid storage tank 22 and the body 21 are located on the upper and lower floors. Compared with a compressor with a separate design, it can save money. Nearly 40% of space requirements.
- the compressor 2 may include a body 21 and a liquid storage tank 22 .
- the liquid storage tank 22 is provided below the body 21 and is fixedly connected to the body 21 .
- the upper part of the body 21 The exhaust port 23 of the compressor 2 is defined.
- the lower part of the body 21 is connected to the upper side of the liquid storage tank 22 through the connecting pipe 24.
- the lower part of the liquid storage tank 22 defines the air return port 25 of the compressor 2.
- the liquid storage tank 22 The other side of the upper part defines the air supply port 26 of the compressor 2 .
- the air conditioner 2 may also include a jet enthalpy increasing component 27, which is located on one side of the compressor 2, which can be beneficial to the vibration balance of the entire compressor 2, and a pipeline extends from the bottom of the jet enthalpy increasing component 27 into the In the liquid storage tank 22, it can be ensured that the enthalpy-increasing gas from the gas supply port 26 is smoothly recovered into the liquid storage tank 22.
- a jet enthalpy increasing component 27 which is located on one side of the compressor 2, which can be beneficial to the vibration balance of the entire compressor 2, and a pipeline extends from the bottom of the jet enthalpy increasing component 27 into the In the liquid storage tank 22, it can be ensured that the enthalpy-increasing gas from the gas supply port 26 is smoothly recovered into the liquid storage tank 22.
- FIG. 1 is a flow chart of an air supply control method of an air conditioner according to an embodiment of the present disclosure.
- the air supply control method of the air conditioner according to the embodiment of the present disclosure may include the following steps:
- the operating modes of the air conditioner may include cooling mode, heating mode, dehumidification mode, air supply mode, etc.
- the operation mode of the air conditioner is only when the operating mode of the air conditioner is the cooling mode or the heating mode. Execute the next step of detection control. If it is air supply mode or dehumidification mode, the next step of detection will not be executed.
- the outdoor temperature can be detected by a temperature sensor installed in the outdoor unit, or the outdoor ambient temperature can be obtained through a terminal device that establishes a communication connection with the air conditioner.
- the cooling capacity of the air conditioner will be attenuated to a certain extent.
- the heating capacity of the air conditioner will be reduced. There will also be a certain attenuation in ability.
- the outdoor ambient temperature is compared with the high temperature threshold under cooling conditions.
- the outdoor ambient temperature is greater than or equal to the high temperature threshold under cooling conditions, it indicates the current outdoor ambient temperature. If the temperature is higher, the cooling capacity of the air conditioner will decrease to a certain extent.
- the corresponding air supply branch can be controlled to open in the cooling mode to increase the return air volume of the compressor during the cooling process of the air conditioner and improve The cooling capacity of the air conditioner; when the outdoor ambient temperature is less than the high temperature threshold under cooling conditions, it means that the current cooling capacity of the air conditioner can meet the demand, and there is no need to open the air supply branch.
- the opening degree of the air supply branch can also be adjusted.
- the outdoor ambient temperature can be compared with the ultra-high temperature threshold under cooling conditions.
- the air supply branch can be opened to the maximum to compensate for the attenuation of the air conditioner's cooling capacity; when the outdoor ambient temperature is lower than the ultra-high temperature threshold, it means that there is no need to open the air supply branch to the maximum.
- the air supply branch is opened to the maximum. In order to reduce the energy consumption of the air conditioner, it can be opened to the set level.
- the outdoor ambient temperature is compared with the low temperature threshold under heating conditions.
- the outdoor ambient temperature is less than the low temperature threshold under heating conditions, it means that The current outdoor ambient temperature is low, and the heating capacity of the air conditioner will be attenuated to a certain extent.
- the corresponding air supply branch can be controlled to open in the heating mode, so that during the heating process of the air conditioner, Increase the return air volume of the compressor and improve the heating capacity of the air conditioner; when the outdoor ambient temperature is greater than or equal to the low temperature threshold under heating conditions, it means that the current heating capacity of the air conditioner can meet the demand, and there is no need to turn on the air supply branch. road.
- the opening degree of the air supply branch In order to reduce the energy consumption of the air conditioner, you can also adjust the opening degree of the air supply branch. For example, you can compare the outdoor ambient temperature with the ultra-low temperature threshold under heating conditions. When the outdoor ambient temperature is less than or equal to the ultra-low temperature threshold, that is, the outdoor ambient temperature is very low. At this time, the opening degree of the air supply branch can be opened to the maximum to compensate for the attenuation of the air conditioner's heating capacity; when the outdoor ambient temperature is greater than the ultra-low temperature threshold, it means that there is no need to open the air supply branch. The air branch circuit is opened to the maximum. In order to reduce the energy consumption of the air conditioner, it can be opened to the set level.
- the first air supply branch is controlled to open.
- the first preset temperature can be determined according to actual conditions. For example, the first preset temperature is 40°C.
- the relationship between the outdoor ambient temperature and the first preset temperature (such as 40°C) is determined. If the outdoor ambient temperature is greater than the first preset temperature (such as 40°C) °C), indicating that the outdoor ambient temperature is too high. At this time, the cooling capacity of the air conditioner will be attenuated to a certain extent, and the performance of the compressor will be reduced. Therefore, the first air supply branch can be controlled to open, so that the air conditioner can operate even under high ambient temperatures. Provide sufficient cooling capacity to give users a better experience; if the outdoor ambient temperature is less than or equal to the first preset temperature (40°C), the conventional cooling capacity of the air conditioner can mostly meet the user's needs without much attenuation. , so the first Qi supplement branch is not opened.
- the first preset temperature such as 40°C
- the first gas supply branch may include a first gas-liquid separator and a first control valve, and the gas outlet of the first gas-liquid separator is connected to the gas supply port of the compressor through the first control valve,
- adjusting the opening degree of the opening branch according to the outdoor ambient temperature includes: when the outdoor ambient temperature is greater than the first preset temperature and less than the second preset temperature, determining the first opening degree according to the outdoor ambient temperature and the operating frequency of the compressor.
- the second preset temperature may be 48°C.
- the first opening adjustment rate may be calculated according to the following formula:
- Q1 is the first opening adjustment rate
- K1 is the first adjustment coefficient
- K2 is the second adjustment coefficient
- T4 is the outdoor ambient temperature
- f is the operating frequency of the compressor
- the second opening adjustment rate can be calculated according to the following formula:
- Q2 is the second opening adjustment rate
- K3 is the third adjustment coefficient
- K4 is the fourth adjustment coefficient
- K3>K1 K2>K4.
- the first gas supply branch 5 may include a first gas-liquid separator 7 and a first control valve 8 , and the gas outlet of the first gas-liquid separator 7 is connected through the first control valve 8
- the first air supply branch 5 can be controlled to open. After the first air supply branch 5 is opened, part of the refrigerant in the two-phase state (gas-liquid mixed state) after flowing through the throttling element 4 and decompressed will flow through the evaporator 3 to exchange heat with the surrounding air and then evaporate into low-temperature and low-pressure refrigerant.
- Gas refrigerant, and the other part of the gas-liquid mixed refrigerant will flow through the first gas-liquid separator 7, and the liquid refrigerant and the gaseous refrigerant will be separated through the first gas-liquid separator 7, and the separated gaseous refrigerant will pass through the first control valve 8 enters the air supply port of compressor 2, thereby using the gas-liquid separator to increase the return air volume of the compressor, so that the air conditioner can achieve better cooling effect.
- the opening degree of the opening branch can also be adjusted according to the outdoor ambient temperature.
- the first opening adjustment rate Q1 can be determined according to the outdoor ambient temperature and the operating frequency of the compressor. For example, The first opening adjustment rate Q1 is obtained through the above formula (1). From formula (1), it can be found that the first opening adjustment rate Q1 is directly proportional to the outdoor ambient temperature T4 and inversely proportional to the operating frequency f of the compressor.
- the opening of the first control valve can be adjusted according to the first opening adjustment rate.
- the faster the first opening adjustment rate the larger the opening of the first control valve; the slower the first opening adjustment rate. , the opening of the first control valve can be adjusted smaller.
- the second opening adjustment rate can be determined according to the outdoor ambient temperature T4 and the operating frequency f of the compressor.
- the second opening adjustment rate can be obtained through the above formula (2) Opening adjustment rate Q2. From formula (2), it can be found that the second opening adjustment rate Q2 is directly proportional to the outdoor ambient temperature T4 and inversely proportional to the operating frequency f of the compressor.
- the opening of the first control valve can be adjusted according to the second opening adjustment rate.
- the faster the second opening adjustment rate the larger the opening of the first control valve; the slower the second opening adjustment rate. , the opening of the first control valve can be adjusted smaller.
- the second opening adjustment rate Q2 can be greater than the first opening adjustment rate Q1 through the adjustment coefficients K3>K1, K2>K4, so as to satisfy the requirement of determining the opening degree of the first air supply branch according to the specific temperature.
- the operating mode of the air conditioner is the heating mode
- the second air supply branch is controlled to open.
- the third preset temperature may be determined according to actual conditions.
- the third preset temperature may be 7°C.
- the relationship between the outdoor ambient temperature and the third preset temperature (7°C) is determined. If the outdoor ambient temperature is less than the third preset temperature (7°C) ), indicating that the outdoor ambient temperature is too low. At this time, the heating capacity of the air conditioner will be attenuated to a certain extent, and the performance of the compressor will be reduced. Therefore, the second air supply branch can be controlled to be opened, so that the air conditioner can also operate at low ambient temperatures.
- the conventional heating capacity of the air conditioner can mostly meet the user's needs, and there will not be much There is too much attenuation, so the second air supply branch is not opened.
- the second air supply branch may include a second gas-liquid separator and a second control valve, and the air outlet of the second gas-liquid separator is connected to the air supply port of the compressor through the second control valve, Among them, adjusting the opening degree of the opening branch according to the outdoor ambient temperature includes: when the outdoor ambient temperature is greater than the fourth preset temperature and less than the third preset temperature, determining the third opening degree according to the outdoor ambient temperature and the operating frequency of the compressor.
- the fourth preset temperature may be -7°C.
- the third opening adjustment rate may be calculated according to the following formula:
- Q3 is the third opening adjustment rate
- K5 is the fifth adjustment coefficient
- K6 is the sixth adjustment coefficient
- T4 is the outdoor ambient temperature
- f is the operating frequency of the compressor
- the fourth opening adjustment rate can be calculated according to the following formula:
- Q4 is the fourth opening adjustment rate
- K7 is the seventh adjustment coefficient
- K8 is the eighth adjustment coefficient
- K7>K5 K6>K8.
- the second gas supply branch 6 may include a second gas-liquid separator 9 and a second control valve 10 .
- the gas outlet of the second gas-liquid separator 9 is connected through the second control valve 10
- the second air supply branch 6 can be controlled to open. After the second air supply branch 6 is opened, part of the refrigerant in the two-phase state (gas-liquid mixed state) after flowing through the throttling element 4 and decompressed will flow through the evaporator to exchange heat with the surrounding air and then evaporate into low-temperature and low-pressure gas.
- the other part of the gas-liquid mixed refrigerant will flow through the second gas-liquid separator 9, and the liquid refrigerant and the gaseous refrigerant will be separated through the second gas-liquid separator 9, and the separated gaseous refrigerant will pass through the second control valve 10 Entering the air supply port of the compressor 2, the gas-liquid separator is used to increase the return air volume of the compressor, so that the air conditioner can achieve better heating effect.
- the opening degree of the opening branch can also be adjusted according to the outdoor ambient temperature.
- the outdoor ambient temperature is greater than the fourth preset temperature (-7°C) and less than the third preset temperature (7°C)
- the third opening adjustment rate Q3 can be determined according to the outdoor ambient temperature and the operating frequency of the compressor, for example, The third opening adjustment rate Q3 can be obtained through the above formula (3). From formula (3), it can be found that the third opening adjustment rate Q3 is inversely proportional to the outdoor ambient temperature T4 and directly proportional to the operating frequency f of the compressor.
- the opening of the second control valve can be adjusted according to the third opening adjustment rate.
- the faster the third opening adjustment rate the larger the opening of the second control valve; the slower the third opening adjustment rate. , the opening of the second control valve can be adjusted smaller.
- the fourth opening adjustment rate can be determined according to the outdoor ambient temperature T4 and the operating frequency f of the compressor. For example, it can be obtained by the above formula (4) The fourth opening adjustment rate Q4. From formula (4), it can be found that the fourth opening adjustment rate Q4 is inversely proportional to the outdoor ambient temperature T4 and directly proportional to the operating frequency f of the compressor.
- the opening of the second control valve can be adjusted according to the fourth opening adjustment rate.
- the faster the fourth opening adjustment rate the larger the opening of the second control valve; the slower the fourth opening adjustment rate. , the opening of the second control valve can be adjusted smaller.
- the fourth opening adjustment rate Q4 can be greater than the third opening adjustment rate Q3 through the adjustment coefficients K7>K5, K6>K8, so as to satisfy the requirement of determining the opening degree of the second air supply branch according to the specific temperature.
- the opening degree of the air supply branch can be determined through the above formula, but also the opening degree can be determined through a preset corresponding relationship, for example, the relationship between the outdoor ambient temperature and the opening step of the first control valve is predetermined, After the outdoor ambient temperature is determined, the opening degree of the first control valve can be obtained by directly calling the corresponding relationship.
- the air supply control method of the air conditioner of the present disclosure may include the following steps:
- step S101 determine whether the air conditioner is operating in cooling mode. If yes, perform step S102; if not, perform step S112.
- step S106 determine whether 40°C ⁇ T4 ⁇ 48°C is established. If yes, execute step S107; if no, execute step S109.
- step S112 determine whether the air conditioner is operating in heating mode. If yes, execute step S113; if no, execute step S100.
- step S117 determine whether -7 ⁇ T4 ⁇ 7°C is established. If yes, perform step S118; if not, perform step S120.
- step S120 determine whether T4 ⁇ -7°C is established. If yes, perform step S121; if not, perform step S113.
- the operating mode of the air conditioner is first determined and the outdoor ambient temperature is detected. Then, it is determined based on the outdoor ambient temperature that when the air conditioner needs to spray air to increase the enthalpy, the air conditioner is determined according to the operating mode. Control the opening of one of the first air supply branch and the second air supply branch, and adjust the opening degree of the opening branch according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner.
- this method determines whether the air conditioner needs to increase the jet enthalpy based on the outdoor ambient temperature, and when it is determined that the air conditioner needs to increase the jet enthalpy, determines which air supply branch to control to open based on the operating mode of the air conditioner, and when controlling the air supply After the branch circuit is opened, the degree of opening of the branch circuit is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner, thereby improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments. Under the premise, reduce energy consumption.
- the present disclosure also proposes an air conditioning controller.
- the air conditioning controller 100 of the present disclosure may include: a memory 110 , a processor 120 , and an air supply control program of the air conditioner stored on the memory 110 and executable on the processor 120 .
- the processor 120 executes the air conditioning control program.
- the air supply control program of the air conditioner is implemented, the above air supply control method of the air conditioner is realized.
- the air conditioning controller of the embodiment of the present disclosure can reduce energy consumption while improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments by executing the above air supply control method of the air conditioner.
- the present disclosure also provides a computer-readable storage medium.
- the computer-readable storage medium of the present disclosure has an air supply control program for an air conditioner stored thereon.
- the air supply control program for the air conditioner is executed by a processor, the above air supply control method for the air conditioner is implemented.
- the computer-readable storage medium of the embodiment of the present disclosure can reduce energy consumption on the premise of improving the cooling capacity of the air conditioner in high-temperature environments and the heating capacity in low-temperature environments by executing the air supply control method of the air conditioner.
- the present disclosure also provides an air conditioner.
- the air conditioner may include: a condenser 1, a compressor 2, an evaporator 3, a throttling element 4, a first air supply branch 5, a second air supply branch 6, a temperature Detector 201 and controller 202.
- one end of the first air supply branch 5 is connected to one end of the throttling element 4, the other end of the first air supply branch 5 is connected to the air supply port of the compressor 2, and one end of the second air supply branch 6 is connected to The other end of the throttling element 4 and the other end of the second air supply branch 6 are connected to the air supply port of the compressor 2 .
- the temperature detector 201 is used to detect the outdoor ambient temperature.
- the controller 202 is used to determine the operating mode of the air conditioner 200, and determines based on the outdoor ambient temperature that when the air conditioner 200 requires injection enthalpy increase, it controls one of the first air supply branch 5 and the second air supply branch 6 according to the operating mode. opening, and adjusting the opening degree of the opening branch according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner 200.
- the controller 202 is also configured to control the opening of the first air supply branch 5 if the outdoor ambient temperature is greater than the first preset temperature when the operating mode of the air conditioner 200 is the cooling mode.
- the first gas supply branch 5 includes a first gas-liquid separator and a first control valve.
- the gas outlet of the first gas-liquid separator is connected to the gas supply port of the compressor 2 through the first control valve.
- the controller 202 adjusts the opening degree of the opening branch according to the outdoor ambient temperature, and is specifically used to: when the outdoor ambient temperature is greater than the first preset temperature and less than the second preset temperature, the controller 202 adjusts the opening degree of the opening branch according to the outdoor ambient temperature and the compressor 2
- the operating frequency determines the first opening adjustment rate, and adjusts the opening of the first control valve according to the first opening adjustment rate; when the outdoor ambient temperature is greater than or equal to the second preset temperature, the opening of the first control valve is adjusted according to the outdoor ambient temperature and the compressor 2
- the operating frequency determines the second opening adjustment rate, and adjusts the opening of the first control valve according to the second opening adjustment rate, wherein the second opening adjustment rate is greater than the first opening adjustment rate.
- the first opening adjustment rate is calculated according to the following formula:
- Q1 is the first opening adjustment rate
- K1 is the first adjustment coefficient
- K2 is the second adjustment coefficient
- T4 is the outdoor ambient temperature
- f is the operating frequency of compressor 2;
- the second opening adjustment rate is calculated according to the following formula:
- Q2 is the second opening adjustment rate
- K3 is the third adjustment coefficient
- K4 is the fourth adjustment coefficient
- K3>K1 K2>K4.
- the controller 202 is also configured to control the second air supply branch 6 to open if the outdoor ambient temperature is less than the third preset temperature when the operating mode of the air conditioner 200 is the heating mode.
- the second air supply branch 6 includes a second gas-liquid separator and a second control valve.
- the air outlet of the second gas-liquid separator is connected to the air supply port of the compressor through the second control valve.
- the controller 202 adjusts the opening degree of the opening branch according to the outdoor ambient temperature. Specifically, when the outdoor ambient temperature is greater than the fourth preset temperature and less than the third preset temperature, the controller 202 adjusts the opening degree according to the outdoor ambient temperature and the operation of the compressor 2.
- the frequency determines the third opening adjustment rate, and the opening of the second control valve is adjusted according to the third opening adjustment rate; when the outdoor ambient temperature is less than or equal to the fourth preset temperature, the opening of the second control valve is adjusted according to the outdoor ambient temperature and the The operating frequency determines the fourth opening adjustment rate, and the opening of the second control valve is adjusted according to the fourth opening adjustment rate, where the fourth opening adjustment rate is greater than the third opening adjustment rate.
- the third opening adjustment rate is calculated according to the following formula:
- Q3 is the third opening adjustment rate
- K5 is the fifth adjustment coefficient
- K6 is the sixth adjustment coefficient
- T4 is the outdoor ambient temperature
- f is the operating frequency of compressor 2;
- the fourth opening adjustment rate is calculated according to the following formula:
- Q4 is the fourth opening adjustment rate
- K7 is the seventh adjustment coefficient
- K8 is the eighth adjustment coefficient
- K7>K5 K6>K8.
- the compressor 2 may include a body 21 and a liquid storage tank 22 .
- the liquid storage tank 22 is disposed below the body 21 and is fixedly connected to the body 21 .
- the upper part of the body 21 defines The exhaust port 23 of the compressor 2 comes out, and the lower part of the body 21 is connected to the upper side of the liquid storage tank 22 through the connecting pipe 24.
- the lower part of the liquid storage tank 22 defines the air return port 25 of the compressor 2.
- the liquid storage tank 22 The other side of the upper part defines the air supply port 26 of the compressor 2 .
- the temperature detector detects the outdoor ambient temperature
- the controller determines the operating mode of the air conditioner, and determines according to the outdoor ambient temperature that the air conditioner needs to spray air to increase enthalpy, and controls the first air supply branch according to the operating mode. and opening one of the second air supply branches, and adjusting the opening degree of the opening branch according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner. Therefore, the air conditioner determines whether the air conditioner needs to increase the jet enthalpy based on the outdoor ambient temperature, and when it is determined that the air conditioner needs to increase the jet enthalpy, it determines which air supply branch to control to open based on the operating mode of the air conditioner, and when controlling the air supply.
- the opening degree of the branch is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner, thereby improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments.
- the opening degree of the branch is adjusted according to the outdoor ambient temperature to adjust the heat exchange capacity of the air conditioner, thereby improving the cooling capacity of the air conditioner in high temperature environments and the heating capacity in low temperature environments.
- a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
- Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
- the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
- various parts of the present disclosure may be implemented in hardware, software, firmware, or combinations thereof.
- various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
- Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
- connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种空调器及其补气控制方法、空调控制器、存储介质,所述方法包括:确定空调器的运行模式,并检测室外环境温度(S1);根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,并根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力(S2)。
Description
相关申请的交叉引用
本公开要求于2022年04月28日提交的申请号为202210471510.1,名称为“空调器及其补气控制方法、空调控制器、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及空调技术领域,尤其涉及一种空调器的补气控制方法、一种空调控制器、一种计算机可读存储介质和一种空调器。
随着人们的生活水平提高,空调器作为一种调节室内温度的设备,已经得到了广泛的使用。压缩机作为空调器的核心,在空调器制冷及制热时发挥着重大的作用。然而在极端地区如温度较高的环境或者温度较低的环境下,空调器常规的制冷或者制热能力已经无法满足用户需求。
目前常规的旋转式压缩机采用分离式的设计方式,即压缩机缸体和储液罐分开,这样方式比较常规,压缩机占据空间比例较大,无法满足空调小型化的需求。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种空调器的补气控制方法,根据室外环境温度确定空调器是否需要喷气增焓,并在确定空调器需要喷气增焓时,根据空调器的运行模式确定控制哪一条补气支路开启,以及在控制补气支路开启后,根据室外环境温度的大小调节开启支路的开启程度,以调节空调器的换热能力,从而能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
本公开的第二个目的在于提出一种空调控制器。
本公开的第三个目的在于提出一种计算机可读存储介质。
本公开的第四个目的在于提出一种空调器。
为达到上述目的,本公开第一方面实施例提出了一种空调器的补气控制方法,空调器包括冷凝器、压缩机、蒸发器、节流元件、第一补气支路和第二补气支路,第一补气支路的一端连接到节流元件的一端,第一补气支路的另一端连接到压缩机的补气口,第 二补气支路的一端连接到节流元件的另一端,第二补气支路的另一端连接到压缩机的补气口,方法包括:确定空调器的运行模式,并检测室外环境温度;根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,并根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。
根据本公开实施例的空调器的补气控制方法,首先确定空调器的运行模式,并检测室外环境温度,然后根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,并根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。由此,该方法根据室外环境温度确定空调器是否需要喷气增焓,并在确定空调器需要喷气增焓时,根据空调器的运行模式确定控制哪一条补气支路开启,以及在控制补气支路开启后,根据室外环境温度的大小调节开启支路的开启程度,以调节空调器的换热能力,从而能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
另外,根据本公开上述实施例的空调器的补气控制方法还可以具有如下的附加技术特征:
根据本公开的一个实施例,在空调器的运行模式为制冷模式时,如果室外环境温度大于第一预设温度,则控制第一补气支路开启。
根据本公开的一个实施例,第一补气支路包括第一气液分离器和第一控制阀,第一气液分离器的出气口通过第一控制阀连接到压缩机的补气口,其中,根据室外环境温度调节开启支路的开启程度,包括:在室外环境温度大于第一预设温度且小于第二预设温度时,根据室外环境温度和压缩机的运行频率确定第一开度调节速率,并根据第一开度调节速率对第一控制阀的开度进行调节;在室外环境温度大于等于第二预设温度时,根据室外环境温度和压缩机的运行频率确定第二开度调节速率,并根据第二开度调节速率对第一控制阀的开度进行调节,其中,第二开度调节速率大于第一开度调节速率。
根据本公开的一个实施例,第一开度调节速率根据以下公式计算:
Q1=(K1*T4)/(K2*f)
其中,Q1为第一开度调节速率,K1为第一调节系数,K2为第二调节系数,T4为室外环境温度,f为压缩机的运行频率;
第二开度调节速率根据以下公式计算:
Q2=(K3*T4)/(K4*f)
其中,Q2为第二开度调节速率,K3为第三调节系数,K4为第四调节系数,K3>K1,K2>K4。
根据本公开的另一个实施例,在空调器的运行模式为制热模式时,如果室外环境温度小于第三预设温度,则控制第二补气支路开启。
根据本公开的一个实施例,第二补气支路包括第二气液分离器和第二控制阀,第二气液分离器的出气口通过第二控制阀连接到压缩机的补气口,其中,根据室外环境温度调节开启支路的开启程度,包括:在室外环境温度大于第四预设温度且小于第三预设温度时,根据室外环境温度和压缩机的运行频率确定第三开度调节速率,并根据第三开度调节速率对第二控制阀的开度进行调节;在室外环境温度小于等于第四预设温度时,根据室外环境温度和压缩机的运行频率确定第四开度调节速率,并根据第四开度调节速率对第二控制阀的开度进行调节,其中,第四开度调节速率大于第三开度调节速率。
根据本公开的一个实施例,第三开度调节速率根据以下公式计算:
Q3=(K5*f)/(K6*T4)
其中,Q3为第三开度调节速率,K5为第五调节系数,K6为第六调节系数,T4为室外环境温度,f为压缩机的运行频率;
第四开度调节速率根据以下公式计算:
Q4=(K7*f)/(K8*T4)
其中,Q4为第四开度调节速率,K7为第七调节系数,K8为第八调节系数,K7>K5,K6>K8。
根据本公开的一个实施例,压缩机包括本体和储液罐,储液罐设置在本体的下方,且与本体固定连接,本体的上部限定出压缩机的排气口,本体的下部通过连接管连接到储液罐的上部一侧,储液罐的下部限定出压缩机的回气口,储液罐的上部另一侧限定出压缩机的补气口。
为达到上述目的,本公开第二方面实施例提出的一种空调控制器,包括存储器、处理器及存储在存储器上并可在处理器上运行的空调器的补气控制程序,处理器执行空调器的补气控制程序时,实现上述的空调器的补气控制方法。
本公开实施例的空调控制器,通过执行上述的空调器的补气控制方法,能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
为达到上述目的,本公开第三方面实施例提出了一种计算机可读存储介质,其上存储有空调器的补气控制程序,该空调器的补气控制程序被处理器执行时实现上述的空调器的补气控制方法。
本公开实施例的计算机可读存储介质,通过执行上述的空调器的补气控制方法,能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能 耗。
为达到上述目的,本公开第四方面实施例提出了一种空调器,包括:冷凝器、压缩机、蒸发器、节流元件、第一补气支路和第二补气支路,第一补气支路的一端连接到节流元件的一端,第一补气支路的另一端连接到压缩机的补气口,第二补气支路的一端连接到节流元件的另一端,第二补气支路的另一端连接到压缩机的补气口;温度检测器,用于检测室外环境温度;控制器,用于确定空调器的运行模式,并根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,以及根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。
根据本公开实施例的空调器,通过温度检测器检测室外环境温度,控制器确定空调器的运行模式,并根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,以及根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。由此,该空调器根据室外环境温度确定空调器是否需要喷气增焓,并在确定空调器需要喷气增焓时,根据空调器的运行模式确定控制哪一条补气支路开启,以及在控制补气支路开启后,根据室外环境温度的大小调节开启支路的开启程度,以调节空调器的换热能力,从而能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
另外,根据本公开上述实施例的空调器还可以具有如下的附加技术特征:
根据本公开的一个实施例,压缩机包括本体和储液罐,储液罐设置在本体的下方,且与本体固定连接,本体的上部限定出压缩机的排气口,本体的下部通过连接管连接到储液罐的上部一侧,储液罐的下部限定出压缩机的回气口,储液罐的上部另一侧限定出压缩机的补气口。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
图1为根据本公开实施例的空调器的补气控制方法的流程图;
图2为根据本公开一个实施例的空调器的结构示意图;
图3为图2中压缩机的结构示意图;
图4为根据本公开一个具体示例的空调器的补气控制方法的流程图;
图5为根据本公开实施例的空调控制器的方框示意图。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例提出的空调器的补气控制方法、空调控制器、计算机可读存储介质和空调器。
在本公开的一个实施例中,如图2所示,空调器可包括冷凝器1、压缩机2、蒸发器3、节流元件4、第一补气支路5和第二补气支路6。其中,第一补气支路5的一端连接到节流元件4的一端,第一补气支路5的另一端连接到压缩机2的补气口,第二补气支路6的一端连接到节流元件4的另一端,第二补气支路6的另一端连接到压缩机2的补气口。
当空调器处于制冷工况时,在压缩机2内被压缩的高温高压气体冷媒经过四通阀11后,在冷凝器1(室外换热器)中与周围空气进行换热后成为液态冷媒,液态冷媒经过节流元件4被减压成为二相状态(气液混合态)后进入蒸发器3,经过蒸发器3(室内换热器)与周围空气进行换热后蒸发成为低温低压的气体冷媒。通过液冷媒的汽化,室内的空气热量会被带走,室内温度会下降,可以实现制冷。然后气态冷媒经过四通阀11后回到压缩机2中继续循环,以达到空调器持续制冷。
在空调器处于制热工况时,在压缩机2内被压缩的高温高压气体冷媒经过四通阀11后,在冷凝器(此时的冷凝器作为室内换热器)中与周围空气进行换热然后冷凝,变成液冷媒,通过冷凝时的放热,周围空气热量会增加,室内温度会上升,可以制热。液态冷媒经过节流元件4后被减压,成为二相状态,蒸发器(此时的蒸发器作为室外换热器)中与周围空气进行换热然后蒸发,成为气体冷媒。气体冷媒经过四通阀1后回到压缩机2中继续循环,以达到空调器持续制热。
为了实现小型化空调器对高温制冷以及低温制热的需求,本公开采用一种一体式喷气增焓压缩机,储液罐22与本体21位于上下层,相对于分离式设计的压缩机可以节省近40%的空间需求。
在本公开的一个实施例中,如图3所示,压缩机2可包括本体21和储液罐22,储液罐22设置在本体21的下方,且与本体21固定连接,本体21的上部限定出压缩机2的排气口23,本体21的下部通过连接管24连接到储液罐22的上部一侧,储液罐22的下部限定出压缩机2的回气口25,储液罐22的上部另一侧限定出压缩机2的补气口26。其中,空调器2还可包括喷气增焓部件27,其位于压缩机2的一侧,可以有利于 整个压缩机2的震动平衡,并且喷气增焓部件27的底部延伸出一根管路进入到储液罐22中,可以确保从补气口26处的增焓气体顺利回收至储液罐22中。
图1为根据本公开实施例的空调器的补气控制方法的流程图。
如图1所示,本公开实施例的空调器的补气控制方法可包括以下步骤:
S1,确定空调器的运行模式,并检测室外环境温度。其中,空调器的运行模式可以包括制冷模式、制热模式、除湿模式、送风模式等,在本公开的一个实施例中,只有在空调器的运行模式为制冷模式或者制热模式时,才执行下一步的检测控制,如果为送风模式或者除湿模式,则不执行下一步的检测。室外温度可通过设置在室外机中的温度传感器检测获得,也可以通过与空调器建立通信连接的终端设备获取室外环境温度。
S2,根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,并根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。
具体而言,空调器以制冷模式运行时,如果室外环境温度过高,空调器制冷能力会出现一定的衰减,而在以制热模式运行时,如果室外环境温度过低,空调器的制热能力也会出现一定的衰减。为了弥补空调器制热能力的衰减和制冷能力的衰减,可根据室外环境温度确定空调器是否需要喷气增焓。
当空调器的运行模式为制冷模式时,根据室外环境温度与制冷工况下的高温温度阈值进行比较,其中,当室外环境温度大于等于制冷工况下的高温温度阈值时,说明当前室外环境温度较高,空调器的制冷能力会出现一定的衰减,为了提高空调器的制冷能力,可控制制冷模式下对应的补气支路开启,以在空调器制冷过程中增加压缩机的回气量,提高空调器的制冷能力;当室外环境温度小于制冷工况下的高温温度阈值时,说明当前空调器的制冷能力能够满足需求,不需要开启补气支路。为了降低空调器的能耗,还可以调节补气支路的开启程度,例如,可通过将室外环境温度与制冷工况下的超高温温度阈值进行比较,其中,当室外环境温度大于等于超高温温度阈值时,即室外环境温度非常高,此时可以将补气支路的开启程度开到最大,以弥补空调器制冷能力的衰减;当室外环境温度小于超高温温度阈值时,说明不需要将补气支路开到最大,为了降低空调器的能耗,可以开启到设定的程度即可。
同样的道理,当空调器以制热模式运行时,根据室外环境温度与制热工况下的低温温度阈值进行比较,其中,当室外环境温度小于制热工况下的低温温度阈值时,说明当前室外环境温度较低,空调器的制热能力会出现一定的衰减,为了提高空调器的制热能力,可控制制热模式下对应的补气支路开启,以在空调器制热过程中增加压缩机的回气 量,提高空调器的制热能力;当室外环境温度大于等于制热工况下的低温温度阈值时,说明当前空调器的制热能力能够满足需求,不需要开启补气支路。为了降低空调器的能耗,还可以调节补气支路的开启程度,例如,可通过将室外环境温度与制热工况下的超低温温度阈值进行比较,其中,当室外环境温度小于等于超低温温度阈值时,即室外环境温度非常低,此时可以将补气支路的开启程度开到最大,以弥补空调器制热能力的衰减;当室外环境温度大于超低温温度阈值时,说明不需要将补气支路开到最大,为了降低空调器的能耗,可以开启到设定的程度即可。
由此,根据室外环境温度确定空调器是否需要喷气增焓,并在确定空调器需要喷气增焓时,根据空调器的运行模式确定控制哪一条补气支路开启,以及在控制补气支路开启后,根据室外环境温度的大小调节开启支路的开启程度,以调节空调器的换热能力,从而能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
下面详细描述本公开的补气控制方法的具体工作流程。
根据本公开的一个实施例,在空调器的运行模式为制冷模式时,如果室外环境温度大于第一预设温度,则控制第一补气支路开启。其中,第一预设温度可根据实际情况而定。例如,第一预设温度为40℃。
具体而言,当空调器在以制冷模式运行时,判断室外环境温度与第一预设温度(如40℃)之间的大小关系,其中,如果室外环境温度大于第一预设温度(如40℃),说明室外环境温度过高,此时空调器的制冷能力会出现一定的衰减,压缩机的性能下降,因此可以控制第一补气支路开启,使空调器在高环境温度下也能提供足够的制冷能力,给用户较好的体验;如果室外环境温度小于等于第一预设温度(40℃),此时空调器的常规制冷能力大都可以满足用户需求,并不会有太多衰减,因此不开启第一补气支路。
根据本公开的一个实施例,第一补气支路可包括第一气液分离器和第一控制阀,第一气液分离器的出气口通过第一控制阀连接到压缩机的补气口,其中,根据室外环境温度调节开启支路的开启程度,包括:在室外环境温度大于第一预设温度且小于第二预设温度时,根据室外环境温度和压缩机的运行频率确定第一开度调节速率,并根据第一开度调节速率对第一控制阀的开度进行调节;在室外环境温度大于等于第二预设温度时,根据室外环境温度和压缩机的运行频率确定第二开度调节速率,并根据第二开度调节速率对第一控制阀的开度进行调节,其中,第二开度调节速率大于第一开度调节速率,第二预设温度可根据实际情况而定,例如,第二预设温度可以为48℃。
根据本公开的一个实施例,第一开度调节速率可根据以下公式计算:
Q1=(K1*T4)/(K2*f) (1)
其中,Q1为第一开度调节速率,K1为第一调节系数,K2为第二调节系数,T4为室外环境温度,f为压缩机的运行频率;
第二开度调节速率可根据以下公式计算:
Q2=(K3*T4)/(K4*f) (2)
其中,Q2为第二开度调节速率,K3为第三调节系数,K4为第四调节系数,K3>K1,K2>K4。
具体而言,结合图2所示,第一补气支路5可包括第一气液分离器7和第一控制阀8,第一气液分离器7的出气口通过第一控制阀8连接到压缩机2的补气口,当空调器以制冷模式运行,且室外温度大于第一预设温度(40℃)时,可控制第一补气支路5开启。第一补气支路5开启后,流经节流元件4被减压后二相状态(气液混合态)的冷媒一部分会流经蒸发器3与周围空气进行换热后蒸发成为低温低压的气体冷媒,另一部分气液混合态的冷媒会流经第一气液分离器7,通过第一气液分离器7将液态冷媒和气态冷媒分离,并将分离后的气态冷媒通过第一控制阀8进入压缩机2的补气口,由此利用气液分离器提高了压缩机的回气量,使空调器可达到更佳的制冷效果。
进一步地,第一补气支路5开启后还可以根据室外环境温度调节开启支路的开启程度。当室外环境温度大于第一预设温度(40℃)且小于第二预设温度(48℃)时,根据室外环境温度和压缩机的运行频率可确定第一开度调节速率Q1,例如,可通过上述公式(1)获得第一开度调节速率Q1。由公式(1)可发现第一开度调节速率Q1与室外环境温度T4成正比,与压缩机的运行频率f成反比。也就是说,在压缩机的运行频率f一定时,室外环境温度T4越高,第一开度调节速率Q1越快,室外环境温度T4越低,第一开度调节速率Q1越慢;在室外环境温度T4一定时,压缩机的运行频率f越高,第一开度调节速率Q1越慢,压缩机的运行频率f越低,第一开度调节速率Q1越快。由此可以根据第一开度调节速率对第一控制阀的开度进行调节,第一调开度节速率越快,第一控制阀的开启可以调大一些;第一开度调节速率越慢,第一控制阀的开度可以调小一些。
当室外环境温度大于等于第二预设温度(48℃)时,根据室外环境温度T4和压缩机的运行频率f可确定第二开度调节速率,例如,可通过上述公式(2)获得第二开度调节速率Q2。由公式(2)可发现第二开度调节速率Q2与室外环境温度T4成正比,与压缩机的运行频率f成反比。也就是说,在压缩机的运行频率f一定时,室外环境温度T4越高,第二开度调节速率Q2越快,室外环境温度T4越低,第二开度调节速率Q2越 慢;在室外环境温度T4一定时,压缩机的运行频率f越高,第二开度调节速率Q2越慢,压缩机的运行频率f越低,第二开度调节速率Q2越快。由此可以根据第二开度调节速率对第一控制阀的开度进行调节,第二开度调节速率越快,第一控制阀的开度可以调大一些;第二开度调节速率越慢,第一控制阀的开度可以调小一些。
需要说明的是,可通过调节系数K3>K1,K2>K4,使第二开度调节速率Q2大于第一开度调节速率Q1,以满足根据具体温度确定第一补气支路开启程度,第一控制阀的开度越大,压缩机的回气量越多,由此可以在温度较高的室外环境下,使空调器具有更佳的制冷效果。
根据本公开的另一个实施例,在空调器的运行模式为制热模式时,如果室外环境温度小于第三预设温度,则控制第二补气支路开启。其中,第三预设温度可根据实际情况而定,例如,第三预设温度可以为7℃。
具体而言,当空调器在以制热模式运行时,判断室外环境温度与第三预设温度(7℃)之间的大小关系,其中,如果室外环境温度小于第三预设温度(7℃),说明室外环境温度过低,此时空调器的制热能力会出现一定的衰减,压缩机的性能下降,因此可以控制第二补气支路开启,使空调器在低环境温度下也能提供足够的制热能力,给用户较好的体验;如果室外环境温度大于等于第三预设温度(7℃),此时空调器的常规制热能力大都可以满足用户需求,并不会有太多衰减,因此不开启第二补气支路。
根据本公开的一个实施例,第二补气支路可包括第二气液分离器和第二控制阀,第二气液分离器的出气口通过第二控制阀连接到压缩机的补气口,其中,根据室外环境温度调节开启支路的开启程度,包括:在室外环境温度大于第四预设温度且小于第三预设温度时,根据室外环境温度和压缩机的运行频率确定第三开度调节速率,并根据第三开度调节速率对第二控制阀的开度进行调节;在室外环境温度小于等于第四预设温度时,根据室外环境温度和压缩机的运行频率确定第四开度调节速率,并根据第四开度调节速率对第二控制阀的开度进行调节,其中,第四开度调节速率大于第三开度调节速率,第四预设温度可根据实际情况而定,例如,第四预设温度可以为-7℃。
根据本公开的一个实施例,第三开度调节速率可根据以下公式计算:
Q3=(K5*f)/(K6*T4) (3)
其中,Q3为第三开度调节速率,K5为第五调节系数,K6为第六调节系数,T4为室外环境温度,f为压缩机的运行频率;
第四开度调节速率可根据以下公式计算:
Q4=(K7*f)/(K8*T4) (4)
其中,Q4为第四开度调节速率,K7为第七调节系数,K8为第八调节系数,K7>K5,K6>K8。
具体而言,结合图2所示,第二补气支路6可包括第二气液分离器9和第二控制阀10,第二气液分离器9的出气口通过第二控制阀10连接到压缩机2的补气口,当空调器以制热模式运行,且室外温度小于第三预设温度(7℃)时,可控制第二补气支路6开启。第二补气支路6开启后,流经节流元件4被减压后二相状态(气液混合态)的冷媒一部分会流经蒸发器与周围空气进行换热后蒸发成为低温低压的气体冷媒,另一部分气液混合态的冷媒会流经第二气液分离器9,通过第二气液分离器9将液态冷媒和气态冷媒分离,并将分离后的气态冷媒通过第二控制阀10进入压缩机2的补气口,由此利用气液分离器提高了压缩机的回气量,使空调器可达到更佳的制热效果。
进一步地,第二补气支路6开启后还可以根据室外环境温度调节开启支路的开启程度。当室外环境温度大于第四预设温度(-7℃)且小于第三预设温度(7℃)时,根据室外环境温度和压缩机的运行频率可确定第三开度调节速率Q3,例如,可通过上述公式(3)获得第三开度调节速率Q3。由公式(3)可发现第三开度调节速率Q3与室外环境温度T4成反比,与压缩机的运行频率f成正比。也就是说,在压缩机的运行频率为f一定时,室外环境温度T4越高,第三开度调节速率Q3越慢,室外环境温度T4越低,第三开度调节速率Q3越快;在室外环境温度T4一定时,压缩机的运行频率f越高,第三开度调节速率Q3越快,压缩机的运行频率f越低,第三开度调节速率Q3越慢。由此可以根据第三开度调节速率对第二控制阀的开度进行调节,第三开度调节速率越快,第二控制阀的开度可以调大一些;第三开度调节速率越慢,第二控制阀的开度可以调小一些。
当在室外环境温度小于等于第四预设温度(-7℃)时,根据室外环境温度T4和压缩机的运行频率f可确定第四开度调节速率,例如,可通过上述公式(4)获得第四开度调节速率Q4。由公式(4)可发现第四开度调节速率Q4与室外环境温度T4成反比,与压缩机的运行频率f成正比。也就是说,在压缩机的运行频率为f一定时,室外环境温度T4越高,第四开度调节速率Q4越慢,室外环境温度T4越低,第四开度调节速率Q4越快;在室外环境温度T4一定时,压缩机的运行频率f越高,第四开度调节速率Q4越快,压缩机的运行频率f越低,第四开度调节速率Q4越慢。由此可以根据第四开度调节速率对第二控制阀的开度进行调节,第四开度调节速率越快,第二控制阀的开度可以调大一些;第四开度调节速率越慢,第二控制阀的开度可以调小一些。
需要说明的是,可通过调节系数K7>K5,K6>K8,使第四开度调节速率Q4大于第 三开度调节速率Q3,以满足根据具体温度确定第二补气支路开启程度,第二控制阀的开度越大,压缩机的回气量越多,由此可以在温度较低的室外环境下,使空调器具有更佳的制冷效果。
另外,不仅可以通过上述公式确定补气支路的开启程度,还可以通过预先设定的对应关系确定开启程度,例如,预先确定室外环境温度与第一控制阀的开启步长之间的关系,在室外环境温度确定后,直接调用对应关系即可获得第一控制阀的开启程度。
下面结合图4来描述本公开的补气控制方法。
作为一个具体示例,本公开的空调器的补气控制方法可包括以下步骤:
S100,空调器开机运行。
S101,判断空调器是否以制冷模式运行。如果是,执行步骤S102;如果否,执行步骤S112。
S102,检测室外环境温度T4。
S103,判断T4≤40℃是否成立。如果是,执行步骤S104;如果否,执行步骤S105。
S104,控制第一补气支路处于关闭状态。
S105,控制第一补气支路开启。
S106,判断40℃<T4<48℃是否成立。如果是,执行步骤S107;如果否,执行步骤S109。
S107,根据室外环境温度T4和压缩机的运行频率f确定第一开度调节速率Q1。其中,Q1=(K1*T4)/(K2*f),K1为第一调节系数,K2为第二调节系数。
S108,根据第一开度调节速率Q1对第一控制阀的开度进行调节。
S109,判断T4≥48℃是否成立。如果是,执行步骤S110;如果否,执行步骤S102。
S110,根据室外环境温度T4和压缩机的运行频率f确定第二开度调节速率Q2。其中,Q2=(K3*T4)/(K4*f),K3为第三调节系数,K4为第四调节系数。
S111,根据第二开度调节速率Q2对第一控制阀的开度进行调节。
S112,判断空调器是否以制热模式运行。如果是,执行步骤S113;如果否,执行步骤S100。
S113,检测室外环境温度T4。
S114,判断T4≥7℃是否成立。如果是,执行步骤S115;如果否,执行步骤S116。
S115,控制第二补气支路处于关闭状态。
S116,控制第二补气支路开启。
S117,判断-7<T4<7℃是否成立。如果是,执行步骤S118;如果否,执行步骤S120。
S118,根据室外环境温度T4和压缩机的运行频率f确定第三开度调节速率Q3。其中,Q3=(K5*f)/(K6*T4),K5为第五调节系数,K6为第六调节系数。
S119,根据第三开度调节速率Q3对第二控制阀的开度进行调节。
S120,判断T4≤-7℃是否成立。如果是,执行步骤S121;如果否,执行步骤S113。
S121,根据室外环境温度T4和压缩机的运行频率f确定第四开度调节速率Q4。其中,Q4=(K7*f)/(K8*T4),K7为第七调节系数,K8为第八调节系数。
S122,根据第四开度调节速率Q4对第二控制阀的开度进行调节。
综上所述,根据本公开实施例的空调器的补气控制方法,首先确定空调器的运行模式,并检测室外环境温度,然后根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,并根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。由此,该方法根据室外环境温度确定空调器是否需要喷气增焓,并在确定空调器需要喷气增焓时,根据空调器的运行模式确定控制哪一条补气支路开启,以及在控制补气支路开启后,根据室外环境温度的大小调节开启支路的开启程度,以调节空调器的换热能力,从而能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
对应上述实施例,本公开还提出了一种空调控制器。
如图5所示,本公开的空调控制器100可包括:存储器110、处理器120及存储在存储器110上并可在处理器120上运行的空调器的补气控制程序,处理器120执行空调器的补气控制程序时,实现上述的空调器的补气控制方法。
本公开实施例的空调控制器,通过执行上述的空调器的补气控制方法,能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
对应上述实施例,本公开还提出了一种计算机可读存储介质。
本公开的计算机可读存储介质,其上存储有空调器的补气控制程序,该空调器的补气控制程序被处理器执行时实现上述的空调器的补气控制方法。
本公开实施例的计算机可读存储介质,通过执行上述空调器的补气控制方法,能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
对应上述实施例,本公开还提出了一种空调器。
如图2所示,本公开实施例的空调器可包括:冷凝器1、压缩机2、蒸发器3、节流元件4、第一补气支路5、第二补气支路6、温度检测器201和控制器202。
其中,第一补气支路5的一端连接到节流元件4的一端,第一补气支路5的另一端连接到压缩机2的补气口,第二补气支路6的一端连接到节流元件4的另一端,第二补 气支路6的另一端连接到压缩机2的补气口。温度检测器201用于检测室外环境温度。控制器202用于确定空调器200的运行模式,并根据室外环境温度确定空调器200需要喷气增焓时,根据运行模式控制第一补气支路5和第二补气支路6中的一个开启,以及根据室外环境温度调节开启支路的开启程度,以调节空调器200的换热能力。
根据本公开的一个实施例,控制器还202用于,在空调器200的运行模式为制冷模式时,如果室外环境温度大于第一预设温度,则控制第一补气支路5开启。
根据本公开的一个实施例,第一补气支路5包括第一气液分离器和第一控制阀,第一气液分离器的出气口通过第一控制阀连接到压缩机2的补气口,其中,控制器202根据室外环境温度调节开启支路的开启程度,具体用于:在室外环境温度大于第一预设温度且小于第二预设温度时,根据室外环境温度和压缩机2的运行频率确定第一开度调节速率,并根据第一开度调节速率对第一控制阀的开度进行调节;在室外环境温度大于等于第二预设温度时,根据室外环境温度和压缩机2的运行频率确定第二开度调节速率,并根据第二开度调节速率对第一控制阀的开度进行调节,其中,第二开度调节速率大于第一开度调节速率。
根据本公开的一个实施例,第一开度调节速率根据以下公式计算:
Q1=(K1*T4)/(K2*f)
其中,Q1为第一开度调节速率,K1为第一调节系数,K2为第二调节系数,T4为室外环境温度,f为压缩机2的运行频率;
第二开度调节速率根据以下公式计算:
Q2=(K3*T4)/(K4*f)
其中,Q2为第二开度调节速率,K3为第三调节系数,K4为第四调节系数,K3>K1,K2>K4。
根据本公开的一个实施例,控制器202还用于,在空调器200的运行模式为制热模式时,如果室外环境温度小于第三预设温度,则控制第二补气支路6开启。
根据本公开的一个实施例,第二补气支路6包括第二气液分离器和第二控制阀,第二气液分离器的出气口通过第二控制阀连接到压缩机的补气口,其中,控制器202根据室外环境温度调节开启支路的开启程度,具体用于:在室外环境温度大于第四预设温度且小于第三预设温度时,根据室外环境温度和压缩机2的运行频率确定第三开度调节速率,并根据第三开度调节速率对第二控制阀的开度进行调节;在室外环境温度小于等于第四预设温度时,根据室外环境温度和压缩机2的运行频率确定第四开度调节速率,并根据第四开度调节速率对第二控制阀的开度进行调节,其中,第四开度调节速率大于第 三开度调节速率。
根据本公开的一个实施例,第三开度调节速率根据以下公式计算:
Q3=(K5*f)/(K6*T4)
其中,Q3为第三开度调节速率,K5为第五调节系数,K6为第六调节系数,T4为室外环境温度,f为压缩机2的运行频率;
第四开度调节速率根据以下公式计算:
Q4=(K7*f)/(K8*T4)
其中,Q4为第四开度调节速率,K7为第七调节系数,K8为第八调节系数,K7>K5,K6>K8。
根据本公开的一个实施例,参见图3所示,压缩机2可包括本体21和储液罐22,储液罐22设置在本体21的下方,且与本体21固定连接,本体21的上部限定出压缩机2的排气口23,本体21的下部通过连接管24连接到储液罐22的上部一侧,储液罐22的下部限定出压缩机2的回气口25,储液罐22的上部另一侧限定出压缩机2的补气口26。
需要说明的是,本公开实施例的空调器中未披露的细节,请参照本公开实施例的空调器的补气控制方法中所披露的细节,具体这里不再赘述。
根据本公开实施例的空调器,温度检测器检测室外环境温度,控制器确定空调器的运行模式,并根据室外环境温度确定空调器需要喷气增焓时,根据运行模式控制第一补气支路和第二补气支路中的一个开启,以及根据室外环境温度调节开启支路的开启程度,以调节空调器的换热能力。由此,该空调器根据室外环境温度确定空调器是否需要喷气增焓,并在确定空调器需要喷气增焓时,根据空调器的运行模式确定控制哪一条补气支路开启,以及在控制补气支路开启后,根据室外环境温度的大小调节开启支路的开启程度,以调节空调器的换热能力,从而能够在提高空调器在高温环境下的制冷能力和低温环境下的制热能力的前提下,降低能耗。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列 表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (12)
- 空调器的补气控制方法,所述空调器包括冷凝器、压缩机、蒸发器、节流元件、第一补气支路和第二补气支路,所述第一补气支路的一端连接到所述节流元件的一端,所述第一补气支路的另一端连接到所述压缩机的补气口,所述第二补气支路的一端连接到所述节流元件的另一端,所述第二补气支路的另一端连接到所述压缩机的补气口,所述方法包括:确定所述空调器的运行模式,并检测室外环境温度;根据所述室外环境温度确定所述空调器需要喷气增焓时,根据所述运行模式控制所述第一补气支路和所述第二补气支路中的一个开启,并根据所述室外环境温度调节开启支路的开启程度,以调节所述空调器的换热能力。
- 根据权利要求1所述的方法,其中,在所述空调器的运行模式为制冷模式时,如果所述室外环境温度大于第一预设温度,则控制所述第一补气支路开启。
- 根据权利要求2所述的方法,其中,所述第一补气支路包括第一气液分离器和第一控制阀,所述第一气液分离器的出气口通过所述第一控制阀连接到所述压缩机的补气口,其中,根据所述室外环境温度调节开启支路的开启程度,包括:在所述室外环境温度大于第一预设温度且小于第二预设温度时,根据所述室外环境温度和所述压缩机的运行频率确定第一开度调节速率,并根据所述第一开度调节速率对所述第一控制阀的开度进行调节;在所述室外环境温度大于等于第二预设温度时,根据所述室外环境温度和所述压缩机的运行频率确定第二开度调节速率,并根据所述第二开度调节速率对所述第一控制阀的开度进行调节,其中,所述第二开度调节速率大于所述第一开度调节速率。
- 根据权利要求3所述的方法,其中,所述第一开度调节速率根据以下公式计算:Q1=(K1*T4)/(K2*f)其中,Q1为所述第一开度调节速率,K1为第一调节系数,K2为第二调节系数,T4为所述室外环境温度,f为所述压缩机的运行频率;所述第二开度调节速率根据以下公式计算:Q2=(K3*T4)/(K4*f)其中,Q2为所述第二开度调节速率,K3为第三调节系数,K4为第四调节系数,K3>K1,K2>K4。
- 根据权利要求1所述的方法,其中,在所述空调器的运行模式为制热模式时,如果所述室外环境温度小于第三预设温度,则控制所述第二补气支路开启。
- 根据权利要求5所述的方法,其中,所述第二补气支路包括第二气液分离器和第二控制阀,所述第二气液分离器的出气口通过所述第二控制阀连接到所述压缩机的补气口,其中,根据所述室外环境温度调节开启支路的开启程度,包括:在所述室外环境温度大于第四预设温度且小于第三预设温度时,根据所述室外环境温度和所述压缩机的运行频率确定第三开度调节速率,并根据所述第三开度调节速率对所述第二控制阀的开度进行调节;在所述室外环境温度小于等于第四预设温度时,根据所述室外环境温度和所述压缩机的运行频率确定第四开度调节速率,并根据所述第四开度调节速率对所述第二控制阀的开度进行调节,其中,所述第四开度调节速率大于所述第三开度调节速率。
- 根据权利要求6所述的方法,其中,所述第三开度调节速率根据以下公式计算:Q3=(K5*f)/(K6*T4)其中,Q3为所述第三开度调节速率,K5为第五调节系数,K6为第六调节系数,T4为所述室外环境温度,f为所述压缩机的运行频率;所述第四开度调节速率根据以下公式计算:Q4=(K7*f)/(K8*T4)其中,Q4为所述第四开度调节速率,K7为第七调节系数,K8为第八调节系数,K7>K5,K6>K8。
- 根据权利要求1-7中任一项所述的方法,其中,所述压缩机包括本体和储液罐,所述储液罐设置在所述本体的下方,且与所述本体固定连接,所述本体的上部限定出所述压缩机的排气口,所述本体的下部通过连接管连接到所述储液罐的上部一侧,所述储液罐的下部限定出所述压缩机的回气口,所述储液罐的上部另一侧限定出所述压缩机的补气口。
- 空调控制器,包括存储器、处理器及存储在存储器上并可在处理器上运行的空调器的补气控制程序,所述处理器执行所述空调器的补气控制程序时,实现根据权利要求1-8中任一项所述的空调器的补气控制方法。
- 计算机可读存储介质,其上存储有空调器的补气控制程序,该空调器的补气控制程序被处理器执行时实现根据权利要求1-8中任一项所述的空调器的补气控制方法。
- 空调器,包括:冷凝器、压缩机、蒸发器、节流元件、第一补气支路和第二补气支路,所述第一补气支路的一端连接到所述节流元件的一端,所述第一补气支路的另一端连接到所述压缩机的补气口,所述第二补气支路的一端连接到所述节流元件的另一端,所述第二补气支路的另一端连接到所述压缩机的补气口;温度检测器,用于检测室外环境温度;控制器,用于确定所述空调器的运行模式,并根据所述室外环境温度确定所述空调器需要喷气增焓时,根据所述运行模式控制所述第一补气支路和所述第二补气支路中的一个开启,以及根据所述室外环境温度调节开启支路的开启程度,以调节所述空调器的换热能力。
- 根据权利要求11所述的空调器,其中,所述压缩机包括本体和储液罐,所述储液罐设置在所述本体的下方,且与所述本体固定连接,所述本体的上部限定出所述压缩机的排气口,所述本体的下部通过连接管连接到所述储液罐的上部一侧,所述储液罐的下部限定出所述压缩机的回气口,所述储液罐的上部另一侧限定出所述压缩机的补气口。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210471510.1A CN117006641A (zh) | 2022-04-28 | 2022-04-28 | 空调器及其补气控制方法、空调控制器、存储介质 |
CN202210471510.1 | 2022-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023206683A1 true WO2023206683A1 (zh) | 2023-11-02 |
Family
ID=88517090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/095136 WO2023206683A1 (zh) | 2022-04-28 | 2022-05-26 | 空调器及其补气控制方法、空调控制器、存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117006641A (zh) |
WO (1) | WO2023206683A1 (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201621800U (zh) * | 2010-01-18 | 2010-11-03 | 珠海格力电器股份有限公司 | 双向增焓补气空调系统 |
CN103471275A (zh) * | 2013-08-30 | 2013-12-25 | 青岛海信日立空调系统有限公司 | 补气增焓的空调循环系统及其控制方法 |
CN105091405A (zh) * | 2015-07-22 | 2015-11-25 | 珠海格力电器股份有限公司 | 空调室外机及提高空调机组吸气量的方法 |
CN105333656A (zh) * | 2014-07-09 | 2016-02-17 | 海信(山东)空调有限公司 | 一种补气增焓空调系统及空调器 |
CN205227909U (zh) * | 2015-12-23 | 2016-05-11 | 宁波奥克斯电气股份有限公司 | 一种调节压缩机保持正常排气温度的空调系统 |
CN107166664A (zh) * | 2017-06-09 | 2017-09-15 | 青岛海尔空调器有限总公司 | 一种空调器及控制方法 |
CN107677009A (zh) * | 2017-11-20 | 2018-02-09 | 广东美的制冷设备有限公司 | 空调器系统、运行控制方法和计算机可读存储介质 |
CN110595020A (zh) * | 2019-09-23 | 2019-12-20 | 珠海格力电器股份有限公司 | 空调系统的补气控制方法、装置及计算机可读存储介质 |
KR20200009765A (ko) * | 2018-07-20 | 2020-01-30 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
CN112665112B (zh) * | 2019-10-16 | 2022-04-05 | 广东美的制冷设备有限公司 | 空调器及其控制方法、可读存储介质 |
-
2022
- 2022-04-28 CN CN202210471510.1A patent/CN117006641A/zh active Pending
- 2022-05-26 WO PCT/CN2022/095136 patent/WO2023206683A1/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201621800U (zh) * | 2010-01-18 | 2010-11-03 | 珠海格力电器股份有限公司 | 双向增焓补气空调系统 |
CN103471275A (zh) * | 2013-08-30 | 2013-12-25 | 青岛海信日立空调系统有限公司 | 补气增焓的空调循环系统及其控制方法 |
CN105333656A (zh) * | 2014-07-09 | 2016-02-17 | 海信(山东)空调有限公司 | 一种补气增焓空调系统及空调器 |
CN105091405A (zh) * | 2015-07-22 | 2015-11-25 | 珠海格力电器股份有限公司 | 空调室外机及提高空调机组吸气量的方法 |
CN205227909U (zh) * | 2015-12-23 | 2016-05-11 | 宁波奥克斯电气股份有限公司 | 一种调节压缩机保持正常排气温度的空调系统 |
CN107166664A (zh) * | 2017-06-09 | 2017-09-15 | 青岛海尔空调器有限总公司 | 一种空调器及控制方法 |
CN107677009A (zh) * | 2017-11-20 | 2018-02-09 | 广东美的制冷设备有限公司 | 空调器系统、运行控制方法和计算机可读存储介质 |
KR20200009765A (ko) * | 2018-07-20 | 2020-01-30 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
CN110595020A (zh) * | 2019-09-23 | 2019-12-20 | 珠海格力电器股份有限公司 | 空调系统的补气控制方法、装置及计算机可读存储介质 |
CN112665112B (zh) * | 2019-10-16 | 2022-04-05 | 广东美的制冷设备有限公司 | 空调器及其控制方法、可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN117006641A (zh) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10101054B2 (en) | Variable refrigerant flow air conditioning system with dual control over temperature and humidity and control method thereof | |
CN111141007B (zh) | 一种调节空调结霜的控制方法、控制系统及空调 | |
CN105371545B (zh) | 空调器及其制冷系统的制冷剂循环量调节方法 | |
WO2018094844A1 (zh) | 一种空调系统及控制方法 | |
CN105910357B (zh) | 空调系统及其阀体控制方法 | |
US20190137153A1 (en) | Multi-split system and control method thereof | |
CN113339946B (zh) | 空调器运行控制方法、装置、空调器和计算机存储介质 | |
CN109708284B (zh) | 一种除霜后气液分离器液位控制方法、装置及空调器 | |
WO2021120497A1 (zh) | 空调器、空调器的制冷控制方法和存储介质 | |
WO2024001534A1 (zh) | 空调系统的室外机控制方法、装置、室外机和空调系统 | |
CN109489295B (zh) | 多联式空调系统及其控制方法 | |
CN107143917A (zh) | 一种空调及其控制方法 | |
CN117889498A (zh) | 一种双冷凝等温除湿系统 | |
CN109945455A (zh) | 空调器的控制方法、空调器及存储介质 | |
WO2023206683A1 (zh) | 空调器及其补气控制方法、空调控制器、存储介质 | |
CN110207273B (zh) | 室外换热器、制冷系统、空调器、运行控制方法及装置 | |
WO2023185369A1 (zh) | 变频空调器及其控制方法和控制装置 | |
WO2023202156A1 (zh) | 空调器、空调器控制方法、电子设备及存储介质 | |
CN108692425B (zh) | 空调器除霜控制方法 | |
CN114322220B (zh) | 一种空气调节装置及其控制方法 | |
CN115751514A (zh) | 一种空调系统和空调系统的再热除湿控制方法 | |
CN207350996U (zh) | 具有除湿蒸发器的空调装置 | |
CN105352211A (zh) | 一种直接膨胀式机房节能空调系统及其控制方法 | |
CN109595841A (zh) | 空调系统及其控制方法 | |
JP4074422B2 (ja) | 空調機とその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22939516 Country of ref document: EP Kind code of ref document: A1 |