WO2023185369A1 - 变频空调器及其控制方法和控制装置 - Google Patents

变频空调器及其控制方法和控制装置 Download PDF

Info

Publication number
WO2023185369A1
WO2023185369A1 PCT/CN2023/079382 CN2023079382W WO2023185369A1 WO 2023185369 A1 WO2023185369 A1 WO 2023185369A1 CN 2023079382 W CN2023079382 W CN 2023079382W WO 2023185369 A1 WO2023185369 A1 WO 2023185369A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
electronic expansion
temperature
opening
power module
Prior art date
Application number
PCT/CN2023/079382
Other languages
English (en)
French (fr)
Inventor
何振华
朱连花
王照群
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023185369A1 publication Critical patent/WO2023185369A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention belongs to the technical field of air conditioning, specifically relates to air conditioners, and more specifically, relates to frequency conversion air conditioners and control methods and control devices thereof.
  • Inverter air conditioners are widely used due to their advantages of fast temperature adjustment speed, high temperature control accuracy, low operating noise and low energy consumption.
  • a core component of the inverter air conditioner is the power module.
  • the power module When the inverter air conditioner is working, the power module generates a large amount of heat and the temperature rises quickly. If the heat cannot be dissipated in time, the inverter air conditioner will malfunction or shut down due to excessive temperature of the power module, affecting the normal and stable operation of the air conditioner.
  • the existing inverter air conditioner uses refrigerant to cool the power module.
  • refrigerant can improve the cooling effect of the power module, if part of the refrigerant is used to cool the power module, it will affect the amount of refrigerant that provides heating/cooling capacity for the air conditioner system, thereby affecting the cooling system of the air conditioner. thermal capabilities.
  • One of the purposes of the present invention is to provide a control method and control device for a variable frequency air conditioner.
  • the cooling and heating capabilities of the air conditioner and the cooling capability of the power module are balanced, thereby improving The stability and reliability of the air conditioner system operation are ensured, and the intelligent air conditioner function is realized.
  • control method of the inverter air conditioner provided by the invention is realized by adopting the following technical solutions:
  • the inverter air conditioner includes a power module and a first electronic expansion valve and a second electronic expansion valve connected in parallel.
  • the first electronic expansion valve is arranged on the inverter air conditioner.
  • the second electronic expansion valve is arranged in the refrigerant branch that cools the power module;
  • control methods include:
  • the current power module temperature and the current indoor temperature difference are obtained, and the first electronic expansion valve and the current indoor temperature difference are controlled according to the current power module temperature and the current indoor temperature difference.
  • the opening of the second electronic expansion valve; the current indoor temperature difference is determined based on the current indoor temperature and the current set temperature;
  • the openings of the first electronic expansion valve and the second electronic expansion valve are controlled according to the current power module temperature.
  • controlling the opening of the first electronic expansion valve and the second electronic expansion valve according to the current power module temperature and the current indoor temperature difference includes:
  • the opening of the first electronic expansion valve is maintained, increasing Increase the opening of the second electronic expansion valve.
  • control method further includes:
  • the inverter air conditioner is controlled to shut down.
  • controlling the opening of the first electronic expansion valve and the second electronic expansion valve according to the current power module temperature and the current indoor temperature difference further includes:
  • the opening of the first electronic expansion valve is maintained, and the opening of the second electronic expansion valve is controlled to a third opening. degree; the third opening degree is greater than the first opening degree;
  • the opening of the first electronic expansion valve is maintained, increasing the increase the opening of the second electronic expansion valve;
  • the fourth temperature threshold is smaller than the third temperature threshold;
  • control method further includes:
  • the inverter air conditioner is controlled to shut down.
  • the first electronic expansion valve and the second electronic expansion valve are controlled according to the current power module temperature. opening, including:
  • the fifth temperature threshold is smaller than the third temperature threshold.
  • control method further includes:
  • variable frequency air conditioner is controlled to shut down.
  • control device of the inverter air conditioner provided by the present invention adopts the following technical solutions:
  • a control device for an inverter air conditioner includes a power module and a first electronic expansion valve and a second electronic expansion valve connected in parallel.
  • the first electronic expansion valve is arranged on the inverter air conditioner.
  • the second electronic expansion valve is arranged in the refrigerant branch that cools the power module;
  • the control device includes:
  • the current outdoor ambient temperature acquisition unit is used to acquire the current outdoor ambient temperature when the inverter air conditioner is running;
  • the current outdoor ambient temperature judgment unit is used to judge whether the current outdoor ambient temperature meets the preset external ambient temperature conditions
  • a current power module temperature acquisition unit configured to acquire the current power module temperature at least when the current outdoor ambient temperature meets the preset outer ambient temperature condition
  • the current indoor temperature difference acquisition unit is used to obtain the current indoor temperature difference at least when the current outdoor ambient temperature meets the preset outer ambient temperature condition; the current indoor temperature difference is determined based on the current indoor temperature and the current set temperature;
  • An expansion valve opening control unit configured to control the first electronic expansion valve and the first electronic expansion valve according to the current power module temperature and the current indoor temperature difference when the current outdoor ambient temperature meets the preset external ambient temperature condition.
  • the opening of the second electronic expansion valve is also used to control the first electronic expansion valve and the third electronic expansion valve according to the current power module temperature when the current outdoor ambient temperature does not meet the preset external ambient temperature condition. 2.
  • Another object of the present invention is to provide an inverter air conditioner, including a power module.
  • the inverter air conditioner further includes a first electronic expansion valve and a second electronic expansion valve connected in parallel.
  • the first electronic expansion valve is disposed at the In the refrigerant main circuit of the inverter air conditioner, the second electronic expansion valve is arranged in the refrigerant branch for cooling the power module; the inverter air conditioner also includes the above-mentioned inverter air conditioner control device.
  • Another object of the present invention is to provide an electronic device, including a processor, a memory and a computer program stored on the memory.
  • the processor is configured to execute the computer program to implement the above control method of an inverter air conditioner. .
  • variable frequency air conditioner In the variable frequency air conditioner and its control method and control device provided by the present invention, the variable frequency air conditioner is provided with a first electronic expansion valve in the main refrigerant circuit and a second electronic expansion valve in the refrigerant branch for cooling the power module.
  • the outdoor ambient temperature is used as a judgment parameter for regulating the opening of the two electronic expansion valves.
  • the opening of the two valves is further controlled simultaneously by combining the power module temperature and the indoor temperature difference to realize the refrigeration system of the air conditioner.
  • Figure 1 is a schematic structural diagram of an embodiment of the inverter air conditioner of the present invention.
  • Figure 2 is a schematic flow chart of an embodiment of the control method of the inverter air conditioner of the present invention
  • FIG. 3 is a schematic flow chart of another embodiment of the control method of the inverter air conditioner of the present invention.
  • Figure 4 is a schematic structural diagram of an embodiment of a control device for an inverter air conditioner according to the present invention.
  • Figure 5 is a schematic structural diagram of an embodiment of the electronic device of the present invention.
  • the present invention creatively proposes to set up a first electronic expansion in the refrigerant main circuit of the inverter air conditioner.
  • a second electronic expansion valve is set in the refrigerant branch for cooling the power module, and the outdoor ambient temperature is used as a judgment parameter to regulate the opening of the two electronic expansion valves.
  • the power module temperature or power module is selected. The combination of temperature and indoor temperature difference controls the opening of the two electronic expansion valves to balance the cooling and heating capabilities of the air conditioner and the cooling capability of the power module, improve the stability and reliability of the air conditioner system operation, and realize intelligent inverter air conditioners Function.
  • Figure 1 shows a schematic structural diagram of an embodiment of the inverter air conditioner of the present invention.
  • the inverter air conditioner of this embodiment includes a compressor 11, a condenser 12, a first electronic expansion valve 14 and an evaporator 13 connected in sequence, constituting the main refrigerant circuit of the inverter air conditioner, and executing the operation of the air conditioner. Cooling and heating cycle.
  • the inverter air conditioner also includes a power module (not shown in the figure) and a second electronic expansion valve 15.
  • the second electronic expansion valve 15 is connected in parallel with the first electronic expansion valve 14 and is arranged on the refrigerant branch for cooling the power module. On the road.
  • the inverter air conditioner also includes a control device 16 for controlling the opening of the first electronic expansion valve 14 and the second electronic expansion valve 15 .
  • the refrigeration and heating cycle includes a series of processes involving compression, condensation, expansion and evaporation to cool or heat the indoor space.
  • the refrigeration working principle of the inverter air conditioner is: the compressor 11 works, so that the evaporator 13 (which is the heat exchanger of the indoor unit at this time) is in an ultra-low pressure state.
  • the liquid refrigerant in the evaporator 13 quickly evaporates and absorbs heat, and the indoor fan
  • the blown wind is cooled by the coil of the evaporator 13 and then becomes cold wind and is blown indoors.
  • the evaporated and gasified refrigerant is pressurized by the compressor 11, it condenses into a liquid state under the high-pressure environment in the condenser 12 (which is the heat exchanger of the outdoor unit at this time), releases heat, and dissipates the heat through the outdoor fan. To the atmosphere, this cycle achieves the refrigeration effect.
  • the heating working principle of the inverter air conditioner is: the gaseous refrigerant is pressurized by the compressor 11, becomes a high-temperature and high-pressure gas, enters the condenser 12 (which is the heat exchanger of the indoor unit at this time), condenses, liquefies, releases heat, and becomes a liquid. Heating the indoor air to increase the indoor temperature.
  • the liquid refrigerant is decompressed by the first electronic expansion valve and enters the evaporator 13 (which is the heat exchanger of the outdoor unit at this time). It evaporates, absorbs heat, and becomes a gas. At the same time, it absorbs the heat of the outdoor air (the outdoor air becomes colder). ), becomes gaseous refrigerant, and enters the compressor 11 again to start the next cycle.
  • FIG 2 shows a schematic flow chart of an embodiment of the control method of the inverter air conditioner of the present invention.
  • the structure of the inverter air conditioner in this embodiment is shown in Figure 1. It includes a power module and a first electronic expansion valve and a second electronic expansion valve connected in parallel.
  • the first electronic expansion valve is arranged on the refrigerant of the inverter air conditioner.
  • the second electronic expansion valve is set in the refrigerant branch that cools the power module.
  • this embodiment uses the following process to control the air conditioner.
  • Step 21 When the inverter air conditioner is running, obtain the current outdoor ambient temperature.
  • the current outdoor ambient temperature is the real-time temperature of the outdoor environment where the outdoor unit of the inverter air conditioner is continuously obtained according to the set sampling frequency. It can be obtained through the temperature detection device installed on the outdoor unit, or obtained from a weather server through the Internet.
  • Step 22 Determine whether the current outdoor ambient temperature meets the preset external ambient temperature conditions. If yes, go to step 23; otherwise, go to step 24.
  • the preset external ambient temperature condition is used as a judgment condition for executing different control strategies on the opening of the expansion valve. It is a known condition and can be a fixed condition or a dynamically variable condition.
  • the setting principle of the preset external ambient temperature condition is: when the outdoor ambient temperature does not meet the preset external ambient temperature condition, the temperature of the power module is reduced by sacrificing the cooling/heating capacity of the air conditioner to achieve stable operation of the air conditioner.
  • the preset external ambient temperature condition is: the external ambient temperature is not less than the external ambient temperature threshold. In some embodiments, the outer ambient temperature threshold is 35°C. Then, when the current outdoor ambient temperature is not less than the external ambient temperature threshold, it is determined that the current outdoor ambient temperature meets the preset external ambient temperature condition.
  • Step 23 Obtain the current power module temperature and the current indoor temperature difference, and control the openings of the first electronic expansion valve and the second electronic expansion valve according to the current power module temperature and the current indoor temperature difference.
  • the current power module temperature is the temperature of the power module of the inverter air conditioner that is continuously obtained according to the set sampling frequency. It can be obtained through a temperature detection device installed on the surface of the power module.
  • the current indoor temperature difference is the difference between the current indoor temperature of the indoor environment where the indoor unit of the inverter air conditioner is continuously obtained according to the set sampling frequency and the current set temperature of the inverter air conditioner.
  • the current power module temperature and the current indoor temperature difference will be comprehensively considered, and the opening of the first electronic expansion valve and the opening of the second electronic expansion valve will be controlled based on the two temperatures as control parameters. Spend.
  • Step 24 Obtain the current power module temperature, and control the openings of the first electronic expansion valve and the second electronic expansion valve according to the current power module temperature.
  • the outdoor ambient temperature does not meet the preset external ambient temperature conditions, it only needs to obtain the current power module temperature, and control the opening of the two electronic expansion valves based on the current power module temperature, regardless of the influence of the indoor temperature difference.
  • the outdoor ambient temperature is used as a judgment parameter for regulating the opening of the two electronic expansion valves.
  • the power module temperature and the indoor temperature difference are further combined to simultaneously control the two valves. opening to achieve a balance between the cooling and heating capabilities of the air conditioner and the cooling capabilities of the power module; when the outdoor ambient temperature does not meet the preset external ambient temperature conditions, the opening of the two valves is only controlled based on the temperature of the power module without affecting the cooling
  • the cooling of the power module is realized based on the heating capacity demand; thus, the stability and reliability of the operation of the air conditioner system are provided, and the function of the intelligent inverter air conditioner is realized.
  • FIG 3 shows a schematic flow chart of another embodiment of the control method of the inverter air conditioner of the present invention.
  • the structure of the inverter air conditioner in this embodiment is shown in Figure 1. It includes a power module and a first electronic expansion valve and a second electronic expansion valve connected in parallel.
  • the first electronic expansion valve is arranged on the refrigerant of the inverter air conditioner.
  • the second electronic expansion valve is set in the refrigerant branch that cools the power module.
  • this embodiment uses the following process to control the air conditioner.
  • Step 31 When the inverter air conditioner is running, obtain the current outdoor ambient temperature.
  • Step 32 Determine whether the current outdoor ambient temperature meets the preset external ambient temperature conditions. If yes, go to step 33; otherwise, go to step 37.
  • Step 33 When it is determined that the current outdoor ambient temperature meets the preset external ambient temperature conditions, obtain the current power module temperature and the current indoor temperature difference.
  • Step 34 Determine whether the current indoor temperature difference meets the preset indoor temperature difference conditions. If yes, go to step 35; otherwise, go to step 36.
  • the preset indoor temperature difference condition is a judgment condition for executing different control strategies for the opening of the expansion valve when the current outdoor ambient temperature meets the preset outer ambient temperature condition. It is a known condition and can be a fixed condition or a Dynamically variable conditions.
  • the setting principle of the preset indoor temperature difference condition is: when the indoor temperature difference meets the preset indoor temperature difference condition, priority is given to the cooling/heating capacity of the air conditioner.
  • the preset indoor temperature difference condition is: the indoor temperature difference is greater than the set temperature difference threshold.
  • the temperature difference threshold is set to 4°C.
  • Step 35 Control the openings of the two electronic expansion valves according to the relationship between the current power module and the first temperature threshold, the second temperature threshold, and the third temperature threshold.
  • the openings of the first electronic expansion valve and the second electronic expansion valve are controlled according to the relationship between the current power module temperature and the three temperature thresholds.
  • the first temperature threshold is a known value, which can be a fixed value or a dynamically variable value. In some embodiments, the first temperature threshold is 85°C.
  • Increasing the opening of the first electronic expansion valve may include increasing the opening of the first electronic expansion valve based on the opening of the first electronic expansion valve currently determined by other control strategies of the air conditioner. In some embodiments, the opening of the first electronic expansion valve may be increased by 10 pls.
  • the initial opening of the second electronic expansion valve is a known opening value. In some embodiments, the initial opening is 120 pls.
  • the first opening is a known opening value, and its value is greater than the initial opening. In some embodiments, the first opening is 150 pls.
  • the second temperature threshold is a known value, and its value is greater than the first temperature threshold. It can be a fixed value or a dynamically variable value. In some embodiments, the second temperature threshold is 90°C.
  • Increasing the opening of the first electronic expansion valve may include increasing the opening of the first electronic expansion valve based on the opening of the first electronic expansion valve currently determined by other control strategies of the air conditioner. In some embodiments, the opening of the first electronic expansion valve may be increased by 10 pls.
  • the opening of the second electronic expansion valve is increased and cannot exceed the second opening.
  • the second opening degree is a known opening degree, and its value is greater than the first opening degree. In some embodiments, the second opening is 350 pls.
  • the third temperature threshold is a known value, and its value is greater than the second temperature threshold. It can be a fixed value or a dynamically variable value. In some embodiments, the third temperature threshold is 105°C.
  • Maintaining the opening of the first electronic expansion valve means that the opening of the first electronic expansion valve is no longer adjusted according to the temperature of the power module.
  • the opening of the non-first electronic expansion valve must be a fixed opening, and it can still be adjusted according to the temperature of the power module.
  • Other control strategies determine the degree of opening work.
  • control method when the current indoor temperature difference meets the preset indoor temperature difference condition, the control method further includes:
  • the inverter air conditioner is controlled to shut down to avoid adverse effects caused by excessive temperature of the power module. In some other embodiments, an alarm or reminder that the power module temperature is too high is also issued.
  • Step 36 Control the openings of the two electronic expansion valves according to the relationship between the current power module and the first temperature threshold, the second temperature threshold, the third temperature threshold and the fourth temperature threshold.
  • the openings of the first electronic expansion valve and the second electronic expansion valve will be controlled based on the relationship between the current power module temperature and the four temperature thresholds.
  • the control process of this step is compared with the control process of step 35.
  • the indoor temperature difference does not meet the preset indoor temperature difference threshold
  • the cooling/heating load demand is smaller.
  • more temperature thresholds are set. , to achieve slow adjustment of the valve opening, further improving the stability of the system operation.
  • the opening of the first electronic expansion valve is maintained, and the second electronic expansion valve is controlled at a medium opening to maintain a certain cooling capacity for the power module and avoid excessively high temperature of the power module. Maintain the stable operation of the air conditioner system.
  • the third opening degree is a known value, and its value is greater than the first opening degree. In some embodiments, the third opening is 200 pls.
  • the second electronic expansion valve is controlled to operate at a larger third opening to improve the cooling capability of the power module.
  • the fourth temperature threshold is a known value, and its value is greater than the second temperature threshold but less than the third temperature threshold. In some embodiments, the fourth temperature threshold is 100°C. When the temperature of the power module further increases, the opening of the second electronic expansion valve is further increased to improve the cooling capability of the power module.
  • control method when the current indoor temperature difference does not meet the preset indoor temperature difference condition, the control method further includes:
  • the inverter air conditioner is controlled to shut down to avoid adverse effects caused by excessive temperature of the power module. In some other embodiments, an alarm or reminder that the power module temperature is too high is also issued.
  • Step 37 When it is determined in step 32 that the current outdoor ambient temperature does not meet the preset external ambient temperature conditions, obtain the current power module temperature.
  • the outdoor ambient temperature does not meet the preset external ambient temperature conditions, it only needs to obtain the current power module temperature, and control the opening of the two electronic expansion valves based on the current power module temperature, regardless of the influence of the indoor temperature difference.
  • Step 38 Control the openings of the two electronic expansion valves according to the relationship between the current power module and the first temperature threshold, the second temperature threshold and the fifth temperature threshold.
  • the main control purpose is to cool down the power module. According to the relationship between the current power module temperature and the three temperature thresholds, the first electronic expansion valve and the second electronic expansion valve are Opening is controlled.
  • the fourth opening degree is a known value, and its value is between the first opening degree and the third opening degree. In some embodiments, the fourth opening is 170 pls.
  • the opening of the second electronic expansion valve is further increased to improve the cooling capability of the power module.
  • the fifth temperature threshold is a known value, and its value is smaller than the third temperature threshold. In some embodiments, the fifth temperature threshold is 95°C.
  • control method when the current outdoor ambient temperature does not meet the preset external ambient temperature conditions, the control method further includes:
  • the inverter air conditioner is controlled to shut down. Avoid adverse effects caused by excessive temperature of the power module. In some other embodiments, an alarm or reminder that the power module temperature is too high is also issued.
  • FIG 4 shows a schematic structural diagram of an embodiment of a control device for an inverter air conditioner according to the present invention.
  • the structure of the inverter air conditioner in this embodiment is shown in Figure 1. It includes a power module and a first electronic expansion valve and a second electronic expansion valve connected in parallel.
  • the first electronic expansion valve is arranged on the refrigerant of the inverter air conditioner.
  • the second electronic expansion valve is set in the refrigerant branch that cools the power module.
  • the control device of this embodiment includes structural units, functions of the structural units, and relationships between them, specifically as follows:
  • Controls include:
  • the current outdoor ambient temperature acquisition unit 41 is used to acquire the current outdoor ambient temperature when the inverter air conditioner is running.
  • the current outdoor ambient temperature determination unit 42 is used to determine whether the current outdoor ambient temperature obtained by the current outdoor ambient temperature acquisition unit 41 meets the preset external ambient temperature conditions.
  • the current power module temperature acquisition unit 43 is configured to obtain the current power module temperature at least when the current outdoor environment temperature determination unit 42 determines that the current outdoor environment temperature meets the preset external ambient temperature condition.
  • the current indoor temperature difference obtaining unit 44 is configured to obtain the current indoor temperature difference at least when the current outdoor ambient temperature determining unit 42 determines that the current outdoor ambient temperature meets the preset external ambient temperature condition.
  • the current indoor temperature difference is determined based on the current indoor temperature and the current set temperature.
  • the expansion valve opening control unit 45 is used to determine the difference between the current power module temperature and the current indoor temperature obtained by the current power module temperature acquisition unit 43 when the current outdoor ambient temperature judgment unit 42 determines that the current outdoor ambient temperature meets the preset outer ambient temperature condition.
  • the current indoor temperature difference obtained by the acquisition unit 44 controls the opening of the first electronic expansion valve and the second electronic expansion valve; it is also used when the current outdoor ambient temperature determination unit 42 determines that the current outdoor ambient temperature does not meet the preset external ambient temperature conditions.
  • the openings of the first electronic expansion valve and the second electronic expansion valve are controlled according to the current power module temperature obtained by the current power module temperature obtaining unit 43 .
  • the control device of the above structure runs the corresponding software program, performs the corresponding function, and controls the air conditioner according to the control method embodiment of the inverter air conditioner in Figures 2 and 3 and the process of other embodiments, to achieve the same implementation as Figure 2 and Figure 3 Examples and corresponding technical effects of other embodiments.
  • the air conditioner control device of the above embodiment is used in a variable frequency air conditioner, which can improve the stability and reliability of the operation of the air conditioner system and realize the function of an intelligent air conditioner.
  • FIG 5 shows a structural block diagram of an embodiment of the electronic device of the present invention.
  • the electronic device includes a processor 51, a memory 52 and a computer program 521 stored on the memory 52.
  • the processor 51 is configured to execute the computer program 521 to implement the air conditioner control method of the embodiment in Figure 2, the embodiment in Figure 3 and other embodiments. , and achieve the technical effects of the corresponding embodiments.
  • the electronic device can be the main control board, controller, etc. of the air conditioner.

Abstract

本发明公开了一种变频空调器及其控制方法和控制装置,以提高空调器系统运行的稳定性和可靠性,实现智能空调器功能。所述控制方法包括:变频空调器运行时,获取当前室外环境温度;判断所述当前室外环境温度是否满足预设外环温条件;在所述当前室外环境温度满足所述预设外环温条件时,获取当前功率模块温度、当前室内温差,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度;在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度。

Description

变频空调器及其控制方法和控制装置 技术领域
本发明属于空气调节技术领域,具体地说,是涉及空调器,更具体地说,是涉及变频空调器及其控制方法和控制装置。
背景技术
变频空调器因具有调温速度快、温控精度高、运行噪音低和能耗低等优点,被广泛应用。变频空调的一个核心部件是功率模块,功率模块在变频空调器工作时,发热量大,温度升高快。如果不能及时散热,将因功率模块温度过高而导致变频空调器故障或停机,影响空调器正常、稳定运行。
为提高功率模块的降温效果,现有变频空调器采用制冷剂对功率模块进行降温。使用制冷剂虽然能够提高功率模块的降温效果,但是,部分制冷剂用于功率模块的降温,则会影响为空调器系统提供制热/制冷能力的制冷剂的量,进而影响空调器的制冷制热能力。
鉴于此,亟需提供一种技术方案,能够均衡空调器的制冷制热能力和功率模块的降温能力,提高空调器系统运行的稳定性和可靠性。
技术问题
本发明的目的之一在于提供一种变频空调器的控制方法和控制装置,通过对两路电子膨胀阀开度的控制,实现空调器的制冷制热能力和功率模块的降温能力的均衡,提高空调器系统运行的稳定性和可靠性,实现智能空调器功能。
技术解决方案
为实现上述发明目的,本发明提供的变频空调器的控制方法采用下述技术方案予以实现:
一种变频空调器的控制方法,所述变频空调器包括功率模块,还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,所述第一电子膨胀阀设置在所述变频空调器的制冷剂主回路中,所述第二电子膨胀阀设置在为所述功率模块降温的制冷剂支路中;
所述控制方法包括:
变频空调器运行时,获取当前室外环境温度;
判断所述当前室外环境温度是否满足预设外环温条件;
在所述当前室外环境温度满足所述预设外环温条件时,获取当前功率模块温度、当前室内温差,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度;所述当前室内温差根据当前室内温度与当前设定温度确定;
在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度。
本申请的一些实施例中,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,包括:
在所述当前室内温差满足预设室内温差条件时,根据所述当前功率模块温度对所述第一电子膨胀阀和所述第二电子膨胀阀的开度执行下述的控制:
在所述当前功率模块温度小于第一温度阈值时,增大所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为初始开度;
在所述当前功率模块温度不小于所述第一温度阈值且小于第二温度阈值时,增大所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第一开度;
在所述当前功率模块温度不小于所述第二温度阈值、且小于第三温度阈值,且所述当前功率模块温度的变化率大于0时,保持所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度。
本申请的一些实施例中,所述控制方法还包括:
在所述当前功率模块温度不小于所述第三温度阈值、且所述第二电子膨胀阀的开度达到第二开度时,控制所述变频空调器停机。
本申请的一些实施例中,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,还包括:
在所述当前室内温差不满足预设室内温差条件时,根据所述当前功率模块温度对所述第一电子膨胀阀和所述第二电子膨胀阀的开度执行下述的控制:
在所述当前功率模块温度小于第一温度阈值时,保持所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第一开度;
在所述当前功率模块温度不小于所述第一温度阈值且小于第二温度阈值时,保持所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第三开度;所述第三开度大于所述第一开度;
在所述当前功率模块温度不小于所述第二温度阈值、且小于第四温度阈值,且所述当前功率模块温度的变化率大于0时,保持所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度;所述第四温度阈值小于所述第三温度阈值;
在所述当前功率模块温度不小于所述第四温度阈值、且小于所述第三温度阈值,且所述第二电子膨胀阀的开度不小于所述第三开度时,减小所述第一电子膨胀阀的开度。
本申请的一些实施例中,所述控制方法还包括:
在所述当前功率模块温度不小于所述第三温度阈值、且所述第二电子膨胀阀的开度达到所述第二开度时,控制所述变频空调器停机。
本申请的一些实施例中,在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,包括:
在所述当前功率模块温度小于所述第一温度阈值时,保持所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第四开度;
在所述当前功率模块温度不小于所述第一温度阈值且小于第二温度阈值,且所述当前功率模块温度的变化率大于0时,保持所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度;
在所述当前功率模块温度不小于所述第二温度阈值且小于第五温度阈值时,减小所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度;所述第五温度阈值小于所述第三温度阈值。
本申请的一些实施例中,所述控制方法还包括:
在所述当前功率模块温度不小于所述第五温度阈值时,控制所述变频空调器停机。
为实现前述发明目的,本发明提供的变频空调器的控制装置采用下述技术方案来实现:
一种变频空调器的控制装置,所述变频空调器包括功率模块,还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,所述第一电子膨胀阀设置在所述变频空调器的制冷剂主回路中,所述第二电子膨胀阀设置在为所述功率模块降温的制冷剂支路中;
所述控制装置包括:
当前室外环境温度获取单元,用于在变频空调器运行时,获取当前室外环境温度;
当前室外环境温度判断单元,用于判断所述当前室外环境温度是否满足预设外环温条件;
当前功率模块温度获取单元,用于至少在所述当前室外环境温度满足所述预设外环温条件时,获取当前功率模块温度;
当前室内温差获取单元,用于至少在所述当前室外环境温度满足所述预设外环温条件时,获取当前室内温差;所述当前室内温差根据当前室内温度与当前设定温度确定;
膨胀阀开度控制单元,用于在所述当前室外环境温度满足所述预设外环温条件时根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,还用于在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度。
本发明的再一目的在于提供一种变频空调器,包括功率模块,所述变频空调器还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,所述第一电子膨胀阀设置在所述变频空调器的制冷剂主回路中,所述第二电子膨胀阀设置在为所述功率模块降温的制冷剂支路中;所述变频空调器还包括上述的变频空调器控制装置。
本发明的又一目的在于提供一种电子设备,包括处理器、存储器及存储在所述存储器上的计算机程序,所述处理器配置为执行所述计算机程序,实现上述的变频空调器的控制方法。
有益效果
与现有技术相比,本发明的优点和积极效果是:
本发明提供的变频空调器及其控制方法和控制装置,变频空调器在制冷剂主回路中设置第一电子膨胀阀,在为功率模块降温的制冷剂支路中设置第二电子膨胀阀,将室外环境温度作为调控两电子膨胀阀开度的判断参量,在室外环境温度满足预设外环温条件时,进一步同时结合功率模块温度和室内温差控制两阀的开度,实现空调器的制冷制热能力和功率模块的降温能力的均衡;在室外环境温度不满足预设外环温条件时,仅根据功率模块温度控制两阀的开度,在不影响制冷制热能力需求的基础上实现对功率模块的降温;从而,提高空调器系统运行的稳定性和可靠性,实现智能变频空调器功能。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明变频空调器一个实施例的结构示意图;
图2是本发明变频空调器的控制方法一个实施例的流程示意图;
图3是本发明变频空调器的控制方法另一个实施例的流程示意图;
图4是本发明变频空调器的控制装置一个实施例的结构示意图;
图5是本发明的电子设备一个实施例的结构示意图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
需要说明的是,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时,应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
针对现有的变频空调器在采用制冷剂对功率模块降温的技术中缺少对制冷剂合理分配控制的技术方案的问题,本发明创造性地提出在变频空调器 制冷剂主回路中设置第一电子膨胀阀,在为功率模块降温的制冷剂支路中设置第二电子膨胀阀,将室外环境温度作为调控两电子膨胀阀开度的判断参量,根据室外环境温度的不同选择采用功率模块温度或者功率模块温度与室内温差的结合控制两个电子膨胀阀的开度,实现空调器的制冷制热能力和功率模块的降温能力的均衡,提高空调器系统运行的稳定性和可靠性,实现智能变频空调器功能。
图1所示为本发明变频空调器一个实施例的结构示意图。
如图1所示意,该实施例的变频空调器包括依次连接的压缩机11、冷凝器12、第一电子膨胀阀14和蒸发器13,构成变频空调器的制冷剂主回路,执行空调器的制冷制热循环。变频空调器还包括有功率模块(图中未示出)和第二电子膨胀阀15,第二电子膨胀阀15与第一电子膨胀阀14并联连接,并设置在为功率模块降温的制冷剂支路中。变频空调器还包括有控制装置16,用于实现第一电子膨胀阀14和第二电子膨胀阀15开度的控制。具体控制方法及控制过程参见后续实施例的描述。
其中,制冷制热循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,对室内空间进行制冷或制热。
变频空调器的制冷工作原理是:压缩机11工作,使蒸发器13(此时为室内机的换热器)内处于超低压状态,蒸发器13内的液态制冷剂迅速蒸发吸收热量,室内风机吹出的风经过蒸发器13的盘管降温后变为冷风吹到室内。蒸发气化后的制冷剂经压缩机11加压后,在冷凝器12(此时为室外机的换热器)中的高压环境下凝结为液态,释放出热量,通过室外风机,将热量散发到大气中,如此循环就达到了制冷效果。
变频空调器的制热工作原理是:气态制冷剂被压缩机11加压,成为高温高压气体,进入冷凝器12(此时为室内机的换热器),冷凝液化放热,成为液体,同时将室内空气加热,从而达到提高室内温度的目的。液体制冷剂经第一电子膨胀阀减压,进入蒸发器13(此时为室外机的换热器),蒸发气化吸热,成为气体,同时吸取室外空气的热量(室外空气变得更冷),成为气态制冷剂,再次进入压缩机11开始下一个循环。
图2所示为本发明变频空调器的控制方法一个实施例的流程示意图。该实施例中变频空调器的结构,参见图1所示,包括功率模块,还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,第一电子膨胀阀设置在变频空调器的制冷剂主回路中,第二电子膨胀阀设置在为功率模块降温的制冷剂支路中。
如图2所示意,该实施例采用下述过程实现空调器的控制。
步骤21:变频空调器运行时,获取当前室外环境温度。
当前室外环境温度,为按照设定采样频率不断获取的变频空调器室外机所处室外环境的实时温度,可通过室外机设置的温度检测装置获取,或者通过互联网络从气象服务器等获取。
步骤22:判断当前室外环境温度是否满足预设外环温条件。若是,执行步骤23;否则,执行步骤24。
预设外环温条件作为对膨胀阀的开度执行不同的控制策略的判断条件,为已知的条件,可为固定不变的条件,也可为动态可变的条件。预设外环温条件的设置原则为:在室外环境温度不满足该预设外环温条件时,通过牺牲空调器的制冷/制热能力来降低功率模块的温度,实现空调器的稳定运行。
在一些实施例中,预设外环温条件为:外环温不小于外环温阈值。在一些实施例中,外环温阈值为35℃。则在当前室外环境温度不小于外环温阈值时,判定当前室外环境温度满足预设外环温条件。
步骤23:获取当前功率模块温度、当前室内温差,根据当前功率模块温度和当前室内温差控制第一电子膨胀阀和第二电子膨胀阀的开度。
当前功率模块温度,为按照设定采样频率不断获取的变频空调器的功率模块的温度,可通过在功率模块表面设置的温度检测装置获取。当前室内温差,为按照设定采样频率不断获取的变频空调器室内机所处室内环境的当前室内温度与变频空调器的当前设定温度之差。
在室外环境温度满足预设外环温条件时,将综合考虑当前功率模块温度和当前室内温差,根据两个温度作为控制参量,控制第一电子膨胀阀的开度和第二电子膨胀阀的开度。
步骤24:获取当前功率模块温度,根据当前功率模块温度控制第一电子膨胀阀和第二电子膨胀阀的开度。
在室外环境温度不满足预设外环温条件时,只需获取当前功率模块温度,根据当前功率模块温度控制两个电子膨胀阀的开度,而不考虑室内温差的影响。
采用该实施例的控制方法,将室外环境温度作为调控两电子膨胀阀开度的判断参量,在室外环境温度满足预设外环温条件时,进一步同时结合功率模块温度和室内温差控制两阀的开度,实现空调器的制冷制热能力和功率模块的降温能力的均衡;在室外环境温度不满足预设外环温条件时,仅根据功率模块温度控制两阀的开度,在不影响制冷制热能力需求的基础上实现对功率模块的降温;从而,提供空调器系统运行的稳定性和可靠性,实现智能变频空调器功能。
图3所示为本发明变频空调器的控制方法另一个实施例的流程示意图。该实施例中变频空调器的结构,参见图1所示,包括功率模块,还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,第一电子膨胀阀设置在变频空调器的制冷剂主回路中,第二电子膨胀阀设置在为功率模块降温的制冷剂支路中。
如图3所示意,该实施例采用下述过程实现空调器的控制。
步骤31:变频空调器运行时,获取当前室外环境温度。
步骤32:判断当前室外环境温度是否满足预设外环温条件。若是,执行步骤33;否则,转至步骤37。
步骤33:在判定当前室外环境温度满足预设外环温条件时,获取当前功率模块温度和当前室内温差。
上述三个步骤的具体实现过程、参数含义、参数的获取方式、预设外环温条件的确定等,参考图2实施例的相应描述。
步骤34:判断当前室内温差是否满足预设室内温差条件。若是,执行步骤35;否则,执行步骤36。
预设室内温差条件作为当前室外环境温度满足预设外环温条件时对膨胀阀的开度执行不同的控制策略的判断条件,为已知的条件,可为固定不变的条件,也可为动态可变的条件。预设室内温差条件的设置原则为:在室内温差满足该预设室内温差条件时,优先考虑空调器的制冷/制热能力。
在一些实施例中,预设室内温差条件为:室内温差大于设定温差阈值。在一些实施例中,设定温差阈值为4℃。则在当前室内温差大于该设定温差阈值时,判定当前室内温差满足预设室内温差条件。进而,根据当前室内温差是否满足预设室内温差条件,执行不同的控制。
步骤35:根据当前功率模块与第一温度阈值、第二温度阈值和第三温度阈值的关系,控制两个电子膨胀阀的开度。
在当前室内温差满足预设室内温差条件时,根据当前功率模块温度与三个温度阈值的关系,对第一电子膨胀阀和第二电子膨胀阀的开度进行控制。
具体控制过程包括:
(1)在当前功率模块温度小于第一温度阈值时,增大第一电子膨胀阀的开度,控制第二电子膨胀阀的开度为初始开度。通过增大第一电子膨胀阀的开度,增大制冷剂主回路中的制冷剂流量,提高空调器的制冷/制热能力,快速满足室内温度调节的需求。同时,第二电子膨胀阀保持初始开度,保持空调器系统的稳定运行。
第一温度阈值为已知值,可为固定不变值,也可为动态可变值。在一些实施例中,第一温度阈值为85℃。
增大第一电子膨胀阀的开度,可为在当前采用空调器的其他控制策略所确定的第一电子膨胀阀的开度的基础上,再增大其开度值。在一些实施例中,可将第一电子膨胀阀的开度增大10pls。
第二电子膨胀阀的初始开度为已知的开度值。在一些实施例中,初始开度为120pls。
(2)在当前功率模块温度不小于第一温度阈值且小于第二温度阈值时,增大第一电子膨胀阀的开度,控制第二电子膨胀阀的开度为第一开度。
第一开度为已知的开度值,且其值大于初始开度。在一些实施例中,第一开度为150pls。通过增大第一电子膨胀阀的开度,增大制冷剂主回路中的制冷剂流量,提高空调器的制冷/制热能力,快速满足室内温度调节的需求。同时,第二电子膨胀阀保持第一开度,增大对功率模块的降温能力,实现空调器系统的稳定运行。
第二温度阈值为已知值,其值大于第一温度阈值,其可为固定不变值,也可为动态可变值。在一些实施例中,第二温度阈值为90℃。
增大第一电子膨胀阀的开度,可为在当前采用空调器的其他控制策略所确定的第一电子膨胀阀的开度的基础上,再增大其开度值。在一些实施例中,可将第一电子膨胀阀的开度增大10pls。
(3)在当前功率模块温度不小于第二温度阈值、且小于第三温度阈值,且当前功率模块温度的变化率大于0时,保持第一电子膨胀阀的开度,增大第二电子膨胀阀的开度。通过增大第二电子膨胀阀的开度,增大对功率模块的降温能力;同时,保持第一电子膨胀阀的开度,以保持系统的稳定运行。
在一些实施例中,增大第二电子膨胀阀的开度,不能超过第二开度。其中,第二开度为已知的开度,其值大于第一开度。在一些实施例中,第二开度为350pls。
第三温度阈值为已知值,其值大于第二温度阈值,其可为固定不变值,也可为动态可变值。在一些实施例中,第三温度阈值为105℃。
当前功率模块温度的变化率大于0,表示当前功率模块温度呈现上升的变化趋势。
保持第一电子膨胀阀的开度,是指不再根据功率模块温度对第一电子膨胀阀的开度进行调整,而非第一电子膨胀阀的开度必为固定开度,其仍可根据其他控制策略确定的开度工作。
在其他一些实施例中,在当前室内温差满足预设室内温差条件时,控制方法还包括:
在当前功率模块温度不小于第三温度阈值、且第二电子膨胀阀的开度达到第二开度时,控制所述变频空调器停机,避免功率模块温度过高而产生不利影响。在其他一些实施例中,还发出功率模块温度过高的报警或提醒。
步骤36:根据当前功率模块与第一温度阈值、第二温度阈值、第三温度阈值和第四温度阈值的关系,控制两个电子膨胀阀的开度。
在当前室内温差不满足预设室内温差条件时,将根据当前功率模块温度与四个温度阈值的关系,对第一电子膨胀阀和第二电子膨胀阀的开度进行控制。该步骤的控制过程与步骤35的控制过程相比,在室内温差不满足预设室内温差阈值时,制冷/制热负荷需求较小,增加了根据第四温度阈值,通过设置更多个温度阈值,实现对阀开度的缓慢调节,进一步提高系统运行的稳定性。
具体控制过程包括:
(1)在当前功率模块温度小于第一温度阈值时,保持第一电子膨胀阀的开度,控制第二电子膨胀阀的开度为第一开度。
因制冷/制热负荷需求较小,保持第一电子膨胀阀的开度,同时控制第二电子膨胀阀处于中等的开度,保持对功率模块的一定降温能力,避免功率模块温度过高,同时保持空调器系统的稳定运行。
(2)在当前功率模块温度不小于第一温度阈值且小于第二温度阈值时,保持第一电子膨胀阀的开度,控制第二电子膨胀阀的开度为第三开度。其中,第三开度为已知值,且其值大于第一开度。在一些实施例中,第三开度为200pls。在功率模块温度为不小于第一温度阈值的较高温时,控制第二电子膨胀阀以更大的第三开度运行,提高对功率模块的降温能力。
(3)在当前功率模块温度不小于第二温度阈值、且小于第四温度阈值,且当前功率模块温度的变化率大于0时,保持第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度。
第四温度阈值为已知值,且其值大于第二温度阈值、但小于第三温度阈值。在一些实施例中,第四温度阈值为100℃。在功率模块温度进一步升高时,进一步增大第二电子膨胀阀的开度,提高对功率模块的降温能力。
(4)在当前功率模块温度不小于第四温度阈值、且小于第三温度阈值,且第二电子膨胀阀的开度不小于第三开度时,减小所述第一电子膨胀阀的开度。通过减小第一电子膨胀阀的开度,牺牲空调器的制冷/制热能力,使得更多的制冷剂为功率模块降温,实现空调器的稳定、长期不停机运行。
在其他一些实施例中,在当前室内温差不满足预设室内温差条件时,控制方法还包括:
在当前功率模块温度不小于第三温度阈值、且第二电子膨胀阀的开度达到第二开度时,控制变频空调器停机,避免功率模块温度过高而产生不利影响。在其他一些实施例中,还发出功率模块温度过高的报警或提醒。
步骤37:在步骤32判定当前室外环境温度不满足预设外环温条件时,获取当前功率模块温度。
在室外环境温度不满足预设外环温条件时,只需获取当前功率模块温度,根据当前功率模块温度控制两个电子膨胀阀的开度,而不考虑室内温差的影响。
步骤38:根据当前功率模块与第一温度阈值、第二温度阈值和第五温度阈值的关系,控制两个电子膨胀阀的开度。
在当前室外环境温度不满足预设外环温条件时,以功率模块降温为主要调控目的,根据当前功率模块温度与三个温度阈值的关系,对第一电子膨胀阀和第二电子膨胀阀的开度进行控制。
具体控制过程包括:
(1)在当前功率模块温度小于第一温度阈值时,保持第一电子膨胀阀的开度,控制第二电子膨胀阀的开度为第四开度。
第四开度为已知值,其值位于第一开度和第三开度之间。在一些实施例中,第四开度为170pls。通过控制第二电子膨胀阀的开度为第四开度,而保持第一电子膨胀阀的开度,能够保持对功率模块的一定降温能力,避免功率模块温度过高,同时保持空调器系统的稳定运行。
(2)在当前功率模块温度不小于第一温度阈值且小于第二温度阈值,且当前功率模块温度的变化率大于0时,保持第一电子膨胀阀的开度,增大第二电子膨胀阀的开度。
在功率模块温度进一步升高时,进一步增大第二电子膨胀阀的开度,提高对功率模块的降温能力。
(3)在当前功率模块温度不小于第二温度阈值且小于第五温度阈值时,减小第一电子膨胀阀的开度,增大第二电子膨胀阀的开度,以提高对功率模块的降温能力,增强功率模块降温效果。
第五温度阈值为已知值,且其值小于第三温度阈值。在一些实施例中,第五温度阈值为95℃。在当前室外环境温度不满足预设外环温条件时,通过设置小于第三温度阈值的第五温度阈值作为是否停机的判断温度,可提高对功率模块的有效保护力度。
在其他一些实施例中,在当前室外环境温度不满足预设外环温条件时,控制方法还包括:
在当前功率模块温度不小于第五温度阈值时,控制变频空调器停机。避免功率模块温度过高而产生不利影响。在其他一些实施例中,还发出功率模块温度过高的报警或提醒。
图4示出了本发明变频空调器的控制装置一个实施例的结构示意图。该实施例中变频空调器的结构,参见图1所示,包括功率模块,还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,第一电子膨胀阀设置在变频空调器的制冷剂主回路中,第二电子膨胀阀设置在为功率模块降温的制冷剂支路中。
该实施例的控制装置包括的结构单元、结构单元的功能及相互之间的关系,具体如下:
控制装置包括:
当前室外环境温度获取单元41,用于在变频空调器运行时,获取当前室外环境温度。
当前室外环境温度判断单元42,用于判断当前室外环境温度获取单元41获取的当前室外环境温度是否满足预设外环温条件。
当前功率模块温度获取单元43,用于至少在当前室外环境温度判断单元42判定当前室外环境温度满足预设外环温条件时,获取当前功率模块温度。
当前室内温差获取单元44,用于至少在当前室外环境温度判断单元42判定当前室外环境温度满足预设外环温条件时,获取当前室内温差。当前室内温差根据当前室内温度与当前设定温度确定。
膨胀阀开度控制单元45,用于在当前室外环境温度判断单元42判定当前室外环境温度满足预设外环温条件时,根据当前功率模块温度获取单元43获取的当前功率模块温度和当前室内温差获取单元44获取的当前室内温差控制第一电子膨胀阀和第二电子膨胀阀的开度;还用于在当前室外环境温度判断单元42判定当前室外环境温度不满足预设外环温条件时,根据当前功率模块温度获取单元43获取的当前功率模块温度控制第一电子膨胀阀和第二电子膨胀阀的开度。
上述结构的控制装置,运行相应的软件程序,执行相应的功能,按照图2、图3变频空调器的控制方法实施例及其他实施例的过程进行空调器控制,达到与图2、图3实施例及其他实施例的相应技术效果。
上述实施例的空调器控制装置应用于变频空调器中,可提高空调器系统运行的稳定性和可靠性,实现智能空调器功能。
图5示出了本发明的电子设备一个实施例的结构框图。该电子设备包括处理器51、存储器52及存储在存储器52上的计算机程序521,处理器51配置为执行计算机程序521,实现图2实施例、图3实施例及其他实施例的空调器控制方法,并实现相应实施例的技术效果。电子设备可为空调器的主控板、控制器等。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种变频空调器的控制方法,所述变频空调器包括功率模块,其特征在于,所述变频空调器还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,所述第一电子膨胀阀设置在所述变频空调器的制冷剂主回路中,所述第二电子膨胀阀设置在为所述功率模块降温的制冷剂支路中;
    所述控制方法包括:
    变频空调器运行时,获取当前室外环境温度;
    判断所述当前室外环境温度是否满足预设外环温条件;
    在所述当前室外环境温度满足所述预设外环温条件时,获取当前功率模块温度、当前室内温差,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度;所述当前室内温差根据当前室内温度与当前设定温度确定;
    在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度。
  2. 根据权利要求1所述的变频空调器的控制方法,其特征在于,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,包括:
    在所述当前室内温差满足预设室内温差条件时,根据所述当前功率模块温度对所述第一电子膨胀阀和所述第二电子膨胀阀的开度执行下述的控制:
    在所述当前功率模块温度小于第一温度阈值时,增大所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为初始开度;
    在所述当前功率模块温度不小于所述第一温度阈值且小于第二温度阈值时,增大所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第一开度;
    在所述当前功率模块温度不小于所述第二温度阈值、且小于第三温度阈值,且所述当前功率模块温度的变化率大于0时,保持所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度。
  3. 根据权利要求2所述的变频空调器的控制方法,其特征在于,所述控制方法还包括:
    在所述当前功率模块温度不小于所述第三温度阈值、且所述第二电子膨胀阀的开度达到第二开度时,控制所述变频空调器停机。
  4. 根据权利要求2所述的变频空调器的控制方法,其特征在于,根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,还包括:
    在所述当前室内温差不满足预设室内温差条件时,根据所述当前功率模块温度对所述第一电子膨胀阀和所述第二电子膨胀阀的开度执行下述的控制:
    在所述当前功率模块温度小于第一温度阈值时,保持所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第一开度;
    在所述当前功率模块温度不小于所述第一温度阈值且小于第二温度阈值时,保持所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第三开度;所述第三开度大于所述第一开度;
    在所述当前功率模块温度不小于所述第二温度阈值、且小于第四温度阈值,且所述当前功率模块温度的变化率大于0时,保持所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度;所述第四温度阈值小于所述第三温度阈值;
    在所述当前功率模块温度不小于所述第四温度阈值、且小于所述第三温度阈值,且所述第二电子膨胀阀的开度不小于所述第三开度时,减小所述第一电子膨胀阀的开度。
  5. 根据权利要求4所述的变频空调器的控制方法,其特征在于,所述控制方法还包括:
    在所述当前功率模块温度不小于所述第三温度阈值、且所述第二电子膨胀阀的开度达到所述第二开度时,控制所述变频空调器停机。
  6. 根据权利要求2至5中任一项所述的变频空调器的控制方法,其特征在于,在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,包括:
    在所述当前功率模块温度小于所述第一温度阈值时,保持所述第一电子膨胀阀的开度,控制所述第二电子膨胀阀的开度为第四开度;
    在所述当前功率模块温度不小于所述第一温度阈值且小于第二温度阈值,且所述当前功率模块温度的变化率大于0时,保持所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度;
    在所述当前功率模块温度不小于所述第二温度阈值且小于第五温度阈值时,减小所述第一电子膨胀阀的开度,增大所述第二电子膨胀阀的开度;所述第五温度阈值小于所述第三温度阈值。
  7. 根据权利要求6所述的变频空调器的控制方法,其特征在于,所述控制方法还包括:
    在所述当前功率模块温度不小于所述第五温度阈值时,控制所述变频空调器停机。
  8. 一种变频空调器的控制装置,所述变频空调器包括功率模块,其特征在于,所述变频空调器还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,所述第一电子膨胀阀设置在所述变频空调器的制冷剂主回路中,所述第二电子膨胀阀设置在为所述功率模块降温的制冷剂支路中;
    所述控制装置包括:
    当前室外环境温度获取单元,用于在变频空调器运行时,获取当前室外环境温度;
    当前室外环境温度判断单元,用于判断所述当前室外环境温度是否满足预设外环温条件;
    当前功率模块温度获取单元,用于至少在所述当前室外环境温度满足所述预设外环温条件时,获取当前功率模块温度;
    当前室内温差获取单元,用于至少在所述当前室外环境温度满足所述预设外环温条件时,获取当前室内温差;所述当前室内温差根据当前室内温度与当前设定温度确定;
    膨胀阀开度控制单元,用于在所述当前室外环境温度满足所述预设外环温条件时根据所述当前功率模块温度和所述当前室内温差控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度,还用于在所述当前室外环境温度不满足所述预设外环温条件时,根据所述当前功率模块温度控制所述第一电子膨胀阀和所述第二电子膨胀阀的开度。
  9. 一种变频空调器,包括功率模块,其特征在于,所述变频空调器还包括并联连接的第一电子膨胀阀和第二电子膨胀阀,所述第一电子膨胀阀设置在所述变频空调器的制冷剂主回路中,所述第二电子膨胀阀设置在为所述功率模块降温的制冷剂支路中;所述变频空调器还包括上述权利要求8所述的变频空调器控制装置。
  10. 一种电子设备,包括处理器、存储器及存储在所述存储器上的计算机程序,其特征在于,所述处理器配置为执行所述计算机程序,实现上述权利要求1至7中任一项所述的变频空调器的控制方法。
PCT/CN2023/079382 2022-03-31 2023-03-02 变频空调器及其控制方法和控制装置 WO2023185369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210332684.X 2022-03-31
CN202210332684.XA CN114811892A (zh) 2022-03-31 2022-03-31 变频空调器及其控制方法和控制装置

Publications (1)

Publication Number Publication Date
WO2023185369A1 true WO2023185369A1 (zh) 2023-10-05

Family

ID=82532904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079382 WO2023185369A1 (zh) 2022-03-31 2023-03-02 变频空调器及其控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN114811892A (zh)
WO (1) WO2023185369A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811892A (zh) * 2022-03-31 2022-07-29 青岛海尔空调器有限总公司 变频空调器及其控制方法和控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679119A (zh) * 2017-02-04 2017-05-17 青岛海尔空调器有限总公司 一种空调的控制方法、装置及空调
CN106766001A (zh) * 2017-02-04 2017-05-31 青岛海尔空调器有限总公司 一种空调的控制方法、装置及空调
CN109945389A (zh) * 2019-03-29 2019-06-28 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN110594947A (zh) * 2019-09-29 2019-12-20 海信(山东)空调有限公司 一种空调的控制方法、控制装置及空调
CN114811892A (zh) * 2022-03-31 2022-07-29 青岛海尔空调器有限总公司 变频空调器及其控制方法和控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679119A (zh) * 2017-02-04 2017-05-17 青岛海尔空调器有限总公司 一种空调的控制方法、装置及空调
CN106766001A (zh) * 2017-02-04 2017-05-31 青岛海尔空调器有限总公司 一种空调的控制方法、装置及空调
CN109945389A (zh) * 2019-03-29 2019-06-28 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN110594947A (zh) * 2019-09-29 2019-12-20 海信(山东)空调有限公司 一种空调的控制方法、控制装置及空调
CN114811892A (zh) * 2022-03-31 2022-07-29 青岛海尔空调器有限总公司 变频空调器及其控制方法和控制装置

Also Published As

Publication number Publication date
CN114811892A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN109945401A (zh) 空调器的控制方法、装置及空调器
CN104633815A (zh) 机房用空调系统及其控制方法
CN105674448A (zh) 一种热管复合型空调系统及其控制方法
CN103075768A (zh) 恒温恒湿空调机组及控制方法
WO2023185369A1 (zh) 变频空调器及其控制方法和控制装置
KR102014931B1 (ko) 자연에너지를 이용한 하이브리드 외기 냉방시스템 및 그 제어방법
CN114543282A (zh) 空调除湿控制方法及系统
CN110686390A (zh) 一种变频器防止主板凝露的控制方法、系统及空调
CN203478506U (zh) 一种空调室外机电控模块降温装置
CN213089944U (zh) 一种恒温制冷装置
CN111928432B (zh) 空调器的控制方法
KR101702008B1 (ko) 복합공조 방식의 통신장비용 냉방장치
WO2023124012A1 (zh) 压缩机控制方法、控制装置及空调器
CN113757936B (zh) 空调控制系统、空调器及空调器的控制方法
CN111156615B (zh) 基于双级压缩机系统的控制器散热系统及其控制方法
CN108119971A (zh) 空调器及其控制方法
CN113639396A (zh) 用于空调系统的控制方法
CN212278706U (zh) 一种恒温除湿制冷装置
CN220379921U (zh) 螺杆式中央空调机组变频调节装置
CN219735499U (zh) 一种双冷源液冷空调系统
CN220087791U (zh) 一种水冷氟泵系统
CN116222041B (zh) 一种制冷系统二次冷凝融霜介质流量控制方法
CN114370699B (zh) 空调器制热运行控制方法、控制装置及空调器
CN219934141U (zh) 一种空调机组结构
CN114754475B (zh) 空调运行控制方法、运行装置、空调和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777747

Country of ref document: EP

Kind code of ref document: A1