WO2023205920A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2023205920A1
WO2023205920A1 PCT/CN2022/088685 CN2022088685W WO2023205920A1 WO 2023205920 A1 WO2023205920 A1 WO 2023205920A1 CN 2022088685 W CN2022088685 W CN 2022088685W WO 2023205920 A1 WO2023205920 A1 WO 2023205920A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
edge
pixel
layer
light modulation
Prior art date
Application number
PCT/CN2022/088685
Other languages
English (en)
French (fr)
Inventor
韩城
金凯佳
樊星
王艳明
吴启晓
温向敏
杨炳伟
汪顺
吴淞全
李彦松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000860.8A priority Critical patent/CN117501836A/zh
Priority to PCT/CN2022/088685 priority patent/WO2023205920A1/zh
Publication of WO2023205920A1 publication Critical patent/WO2023205920A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a manufacturing method thereof, and a display device.
  • OLED organic light-emitting diode
  • a light-emitting device such as an OLED
  • a sub-pixel passes through multiple film layers with different refractive indexes, causing light loss.
  • a display panel including: a base substrate; a pixel definition layer located on one side of the base substrate and having a plurality of first openings for defining a plurality of sub-pixels, The plurality of first openings correspond to the plurality of sub-pixels in a one-to-one correspondence; an encapsulation layer is located on a side of the pixel defining layer away from the base substrate; and a light modulation layer is located on the encapsulation layer away from the substrate. side of the base substrate.
  • the light modulation layer includes: a first light modulation sub-layer having at least one second opening, the at least one second opening corresponding to at least one sub-pixel, each of the at least one sub-pixel corresponding to the first
  • the orthographic projections of an opening and a second opening on the base substrate are respectively a first orthographic projection and a second orthographic projection; and a second light modulation sub-layer, including a first light modulation part located in each second opening.
  • the light modulation layer is configured such that the interface between the first light modulation portion and the first light modulation sub-layer in which light from each of the at least one sub-pixel is incident into the corresponding second opening is After total reflection, it propagates in a direction away from the base substrate.
  • the display panel satisfies at least one of the first condition and the second condition.
  • the first condition is: at least part of the edge of the first orthographic projection has a depression.
  • the second condition is: at least part of the edge of the second orthographic projection has at least one of a depression and a bulge.
  • the at least one subpixel includes a blue subpixel.
  • the at least one sub-pixel includes a first sub-pixel having a length in a first direction greater than a length in a second direction perpendicular to the first direction;
  • the edges of the first orthographic projection and the second orthographic projection corresponding to each of at least one sub-pixel include a first edge and a second edge arranged oppositely in the first direction, and in the first A third edge and a fourth edge are arranged opposite each other in two directions, and each of the third edge and the fourth edge is adjacent to the first edge and the second edge.
  • At least one of the first edge and the second edge of the first orthographic projection of the first sub-pixel has a depression, and the first orthographic projection of the first sub-pixel The projected third and fourth edges do not have depressions.
  • At least one of the third edge and the fourth edge of the first orthographic projection of the first sub-pixel has a bulge.
  • At least one of the first edge and the second edge of the second orthographic projection of the first sub-pixel has a depression.
  • At least one of the third edge and the fourth edge of the second orthographic projection of the first sub-pixel has a bulge.
  • the edge of the second orthographic projection of the first sub-pixel does not have depressions and bulges.
  • the edge of the first orthographic projection of the first sub-pixel does not have depressions and bulges, and the first edge of the second orthographic projection of the first sub-pixel and the At least one of the second edges has a depression.
  • the edge of the first orthographic projection of the first sub-pixel does not have depressions and bulges
  • the third edge of the second orthographic projection of the first sub-pixel and the At least one of the fourth edges has a bulge
  • the plurality of sub-pixels include the first, second and third sub-pixels configured to emit light of different colors, the first sub-pixel being in the first direction
  • the ratio of the upward length to the length in the second direction is greater than the ratio of the length of the second sub-pixel in the first direction to the second direction, and is greater than the third The ratio of the length of the sub-pixel in the first direction to the length of the third sub-pixel in the second direction.
  • the first sub-pixel is a red sub-pixel.
  • the second light modulation sub-layer further includes a second light modulation part located on a side of the first light modulation part and the first light modulation sub-layer away from the base substrate, and adjacent to the first light modulation part, wherein the first light modulation part and the second light modulation part each include a first face and a second face that are arranged oppositely, and a third face and a fourth face that are arranged oppositely. surface, the second surface is located on a side of the first surface away from the base substrate, and each of the third surface and the fourth surface is connected to the first surface and the second surface.
  • the surfaces are adjacent, and the first included angle between each of the third surface and the fourth surface of the second light modulation part and the first surface of the second light modulation part is less than 90 degrees.
  • the light modulation layer also includes a third light modulation sub-layer, located on the side of the first light modulation sub-layer and the second light modulation sub-layer away from the base substrate, the third light modulation sub-layer The refractive index of the sub-layer is smaller than the refractive index of the second light modulation part.
  • the first included angle is greater than or equal to 60 degrees.
  • a second included angle between each of the third surface and the fourth surface of the first light modulation part and the first surface of the first light modulation part Greater than or equal to 60 degrees and less than or equal to 80 degrees.
  • the at least one sub-pixel includes a first sub-pixel having a length in a first direction greater than a length in a second direction perpendicular to the first direction, and the The orthographic projection of the second light modulation part corresponding to each of the at least one sub-pixel on the base substrate is a third orthographic projection; the first orthogonal projection of the corresponding second light modulation part to each of the at least one sub-pixel is The edges of the projection, the second orthographic projection and the third orthographic projection each include a first edge and a second edge that are oppositely arranged in the first direction, and a third edge that is oppositely arranged in the second direction. edge and a fourth edge, each of the third edge and the fourth edge is adjacent to the first edge and the second edge, wherein the first positive edge corresponding to the first sub-pixel At least one of the first edge and the second edge of the projection has a depression.
  • the at least one sub-pixel further includes a green sub-pixel, and at least one of the third edge and the fourth edge of the first orthographic projection corresponding to the green sub-pixel has a depression.
  • At least one of the third edge and the fourth edge of the second orthographic projection corresponding to the green sub-pixel has a depression.
  • At least one of the third edge and the fourth edge of the third orthographic projection corresponding to the green sub-pixel has a depression.
  • the display panel satisfies the first condition and the second condition.
  • the encapsulation layer includes: a first inorganic layer, and a side of the first inorganic layer away from the base substrate has a plurality of recesses corresponding to the plurality of first openings; a second An inorganic layer, located on the side of the first inorganic layer away from the base substrate; an organic layer, located between the first inorganic layer and the second inorganic layer; and at least one first optical structure, located on the Between the first inorganic layer and the organic layer, the refractive index of each first optical structure is greater than the refractive index of the organic layer.
  • a display panel including: a base substrate; and a pixel defining layer located on one side of the base substrate and having a plurality of first openings for defining a plurality of sub-pixels. , the plurality of first openings are in one-to-one correspondence with the plurality of sub-pixels; an encapsulation layer is located on the side of the pixel defining layer away from the base substrate; and a light modulation layer is located on the encapsulation layer away from the side of the base substrate.
  • the light modulation layer includes: a first light modulation sub-layer having at least one second opening, the at least one second opening corresponding to at least one sub-pixel, each of the at least one sub-pixel corresponding to the first
  • the orthographic projections of an opening and a second opening on the base substrate are respectively a first orthographic projection and a second orthographic projection; and a second light modulation sub-layer, including a first light modulation part located in each second opening.
  • the light modulation layer is configured such that the interface between the first light modulation portion and the first light modulation sub-layer in which light from each of the at least one sub-pixel is incident into the corresponding second opening is After total reflection, it propagates in a direction away from the base substrate.
  • the display panel satisfies at least one of the first condition and the second condition.
  • the first condition is: at least part of the edge of the first orthographic projection has a depression.
  • the second condition is: at least part of the interface is non-planar.
  • a display device including: the display panel described in any of the above embodiments.
  • a method for manufacturing a display panel including: providing a base substrate; forming a pixel defining layer on one side of the base substrate, the pixel defining layer having a structure for defining multiple A plurality of first openings of sub-pixels, the plurality of first openings corresponding to the plurality of sub-pixels; forming an encapsulation layer on a side of the pixel defining layer away from the base substrate; and in the encapsulation A light modulation layer is formed on the side away from the base substrate.
  • Forming the light modulation layer on the side of the encapsulation layer away from the base substrate includes: forming a first light modulation sub-layer, the first light modulation sub-layer having at least one second opening, the at least one second opening being connected to At least one sub-pixel has a one-to-one correspondence, and the orthographic projections of the first opening and the second opening corresponding to each of the at least one sub-pixel on the substrate are the first orthographic projection and the second orthographic projection respectively; and A second light modulation sub-layer is formed, the second light modulation sub-layer including a first light modulation portion located in each second opening.
  • the light modulation layer is configured such that the interface between the first light modulation portion and the first light modulation sub-layer in which light from each of the at least one sub-pixel is incident into the corresponding second opening is After total reflection, it propagates toward the side away from the base substrate.
  • the display panel satisfies at least one of the first condition and the second condition.
  • the first condition is: at least part of the edge of the first orthographic projection has a depression.
  • the second condition is: at least part of the edge of the second orthographic projection has at least one of a depression and a bulge.
  • FIG. 1A is a schematic structural diagram showing a display panel according to some embodiments of the present disclosure.
  • FIGS. 1B and 1C are schematic diagrams showing first and second orthographic projections of some embodiments of the underlying disclosure
  • FIG. 1D is a schematic diagram showing a second orthographic projection that fundamentally discloses other embodiments
  • Figure 2 is a partial schematic diagram of the display panel shown in Figure 1A;
  • 3A and 3B are schematic diagrams showing the arrangement of sub-pixels in a display panel according to some embodiments of the present disclosure
  • 4A-4D are schematic diagrams illustrating first and second orthographic projections according to further embodiments of the present disclosure.
  • 5A and 5B are schematic structural diagrams showing a display panel according to other embodiments of the present disclosure.
  • 6A and 6B are schematic diagrams illustrating first, second and third orthographic projections according to some embodiments of the present disclosure
  • FIGS. 7A-7C are schematic diagrams illustrating first, second and third orthographic projections according to other embodiments of the present disclosure.
  • FIGS. 8A-8C are schematic structural diagrams showing a display panel according to further embodiments of the present disclosure.
  • Figure 9 is a schematic structural diagram showing a display panel according to further embodiments of the present disclosure.
  • Figure 10 is a partial schematic diagram of the display panel shown in Figure 9;
  • 11A and 11B are schematic diagrams illustrating first and third orthographic projections according to some embodiments of the present disclosure.
  • 12A and 12B are schematic structural diagrams showing a display panel according to some embodiments of the present disclosure.
  • FIGS. 13A-13C are schematic structural diagrams showing a display panel according to some embodiments of the present disclosure.
  • Figure 14 is a schematic structural diagram showing a display panel according to some embodiments of the present disclosure.
  • 15A and 15B are schematic diagrams illustrating first and second orthographic projections according to further embodiments of the present disclosure.
  • 16A and 16B are schematic diagrams illustrating first, second and third orthographic projections according to further embodiments of the present disclosure.
  • Figure 17 is a schematic diagram illustrating first, second and third orthographic projections according to further embodiments of the present disclosure.
  • FIG. 18 is a schematic flowchart illustrating a manufacturing method of a display panel according to some embodiments of the present disclosure
  • FIG. 19 is a schematic flowchart illustrating a manufacturing method of a display panel according to other embodiments of the present disclosure.
  • a specific component when a specific component is described as being between a first component and a second component, there may or may not be an intervening component between the specific component and the first component or the second component.
  • the specific component When a specific component is described as being connected to other components, the specific component may be directly connected to the other components without intervening components, or may not be directly connected to the other components but have intervening components.
  • the front light extraction efficiency of the display panel can be improved by arranging additional optical structures, that is, the light extraction efficiency perpendicular to the substrate in the display panel.
  • the optical structure includes a layer with a higher refractive index and a layer with a lower refractive index. When some light rays are incident from the layer with a higher refractive index to the layer with a lower refractive index, they may be totally reflected, so that they would not exit toward the front. The light emerges toward the front or close to the front, thereby improving the front light extraction efficiency of the display panel.
  • Embodiments of the present disclosure provide a display panel that can further improve front light extraction efficiency.
  • FIG. 1A is a schematic structural diagram showing a display panel according to some embodiments of the present disclosure.
  • the display panel includes a base substrate 11 , a pixel definition layer 12 , an encapsulation layer 13 and a light modulation layer 14 (which may also be called a first light modulation layer 14 in some embodiments).
  • the display panel further includes a module layer 15 .
  • the module layer 15 includes a touch layer, a polarizing layer and a cover plate located in sequence on the side of the light modulation layer 14 away from the base substrate 11.
  • the base substrate 11 may be a glass substrate.
  • the base substrate 11 may be a flexible substrate, such as a polyimide (PI) substrate.
  • PI polyimide
  • the pixel defining layer 12 is located on one side of the base substrate 11 and has a plurality of first openings V1 for defining a plurality of sub-pixels.
  • the plurality of first openings V1 correspond to the plurality of sub-pixels on a one-to-one basis.
  • the plurality of sub-pixels include red sub-pixel R, green sub-pixel G and blue sub-pixel B.
  • the display panel may also include other components not shown in FIG. 1A , such as a plurality of pixel driving circuits and a planarization layer covering the plurality of pixel driving circuits.
  • the anode of each sub-pixel may be located on a side of the planarization layer away from the base substrate 11 and connected to the pixel driving circuit.
  • the pixel definition layer 12 may be located on a side of the planarization layer and the anode away from the base substrate 11 .
  • Each first opening V1 of the pixel defining layer 12 exposes at least part of the anode of the corresponding sub-pixel.
  • the encapsulation layer 13 is located on the side of the pixel definition layer 12 away from the base substrate 11 .
  • the encapsulation layer 13 includes a first inorganic layer 131 , a second inorganic layer 132 , and an organic layer 133 located between the first inorganic layer 131 and the second inorganic layer 132 .
  • the light modulation layer 14 is located on the side of the packaging layer 13 away from the base substrate 11 .
  • the light modulation layer 14 includes a first light modulation sub-layer 141 and a second light modulation sub-layer 142.
  • the refractive index of the second light modulation sub-layer 142 is greater than the refractive index of the first light modulation sub-layer 141.
  • the first light modulation sub-layer 141 has at least one second opening V2 corresponding to at least one sub-pixel.
  • the second light modulation sub-layer 142 includes a first light modulation portion 1421 located in each second opening V2.
  • the first light modulation sub-layer 141 has only one second opening V2, and the second opening V2 corresponds to one sub-pixel.
  • the first light modulation sub-layer 141 has a plurality of second openings V2, and the plurality of second openings V2 correspond to a plurality of sub-pixels one by one.
  • the light modulation layer 14 is configured such that the light from each of the at least one sub-pixel incident on the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 in the corresponding second opening V2 is totally reflected. Then, it propagates in a direction away from the base substrate 11 .
  • FIG. 1A shows that the light from the green sub-pixel G is incident on the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 in the corresponding second opening V2 and is totally reflected. propagates in the direction of the base substrate 11 .
  • At least one sub-pixel has corresponding first openings V1 and second openings V2 at the same time.
  • the orthographic projections of the first opening V1 and the second opening V2 corresponding to each sub-pixel on the base substrate 11 are respectively referred to as the first orthographic projection V1' and the second orthographic projection V2'.
  • the display panel of FIG. 1A satisfies at least one of the following first and second conditions.
  • the first condition is: at least part of the edge of the first orthographic projection V1' has a recess RS;
  • the second condition is: at least part of the edge of the second orthographic projection V2' has at least one of the recess RS and the protrusion PT. .
  • FIGS. 1B and 1C are schematic diagrams showing first and second orthographic projections of some embodiments of the underlying disclosure.
  • the first condition and the second condition according to some embodiments of the present disclosure are described below with reference to Figures 1B and 1C.
  • both (a) in FIG. 1B and (a) in FIG. 1C show that neither the first orthographic projection V1' nor the second orthographic projection V2' has the recess RS. , nor does it have a raised PT.
  • the first orthographic projection V1' and the second orthographic projection V2' are schematically shown as hexagons. It should be understood that the embodiment of the present disclosure is not limited thereto, and the first orthographic projection V1' and the second orthographic projection V2' can also be in other shapes.
  • the first condition is: at least part of the edge of the first orthographic projection V1' has a recess RS.
  • the first orthographic projection V1' is a hexagon, and at least one side of the first orthographic projection V1' has a recess RS, and the other sides do not have a recess RS; for another example, the first orthographic projection V1' is a hexagon, and the first orthographic projection V1' has a recess RS.
  • Each side of the orthographic projection V1' has a depression RS.
  • the second condition includes: at least part of the edge of the second orthographic projection V2' has a recess RS.
  • the second orthographic projection V2' is a hexagon, and at least one side of the second orthographic projection V2' has a recess RS, and the other sides do not have a recess RS; for another example, the second orthographic projection V2' is a hexagon, and the second orthographic projection V2' has a recess RS.
  • Each side of the orthographic projection V2' has a depression RS.
  • the second condition includes: at least part of the edge of the second orthographic projection V2' has a convex PT.
  • the second orthographic projection V2' is a hexagon, and at least one side of the second orthographic projection V2' has a convex PT, and the other sides do not have a convex PT; for another example, the second orthographic projection V2' is a hexagon, Each side of the second orthographic projection V2' has a convex PT.
  • the display panel also satisfies the second condition.
  • FIG. 1D is a schematic diagram illustrating a second orthographic projection that fundamentally discloses other embodiments. The second condition according to other embodiments of the present disclosure will be described below with reference to FIG. 1D.
  • FIG. 1D shows the interface I1 between the first light modulation part 1421 and the first light modulation sub-layer 141 .
  • the interface I1 between the first light modulation part 1421 and the first light modulation sub-layer 141 is a plane.
  • the second condition is: at least part of the interface I1 between the first light modulation part 1421 and the first light modulation sub-layer 141 is non-planar.
  • the interface I1 is composed of multiple faces. In some cases, at least one face of the interface I1 is non-planar and the other faces are planar; in other cases, each face of the interface I1 is non-planar.
  • the display panel satisfies at least one of the first condition and the second condition.
  • Such a structure helps to improve the front light extraction efficiency of the display panel.
  • the display panel satisfies the first condition and the second condition. Such a structure helps to further improve the front light extraction efficiency of the display panel.
  • the front light extraction efficiency of the display panel when it meets at least one of the first condition and the second condition is 5% higher than the front light extraction efficiency of the display panel when it does not meet the first condition and the second condition.
  • FIG. 2 is a partial schematic diagram of the display panel shown in FIG. 1A.
  • is equal to the total reflection angle arcsin(n1/n2), where n1 is the refractive index of the first light modulation sub-layer 141, and n2 is the refractive index of the second light modulation sub-layer 142.
  • the front light extraction efficiency of the display panel can be equivalent to: the ratio of the area of area A to the area of the first orthographic projection V1′ of the first opening V1 of the pixel definition layer 12. It can be seen that by increasing the area of the area A or reducing the area of the first orthographic projection V1', the front light extraction efficiency of the display panel can be improved.
  • the light extraction efficiency of the display panel can be improved.
  • the first opening V1 corresponding to the blue sub-pixel B has a recess RS in at least part of the edge of the first orthographic projection V1' on the base substrate 11, as shown in (b) in Figure 1B. In this way, it helps to improve the front efficiency of the display panel's white light.
  • At least part of the edge of the second orthographic projection V2' of the second opening V2 corresponding to the blue sub-pixel B on the substrate 11 has at least one of a recess RS and a protrusion PT, such as As shown in (b) and (c) in Figure 1B. In this way, it helps to improve the front efficiency of the display panel's white light.
  • 3A and 3B are schematic diagrams showing the arrangement of sub-pixels in a display panel according to some embodiments of the present disclosure.
  • multiple sub-pixels in the display panel may be arranged in a GGRB pixel arrangement, that is, one pixel consists of two green sub-pixels G, one red sub-pixel R and one blue sub-pixel B.
  • composition for example, the shape of the first orthographic projection V1' of the first opening V1 corresponding to the green sub-pixel G is a pentagon, and the shape of the first orthographic projection V1' of the first opening V1 corresponding to the red sub-pixel R and the blue sub-pixel B is The shapes are all hexagonal.
  • the multiple sub-pixels in the display panel can be in a standard RGB pixel arrangement (sRGB pixel arrangement), a traditional RGB pixel arrangement (Real RGB pixel arrangement), or a diamond pixel arrangement. Arrangement (Diamond pixel arrangement) or diamond-like pixel arrangement (Diamond-like pixel arrangement).
  • FIGS. 4A-4D are schematic diagrams illustrating first and second orthographic projections according to further embodiments of the present disclosure.
  • the first direction and the second direction are perpendicular to each other.
  • the edges of the first orthographic projection V1 ′ and the second orthogonal projection V2 ′ each include a first edge E1 and a second edge E2 that are oppositely arranged in the first direction, and in the second direction.
  • the third edge E3 and the fourth edge E4 are arranged oppositely.
  • Each of the third edge E3 and the fourth edge E4 is adjacent to the first edge E1 and the second edge E2.
  • the portion of the edge of the first orthographic projection V1' located above the line L1 is the first edge E1
  • the portion of the edge of the first orthographic projection V1' located below the line L2 is the second edge E2.
  • the portion of the edge of the second orthographic projection V2' located above the line L3 is the first edge E1
  • the portion of the edge of the second orthographic projection V2' located below the line L4 is the second edge E2.
  • a certain sub-pixel or some sub-pixels (hereinafter referred to as first sub-pixels) in the display panel have a length in the first direction that is greater than a length in the second direction.
  • the display panel shown in FIG. 1A has white light color cast.
  • the main cause of white light color cast is that the attenuation of light emitted by sub-pixels with different lengths in different directions is different in different directions.
  • the front light extraction efficiency of the display panel and the white light color cast embodiments of the present disclosure The following solutions have also been proposed.
  • the first edge E1 and the second edge E2 of the first orthographic projection V1' of the first sub-pixel (for example, the red sub-pixel R) in the display panel shown in FIG. 1A has The recess RS means that the third edge E3 and the fourth edge E4 of the first orthographic projection V1' of the first sub-pixel do not have a recess.
  • FIG. 4A shows a case where both the first edge E1 and the second edge E2 of the first orthographic projection V1' have recesses RS.
  • the third edge E3 and the fourth edge E4 of the first orthographic projection V1' of the first sub-pixel are straight edges.
  • the difference in light attenuation of the first sub-pixel in the first direction and the second direction can be reduced, thereby reducing the white light color shift of the display panel on the basis of improving the front light extraction efficiency of the display panel.
  • At least one of the first edge E1 and the second edge E2 of the first orthographic projection V1′ corresponding to the first sub-pixel in the display panel shown in FIG. 1A has a recess RS.
  • the third edge E3 and the fourth edge E4 of the first orthographic projection V1' of the first sub-pixel do not have recesses, and the second orthographic projection V2' corresponding to the first sub-pixel in the display panel shown in Figure 1A
  • At least one of the first edge E1 and the second edge E2 has a recess RS.
  • Figure 4A shows the situation where both the first edge E1 and the second edge E2 of the second orthographic projection V2' have recesses RS.
  • the difference in attenuation of light in the first sub-pixel in the first direction and the second direction can be further reduced, thereby further reducing the white light color of the display panel on the basis of improving the front light extraction efficiency of the display panel. Partial.
  • At least one of the first edge E1 and the second edge E2 of the first orthographic projection V1' of the first sub-pixel in the display panel shown in Figure 1A has a recess RS
  • at least one of the third edge E3 and the fourth edge E4 of the first orthographic projection V1' corresponding to the first sub-pixel in the display panel shown in FIG. 1A has a protrusion PT.
  • Figure 4C shows the situation where both the third edge E3 and the fourth edge E4 of the first orthographic projection V1' have a convex PT.
  • the difference in attenuation of light in the first sub-pixel in the first direction and the second direction can be further reduced, thereby further reducing the white light color of the display panel on the basis of improving the front light extraction efficiency of the display panel. Partial.
  • At least one of the first edge E1 and the second edge E2 of the first orthographic projection V1' of the first sub-pixel in the display panel shown in FIG. 1A has a recess RS
  • the third edge E3 and the fourth edge E4 of the first orthographic projection V1' corresponding to the first sub-pixel in the display panel shown in Figure 1A do not have recesses
  • At least one of the third edge E3 and the fourth edge E4 of the second orthographic projection V2' has a protrusion PT.
  • Figure 4D shows the situation where both the third edge E3 and the fourth edge E4 of the second orthographic projection V2' have a convex PT.
  • the difference in light attenuation of the first sub-pixel in the first direction and the second direction can be further reduced, so that on the basis of improving the front light extraction efficiency of the display panel, the light emitting efficiency of the display panel can be further reduced.
  • At least one of the first edge E1 and the second edge E2 of the first orthographic projection V1' of the first sub-pixel in the display panel shown in FIG. 1A has a recess RS, and the first sub-pixel
  • the third edge E3 and the fourth edge E4 of the first orthographic projection V1' of the pixel do not have depressions, and the edges of the second orthographic projection V2' of the first sub-pixel do not have depressions and bulges.
  • the edge of the first orthographic projection V1' of the first sub-pixel does not have concavities and bulges
  • the first edge E1 and the second edge of the second orthographic projection V2' of the first sub-pixel At least one of E2 has a recessed RS.
  • the edge of the first orthographic projection V1' of the first sub-pixel does not have concavities and bulges
  • the third edge E3 and the fourth edge of the second orthographic projection V2' of the first sub-pixel At least one of the E4s has a raised PT.
  • the white light color shift of the display panel can be reduced on the basis of improving the front light extraction efficiency of the display panel.
  • the plurality of sub-pixels of the display panel include a first sub-pixel, a second sub-pixel and a third sub-pixel configured to emit light of different colors, and the length of the first sub-pixel in the first direction is the same as that in the first direction.
  • the ratio of the length in the second direction is greater than the ratio of the length of the second sub-pixel in the first direction to the length in the second direction, and is greater than the ratio of the length of the third sub-pixel in the first direction to the length in the second direction.
  • the ratio of the length of the third subpixel is a red subpixel R
  • the second subpixel is a blue subpixel B
  • the third subpixel is a green subpixel G.
  • the protrusion PT is different from the first edge E1 and the second edge E2 of the second orthographic projection V2'.
  • the distance between edges of an orthographic projection V1' is greater than or equal to the distance between each of the first edge E1 and the second edge E2 of the second orthographic projection V2 and the edge of the second orthographic projection V2'.
  • 5A and 5B are schematic structural diagrams showing a display panel according to other embodiments of the present disclosure.
  • FIG. 5A Only the differences between FIG. 5A and FIG. 1A will be highlighted below. For other similarities, please refer to the above description.
  • the second light modulation sub-layer 142 includes a second light modulation part 1422 in addition to the first light modulation part 1421 located in each second opening V2.
  • the second light modulation part 1422 is located on the side of the first light modulation part 1421 and the first light modulation sub-layer 141 away from the base substrate 11 , and is adjacent to the first light modulation part 1421 .
  • the first light modulation part 1421 and the second light modulation part 1422 are integrally provided.
  • the light modulation layer 14 further includes a third light modulation sub-layer 143 located on the side of the first light modulation sub-layer 141 and the second light modulation sub-layer 142 away from the base substrate 11 .
  • the refractive index of the third light modulation sub-layer 143 is smaller than the refractive index of the second light modulation part 1422.
  • the first light modulation part 1421 and the second light modulation part 1422 each include a first surface S1 and a second surface S2 that are arranged opposite each other, and a third surface S3 and a fourth surface S4 that are arranged opposite each other.
  • the second surface S2 is located on a side of the first surface S1 away from the base substrate 11, and the third surface S3 and the fourth surface S4 are Each of is adjacent to the first surface S1 and the second surface S2. It should be understood that the second surface S2 of the first light modulation part 1421 shown in FIG. 5B is partially in contact with the first surface S1 of the second light modulation part 1422.
  • the first included angle ⁇ 1 between each of the third surface S3 and the fourth surface S4 of the second light modulation part 1422 and the first surface S1 of the second light modulation part 1422 is less than 90 degrees.
  • the light B1 propagates in a direction perpendicular to the base substrate 11 after being totally reflected upon being incident on the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 .
  • the light B2 enters the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 and is totally reflected, and then enters the second light modulation part 1422 and then enters the third light modulation sub-layer 143 . Since the refractive index of the third light modulation sub-layer 143 is smaller than the refractive index of the second light modulation part 1422, the propagation direction of the light B2 in the third light modulation sub-layer 143 is smaller than the propagation direction of the light B2 in the second light modulation part 1422. The direction is closer to perpendicular to the base substrate 11 , thereby improving the front light extraction effect of the display panel.
  • Light B3 does not enter the interface between the first light modulation part 1421 and the first light modulation sub-layer 141, but directly enters the third light modulation sub-layer via the first light modulation part 1421 and the second light modulation part 1422 in sequence. 143. Similar to light B2, the propagation direction of light B3 in the third light modulation sub-layer 143 is closer to the direction perpendicular to the substrate substrate 11 than the propagation direction in the second light modulation part 1422, thereby improving the front surface of the display panel. Light effect.
  • the light modulation layer 14 further includes a third light modulation sub-layer 143, and the second light modulation sub-layer 142 further includes a second light modulation part 1422.
  • a display panel helps to further improve the front light emitting effect of the display panel.
  • the first included angle ⁇ 1 is greater than or equal to 60 degrees and less than 90 degrees. When the first included angle ⁇ 1 is within this range, the front light emitting effect of the display panel can be further improved.
  • the second included angle between each of the third surface S3 and the fourth surface S4 of the first light modulation part 1421 and the first surface S1 of the first light modulation part 1421 ⁇ 2 is 60 degrees or more and 80 degrees or less.
  • the front light emitting effect of the display panel can be further improved.
  • the first included angle ⁇ 1 is greater than or equal to 60 degrees and less than or equal to 90 degrees
  • the second included angle ⁇ 2 is greater than or equal to 60 degrees and less than or equal to 80 degrees. In this way, the front light emitting effect of the display panel can be further improved.
  • the display panel shown in FIG. 5A also has white light color cast.
  • the main reason for the color cast of white light is that the attenuation of light emitted by sub-pixels with different lengths in different directions is different in different directions.
  • the first sub-pixel in the display panel shown in FIG. 5A can also comply with the various implementation methods described above, which will not be described again here.
  • the orthographic projection of the second light modulation part 1422 corresponding to the sub-pixel on the base substrate 11 is referred to as the third orthographic projection 1422'.
  • 6A and 6B are schematic diagrams illustrating first, second and third orthographic projections according to some embodiments of the present disclosure.
  • the edge of the third orthographic projection 1422' also includes a first edge E1 and a second edge arranged oppositely in the first direction. E2, and the third edge E3 and the fourth edge E4 arranged oppositely in the second direction. In the third orthographic projection 1422', each of the third edge E3 and the fourth edge E4 is adjacent to the first edge E1 and the second edge E2.
  • the portion of the edge of the third orthographic projection 1422 ′ located above the line L5 is the first edge E1
  • the portion of the edge of the third orthographic projection 1422 ′ located below the line L6 is the second edge E2
  • the portion of the edge of the orthographic projection 1422' located between the line L5 and the line L6 is the third edge E3 and the fourth edge E4.
  • At least one of the first edge E1 and the second edge E2 of the first orthographic projection V1 corresponding to the first sub-pixel in the display panel shown in Figure 5A has a recess R
  • at least one of the first edge E1 and the second edge E2 of the third orthographic projection 1422' corresponding to the first sub-pixel in the display panel shown in FIG. 5A has a recess R
  • FIG. 6A shows the case where both the first edge E1 and the second edge E2 of the third orthographic projection 1422' have a recess R.
  • This implementation helps to further reduce the white light color cast of the display panel.
  • At least one of the first edge E1 and the second edge E2 of the first orthographic projection V1 corresponding to the first sub-pixel in the display panel shown in FIG. 5A has a recess R.
  • at least one of the third edge E3 and the fourth edge E4 of the third orthographic projection 1422' corresponding to the first sub-pixel in the display panel shown in FIG. 5A has a protrusion PT.
  • Figure 6B shows the situation where both the third edge E3 and the fourth edge E4 of the third orthographic projection 1422' have a convex PT.
  • This implementation helps to further reduce the white light color cast of the display panel.
  • the display panel shown in Figure 5A also has a yellow-green light color cast.
  • the main reason for the yellow-green light color shift is that the light emitted by the green sub-pixel G attenuates slowly in the second direction.
  • embodiments of the present disclosure also propose the following solution .
  • FIGS. 7A-7C are schematic diagrams illustrating first, second and third orthographic projections according to other embodiments of the present disclosure.
  • the part of the edge of the first orthographic projection V1' corresponding to the green sub-pixel G located above the line L7 is the first edge E1
  • the edge of the first orthographic projection V1' is opposite to the first edge E1 in the first direction.
  • the portion disposed and located below the line L7 is the second edge E2
  • the portions of the edges of the first orthographic projection V1' that are disposed oppositely in the second direction and located below the line L7 are the third edge E3 and the fourth edge E4.
  • the part of the edge of the second orthographic projection V2' corresponding to the green sub-pixel G located above the line L8 is the first edge E1
  • the edge of the second orthographic projection V2' is in the first direction with the first edge E1.
  • the edge E1 is oppositely arranged and the part below the line L8 is the second edge E2.
  • the edge of the second orthographic projection V2' is oppositely arranged in the second direction and the part below the line L8 is the third edge E3 and the fourth edge.
  • the part of the edge of the third orthographic projection 1422' corresponding to the green sub-pixel G located above the line L9 is the first edge E1
  • the edge of the third orthographic projection 1422' is in the first direction with the first edge E1.
  • the edge E1 is oppositely arranged and the part below the line L9 is the second edge E2.
  • the edge of the third orthographic projection 1422' is arranged oppositely in the second direction and the part below the line L9 is the third edge E3 and the fourth edge. E4.
  • At least one of the third edge E3 and the fourth edge E4 of the first orthographic projection V1′ corresponding to the green sub-pixel G in the display panel shown in FIG. 5A has a recess RS. In this way, it helps to reduce the yellow-green color cast of the display panel.
  • At least one of the third edge E3 and the fourth edge E4 of the second orthographic projection V2′ corresponding to the green sub-pixel G has a recess RS. In this way, it helps to reduce the yellow-green color cast of the display panel.
  • At least one of the third edge E3 and the fourth edge E4 of the third orthographic projection 1422' corresponding to the green sub-pixel G has a recess RS. In this way, it helps to reduce the yellow-green color cast of the display panel.
  • FIGS. 7A to 7C above can be combined with each other to further reduce the yellow-green light color shift of the display panel.
  • FIGS. 8A-8C are schematic structural diagrams showing a display panel according to further embodiments of the present disclosure.
  • arrows indicate the propagation direction of light.
  • the display panel includes a base substrate 11 , a pixel definition layer 12 and an encapsulation layer 13 .
  • the display panel further includes a module layer 15 .
  • the module layer 15 includes a touch layer, a polarizing layer and a cover plate located in sequence on the side of the packaging layer 13 away from the base substrate 11 .
  • the base substrate 11 may be a glass substrate.
  • the base substrate 11 may be a flexible substrate, such as a PI substrate.
  • the pixel defining layer 12 is located on one side of the base substrate 11 and has a plurality of first openings V1 for defining a plurality of sub-pixels.
  • the plurality of first openings V1 correspond to the plurality of sub-pixels on a one-to-one basis.
  • the plurality of sub-pixels include red sub-pixel R, green sub-pixel G and blue sub-pixel B.
  • the display panel may also include other components not shown in FIG. 8A , such as a plurality of pixel driving circuits and a planarization layer covering the plurality of pixel driving circuits.
  • the anode of each sub-pixel may be located on a side of the planarization layer away from the base substrate 11 and connected to the pixel driving circuit.
  • the pixel definition layer 12 may be located on a side of the planarization layer and the anode away from the base substrate 11 .
  • Each first opening V1 of the pixel defining layer 12 exposes at least part of the anode of the corresponding sub-pixel.
  • the encapsulation layer 13 is located on the side of the pixel definition layer 12 away from the base substrate 11 .
  • the encapsulation layer 13 includes a first inorganic layer 131, a second inorganic layer 132, an organic layer 133, and at least one first optical structure 134.
  • the material of the first inorganic layer 131 includes silicon oxynitride
  • the material of the second inorganic layer 132 includes silicon nitride.
  • the organic layer 133 is located between the first inorganic layer 131 and the second inorganic layer 132 , and each first optical structure 134 is located between the first inorganic layer 131 and the organic layer 133 .
  • each first optical structure 134 is greater than the refractive index of the organic layer 133 .
  • each first optical structure 134 has a refractive index of 1.65 to 1.95, such as 1.7, 1.8, 1.85, etc.
  • the organic layer 133 has a refractive index of 1.4 to 1.6, for example, 1.5, 1.55, etc.
  • each first optical structure 134 includes an organic body 1341 .
  • the material of body 1341 includes organic polymers.
  • the body 1341 has a thickness of 2 to 4 microns, such as 2.5 microns, 3 microns, 3.5 microns, etc.
  • the cross section of the first optical structure 134 may be an inverted trapezoid, a right trapezoid, or a rectangle.
  • the first optical structure 134 has an inverted trapezoidal cross-section.
  • the refractive index of the first optical structure 134 is greater than the refractive index of the organic layer 133, part of the light will be totally reflected when incident on the interface between the refractive index of the first optical structure 134 and the organic layer 133.
  • the propagation direction of the totally reflected light in the organic layer 133 is closer to the direction perpendicular to the base substrate 11 than the propagation direction in the first optical structure 134 , thereby improving the front light extraction effect of the display panel.
  • the first optical structure 134 has a rectangular cross-section.
  • the refractive index of the first optical structure 134 is greater than the refractive index of the organic layer 133 , the propagation direction of light in the organic layer 133 is closer to perpendicular to the substrate than the propagation direction in the first optical structure 134 The direction of the substrate 11 thereby improves the front light emitting effect of the display panel.
  • the cross section of the first optical structure 134 is a right trapezoid.
  • the refractive index of the first optical structure 134 is greater than the refractive index of the organic layer 133
  • the propagation direction of light in the organic layer 133 is larger than the propagation direction in the first optical structure 134 .
  • the direction is closer to perpendicular to the base substrate 11 , thereby improving the front light extraction effect of the display panel.
  • the first optical structure 134 in FIGS. 8A to 8C is located in the recess RP on the side of the first inorganic layer 131 away from the base substrate 11 , this is not limiting. In some embodiments, the first optical structure 134 may be located in other areas of the surface of the first inorganic layer 131 away from the base substrate 111 except for the recess RP. In some embodiments, the first optical structure 134 is integrally provided with the first inorganic layer 131 . It can be understood that, similar to FIGS. 8A to 8C , the first optical structure 134 also helps to improve the front light extraction efficiency of the display panel.
  • the first optical structure 134 is provided between the first inorganic layer 131 and the organic layer 133 . Such a structure helps to improve the front light extraction efficiency of the display panel.
  • FIG. 9 is a schematic structural diagram showing a display panel according to further embodiments of the present disclosure.
  • each first optical structure 134 further includes an inorganic nanostructure 1342 located in an organic body 1341 . This helps to increase the refractive index of the first optical structure 134, thereby further improving the front light extraction efficiency of the display panel.
  • FIG. 9 only takes FIG. 8C as an example to show the inorganic nanostructure 1342 located in the organic body 1341. It can be understood that inorganic nanostructures 1342 can also be provided in the organic body 1341 shown in FIG. 8A and FIG. 8B .
  • the body 1341 has a refractive index of 1.5 to 1.6 and the nanostructures have a refractive index of 2 to 2.2. In this way, the refractive index of the first optical structure 134 can be kept in an appropriate range, which is more conducive to improving the front light extraction efficiency of the display panel.
  • nanostructures 1342 include at least one of nanoparticles and nanowires.
  • the nanostructure 1342 only includes nanoparticles; for another example, the nanostructure 1342 only includes nanowires; for another example, the nanostructure 1342 includes both nanoparticles and nanowires.
  • the material of nanostructure 1342 includes at least one of zirconium oxide and titanium oxide.
  • nanostructures 1342 include nanoparticles of zirconium oxide and nanoparticles of titanium oxide.
  • each first optical structure 134 also includes a photosensitizer.
  • the material of the photosensitive agent includes materials that can be cured by ultraviolet light, such as organic polymer materials. In this way, the first optical structure 134 is helped to be cured.
  • FIG. 10 is a partial schematic diagram of the display panel shown in FIG. 9 .
  • the first optical structure 134 includes a first surface S1 and a second surface S2 that are arranged opposite each other, and a third surface S3 and a fourth surface S4 that are arranged opposite each other.
  • the second surface S2 is located on a side of the first surface S1 away from the base substrate 11, and each of the third surface S3 and the fourth surface S4 is in contact with the first surface S1 and the second surface S2. adjacent.
  • at least one of the third surface S3 and the fourth surface S4 may be a curved surface.
  • the angle ⁇ between each of the third surface S3 and the fourth surface S4 and the surface of the base substrate 11 is one of the first range and the second range, and the first range is greater than or equal to 60 degrees and less than or equal to 90 degrees, and the second range is greater than or equal to 100 degrees and less than or equal to 120 degrees. That is, the included angle ⁇ is greater than or equal to 60 degrees and less than or equal to 90 degrees, or the included angle ⁇ is greater than or equal to 100 degrees and less than or equal to 120 degrees.
  • the included angle ⁇ is within the above-mentioned first range or second range, it is helpful to further improve the front light extraction efficiency of the display panel.
  • the second surface S2 of the first optical structure 134 is parallel to the surface substrate of the base substrate 11 , that is, flush within the process tolerance range. In other words, the second surface S2 of the first optical structure 134 is a plane parallel to the surface of the base substrate 11 . In this way, the light emitted by the sub-pixel and perpendicular to the base substrate 11 can be prevented from being deflected in a direction perpendicular to the base substrate 11 , which helps to further improve the front light extraction efficiency of the display panel.
  • the side of the first inorganic layer 131 away from the base substrate 11 has a plurality of recesses RP corresponding one-to-one to the plurality of first openings V1 , and each first optical structure 134 corresponds one-to-one to each recess RP, and each first optical structure 134 is at least partially located in the corresponding recess RP.
  • each first optical structure 134 includes a first portion 134 a located in the corresponding recess RP and a second portion 134 b located outside the corresponding recess RP.
  • the first portion 134 a is located on the substrate 11
  • the orthographic projection on is located within the orthographic projection of the second portion 134 b on the base substrate 11 .
  • the orthographic projection of the first portion 134 a on the base substrate 11 completely coincides with the orthographic projection of the second portion 134 b on the base substrate 11 .
  • the area of the orthographic projection of the first part 134 a on the base substrate 11 is smaller than the area of the orthogonal projection of the second part 134 b on the base substrate 11 . In this way, it is more helpful to improve the front light extraction efficiency of the display panel.
  • the orthographic projection of each first optical structure 134 on the substrate 11 will be referred to as the fourth orthographic projection 134'
  • the orthographic projection of the first opening V1 corresponding to each first optical structure 134 on the substrate 11 will be referred to as the fourth orthographic projection 134'
  • the orthographic projection is called the first orthographic projection V1'
  • the area where the fourth orthographic projection 134' and the first orthographic projection V1' overlap each other is called the first area A1.
  • At least one of the fourth orthographic projection 134' and the first orthographic projection V1' includes a first area A1 and a second area A2 excluding the first area A1.
  • the fourth orthographic projection 134' includes a first area A1 that overlaps with the first orthographic projection V1' and a second area A2 that does not overlap with the first orthographic projection V1'; for another example, the first orthographic projection V1' includes an area that overlaps with the first orthographic projection V1'.
  • 11A and 11B are schematic diagrams illustrating first and third orthographic projections according to some embodiments of the present disclosure.
  • the fourth orthographic projection 134' includes a first area A1 that overlaps the first orthographic projection V1' and a second area A2 that does not overlap the first orthographic projection V1'.
  • the portion where the edge of the fourth orthographic projection 134' overlaps the second area A2 of the fourth orthographic projection 134' is the first edge E1
  • the portion where the edge of the first orthographic projection V1' overlaps the first area A1 is the second edge E2.
  • the minimum distance d1 between the first edge E1 and the second edge E2 is less than or equal to 3 microns.
  • d1 is 0, 1 micron, 2 micron, etc.
  • the minimum distance d1 is less than or equal to 3 microns. In this way, it is more helpful to improve the front light extraction efficiency of the display panel.
  • the first orthographic projection V1' includes a first area A1 overlapping the fourth orthographic projection 134' and a second area A2 not overlapping the fourth orthographic projection 134'.
  • the portion where the edge of the first orthographic projection V1' overlaps the second area A2 of the first orthographic projection V1' is the third edge E3
  • the portion where the edge of the fourth orthographic projection 134' overlaps the first area A1 is the fourth edge E4.
  • the minimum distance d2 between the third edge E3 and the fourth edge E4 is less than or equal to 1 micron, for example, 0 micron, 0.5 micron, etc.
  • the minimum distance d2 is less than or equal to 1 micron. In this way, it is more helpful to improve the front light extraction efficiency of the display panel.
  • first orthographic projection V1' shown in FIG. 11A is completely within the fourth orthographic projection 134'
  • first orthographic projection V1' shown in FIG. 11B is completely located within the fourth orthographic projection 134'. within, however, this is not restrictive.
  • the first orthographic projection V1' may also be partially located within the fourth orthographic projection 134' and partially located outside the fourth orthographic projection 134'; the fourth orthographic projection 134' may also be partially located Within the first orthographic projection V1' and partially outside the first orthographic projection V1'.
  • both the first orthographic projection V1' and the fourth orthographic projection 134' include the second area A.
  • 12A and 12B are schematic structural diagrams showing a display panel according to further embodiments of the present disclosure.
  • the display panel shown in FIGS. 12A and 12B further includes a first light modulation layer 14 located on the side of the encapsulation layer 13 away from the base substrate 11 .
  • the first light modulation layer 14 includes a first light modulation sub-layer 141 and a second light modulation sub-layer 142.
  • the refractive index of the second light modulation sub-layer 142 is greater than the refractive index of the first light modulation sub-layer 141.
  • the first light modulation sub-layer 141 has at least one second opening V2 corresponding to at least one sub-pixel.
  • the second light modulation sub-layer 142 includes a first light modulation portion 1421 located in each second opening V2.
  • the first light modulation sub-layer 141 has only one second opening V2, and the second opening V2 corresponds to one sub-pixel.
  • the first light modulation sub-layer 141 has a plurality of second openings V2, and the plurality of second openings V2 correspond to a plurality of sub-pixels one by one.
  • the first light modulation layer 14 is configured such that the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 in the corresponding second opening V2 is incident on the light from each of the at least one sub-pixel. After total reflection, it propagates in a direction away from the base substrate 11 .
  • FIG. 12A and FIG. 12B show that the light from the blue sub-pixel B is incident on the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 in the corresponding second opening V2 and is totally reflected. , propagates in the direction perpendicular to the base substrate 11 .
  • the display panel includes both the first optical structure 134 and the first light modulation layer 14 . In this way, the front light extraction efficiency of the display panel can be further improved.
  • the angle ⁇ between the surface of the first light modulation part 1421 away from the base substrate 11 and the first light modulation sub-layer 141 is greater than or equal to 60 degrees and less than or equal to 80 degrees.
  • is 65 degrees. , 70 degrees, etc. In this way, it helps to further improve the front light extraction efficiency of the display panel.
  • the second light modulation sub-layer 142 further includes a portion 1422 located on a side of the first light modulation sub-layer 141 and the first light modulation part 1421 away from the base substrate 11 .
  • the refractive index of this part 1422 is the same as the refractive index of the first light modulation part 1421.
  • the display panel shown in FIG. 12A and FIG. 12B meets at least one of the first condition and the second condition introduced above, so that the front light extraction efficiency of the display panel can be further improved.
  • the first opening V1 corresponding to each of the at least one sub-pixel of the display panel shown in FIGS. 12A and 12B has a recess RS in at least part of the edge of the first orthographic projection V1′ on the substrate substrate 11.
  • the second opening V2 corresponding to each of the at least one sub-pixel of the display panel shown in FIGS. 12A and 12B has at least part of the edge of the second orthographic projection V2' on the base substrate 11 with a recess RS and a convex.
  • At least one of the PTs At least one of the PTs.
  • at least part of the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 is non-planar.
  • each sub-pixel in the display panel having a corresponding first opening V1 and a second opening V2 is a blue sub-pixel B, as shown in FIG. 12A.
  • the blue sub-pixel B is incident on the interface between the first light modulation part 1421 and the first light modulation sub-layer 141 in the corresponding second opening V2 and is totally reflected, then moves perpendicular to the substrate. propagates in the direction of the substrate 11; the light emitted by the red sub-pixel R and the green sub-pixel G passes through the encapsulation layer 13 and directly enters the first light modulation sub-layer 141, instead of first entering the first light modulation part 1421 and then entering the first light modulation part 1421.
  • First light modulation sub-layer 141 In this way, both the light extraction efficiency of the display panel and the color shift of white light can be taken into consideration.
  • FIGS. 13A-13C are schematic structural diagrams showing a display panel according to some embodiments of the present disclosure.
  • the display panel shown in FIGS. 13A-13C further includes a second light modulation layer 16 .
  • the second light modulation layer 16 is located on the side of the encapsulation layer 13 away from the base substrate 11 .
  • the second light modulation layer 16 includes a fourth light modulation sub-layer 161 and at least one second optical structure 162 .
  • Each second optical structure 162 is located between the encapsulation layer 13 and the fourth light modulation sub-layer 161 , and the refractive index of each second optical structure 162 is greater than the refractive index of the fourth light modulation sub-layer 161 .
  • the orthographic projection of the second optical structure 162 on the base substrate at least partially overlaps the first orthographic projection V1'.
  • the second light modulation layer 16 further includes a fifth light modulation sub-layer 163 located between the second optical structure 162 and the encapsulation layer 13 .
  • the fifth light modulation sub-layer 163 and the second optical structure 162 are integrally provided.
  • the fifth light modulation sub-layer 163 and the second optical structure 162 are both made of inorganic materials.
  • the second optical structure 162 can be obtained by etching (eg, plasma etching) the fifth light modulation sub-layer 163 .
  • the material of the fifth light modulation sub-layer 163 is an inorganic material
  • the second optical structure 162 includes an organic body
  • first optical structure 134 is applicable to the second optical structure 162 and will not be described again here.
  • the display panel includes both the first light modulation layer 14 and the second light modulation layer 16 , thereby further improving the front light extraction efficiency of the display panel.
  • the first inorganic layer 131 and the first optical structure 134 are integrally provided.
  • FIG. 14 is a schematic structural diagram showing a display panel according to some embodiments of the present disclosure.
  • the encapsulation layer 13 in addition to the first inorganic layer 131 , the second inorganic layer 132 , the organic layer 133 , and at least one first optical structure 134 , the encapsulation layer 13 also A third inorganic layer 135 is included.
  • the third inorganic layer 135 is located between the at least one first optical structure 134 and the organic layer 133 .
  • the material of the third inorganic layer 135 includes silicon oxide (eg, silicon oxide) or silicon oxynitride (eg, silicon oxynitride).
  • the third inorganic layer 135 in the encapsulation layer 13 is conducive to improving the interface performance between the first optical structure 134 and the organic layer 133, reducing the surface tension of the interface, and thereby reducing the impact of the interface on the display panel. adverse effects on the display effect.
  • the first optical structure 134 is not in contact with the organic layer 133 . In this way, the adverse impact of the interface between the first optical structure 134 and the organic layer 133 on the display effect of the display panel can be further reduced.
  • the display panel with the first optical structure 134 can also use the method shown in FIGS. 4A to 4D to reduce the white light color shift of the display panel, and the description will not be repeated here.
  • the display panel with the first optical structure 134 can also use the method shown in FIGS. 7A to 7C to reduce the yellow-green light color shift of the display panel, which will not be described again here.
  • the following describes a method of reducing the color shift of a display panel according to some embodiments of the present disclosure with reference to FIG. 15A and FIG. 15B .
  • 15A and 15B are schematic diagrams illustrating first and second orthographic projections according to further embodiments of the present disclosure.
  • the distance between the first edge E1 of the first orthographic projection V1' corresponding to the red sub-pixel R and the first edge E1 of the second orthographic projection V2' corresponding to the red sub-pixel R is called the first distance D1
  • the distance between the second edge E2 of the first orthographic projection V1' corresponding to the red sub-pixel R and the second edge E2 of the second orthographic projection V2' corresponding to the red sub-pixel R is called the second distance D2.
  • the distance between the third edge E3 of the first orthographic projection V2' corresponding to the sub-pixel R and the third edge E3 of the second orthographic projection V2' corresponding to the red sub-pixel R is called the third distance D3.
  • the distance between the corresponding fourth edge E4 of the first orthographic projection V1' and the fourth edge E4 of the second orthographic projection V2' corresponding to the red sub-pixel R is called a fourth distance D4.
  • the first distance D1, the second distance D2, the third distance D3 and the fourth distance D4 are the same.
  • At least one of the first distance D1 and the second distance D2 is reduced, leaving the third distance D3 and the fourth distance D4 unchanged.
  • both the first distance D1 and the second distance D2 are reduced from 2 microns to 0.5 microns to 1.8 microns. In this way, the white light color shift of the display panel can be reduced.
  • the third distance D3 and the fourth distance D4 is increased while the first distance D1 and the second distance D2 remain unchanged.
  • the third distance D3 and the fourth distance D4 are both increased from 2 microns to 2.5 microns to 4 microns. In this way, the white light color shift of the display panel can be reduced.
  • 16A and 16B are schematic diagrams illustrating first, second and third orthographic projections according to further embodiments of the present disclosure.
  • the distance between the first edge E1 of the first orthographic projection V1' corresponding to the red sub-pixel R and the first edge E1 of the third orthographic projection 1422' corresponding to the red sub-pixel R is called the fifth distance D5.
  • the distance between the second edge E2 of the first orthographic projection V1' corresponding to the red sub-pixel R and the second edge E2 of the third orthographic projection 1422' corresponding to the red sub-pixel R is called the sixth distance D6.
  • the distance between the third edge E3 of the first orthographic projection V1' corresponding to the sub-pixel R and the third edge E3 of the third orthographic projection 1422' corresponding to the red sub-pixel R is called the seventh distance D7.
  • the red sub-pixel R The distance between the corresponding fourth edge E4 of the first orthographic projection V1' and the fourth edge E4 of the third orthographic projection 1422' corresponding to the red sub-pixel R is called an eighth distance D8.
  • the first distance D1 , the second distance D2 , the fifth distance D5 and the sixth distance D6 is reduced, and the third distance D3 , the fourth distance D4 and the seventh distance are maintained.
  • the distance between D7 and eighth D8 remains unchanged.
  • the first distance D1 and the second distance D2 are both reduced from 2 microns to 0.5 microns to 1.8 microns
  • the fifth distance D5 and the sixth distance D6 are both reduced from 5.4 microns to 3.9 microns to 5.2 microns. In this way, the white light color shift of the display panel can be reduced.
  • the third distance D3, the fourth distance D4, the seventh distance D7 and the eighth distance D8 is increased, and the first distance D1, the second distance D2, the fifth distance D8 are maintained.
  • the distance D5 and the sixth distance D6 remain unchanged.
  • the third distance D3 and the fourth distance D4 both increase from 2 microns to 2.5 microns to 4 microns
  • the seventh distance D7 and the eighth distance D8 both increase from 5.4 microns to 5.9 microns to 7.4 microns. In this way, the white light color shift of the display panel can be reduced.
  • the following describes a method of reducing the color shift of a display panel according to some embodiments of the present disclosure with reference to FIG. 17 .
  • FIG. 17 is a schematic diagram illustrating first, second and third orthographic projections according to further embodiments of the present disclosure.
  • the distance between the third edge E3 of the first orthographic projection V1' corresponding to the green sub-pixel G and the third edge E3 of the second orthographic projection V1' corresponding to the green sub-pixel G is called the ninth distance D9
  • the distance between the third edge E3 of the first orthographic projection V1' corresponding to the green sub-pixel G and the third edge E3 of the third orthographic projection 1422' corresponding to the green sub-pixel G is called the tenth distance D10
  • the green The distance between the fourth edge E4 of the first orthographic projection V1' corresponding to the sub-pixel G and the fourth edge E4 of the second orthographic projection V1' corresponding to the green sub-pixel G is called the eleventh distance D11.
  • the green sub-pixel The distance between the fourth edge E4 of the first orthographic projection V1' corresponding to G and the fourth edge E4 of the third orthographic projection 1422' corresponding to the green sub-pixel G is called the twelfth distance D12.
  • the ninth distance D9 , the tenth distance D10 , the eleventh distance D11 and the twelfth distance D12 is reduced.
  • the ninth distance D9 and the eleventh distance D11 are both reduced from 2 microns to 0.5 microns to 1.8 microns
  • the tenth distance D10 and the twelfth distance D12 are both reduced from 5.4 microns to 3.9 microns to 5.2 microns. In this way, the yellow-green light color shift of the display panel can be reduced.
  • display panels according to different embodiments of the present disclosure can be combined with each other to obtain more display panels.
  • FIG. 18 is a schematic flowchart illustrating a manufacturing method of a display panel according to some embodiments of the present disclosure.
  • a base substrate is provided.
  • a pixel defining layer is formed on one side of the base substrate.
  • the pixel defining layer has a plurality of first openings for defining a plurality of sub-pixels, and the plurality of first openings correspond to the plurality of sub-pixels one by one.
  • step 186 an encapsulation layer is formed on a side of the pixel definition layer away from the base substrate.
  • a light modulation layer is formed on a side of the encapsulation layer away from the base substrate.
  • a first light modulation sub-layer is formed.
  • the first light modulation sub-layer has at least one second opening corresponding to at least one sub-pixel.
  • the orthographic projections of the first opening and the second opening corresponding to each of the at least one sub-pixel on the substrate are the first orthographic projection and the second orthographic projection respectively.
  • the second light modulation sub-layer includes a first light modulation portion located in each second opening.
  • the light modulation layer is configured such that after the light from each of the at least one sub-pixel is totally reflected by an interface between the first light modulation part and the first light modulation sub-layer in the corresponding second opening, propagates toward the side away from the substrate.
  • the formed display panel satisfies at least one of the first condition and the second condition.
  • the first condition is: at least part of the edge of the first orthographic projection has at least one of depressions and convexities PT.
  • the second condition is that at least part of the edge of the second orthographic projection has a depression.
  • the display panel formed by the above embodiment satisfies at least one of the first condition and the second condition. Such a structure helps to improve the front light extraction efficiency of the display panel.
  • FIG. 19 is a schematic flowchart illustrating a manufacturing method of a display panel according to other embodiments of the present disclosure.
  • a base substrate is provided.
  • a pixel defining layer is formed on one side of the base substrate.
  • the pixel defining layer has a plurality of first openings for defining a plurality of sub-pixels, and the plurality of first openings correspond to the plurality of sub-pixels one by one.
  • step 196 forming an encapsulation layer on a side of the pixel definition layer away from the base substrate includes sequentially forming a first inorganic layer, at least one first optical structure, an organic layer and a second inorganic layer.
  • the second inorganic layer is located on a side of the first inorganic layer away from the base substrate, and the organic layer is located between the first inorganic layer and the second inorganic layer.
  • At least one first optical structure is located between the first inorganic layer and the organic layer, and the refractive index of each first optical structure is greater than the refractive index of the organic layer.
  • a first optical structure is provided between the first inorganic layer and the organic layer. Such a structure helps to improve the front light extraction efficiency of the display panel.
  • the depressions and protrusions mentioned in the embodiments of the present disclosure can be obtained by patterning the corresponding material layer using a patterned mask.
  • the mask plate has depressions or protrusions, so that the patterned material layer has depressions or protrusions accordingly.
  • the display panel provided by embodiments of the present disclosure is an OLED display panel.
  • the present disclosure also provides a display device, which may include the display panel of any of the above embodiments.
  • the display device may be, for example, a mobile terminal, a television, a monitor, a notebook computer, a digital photo frame, a navigator, an electronic paper, or any other product or component with a display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制造方法、显示装置。显示面板包括:衬底基板(11);像素界定层(12),位于衬底基板(11)的一侧,具有用于限定多个子像素的多个第一开口;封装层(13),位于像素界定层(12)远离衬底基板(11)的一侧;以及光调制层(14),位于封装层(13)远离衬底基板(11)一侧。光调制层(14)包括:第一光调制子层(141)和第二光调制子层(142)。光调制层(14)被配置为使得来自至少一个子像素中的每一个的光入射到对应的第二开口(V2)中的第一光调制部(1421)与第一光调制子层(141)之间的界面被全反射后,向远离衬底基板(11)的方向传播。显示面板满足第一条件和第二条件中的至少一个。第一条件为:第一正投影(V1')的边缘的至少部分具有凹陷(RS)。第二条件为:第二正投影(V2')的边缘的至少部分具有凹陷(RS)和凸起(PT)中的至少一种。

Description

显示面板及其制造方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及其制造方法、显示装置。
背景技术
随着显示技术的发展,有机发光二极管(OLED)显示面板的应用越来越广泛。
在显示面板中,子像素中的发光器件(例如OLED)发出的光会经过折射率存在差异的多个膜层,从而会造成光损失。
发明内容
根据本公开实施例的一方面,提供一种显示面板,包括:衬底基板;像素界定层,位于所述衬底基板的一侧,并且具有用于限定多个子像素的多个第一开口,所述多个第一开口与所述多个子像素一一对应;封装层,位于所述像素界定层远离所述衬底基板的一侧;以及光调制层,位于所述封装层远离所述衬底基板一侧。所述光调制层包括:第一光调制子层,具有至少一个第二开口,所述至少一个第二开口与至少一个子像素一一对应,所述至少一个子像素中的每一个对应的第一开口和第二开口在所述衬底基板上的正投影分别为第一正投影和第二正投影;和第二光调制子层,包括位于每个第二开口中的第一光调制部。所述光调制层被配置为使得来自所述至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与所述第一光调制子层之间的界面被全反射后,向远离所述衬底基板的方向传播。所述显示面板满足第一条件和第二条件中的至少一个。所述第一条件为:所述第一正投影的边缘的至少部分具有凹陷。所述第二条件为:所述第二正投影的边缘的至少部分具有凹陷和凸起中的至少一种。
在一些实施例中,所述至少一个子像素包括蓝色子像素。
在一些实施例中,所述至少一个子像素包括第一子像素,所述第一子像素在第一方向上的长度大于在垂直于所述第一方向的第二方向上的长度;所述至少一个子像素中的每一个对应的所述第一正投影和所述第二正投影的边缘均包括在所述第一方向上相对设置的第一边缘和第二边缘、以及在所述第二方向上相对设置的第三边缘和第四边缘,所述第三边缘和所述第四边缘中的每一个与所述第一边缘和所述第二边缘邻 接。
在一些实施例中,所述第一子像素的所述第一正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷,所述第一子像素的所述第一正投影的所述第三边缘和所述第四边缘不具有凹陷。
在一些实施例中,所述第一子像素的所述第一正投影的所述第三边缘和所述第四边缘中的至少一个具有凸起。
在一些实施例中,所述第一子像素的所述第二正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷。
在一些实施例中,所述第一子像素的所述第二正投影的所述第三边缘和所述第四边缘中的至少一个具有凸起。
在一些实施例中,所述第一子像素的所述第二正投影的边缘不具有凹陷和凸起。
在一些实施例中,所述第一子像素的所述第一正投影的边缘不具有凹陷和凸起,所述第一子像素的所述第二正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷。
在一些实施例中,所述第一子像素的所述第一正投影的边缘不具有凹陷和凸起,所述第一子像素的所述第二正投影的所述第三边缘和所述第四边缘中的至少一个具有凸起。
在一些实施例中,所述多个子像素包括被配置为发出不同颜色的光的所述第一子像素、第二子像素和第三子像素,所述第一子像素在所述第一方向上的长度与在所述第二方向上的长度之比大于所述第二子像素在所述第一方向上的长度与在所述第二方向上的长度之比,并且大于所述第三子像素在所述第一方向上的长度与在所述第二方向上的长度之比第三子像素。
在一些实施例中,所述第一子像素为红色子像素。
在一些实施例中,所述第二光调制子层还包括第二光调制部,位于所述第一光调制部和所述第一光调制子层远离所述衬底基板的一侧,并且与所述第一光调制部邻接,其中,所述第一光调制部和所述第二光调制部均包括相对设置的第一面和第二面、以及相对设置的第三面和第四面,所述第二面位于所述第一面远离所述衬底基板的一侧,所述第三面和所述第四面中的每一个均与所述第一面和所述第二面邻接,所述第二光调制部的所述第三面和所述第四面中的每一个与所述第二光调制部的所述第一面之间的第一夹角小于90度;并且所述光调制层还包括第三光调制子层,位于所述第一 光调制子层和所述第二光调制子层远离所述衬底基板的一侧,所述第三光调制子层的折射率小于所述第二光调制部的折射率。
在一些实施例中,所述第一夹角大于等于60度。
在一些实施例中,所述第一光调制部的所述第三面和所述第四面中的每一个与所述第一光调制部的所述第一面之间的第二夹角大于等于60度、且小于等于80度。
在一些实施例中,所述至少一个子像素包括第一子像素,所述第一子像素在第一方向上的长度大于在垂直于所述第一方向的第二方向上的长度,所述至少一个子像素中的每一个对应的所述第二光调制部在所述衬底基板上的正投影为第三正投影;所述至少一个子像素中的每一个对应的所述第一正投影、所述第二正投影和所述第三正投影的边缘均包括在所述第一方向上相对设置的第一边缘和第二边缘、以及在所述第二方向上相对设置的第三边缘和第四边缘,所述第三边缘和所述第四边缘中的每一个与所述第一边缘和所述第二边缘邻接,其中,所述第一子像素对应的所述第一正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷。
在一些实施例中,所述至少一个子像素还包括绿色子像素,所述绿色子像素对应的所述第一正投影的所述第三边缘和所述第四边缘中的至少一个具有凹陷。
在一些实施例中,所述绿色子像素对应的所述第二正投影的所述第三边缘和所述第四边缘中的至少一个具有凹陷。
在一些实施例中,所述绿色子像素对应的所述第三正投影的所述第三边缘和所述第四边缘中的至少一个具有凹陷。
在一些实施例中,所述显示面板满足所述第一条件和所述第二条件。
在一些实施例中,所述封装层包括:第一无机层,所述第一无机层远离所述衬底基板的一面具有与所述多个第一开口一一对应的多个凹部;第二无机层,位于所述第一无机层远离所述衬底基板的一侧;有机层,位于所述第一无机层和所述第二无机层之间;和至少一个第一光学结构,位于所述第一无机层和所述有机层之间,每个第一光学结构的折射率大于所述有机层的折射率。
根据本公开实施例的另一方面,提供一种显示面板,包括:衬底基板;像素界定层,位于所述衬底基板的一侧,并且具有用于限定多个子像素的多个第一开口,所述多个第一开口与所述多个子像素一一对应;封装层,位于所述像素界定层远离所述衬底基板的一侧;以及光调制层,位于所述封装层远离所述衬底基板一侧。所述光调制层包括:第一光调制子层,具有至少一个第二开口,所述至少一个第二开口与至少一 个子像素一一对应,所述至少一个子像素中的每一个对应的第一开口和第二开口在所述衬底基板上的正投影分别为第一正投影和第二正投影;和第二光调制子层,包括位于每个第二开口中的第一光调制部。所述光调制层被配置为使得来自所述至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与所述第一光调制子层之间的界面被全反射后,向远离所述衬底基板的方向传播。所述显示面板满足第一条件和第二条件中的至少一个。所述第一条件为:所述第一正投影的边缘的至少部分具有凹陷。所述第二条件为:所述界面的至少部分为非平面。
根据本公开实施例的又一方面,提供一种显示装置,包括:上述任意一个实施例所述的显示面板。
根据本公开实施例的再一方面,提供一种显示面板的制造方法,包括:提供衬底基板;在所述衬底基板的一侧形成像素界定层,所述像素界定层具有用于限定多个子像素的多个第一开口,所述多个第一开口与所述多个子像素一一对应;在所述像素界定层远离所述衬底基板的一侧形成封装层;以及在所述封装层远离所述衬底基板一侧形成光调制层。在所述封装层远离所述衬底基板一侧形成光调制层包括:形成第一光调制子层,所述第一光调制子层具有至少一个第二开口,所述至少一个第二开口与至少一个子像素一一对应,所述至少一个子像素中的每一个对应的第一开口和第二开口在所述衬底基板上的正投影分别为第一正投影和第二正投影;和形成第二光调制子层,所述第二光调制子层包括位于每个第二开口中的第一光调制部。所述光调制层被配置为使得来自所述至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与所述第一光调制子层之间的界面被全反射后,向远离所述衬底基板的一侧传播。所述显示面板满足第一条件和第二条件中的至少一个。所述第一条件为:所述第一正投影的边缘的至少部分具有凹陷。所述第二条件为:所述第二正投影的边缘的至少部分具有凹陷和凸起中的至少一种。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1A是示出根据本公开一些实施例的显示面板的结构示意图;
图1B和1C是示出根本公开一些实施例的第一正投影和第二正投影的示意图;
图1D是示出根本公开另一些实施例的第二正投影的示意图;
图2是图1A所示显示面板的局部示意图;
图3A和图3B是示出根据本公开一些实施例的显示面板中的子像素的排布示意图;
图4A-图4D是示出根据本公开又一些实施例的第一正投影和第二正投影的示意图;
图5A和图5B是示出根据本公开另一些实施例的显示面板的结构示意图;
图6A和图6B是示出根据本公开一些实施例的第一正投影、第二正投影和第三正投影的示意图;
图7A-图7C是示出根据本公开另一些实施例的第一正投影、第二正投影和第三正投影的示意图;
图8A-图8C是示出根据本公开又一些实施例的显示面板的结构示意图;
图9是示出根据本公开再一些实施例的显示面板的结构示意图;
图10是图9所示显示面板的局部示意图;
图11A和图11B是示出根据本公开一些实施例的第一正投影和第三正投影的示意图;
图12A和图12B是示出根据本公开还一些实施例的显示面板的结构示意图;
图13A-图13C是示出根据本公开还一些实施例的显示面板的结构示意图;
图14是示出根据本公开还一些实施例的显示面板的结构示意图;
图15A和图15B是示出根据本公开再一些实施例的第一正投影和第二正投影的示意图;
图16A和图16B是示出根据本公开又一些实施例的第一正投影、第二正投影和第三正投影的示意图;
图17是示出根据本公开再一些实施例的第一正投影、第二正投影和第三正投影的示意图;
图18是示出根据本公开一些实施例的显示面板的制造方法的流程示意图;
图19是示出根据本公开另一些实施例的显示面板的制造方法的流程示意图。
应当明白,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述 仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
一种相关技术中,可以通过设置额外的光学结构来提高显示面板的正面出光效率,即垂直于显示面板中衬底基板的出光效率。例如,光学结构包括较高折射率的层和较低折射率的层,部分光线从较高折射率的层入射到较低折射率的层时可能会被全反射,使得本来不会向正面出射的光线向正面或接近正面出射,从而提高显示面板的正面出光效率。
本公开实施例提出了一种可以进一步提高正面出光效率的显示面板。
图1A是示出根据本公开一些实施例的显示面板的结构示意图。
如图1A所示,显示面板包括衬底基板11、像素界定层12、封装层13和光调制层14(在某些实施例中也可以称为第一光调制层14)。在一些实施例中,参见图1A,显示面板还包括模组层15。例如,模组层15包括依次位于光调制层14远离衬底基板 11一侧的触控层、偏振层和盖板。
例如,衬底基板11可以是玻璃基板。又例如,衬底基板11可以是柔性基板,例如聚酰亚胺(PI)基板等。
像素界定层12位于衬底基板11的一侧,并且具有用于限定多个子像素的多个第一开口V1。这里,多个第一开口V1与多个子像素一一对应。例如,多个子像素包括红色子像素R、绿色子像素G和蓝色子像素B。
应理解,显示面板还可以包括图1A未示出的其他部件,例如,多个像素驱动电路和覆盖多个像素驱动电路的平坦化层。每个子像素的阳极可以位于平坦化层远离衬底基板11的一侧,并且连接至像素驱动电路。像素界定层12可以位于平坦化层和阳极远离衬底基板11的一侧。像素界定层12的每个第一开口V1使得对应的一个子像素的阳极的至少部分露出。
封装层13位于像素界定层12远离衬底基板11的一侧。作为一些实现方式,封装层13包括第一无机层131、第二无机层132、以及位于第一无机层131和第二无机层132之间的有机层133。
光调制层14位于封装层13远离衬底基板11的一侧。光调制层14包括第一光调制子层141和第二光调制子层142,第二光调制子层142的折射率大于第一光调制子层141的折射率。
第一光调制子层141具有与至少一个子像素一一对应的至少一个第二开口V2。第二光调制子层142包括位于每个第二开口V2中的第一光调制部1421。例如,第一光调制子层141仅具有一个第二开口V2,该第二开口V2对应一个子像素。又例如,第一光调制子层141具有多个第二开口V2,该多个第二开口V2一一对应多个子像素。
光调制层14被配置为使得来自至少一个子像素中的每一个的光入射到对应的第二开口V2中的第一光调制部1421与第一光调制子层141之间的界面被全反射后,向远离衬底基板11的方向传播。例如,图1A示出了来自绿色子像素G的光入射到对应的第二开口V2中的第一光调制部1421与第一光调制子层141之间的界面被全反射后,向垂直于衬底基板11的方向传播。
可以理解的是,至少一个子像素同时具有对应的第一开口V1和第二开口V2。在后文中,将这样的每个子像素对应的第一开口V1和第二开口V2在衬底基板11上的正投影分别称为第一正投影V1’和第二正投影V2’。
图1A的显示面板满足以下第一条件和第二条件中的至少一个。这里,第一条件 为:第一正投影V1’的边缘的至少部分具有凹陷RS;第二条件为:第二正投影V2’的边缘的至少部分具有凹陷RS和凸起PT中的至少一种。
图1B和1C是示出根本公开一些实施例的第一正投影和第二正投影的示意图。下面结合图1B和1C说明根据本公开一些实施例的第一条件和第二条件。
为了更清楚地示出凹陷RS和凸起PT,图1B中的(a)和图1C中的(a)均示出了第一正投影V1’和第二正投影V2’均不具有凹陷RS、也不具有凸起PT的情况。这里,第一正投影V1’和第二正投影V2’被示意性地示出为六边形。应理解,本公开实施例并不限于此,第一正投影V1’和第二正投影V2’也可以是其他形状。
首先介绍第一条件。
参见图1B中的(b),第一条件为:第一正投影V1’的边缘的至少部分具有凹陷RS。例如,第一正投影V1’为六边形,第一正投影V1’的至少一条边具有凹陷RS,其他边不具有凹陷RS;又例如,第一正投影V1’为六边形,第一正投影V1’的每条边均具有凹陷RS。
可以理解的是,在显示面板满足第一条件的情况下,有利于减小像素界定层12的第一开口V1的尺寸。如此,有助于提高显示面板的正面出光效率。
接下来介绍第二条件。
参见图1C中的(b),第二条件包括:第二正投影V2’的边缘的至少部分具有凹陷RS。例如,第二正投影V2’为六边形,第二正投影V2’的至少一条边具有凹陷RS,其他边不具有凹陷RS;又例如,第二正投影V2’为六边形,第二正投影V2’的每条边均具有凹陷RS。
参见图1C中的(c),第二条件包括:第二正投影V2’的边缘的至少部分具有凸起PT。例如,第二正投影V2’为六边形,第二正投影V2’的至少一条边具有凸起PT,其他边不具有凸起PT;又例如,第二正投影V2’为六边形,第二正投影V2’的每条边均具有凸起PT。
应理解,在第二正投影V2’的边缘的至少部分同时具有凹陷RS和凸起PT的情况下,显示面板也满足第二条件。
图1D是示出根本公开另一些实施例的第二正投影的示意图。下面结合图1D说明根据本公开另一些实施例的第二条件。
图1D示出了第一光调制部1421与第一光调制子层141之间的界面I1。
参见1D中的(a),第一光调制部1421与第一光调制子层141之间的界面I1为 平面。
参见1D中的(b)和(c),第二条件为:第一光调制部1421与第一光调制子层141之间的界面I1的至少部分为非平面。例如,界面I1由多个面构成,在一些情况下,界面I1的至少一个面为非平面,其他面为平面;在另一些情况下,界面I1的每个面均为非平面。
可以理解的是,在第二正投影V2’的边缘的至少部分具有凹陷RS和凸起PT中的至少一种的情况下,界面I1的至少部分为非平面。
由图1D可知,在界面I1的至少部分为非平面的情况下,界面I1的面积相对平面来说更大。如此,来自子像素的光会被更多的全反射,从而有助于提高显示面板的正面出光效率。
上述实施例中,显示面板满足第一条件和第二条件中的至少一个。这样的结构有助于提高显示面板的正面出光效率。
在一些实施例中,显示面板满足第一条件和第二条件。这样的结构有助于进一步提高显示面板的正面出光效率。
在一些实施例中,显示面板满足第一条件和第二条件中的至少一个的情况下的正面出光效率比显示面板不满足第一条件和第二条件的情况下的正面出光效率高5%。
图2是图1A所示显示面板的局部示意图。
如图2所示,假设来自子像素的光经由区域A入射到界面I1后会被全反射。α等于全反射角arcsin(n1/n2),其中,n1为第一光调制子层141的折射率,n2为第二光调制子层142的折射率。
显示面板的正面出光效率可以等效为:区域A的面积与像素界定层12的第一开口V1的第一正投影V1’的面积之比。可见,通过增大区域A的面积或减小第一正投影V1’的面积,均可以提高显示面板的正面出光效率。
在界面I1的面积增大的情况下,相当于增大了区域A的面积,从而可以提高显示面板的正面出光效率。
因此,显示面板在满足第一条件和第二条件中的至少一个的情况下,可以提高显示面板的出光效率。
在一些实施例中,蓝色子像素B对应的第一开口V1在衬底基板11上的第一正投影V1’的边缘的至少部分具有凹陷RS,如图1B中的(b)所示。如此,有助于提高显示面板白光的正面效率。
在另一些实施例中,蓝色子像素B对应的第二开口V2在衬底基板11上的第二正投影V2’的边缘的至少部分具有凹陷RS和凸起PT中的至少一种,如图1B中的(b)和(c)所示。如此,有助于提高显示面板白光的正面效率。
图3A和图3B是示出根据本公开一些实施例的显示面板中的子像素的排布示意图。
在一些实施例中,如图3A所示,显示面板中的多个子像素可以呈GGRB像素排布,即,一个像素由两个绿色子像素G、一个红色子像素R和一个蓝色子像素B组成。例如,绿色子像素G对应的第一开口V1的第一正投影V1’的形状为五边形,红色子像素R和蓝色子像素B对应的第一开口V1的第一正投影V1’的形状均为六边形。
在另一些实施例中,如图3B所示,显示面板中的多个子像素可以呈标准RGB像素排布(sRGB像素排布)、传统的RGB像素排布(Real RGB像素排布)、钻石像素排布(Diamond像素排布)或类钻石像素排布(类Diamond像素排布)。
图4A-图4D是示出根据本公开又一些实施例的第一正投影和第二正投影的示意图。在图4A-图4D中,第一方向与第二方向相互垂直。
如图4A-图4D所示,第一正投影V1’和第二正投影V2’的边缘均包括在第一方向上相对设置的第一边缘E1和第二边缘E2、以及在第二方向上相对设置的第三边缘E3和第四边缘E4,第三边缘E3和第四边缘E4中的每一个与第一边缘E1和第二边缘E2邻接。
在图4A和图4C中,第一正投影V1’的边缘位于线L1以上的部分为第一边缘E1,第一正投影V1’的边缘位于线L2以下的部分为第二边缘E2。在图4B和图4D中,第二正投影V2’的边缘位于线L3以上的部分为第一边缘E1,第二正投影V2’的边缘位于线L4以下的部分为第二边缘E2。
在一些实施例中,参见图4A,显示面板中的某个子像素或某些子像素(下面称为第一子像素)在第一方向上的长度大于在第二方向上的长度。
发明人注意到,图1A所示显示面板存在白光色偏。通过分析,发明人发现,白光色偏的主要原因是在不同方向长度不同的子像素发出的光的衰减在不同方向存在差异,为了兼顾显示面板的正面出光效率和白光色偏,本公开实施例还提出了如下解决方案。
作为一些实现方式,参见图4A,图1A所示显示面板中的第一子像素(例如红色子像素R)的第一正投影V1’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS,第一子像素的第一正投影V1’的第三边缘E3和第四边缘E4不具有凹陷。这里, 图4A示出的是第一正投影V1’的第一边缘E1和第二边缘E2均具有凹陷RS的情况。在一些实施例中,参见图4A,第一子像素的第一正投影V1’的第三边缘E3和第四边缘E4为直边。
这样的实现方式下,可以减小第一子像素在第一方向和第二方向的光的衰减差异,从而可以在提高显示面板的正面出光效率的基础上,减小显示面板的白光色偏。
作为另一些实现方式,参见图4A和图4B,图1A所示显示面板中的第一子像素对应的第一正投影V1’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS,第一子像素的第一正投影V1’的第三边缘E3和第四边缘E4不具有凹陷,并且,图1A所示显示面板中的第一子像素对应的第二正投影V2’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS。图4A示出的是第二正投影V2’的第一边缘E1和第二边缘E2均具有凹陷RS的情况。
这样的实现方式下,可以进一步减小第一子像素在第一方向和第二方向的光的衰减差异,从而可以在提高显示面板的正面出光效率的基础上,进一步减小显示面板的白光色偏。
作为又一些实现方式,参见图4A和图4C,图1A所示显示面板中的第一子像素的第一正投影V1’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS,并且,图1A所示显示面板中的第一子像素对应的第一正投影V1’的第三边缘E3和第四边缘E4中的至少一个具有凸起PT。图4C示出的是第一正投影V1’的第三边缘E3和第四边缘E4均具有凸起PT的情况。
这样的实现方式下,可以进一步减小第一子像素在第一方向和第二方向的光的衰减差异,从而可以在提高显示面板的正面出光效率的基础上,进一步减小显示面板的白光色偏。
作为再一些实现方式,参见图4A和图4D,图1A所示显示面板中的第一子像素的第一正投影V1’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS,图1A所示显示面板中的第一子像素对应的第一正投影V1’的第三边缘E3和第四边缘E4不具有凹陷,并且,图1A所示显示面板中的第一子像素对应的第二正投影V2’的第三边缘E3和第四边缘E4中的至少一个具有凸起PT。图4D示出的是第二正投影V2’的第三边缘E3和第四边缘E4均具有凸起PT的情况。
这样的实现方式下,可以更进一步减小第一子像素在第一方向和第二方向的光的衰减差异,从而可以在提高显示面板的正面出光效率的基础上,更进一步减小显示面 板的白光色偏。
作为还一些实现方式,参见图4A,图1A所示显示面板中的第一子像素的第一正投影V1’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS,第一子像素的第一正投影V1’的第三边缘E3和第四边缘E4不具有凹陷,第一子像素的第二正投影V2’的边缘不具有凹陷和凸起。
作为还一些实现方式,参见图4B,第一子像素的第一正投影V1’的边缘不具有凹陷和凸起,第一子像素的第二正投影V2’的第一边缘E1和第二边缘E2中的至少一个具有凹陷RS。
作为还一些实现方式,参见图4D,第一子像素的第一正投影V1’的边缘不具有凹陷和凸起,第一子像素的第二正投影V2’的第三边缘E3和第四边缘E4中的至少一个具有凸起PT。
应理解,在以上多种实现方式下,均可以在提高显示面板的正面出光效率的基础上,减小显示面板的白光色偏。
在一些实施例中,显示面板的多个子像素包括被配置为发出不同颜色的光的第一子像素、第二子像素和第三子像素,第一子像素在第一方向上的长度与在第二方向上的长度之比大于第二子像素在第一方向上的长度与在第二方向上的长度之比,并且大于第三子像素在第一方向上的长度与在第二方向上的长度之比第三子像素。例如,第一子像素为红色子像素R、第二子像素为蓝色子像素B、第三子像素为绿色子像素G。
需要说明的是,在本文中,凹陷RS和凸起PT是相对的概念,下面结合图4A和图4D进行说明。
如图4A所示,在第一正投影V1’的第一边缘E1和第二边缘E2具有凹陷RS、第一正投影V1’的第三边缘E3和第四边缘E4为直边的情况下,凹陷RS与第二正投影V2’的边缘之间的距离大于等于第一正投影V1’的第三边缘E3和第四边缘E4中的每一个与第二正投影V2’的边缘之间的距离。
如图4D所示,在第二正投影V2’的第一边缘E1和第二边缘E2为直边、而第三边缘E3和第四边缘E4具有凸起PT的情况下,凸起PT与第一正投影V1’的边缘之间的距离大于等于第二正投影V2的第一边缘E1和第二边缘E2中的每一个与第二正投影V2’的边缘之间的距离。
图5A和图5B是示出根据本公开另一些实施例的显示面板的结构示意图。
下面仅重点介绍图5A和图1A的不同之处,其他类似之处可以参照上文的描述。
如图5A所示,第二光调制子层142除包括位于每个第二开口V2中的第一光调制部1421外,还包括第二光调制部1422。第二光调制部1422位于第一光调制部1421和第一光调制子层141远离衬底基板11的一侧,并且与第一光调制部1421邻接。在一些实施例中,第一光调制部1421和第二光调制部1422一体设置。
此外,光调制层14还包括第三光调制子层143,位于第一光调制子层141和第二光调制子层142远离衬底基板11的一侧。这里,第三光调制子层143的折射率小于第二光调制部1422的折射率。
如图5B所示,第一光调制部1421和第二光调制部1422均包括相对设置的第一面S1和第二面S2、以及相对设置的第三面S3和第四面S4。在第一光调制部1421和第二光调制部1422中的每一个中,第二面S2位于第一面S1远离衬底基板11的一侧,并且,第三面S3和第四面S4中的每一个均与第一面S1和第二面S2邻接。应理解,图5B示出的第一光调制部1421的第二面S2与第二光调制部1422的第一面S1部分接触。
第二光调制部1422的第三面S3和第四面S4中的每一个与第二光调制部1422的第一面S1之间的第一夹角θ1小于90度。
下面结合图5A所示的光B1、B2和B3分析图5A所示的显示面板的光的传播情况。
光B1在入射到第一光调制部1421与第一光调制子层141之间的界面被全反射后沿垂直于衬底基板11的方向传播。
光B2在入射到第一光调制部1421与第一光调制子层141之间的界面被全反射后入射到第二光调制部1422,进而入射到第三光调制子层143。由于第三光调制子层143的折射率小于第二光调制部1422的折射率,故,光B2在第三光调制子层143中的传播方向比在第二光调制部1422中的传播方向更接近垂直于衬底基板11的方向,从而提高了显示面板的正面出光效果。
光B3不会入射到第一光调制部1421与第一光调制子层141之间的界面,而是直接依次经由第一光调制部1421和第二光调制部1422进入第三光调制子层143。与光B2类似地,光B3在第三光调制子层143中的传播方向比在第二光调制部1422中的传播方向更接近垂直于衬底基板11的方向,从而提高了显示面板的正面出光效果。
上述实施例中,光调制层14还包括第三光调制子层143,第二光调制子层142还包括第二光调制部1422。这样的显示面板有助于进一步提高显示面板的正面出光效果。
在一些实施例中,参见图5B,第一夹角θ1大于等于60度、且小于90度。在第一夹角θ1处于该范围内的情况下,可以进一步提高显示面板的正面出光效果。
在另一些实施例中,参见图5B,第一光调制部1421的第三面S3和第四面S4中的每一个与第一光调制部1421的第一面S1之间的第二夹角θ2大于等于60度、且小于等于80度。在第二夹角θ2处于该范围内的情况下,可以进一步提高显示面板的正面出光效果。
在又一些实施例中,第一夹角θ1大于等于60度、且小于90度,并且,第二夹角θ2大于等于60度、且小于等于80度。如此,可以更进一步提高显示面板的正面出光效果。
发明人注意到,图5A所示显示面板也存在白光色偏。通过分析,发明人发现,白光色偏的主要原因是在不同方向长度不同的子像素发出的光的衰减在不同方向存在差异。为了兼顾显示面板的正面出光效率和白光色偏,图5A所示显示面板中的第一子像素也可以符合以上结合上文描述的多种实现方式,在此不再赘述。
在下文中,将子像素对应的第二光调制部1422在衬底基板11上的正投影为第三正投影1422’。
图6A和图6B是示出根据本公开一些实施例的第一正投影、第二正投影和第三正投影的示意图。
与第一正投影V1’和第二正投影V2’类似地,参见图6A和图6B,第三正投影1422’的边缘也包括在第一方向上相对设置的第一边缘E1和第二边缘E2、以及在第二方向上相对设置的第三边缘E3和第四边缘E4。在第三正投影1422’中,第三边缘E3和第四边缘E4中的每一个与第一边缘E1和第二边缘E2邻接。
在图6A和图6B中,第三正投影1422’的边缘位于线L5以上的部分为第一边缘E1,第三正投影1422’的边缘位于线L6以下的部分为第二边缘E2,第三正投影1422’的边缘位于线L5和线L6之间的部分为第三边缘E3和第四边缘E4。
在一些实现方式中,参见图4A和图6A,图5A所示显示面板中的第一子像素对应的第一正投影V1的第一边缘E1和第二边缘E2中的至少一个具有凹陷R,并且,图5A所示显示面板中的第一子像素对应的第三正投影1422’的第一边缘E1和第二边缘E2中的至少一个具有凹陷R。图6A示出的是第三正投影1422’的第一边缘E1和第二边缘E2均具有凹陷R的情况。
这样的实现方式下,有助于进一步减小显示面板的白光色偏。
在另一些实现方式中,参见图4A和图6B,图5A所示显示面板中的第一子像素对应的第一正投影V1的第一边缘E1和第二边缘E2中的至少一个具有凹陷R,并且,图5A所示显示面板中的第一子像素对应的第三正投影1422’的第三边缘E3和第四边缘E4中的至少一个具有凸起PT。图6B示出的是第三正投影1422’的第三边缘E3和第四边缘E4均具有凸起PT的情况。
这样的实现方式下,有助于进一步减小显示面板的白光色偏。
发明人还注意到,图5A所示显示面板还存在黄绿光色偏。通过分析,发明人发现,黄绿光色偏的主要原因是绿色子像素G发出的光的衰减在第二方向较慢,为了减小显示面板的黄绿光色偏,本公开实施例还提出了如下解决方案。
图7A-图7C是示出根据本公开另一些实施例的第一正投影、第二正投影和第三正投影的示意图。
在图7A中,绿色子像素G对应的第一正投影V1’的边缘位于线L7以上的部分为第一边缘E1,第一正投影V1’的边缘在第一方向上与第一边缘E1相对设置、且位于线L7以下的部分为第二边缘E2,第一正投影V1’的边缘在第二方向上相对设置、且位于线L7以下的部分为第三边缘E3和第四边缘E4。
类似地,在图7B中,绿色子像素G对应的第二正投影V2’的边缘位于线L8以上的部分为第一边缘E1,第二正投影V2’的边缘在第一方向上与第一边缘E1相对设置、且位于线L8以下的部分为第二边缘E2,第二正投影V2’的边缘在第二方向上相对设置、且位于线L8以下的部分为第三边缘E3和第四边缘E4。
类似地,在图7C中,绿色子像素G对应的第三正投影1422’的边缘位于线L9以上的部分为第一边缘E1,第三正投影1422’的边缘在第一方向上与第一边缘E1相对设置、且位于线L9以下的部分为第二边缘E2,第三正投影1422’的边缘在第二方向上相对设置、且位于线L9以下的部分为第三边缘E3和第四边缘E4。
在一些实现方式中,参见图7A,图5A所示显示面板中的绿色子像素G对应的第一正投影V1’的第三边缘E3和第四边缘E4中的至少一个具有凹陷RS。如此,有助于减小显示面板的黄绿光色偏。
在另一些实现方式中,参见图7B,绿色子像素G对应的第二正投影V2’的第三边缘E3和第四边缘E4中的至少一个具有凹陷RS。如此,有助于减小显示面板的黄绿光色偏。
在又一些实现方式中,参见图7C,绿色子像素G对应的第三正投影1422’的第 三边缘E3和第四边缘E4中的至少一个具有凹陷RS。如此,有助于减小显示面板的黄绿光色偏。
应理解,以上图7A-图7C描述的实现方式可以相互结合,以进一步减小显示面板的黄绿光色偏。
图8A-图8C是示出根据本公开又一些实施例的显示面板的结构示意图。在图8A-图8C中,箭头表示光的传播方向。
如图8A-图8C所示,显示面板包括衬底基板11、像素界定层12和封装层13。在一些实施例中,显示面板还包括模组层15。例如,模组层15包括依次位于封装层13远离衬底基板11一侧的触控层、偏振层和盖板。
例如,衬底基板11可以是玻璃基板。又例如,衬底基板11可以是柔性基板,例如PI基板。
像素界定层12位于衬底基板11的一侧,并且具有用于限定多个子像素的多个第一开口V1。这里,多个第一开口V1与多个子像素一一对应。例如,多个子像素包括红色子像素R、绿色子像素G和蓝色子像素B。
应理解,显示面板还可以包括图8A未示出的其他部件,例如,多个像素驱动电路和覆盖多个像素驱动电路的平坦化层。每个子像素的阳极可以位于平坦化层远离衬底基板11的一侧,并且连接至像素驱动电路。像素界定层12可以位于平坦化层和阳极远离衬底基板11的一侧。像素界定层12的每个第一开口V1使得对应的一个子像素的阳极的至少部分露出。
封装层13位于像素界定层12远离衬底基板11的一侧。封装层13包括第一无机层131、第二无机层132、有机层133、以及至少一个第一光学结构134。在一些实施例中,第一无机层131的材料包括氮氧化硅,第二无机层132的材料包括氮化硅。
有机层133位于第一无机层131和第二无机层132之间,每个第一光学结构134位于第一无机层131和有机层133之间。
每个第一光学结构134的折射率大于有机层133的折射率。在一些实施例中,每个第一光学结构134的折射率为1.65至1.95,例如1.7、1.8、1.85等。在一些实施例中,有机层133的折射率为1.4至1.6,例如,1.5、1.55等。
在一些实施例中,每个第一光学结构134包括有机的本体1341。在一些实施例中,本体1341的材料包括有机高分子。在一些实施例中,本体1341的厚度为2微米至4微米,例如2.5微米、3微米、3.5微米等。
在一些实施例中,第一光学结构134的截面可以呈倒梯形、正梯形或矩形。
参见图8A,第一光学结构134的截面呈倒梯形。这种情况下,由于第一光学结构134的折射率大于有机层133的折射率,故,部分光在入射到第一光学结构134的折射率与有机层133的界面时会发生全反射,被全反射后的光在有机层133中的传播方向比在第一光学结构134中的传播方向更接近垂直于衬底基板11的方向,从而提高了显示面板的正面出光效果。
参见图8B,第一光学结构134的截面呈矩形。这种情况下,由于第一光学结构134的折射率大于有机层133的折射率,故,光在有机层133中的传播方向比在第一光学结构134中的传播方向更接近垂直于衬底基板11的方向,从而提高了显示面板的正面出光效果。
参见图8C,第一光学结构134的截面呈正梯形。这种情况下,与图8B类似地,由于第一光学结构134的折射率大于有机层133的折射率,故,光在有机层133中的传播方向比在第一光学结构134中的传播方向更接近垂直于衬底基板11的方向,从而提高了显示面板的正面出光效果。
需要说明的是,虽然图8A-图8C中的第一光学结构134均位于第一无机层131远离衬底基板11的一面的凹部RP中,但是这并非是限制性的。在某些实施例中,第一光学结构134可以位于第一无机层131远离衬底基板111的面除凹部RP之外的其他区域。在某些实施例中,第一光学结构134与第一无机层131一体设置。可以理解的是,与图8A-图8C类似地,第一光学结构134同样有助于提高显示面板的正面出光效率。
上述实施例中,第一无机层131和有机层133之间设置有第一光学结构134。这样的结构有助于提高显示面板的正面出光效率。
图9是示出根据本公开再一些实施例的显示面板的结构示意图。
在一些实施例中,如图9所示,每个第一光学结构134还包括位于有机的本体1341中无机的纳米结构1342。如此,有助于提高第一光学结构134的折射率,从而进一步提高显示面板的正面出光效率。
需要说明的是,图9仅以图8C为例示出了位于有机的本体1341中无机的纳米结构1342。可以理解的是,图8A和图8B示出的有机的本体1341中也可以设置有无机的纳米结构1342。
在一些实施例中,本体1341的折射率为1.5至1.6,纳米结构的折射率为2至2.2。 如此,可以使得第一光学结构134的折射率处于合适的范围,更有助于提高显示面板的正面出光效率。
作为一些实现方式,纳米结构1342包括纳米颗粒和纳米线中的至少一种。例如,纳米结构1342仅包括纳米颗粒;又例如,纳米结构1342仅包括纳米线;再例如,纳米结构1342同时包括纳米颗粒和纳米线。
在一些实施例中,纳米结构1342的材料包括氧化锆和氧化钛中的至少一种。例如,纳米结构1342包括氧化锆的纳米颗粒和氧化钛的纳米颗粒。
在一些实施例中,每个第一光学结构134还包括感光剂。例如,感光剂的材料包括可被紫外光固化的材料,例如,有机高分子材料等。如此,有助于第一光学结构134被固化。
图10是图9所示显示面板的局部示意图。
如图10所示,在垂直于衬底基板11的截面图中,第一光学结构134包括相对设置的第一面S1和第二面S2、以及相对设置的第三面S3和第四面S4。在第一光学结构134中,第二面S2位于第一面S1远离衬底基板11的一侧,第三面S3和第四面S4中的每一个均与第一面S1和第二面S2邻接。在某些实施例中,第三面S3和第四面S4中的至少一个可以是曲面。
在一些实施例中,第三面S3和第四面S4中的每一个与衬底基板11的表面之间的夹角γ为第一范围和第二范围中的一个,第一范围大于等于60度、且小于等于90度,第二范围大于等于100度、且小于等于120度。也即,夹角γ大于等于60度、且小于等于90度,或者,夹角γ大于等于100度、且小于等于120度。
夹角γ在上述第一范围或第二范围内的情况下,有助于进一步提高显示面板的正面出光效率。
在一些实施例中,第一光学结构134的第二面S2与衬底基板11的表面基板平行,即在工艺偏差范围内的齐平。换言之,第一光学结构134的第二面S2是与衬底基板11的表面平行的平面。如此,可以避免子像素发出的垂直于衬底基板11的光向偏离垂直于衬底基板11的方向偏转,有助于进一步提高显示面板的正面出光效率。
在一些实施例中,参见图8C、图9和10,第一无机层131远离衬底基板11的一面具有与多个第一开口V1一一对应的多个凹部RP,每个第一光学结构134与每个凹部RP一一对应,并且,每个第一光学结构134至少部分地位于对应的凹部RP中。
在一些实施例中,参见图10,每个第一光学结构134包括位于对应的凹部RP中 的第一部分134a和位于对应的凹部RP之外的第二部分134b,第一部分134a在衬底基板11上的正投影位于第二部分134b在衬底基板11上的正投影之内。
作为一些实现方式,第一部分134a在衬底基板11上的正投影与第二部分134b在衬底基板11上的正投影完全重合。
作为另一些实现方式,第一部分134a在衬底基板11上的正投影的面积小于第二部分134b在衬底基板11上的正投影的面积。如此,更有助于提高显示面板的正面出光效率。
在下文中,将每个第一光学结构134在衬底基板11上的正投影称为第四正投影134’,将每个第一光学结构134对应的第一开口V1在衬底基板11上的正投影称为第一正投影V1’,将第四正投影134’与第一正投影V1’彼此重叠的区域称为第一区域A1。
在一些实施例中,第四正投影134’和第一正投影V1’中的至少一个包括第一区域A1和除第一区域A1外的第二区域A2。例如,第四正投影134’包括与第一正投影V1’重叠的第一区域A1和与第一正投影V1’不重叠的第二区域A2;又例如,第一正投影V1’包括与第四正投影134’重叠的第一区域A1和与第四正投影134’不重叠的第二区域A2。
图11A和图11B是示出根据本公开一些实施例的第一正投影和第三正投影的示意图。
在一些实施例中,如图11A所示,第四正投影134’包括与第一正投影V1’重叠的第一区域A1和与第一正投影V1’不重叠的第二区域A2。第四正投影134’的边缘与第四正投影134’的第二区域A2重叠的部分为第一边缘E1,第一正投影V1’的边缘与第一区域A1重叠的部分为第二边缘E2,第一边缘E1与第二边缘E2之间的最小距离d1小于等于3微米。例如,d1为0、1微米、2微米等。
上述实施例中,最小距离d1小于等于3微米。如此,更有助于提高显示面板的正面出光效率。
在另一些实施例中,如图11B所示,第一正投影V1’包括与第四正投影134’重叠的第一区域A1和与第四正投影134’不重叠的第二区域A2。第一正投影V1’的边缘与第一正投影V1’的第二区域A2重叠的部分为第三边缘E3,第四正投影134’的边缘与第一区域A1重叠的部分为第四边缘E4,第三边缘E3与第四边缘E4之间的最小距离d2小于等于1微米,例如,0微米、0.5微米等。
上述实施例中,最小距离d2小于等于1微米。如此,更有助于提高显示面板的正面出光效率。
需要说明的是,虽然图11A示出的第一正投影V1’完全地位于第四正投影134’之内,图11B示出的位于第四正投影134’完全地第一正投影V1’之内,但是,这并非是限制性的。在某些实施例中,第一正投影V1’也可以部分地位于第四正投影134’之内,部分地位于第四正投影134’之外;第四正投影134’也可以部分地位于第一正投影V1’之内,部分地位于第一正投影V1’之外。这种情况下,第一正投影V1’和第四正投影134’均包括第二区域A。
图12A和图12B是示出根据本公开还一些实施例的显示面板的结构示意图。
与图8C所示实施例相比,图12A和图12B所示的显示面板还包括位于封装层13远离衬底基板11一侧的第一光调制层14。
第一光调制层14包括第一光调制子层141和第二光调制子层142,第二光调制子层142的折射率大于第一光调制子层141的折射率。
第一光调制子层141具有与至少一个子像素一一对应的至少一个第二开口V2。第二光调制子层142包括位于每个第二开口V2中的第一光调制部1421。例如,参见图12A,第一光调制子层141仅具有一个第二开口V2,该第二开口V2对应一个子像素。又例如,参见图12B,第一光调制子层141具有多个第二开口V2,该多个第二开口V2一一对应多个子像素。
第一光调制层14被配置为使得来自至少一个子像素中的每一个的光入射到对应的第二开口V2中的第一光调制部1421与第一光调制子层141之间的界面被全反射后,向远离衬底基板11的方向传播。例如,图12A和图12B示出了来自蓝色子像素B的光入射到对应的第二开口V2中的第一光调制部1421与第一光调制子层141之间的界面被全反射后,向垂直于衬底基板11的方向传播。
上述实施例中,显示面板同时包括第一光学结构134和第一光调制层14。如此,可以更进一步提高显示面板的正面出光效率。
在一些实施例中,第一光调制部1421远离衬底基板11的面与第一光调制子层141之间的夹角δ大于等于60度、且小于等于80度,例如,δ为65度、70度等。如此,有助于进一步提高显示面板的正面出光效率。
在一些实施例中,参见图12A和图12B,第二光调制子层142还包括位于第一光调制子层141和第一光调制部1421远离衬底基板11的一侧的部分1422。例如,这部 分1422的折射率与第一光调制部1421的折射率相同。
在一些实施例中,图12A和图12B所示显示面板满足以上介绍的第一条件和第二条件中的至少一个,从而可以进一步提高显示面板的正面出光效率。
例如,图12A和图12B所示显示面板的至少一个子像素中的每一个对应的第一开口V1在衬底基板11上的第一正投影V1’的边缘的至少部分具有凹陷RS。又例如,图12A和图12B所示显示面板的至少一个子像素中的每一个对应的第二开口V2在衬底基板11上的第二正投影V2’的边缘的至少部分具有凹陷RS和凸起PT中的至少一种。再例如,第一光调制部1421与第一光调制子层141之间的界面的至少部分为非平面。
在一些实施例中,显示面板中同时具有对应的第一开口V1和第二开口V2的每个子像素均为蓝色子像素B,如图12A所示。换言之,仅有蓝色子像素B发出的光入射到对应的第二开口V2中的第一光调制部1421与第一光调制子层141之间的界面被全反射后,向垂直于衬底基板11的方向传播;红色子像素R和绿色子像素G发出的光经过封装层13后直接入射到第一光调制子层141,而不会先入射到第一光调制部1421,再入射到第一光调制子层141。如此,可以兼顾显示面板的出光效率和白光色偏。
图13A-图13C是示出根据本公开还一些实施例的显示面板的结构示意图。
与图8C所示实施例相比,图13A-图13C所示的显示面板还包括第二光调制层16。
第二光调制层16位于封装层13远离衬底基板11的一侧。第二光调制层16包括第四光调制子层161和至少一个第二光学结构162。每个第二光学结构162位于封装层13和第四光调制子层161之间,并且,每个第二光学结构162的折射率大于第四光调制子层161的折射率。在一些实施例中,第二光学结构162在衬底基板上的正投影与第一正投影V1’至少部分重叠。
在一些实施例中,第二光调制层16还包括第五光调制子层163,位于第二光学结构162和封装层13之间。
作为一些实现方式,第五光调制子层163和第二光学结构162一体设置。例如,第五光调制子层163和第二光学结构162的材料均为无机材料。在一些实施例中,可以通过对第五光调制子层163进行刻蚀(例如等离子刻蚀)以得到第二光学结构162。
作为另一些实现方式,第五光调制子层163的材料为无机材料,而第二光学结构162包括有机的本体。
需要说明的是,以上关于第一光学结构134的描述均适用于第二光学结构162, 在此不再赘述。
在一些实施例中,参见图13B和图13C,显示面板同时包括第一光调制层14和第二光调制层16,从而进一步提高显示面板的正面出光效率。
在一些实施例中,参见图13C,第一无机层131和第一光学结构134一体设置。
图14是示出根据本公开还一些实施例的显示面板的结构示意图。
与图8C所示实施例相比,图14所示的显示面板中,封装层13除了第一无机层131、第二无机层132、有机层133、以及至少一个第一光学结构134外,还包括第三无机层135。第三无机层135位于至少一个第一光学结构134与有机层133之间。作为一些实现方式,第三无机层135的材料包括硅的氧化物(例如氧化硅)或硅的氮氧化物(例如氮氧化硅)。
上述实施例中,封装层13中的第三无机层135有利于改善第一光学结构134与有机层133之间的界面性能,减小该界面的表面张力,进而减小由于该界面对显示面板的显示效果造成的不利影响。
在一些实施例中,第一光学结构134与有机层133不接触。如此,可以进一步减小第一光学结构134与有机层133之间的界面对显示面板的显示效果造成的不利影响。
在一些实施例中,具有第一光学结构134的显示面板也可以采用图4A-图4D所示的方式来减小显示面板的白光色偏,在此不再重复描述。
在一些实施例中,具有第一光学结构134的显示面板也可以采用图7A-图7C所示的方式来减小显示面板的黄绿光色偏,在此不再赘述。
下面结合图15A和图15B介绍根据本公开一些实施例的减小显示面板的色偏的方式。
图15A和图15B是示出根据本公开再一些实施例的第一正投影和第二正投影的示意图。
为了便于说明,将红色子像素R对应的第一正投影V1’的第一边缘E1与红色子像素R对应的第二正投影V2’的第一边缘E1之间的距离称为第一距离D1,将红色子像素R对应的第一正投影V1’的第二边缘E2与红色子像素R对应的第二正投影V2’的第二边缘E2之间的距离称为第二距离D2,将红色子像素R对应的第一正投影V2’的第三边缘E3与红色子像素R对应的第二正投影V2’的第三边缘E3之间的距离称为第三距离D3,将红色子像素R对应的第一正投影V1’的第四边缘E4与红色子像素R对应的第二正投影V2’的第四边缘E4之间的距离称为第四距离D4。
在不考虑调整显示面板的色偏的情况下,第一距离D1、第二距离D2、第三距离D3和第四距离D4相同。
在一些实施例中,参见图15A,减小第一距离D1和第二距离D2中的至少一个,保持第三距离D3和第四距离D4不变。例如,第一距离D1和第二距离D2均由2微米减小为0.5微米至1.8微米。如此,可以减小显示面板的白光色偏。
在另一些实施例中,参见图15B,增大第三距离D3和第四距离D4中的至少一个,保持第一距离D1和第二距离D2不变。例如,第三距离D3和第四距离D4均由2微米增大为2.5微米至4微米。如此,可以减小显示面板的白光色偏。
下面结合图16A和图16B介绍根据本公开另一些实施例的减小图5A所示显示面板的色偏的方式。
图16A和图16B是示出根据本公开又一些实施例的第一正投影、第二正投影和第三正投影的示意图。
为了便于说明,将红色子像素R对应的第一正投影V1’的第一边缘E1与红色子像素R对应的第三正投影1422’的第一边缘E1之间的距离称为第五距离D5,将红色子像素R对应的第一正投影V1’的第二边缘E2与红色子像素R对应的第三正投影1422’的第二边缘E2之间的距离称为第六距离D6,将红色子像素R对应的第一正投影V1’的第三边缘E3与红色子像素R对应的第三正投影1422’的第三边缘E3之间的距离称为第七距离D7,将红色子像素R对应的第一正投影V1’的第四边缘E4与红色子像素R对应的第三正投影1422’的第四边缘E4之间的距离称为第八距离D8。
在一些实施例中,参见图16A,减小第一距离D1、第二距离D2、第五距离D5和第六距离D6中的至少一个,保持第三距离D3、第四距离D4、第七距离D7和第八距离D8不变。例如,第一距离D1和第二距离D2均由2微米减小为0.5微米至1.8微米,第五距离D5和第六距离D6均由5.4微米减小为3.9微米至5.2微米。如此,可以减小显示面板的白光色偏。
在另一些实施例中,参见图16B,增大第三距离D3、第四距离D4、第七距离D7和第八距离D8中的至少一个,保持第一距离D1、第二距离D2、第五距离D5和第六距离D6不变。例如,第三距离D3和第四距离D4均由2微米增大为2.5微米至4微米,第七距离D7和第八距离D8均由5.4微米增大为5.9微米至7.4微米。如此,可以减小显示面板的白光色偏。
下面结合图17介绍根据本公开又一些实施例的减小显示面板的色偏的方式。
图17是示出根据本公开再一些实施例的第一正投影、第二正投影和第三正投影的示意图。
为了便于说明,将绿色子像素G对应的第一正投影V1’的第三边缘E3与绿色子像素G对应的第二正投影V1’的第三边缘E3之间的距离称为第九距离D9,将绿色子像素G对应的第一正投影V1’的第三边缘E3与绿色子像素G对应的第三正投影1422’的第三边缘E3之间的距离称为第十距离D10,将绿色子像素G对应的第一正投影V1’的第四边缘E4与绿色子像素G对应的第二正投影V1’的第四边缘E4之间的距离称为第十一距离D11,将绿色子像素G对应的第一正投影V1’的第四边缘E4与绿色子像素G对应的第三正投影1422’的第四边缘E4之间的距离称为第十二距离D12。
在一些实施例中,参见图17,减小第九距离D9、第十距离D10、第十一距离D11和第十二距离D12中的至少一个。例如,第九距离D9和第十一距离D11均由2微米减小为0.5微米至1.8微米,第十距离D10和第十二距离D12均由5.4微米减小为3.9微米至5.2微米。如此,可以减小显示面板的黄绿光色偏。
需要说明的是,以上减小显示面板的色偏的方案适用于本公开任意一个实施例的显示面板。
还需要说明的是,本公开不同实施例的显示面板可以相互组合,以得到更多种显示面板。
图18是示出根据本公开一些实施例的显示面板的制造方法的流程示意图。
在步骤182,提供衬底基板。
在步骤184,在衬底基板的一侧形成像素界定层,像素界定层具有用于限定多个子像素的多个第一开口,多个第一开口与多个子像素一一对应。
在步骤186,在像素界定层远离衬底基板的一侧形成封装层。
在步骤188,在封装层远离衬底基板一侧形成光调制层。
首先,形成第一光调制子层。第一光调制子层具有与至少一个子像素一一对应的至少一个第二开口。该至少一个子像素中的每一个对应的第一开口和第二开口在衬底基板上的正投影分别为第一正投影和第二正投影。
然后,形成第二光调制子层。第二光调制子层包括位于每个第二开口中的第一光调制部。
这里,光调制层被配置为使得来自至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与第一光调制子层之间的界面被全反射后,向远离衬底基板的一侧传播。
所形成的显示面板满足第一条件和第二条件中的至少一个。第一条件为:第一正投影的边缘的至少部分具有凹陷和凸起PT中的至少一种。第二条件为:第二正投影的边缘的至少部分具有凹陷。
上述实施例形成的显示面板满足第一条件和第二条件中的至少一个。这样的结构有助于提高显示面板的正面出光效率。
图19是示出根据本公开另一些实施例的显示面板的制造方法的流程示意图。
在步骤192,提供衬底基板。
在步骤194,在衬底基板的一侧形成像素界定层,像素界定层具有用于限定多个子像素的多个第一开口,多个第一开口与多个子像素一一对应。
在步骤196,在像素界定层远离衬底基板的一侧形成封装层,包括依次形成第一无机层、至少一个第一光学结构、有机层和第二无机层。
第二无机层位于第一无机层远离衬底基板的一侧,有机层位于第一无机层和第二无机层之间。
至少一个第一光学结构位于第一无机层和有机层之间,每个第一光学结构的折射率大于有机层的折射率。
上述实施例形成的显示面板中,第一无机层和有机层之间设置有第一光学结构。这样的结构有助于提高显示面板的正面出光效率。
需要说明的是,本公开实施例提及的凹陷和凸起可以利用图案化后的掩模板对相应的材料层进行图案化来得到。例如,掩模板具有凹陷或凸起,从而使得图案化后的材料层相应具有凹陷或凸起。
在一些实施例中,本公开实施例提供的显示面板为OLED显示面板。
本公开还提供了一种显示装置,显示装置可以包括上述任意一个实施例的显示面板。在一些实施例中,显示装置例如可以是移动终端、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (24)

  1. 一种显示面板,包括:
    衬底基板;
    像素界定层,位于所述衬底基板的一侧,并且具有用于限定多个子像素的多个第一开口,所述多个第一开口与所述多个子像素一一对应;
    封装层,位于所述像素界定层远离所述衬底基板的一侧;以及
    光调制层,位于所述封装层远离所述衬底基板一侧,包括:
    第一光调制子层,具有至少一个第二开口,所述至少一个第二开口与至少一个子像素一一对应,所述至少一个子像素中的每一个对应的第一开口和第二开口在所述衬底基板上的正投影分别为第一正投影和第二正投影,和
    第二光调制子层,包括位于每个第二开口中的第一光调制部,
    其中,所述光调制层被配置为使得来自所述至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与所述第一光调制子层之间的界面被全反射后,向远离所述衬底基板的方向传播;
    所述显示面板满足第一条件和第二条件中的至少一个,其中:
    所述第一条件为:所述第一正投影的边缘的至少部分具有凹陷,并且
    所述第二条件为:所述第二正投影的边缘的至少部分具有凹陷和凸起中的至少一种。
  2. 根据权利要求1所述的显示面板,其中,所述至少一个子像素包括蓝色子像素。
  3. 根据权利要求1所述的显示面板,其中:
    所述至少一个子像素包括第一子像素,所述第一子像素在第一方向上的长度大于在垂直于所述第一方向的第二方向上的长度;
    所述至少一个子像素中的每一个对应的所述第一正投影和所述第二正投影的边缘均包括在所述第一方向上相对设置的第一边缘和第二边缘、以及在所述第二方向上相对设置的第三边缘和第四边缘,所述第三边缘和所述第四边缘中的每一个与所述第一边缘和所述第二边缘邻接。
  4. 根据权利要求3所述的显示面板,其中,所述第一子像素的所述第一正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷,所述第一子像素的所述第一正投影的所述第三边缘和所述第四边缘不具有凹陷。
  5. 根据权利要求4所述的显示面板,其中,所述第一子像素的所述第一正投影的所述第三边缘和所述第四边缘中的至少一个具有凸起。
  6. 根据权利要求4所述的显示面板,其中,所述第一子像素的所述第二正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷。
  7. 根据权利要求4所述的显示面板,其中,所述第一子像素的所述第二正投影的所述第三边缘和所述第四边缘中的至少一个具有凸起。
  8. 根据权利要求4所述的显示面板,其中,所述第一子像素的所述第二正投影的边缘不具有凹陷和凸起。
  9. 根据权利要求3所述的显示面板,其中,所述第一子像素的所述第一正投影的边缘不具有凹陷和凸起,所述第一子像素的所述第二正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷。
  10. 根据权利要求3所述的显示面板,其中,所述第一子像素的所述第一正投影的边缘不具有凹陷和凸起,所述第一子像素的所述第二正投影的所述第三边缘和所述第四边缘中的至少一个具有凸起。
  11. 根据权利要求3-10任意一项所述的显示面板,其中,所述多个子像素包括被配置为发出不同颜色的光的所述第一子像素、第二子像素和第三子像素,所述第一子像素在所述第一方向上的长度与在所述第二方向上的长度之比大于所述第二子像素在所述第一方向上的长度与在所述第二方向上的长度之比,并且大于所述第三子像素在所述第一方向上的长度与在所述第二方向上的长度之比第三子像素。
  12. 根据权利要求11所述的显示面板,其中,所述第一子像素为红色子像素。
  13. 根据权利要求1-12任意一项所述的显示面板,其中:
    所述第二光调制子层还包括第二光调制部,位于所述第一光调制部和所述第一光调制子层远离所述衬底基板的一侧,并且与所述第一光调制部邻接,其中,所述第一光调制部和所述第二光调制部均包括相对设置的第一面和第二面、以及相对设置的第三面和第四面,所述第二面位于所述第一面远离所述衬底基板的一侧,所述第三面和所述第四面中的每一个均与所述第一面和所述第二面邻接,所述第二光调制部的所述第三面和所述第四面中的每一个与所述第二光调制部的所述第一面之间的第一夹角小于90度;并且
    所述光调制层还包括第三光调制子层,位于所述第一光调制子层和所述第二光调制子层远离所述衬底基板的一侧,所述第三光调制子层的折射率小于所述第二光调制部的折射率。
  14. 根据权利要求13所述的显示面板,其中,所述第一夹角大于等于60度。
  15. 根据权利要求13所述的显示面板,其中,所述第一光调制部的所述第三面和所述第四面中的每一个与所述第一光调制部的所述第一面之间的第二夹角大于等于60度、且小于等于80度。
  16. 根据权利要求13所述的显示面板,其中:
    所述至少一个子像素包括第一子像素,所述第一子像素在第一方向上的长度大于在垂直于所述第一方向的第二方向上的长度,所述至少一个子像素中的每一个对应的所述第二光调制部在所述衬底基板上的正投影为第三正投影;
    所述至少一个子像素中的每一个对应的所述第一正投影、所述第二正投影和所述第三正投影的边缘均包括在所述第一方向上相对设置的第一边缘和第二边缘、以及在所述第二方向上相对设置的第三边缘和第四边缘,所述第三边缘和所述第四边缘中的每一个与所述第一边缘和所述第二边缘邻接,其中,所述第一子像素对应的所述第一正投影的所述第一边缘和所述第二边缘中的至少一个具有凹陷。
  17. 根据权利要求16所述的显示面板,其中,所述至少一个子像素还包括绿色子像素,所述绿色子像素对应的所述第一正投影的所述第三边缘和所述第四边缘中的至少一个具有凹陷。
  18. 根据权利要求17所述的显示面板,其中,所述绿色子像素对应的所述第二正投影的所述第三边缘和所述第四边缘中的至少一个具有凹陷。
  19. 根据权利要求17或18所述的显示面板,其中,所述绿色子像素对应的所述第三正投影的所述第三边缘和所述第四边缘中的至少一个具有凹陷。
  20. 根据权利要求1所述的显示面板,其中,所述显示面板满足所述第一条件和所述第二条件。
  21. 根据权利要求1-20任意一项所述的显示面板,其中,所述封装层包括:
    第一无机层,所述第一无机层远离所述衬底基板的一面具有与所述多个第一开口一一对应的多个凹部;
    第二无机层,位于所述第一无机层远离所述衬底基板的一侧;
    有机层,位于所述第一无机层和所述第二无机层之间;和
    至少一个第一光学结构,位于所述第一无机层和所述有机层之间,每个第一光学结构的折射率大于所述有机层的折射率。
  22. 一种显示面板,包括:
    衬底基板;
    像素界定层,位于所述衬底基板的一侧,并且具有用于限定多个子像素的多个第一开口,所述多个第一开口与所述多个子像素一一对应;
    封装层,位于所述像素界定层远离所述衬底基板的一侧;以及
    光调制层,位于所述封装层远离所述衬底基板一侧,包括:
    第一光调制子层,具有至少一个第二开口,所述至少一个第二开口与至少一个子像素一一对应,所述至少一个子像素中的每一个对应的第一开口和第二开口在所述衬底基板上的正投影分别为第一正投影和第二正投影,和
    第二光调制子层,包括位于每个第二开口中的第一光调制部,
    其中,所述光调制层被配置为使得来自所述至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与所述第一光调制子层之间的界面被全反射后,向远离所述衬底基板的方向传播;
    所述显示面板满足第一条件和第二条件中的至少一个,其中:
    所述第一条件为:所述第一正投影的边缘的至少部分具有凹陷,并且
    所述第二条件为:所述界面的至少部分为非平面。
  23. 一种显示装置,包括:如权利要求1-22任意一项所述的显示面板。
  24. 一种显示面板的制造方法,包括:
    提供衬底基板;
    在所述衬底基板的一侧形成像素界定层,所述像素界定层具有用于限定多个子像素的多个第一开口,所述多个第一开口与所述多个子像素一一对应;
    在所述像素界定层远离所述衬底基板的一侧形成封装层;以及
    在所述封装层远离所述衬底基板一侧形成光调制层,包括:
    形成第一光调制子层,所述第一光调制子层具有至少一个第二开口,所述至少一个第二开口与至少一个子像素一一对应,所述至少一个子像素中的每一个对应的第一开口和第二开口在所述衬底基板上的正投影分别为第一正投影和第二正投影,和
    形成第二光调制子层,所述第二光调制子层包括位于每个第二开口中的第一光调制部,
    其中,所述光调制层被配置为使得来自所述至少一个子像素中的每一个的光入射到对应的第二开口中的第一光调制部与所述第一光调制子层之间的界面被全反射后,向远离所述衬底基板的一侧传播;
    所述显示面板满足第一条件和第二条件中的至少一个,其中:
    所述第一条件为:所述第一正投影的边缘的至少部分具有凹陷,并且
    所述第二条件为:所述第二正投影的边缘的至少部分具有凹陷和凸起中的至少一种。
PCT/CN2022/088685 2022-04-24 2022-04-24 显示面板及其制造方法、显示装置 WO2023205920A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000860.8A CN117501836A (zh) 2022-04-24 2022-04-24 显示面板及其制造方法、显示装置
PCT/CN2022/088685 WO2023205920A1 (zh) 2022-04-24 2022-04-24 显示面板及其制造方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088685 WO2023205920A1 (zh) 2022-04-24 2022-04-24 显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023205920A1 true WO2023205920A1 (zh) 2023-11-02

Family

ID=88516562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088685 WO2023205920A1 (zh) 2022-04-24 2022-04-24 显示面板及其制造方法、显示装置

Country Status (2)

Country Link
CN (1) CN117501836A (zh)
WO (1) WO2023205920A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026067A (ja) * 2011-07-22 2013-02-04 Canon Inc 表示装置
CN103579284A (zh) * 2012-08-07 2014-02-12 三星显示有限公司 有机发光显示设备以及制造有机发光显示设备的方法
CN110265452A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 显示基板及显示装置
US20190348458A1 (en) * 2013-12-17 2019-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and fabricating method thereof
CN111552095A (zh) * 2020-06-29 2020-08-18 上海天马微电子有限公司 显示装置
CN111900190A (zh) * 2020-08-07 2020-11-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN212873152U (zh) * 2020-09-25 2021-04-02 昆山龙腾光电股份有限公司 一种显示面板及显示装置
CN113097278A (zh) * 2021-03-31 2021-07-09 武汉天马微电子有限公司 显示面板及显示装置
CN113725385A (zh) * 2021-09-01 2021-11-30 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置
CN215578616U (zh) * 2021-06-29 2022-01-18 京东方科技集团股份有限公司 一种显示面板及显示装置
CN216145641U (zh) * 2021-06-29 2022-03-29 京东方科技集团股份有限公司 一种显示面板及显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026067A (ja) * 2011-07-22 2013-02-04 Canon Inc 表示装置
CN103579284A (zh) * 2012-08-07 2014-02-12 三星显示有限公司 有机发光显示设备以及制造有机发光显示设备的方法
US20190348458A1 (en) * 2013-12-17 2019-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and fabricating method thereof
CN110265452A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 显示基板及显示装置
CN111552095A (zh) * 2020-06-29 2020-08-18 上海天马微电子有限公司 显示装置
CN111900190A (zh) * 2020-08-07 2020-11-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN212873152U (zh) * 2020-09-25 2021-04-02 昆山龙腾光电股份有限公司 一种显示面板及显示装置
CN113097278A (zh) * 2021-03-31 2021-07-09 武汉天马微电子有限公司 显示面板及显示装置
CN215578616U (zh) * 2021-06-29 2022-01-18 京东方科技集团股份有限公司 一种显示面板及显示装置
CN216145641U (zh) * 2021-06-29 2022-03-29 京东方科技集团股份有限公司 一种显示面板及显示装置
CN113725385A (zh) * 2021-09-01 2021-11-30 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN117501836A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2022001388A1 (zh) 背光模组及其制造方法、显示装置
WO2020224088A1 (zh) 阵列基板及其制作方法
CN113130616B (zh) 一种显示面板及显示装置
CN108123055A (zh) 发光装置
WO2023108724A1 (zh) 显示面板及电子装置
US20210193741A1 (en) Display panel and manufacturing method thereof
WO2021258849A1 (zh) 显示面板及显示装置
US11402685B2 (en) Display substrate and method for manufacturing the same, and display apparatus
CN112542537B (zh) 一种量子点膜层、背光模组及其制备方法
US11994763B2 (en) Display panel and method of providing the same
US20240027820A1 (en) Color film substrate, display panel and display device
WO2023205920A1 (zh) 显示面板及其制造方法、显示装置
WO2024037316A1 (zh) 显示基板、显示面板
WO2023205918A1 (zh) 显示面板及其制造方法、显示装置
CN113314680A (zh) 显示面板及显示装置
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
CN114846615A (zh) 显示面板及显示装置
TWI765486B (zh) 顯示器
WO2021168977A1 (zh) 一种显示面板及其制作方法以及电子装置
TWI845403B (zh) 顯示裝置及其製造方法
TWI831383B (zh) 發光裝置
WO2022261904A1 (zh) 一种显示面板及其制作方法、显示装置
CN109445174B (zh) 一种显示面板及其制备方法、显示装置
US20240188396A1 (en) Display substrate, method for manufacturing the display substrate and display device
WO2024077471A1 (zh) 显示母板、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000860.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18025735

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938781

Country of ref document: EP

Kind code of ref document: A1