JP2013026067A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2013026067A
JP2013026067A JP2011160781A JP2011160781A JP2013026067A JP 2013026067 A JP2013026067 A JP 2013026067A JP 2011160781 A JP2011160781 A JP 2011160781A JP 2011160781 A JP2011160781 A JP 2011160781A JP 2013026067 A JP2013026067 A JP 2013026067A
Authority
JP
Japan
Prior art keywords
light
refractive index
electrode
layer
transparent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011160781A
Other languages
English (en)
Inventor
Kiyoshi Miura
聖志 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011160781A priority Critical patent/JP2013026067A/ja
Publication of JP2013026067A publication Critical patent/JP2013026067A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】有機EL素子を用いた表示装置において有機化合物層よりも高い屈折率の透明層を伝播する伝播光を効率的に外部に取り出しながらも、表示装置にとって問題となる表示像のにじみを低減する。
【解決手段】画素8内に互いに異なる発光色を発光する複数の副画素を有し、各副画素が有機EL素子を備えた表示装置において、有機EL素子の光出射側に、有機EL素子の有機化合物層4よりも屈折率の高い高屈折率透明層6を有し、さらに、該高屈折率透明層6の光出射側に光取り出し構造物7を有し、画素8内の隣り合う二つの副画素の反射電極2の間隔よりも、隣り合う二つの画素8に含まれる最近接の副画素の反射電極2の間隔を広く設定する。
【選択図】図1

Description

本発明は、有機EL素子を備えた表示装置に関するものであり、特に、1画素が互いに異なる色を発光する複数の副画素からなる、フルカラー表示の表示装置に関するものである。
近年、数ボルト程度の低駆動電圧で自己発光する有機発光素子が注目を集めている。有機EL(エレクトロルミネッセンス)素子は、面発光特性、軽量、視認性といった優れた特徴を活かし薄型ディスプレイや照明器具、ヘッドマウントディスプレイ、また電子写真方式プリンタのプリントヘッド用光源など発光装置としての実用化が進みつつある。
有機EL素子は、有機材料からなる発光層やその他の機能分離された複数の有機材料からなる層を陽極及び陰極で挟んだ構造を有しており、少なくとも一方の光出射側の電極は透明である。この積層構造ゆえに、発光層の屈折率や光出射側の媒質、最終的な光の放出が行われる空気の屈折率で決定される各界面における臨界角以上の方向に進行する光は、全反射を受けて素子内部に伝播光として閉じ込められる。伝播光は素子内部の有機化合物層及び金属電極により吸収され、外部に取り出されなくなり、光取り出し効率が低下する。
光取り出し効率改善を目的として、伝播光を外部に取り出すために、光出射側の表面に微細凹凸構造或いはレンズ構造など、光の進行方向を変化させ全反射条件を破る方法が多く提案されている。特に、改善効果が高い方法として、透明電極の光出射側に接して屈折率が発光層と同等以上の透明層を設け、更に、この透明層の光出射側もしくは内部に光の反射・散乱角に乱れを生じさせる領域を設ける方法が提示されている(特許文献1参照)。
この方法は、古典的なスネルの法則によれば発光層で発光した光の約80%を占める発光層内の伝播光を、発光層よりも高屈折率である高屈折率透明層に引き込むことで、透明層内の伝播光に変換する。その伝播光を透明層の表面もしくは内部の光の反射・散乱角に乱れを生じさせる領域によって外部に取り出せるようにしている。
しかしながら、こうした高屈折率透明層内に光を伝播させる方法にはディスプレイなど表示装置に適用する場合に特有の課題が生じる。高屈折率透明層に導かれ光の反射・散乱角に乱れを生じさせる領域によって最終的に空気に出射する光は本来であれば全反射されていた臨界角以上の角度で進行する光を含む。従って、高屈折率透明層の厚さに起因した視差により実際の発光点とは異なる位置からの発光と認識されるため表示像のにじみの問題が発生する。これに対しては、高屈折率透明層ではないものの、光が伝播する基板の厚みを画素サイズの一定割合以下に抑える方法が提案されている(特許文献2参照)。
更に、高屈折率透明層に導かれた光が反射・散乱角に乱れを生じさせる領域に入射した際に、必ずしも一回の入射で空気側に取り出されるわけではない。反射・散乱角に乱れを生じさせる領域によって進行方向を変えた光であっても、高屈折率透明層と空気界面の臨界角以上の角度に進む光は再度、全反射を受けて高屈折率透明層内を伝播する。この結果、光は高屈折率透明層内を横方向に伝播し、いずれ全反射条件が破れた発光点とは離れた位置で空気側に出射することになるため、やはり、表示像のにじみの問題が発生する。特に透明層の屈折率が高いほど、高角度成分の光が多いため反射・散乱角に乱れを生じさせる領域に入射する回数が減少、空気側に取り出されるまでの横方向の導波距離が長くなり、問題が顕著になる。
一方これを抑制する為に副画素間に光の導波を抑制する手段を設けた場合、光取り出し効率そのものが低下するという課題があった。
特開2004−296429号公報 特開2005−322490号公報
本発明は、有機EL素子を用いた表示装置において有機化合物層よりも高い屈折率の透明層を伝播する伝播光を効率的に外部に取り出し、表示像のにじみを低減することを課題とする。
本発明者は、有機EL素子を用いた表示装置において、透明層を横方向に伝搬する光が、反射・散乱角に乱れを生じさせる領域と反射層との反射を繰り返すことにより生じ、画像のボケ、滲みとなることに着目し、本発明を達成した。
即ち本発明は、互いに異なる色を発光する複数の副画素を有する画素を複数備え、
前記副画素がそれぞれ、反射電極である第1電極と、第2電極と、前記第1電極と第2電極との間に配置された発光層を含む有機化合物層とを有する有機EL素子を備えた表示装置であって、
前記有機EL素子の光出射側に、前記有機化合物層よりも屈折率の高い高屈折率透明層を有し、
前記高屈折率透明層の光出射側に光取り出し構造物を有し、
少なくとも前記副画素上には前記光取り出し構造物を有し、
前記画素内の隣り合う二つの副画素の反射電極の間隔よりも、隣り合う二つの画素に含まれる最近接の副画素の反射電極の間隔が広いことを特徴とする。
本発明によれば、光取り出し効率を向上させつつ表示像のにじみが低減された表示装置を提供できる。
本発明の表示装置の好ましい実施形態の断面模式図である。 本発明の表示装置の好ましい実施形態の副画素の断面模式図である。 本発明の表示装置の光取り出し構造物の平面レイアウトの一例を示す図である。 本発明の表示装置の光取り出し構造物の平面レイアウトの他の例を示す図である。 本発明の表示装置の光取り出し構造物の底面の大きさと中心間の距離との関係を説明するための平面図である。 本発明の実施例1及び比較例1の表示装置の反射電極の平面レイアウトを示す図である。 本発明の実施例1の表示装置の光取り出し構造物の平面レイアウトを示す模式図である。 3λ/4干渉条件における透明層内の有機EL素子の放射強度分布を示す図である。 隣り合う画素への伝播光の伝播を抑制するための条件の説明図である。
本発明の表示装置は、互いに異なる色を発光する複数の副画素を有する画素を複数備え、各副画素がそれぞれ有機EL素子を備えている。有機EL素子は、第1電極上に発光領域を備えた発光層を含むいくつかの有機化合物層と第2電極とを有している。そして有機EL素子は、該第1電極と第2電極間に電圧を印加して有機化合物層に注入された正孔と電子が再結合する際に生じるエネルギーを利用して発光する素子である。本発明において第1電極は反射電極であり、第2電極は透明電極である。また、第1電極と第2電極の一方は陽極、他方は陰極である。本発明の表示装置は、第1電極として反射電極を支持基板上に形成し、透明電極側から発光を取り出す。本発明の表示装置は、有機EL素子内で発光した光を効果的に外部に取り出すために、透明電極に隣接して有機化合物層よりも高い屈折率を有する高屈折率透明層が設けられている。更に、高屈折率透明層に隣接して光を取り出すための光取り出し構造物が配置されている。係る構成により、発光層からの光は大部分が全反射せずに光取り出し構造物まで達し、効果的に外へ取り出されることになる。
本発明においては表示上のにじみという問題を低減するために、画素内での反射電極の間隔よりも、画素間領域での反射電極の間隔を広く設定する。それによって、画素間領域で混色することによる表示像のにじみを抑制することが本発明の特徴である。
以下、本発明の実施の形態について説明する。図1(a)は本発明の表示装置の一実施形態の断面模式図である。本例では、紙面左右方向に3つの青、緑、赤の光の三原色をそれぞれ発光する副画素で1つの画素8が構成されている。尚、図1(a)の構成では、画素間のクロストーク、ショート、電極配線の断線などの回避、又は電極間を絶縁して発光領域を限定するために、隔壁3を設けているが、なくても構わない。また、本発明の表示装置では副画素の発光領域は後述する支持基板側に形成された、パターニングされた反射電極2の面積で決まる。
各副画素は、それぞれの発光色を発光する有機EL素子からなる。図1(a)においては、支持基板1上にそれぞれ第1電極として反射電極2を有し、該反射電極2上に有機化合物層4を備え、さらに光出射側に第2電極として透明電極5を備えている。有機化合物層4はそれぞれ、副画素の発光色に応じた発光を行う発光層を備えている。透明電極5は表示領域全体にわたって連続して形成されており、その光出射側(支持基板1とは反対側)に、有機化合物層4よりも屈折率の高い高屈折率透明層6を有している。そしてさらに、高屈折率透明層6の光出射側に光取り出し構造物7を備えている。
各副画素に用いられる有機EL素子の断面構造の構成例を図1(b)に示す。支持基板1上に設けられた第1電極として反射電極2及び透明電極23と、第2電極としての透明電極5との間に、発光層を含むいくつかの有機化合物層があり、発光効率、駆動寿命、光学干渉などの観点から様々な積層構成があることはよく知られている。尚、図1(a)では第1電極として反射電極2のみを示したが、図1(b)の構成では第1電極を反射電極2と透明電極23とで構成しており、本発明では反射性を有する電極構成であればいずれの構成でも構わない。
図1(b)の例では、有機化合物層4として、正孔注入層24、正孔輸送層25、発光層26、電子輸送層27、電子注入層28を設けた構成を示す。本発明は、各層に含まれる材料には限定されない。例えば、発光層26を構成する材料は、蛍光材料、燐光材料のいずれでもよく、ホスト材料、発光材料の他に、少なくとも一種類以上の化合物が素子性能向上のために含まれていてもよい。また、正孔輸送層25は電子ブロック層として機能してもよく、電子輸送層27は正孔ブロック層として機能してもよい。
有機化合物層4のうち、発光層26の発光位置と反射電極2の反射面との間の膜厚を調節することで、発光層26内部の放射分布を制御することができる。表示装置としては特に正面方向の輝度が高くなるように各有機化合物層の膜厚を設定することで、光学干渉により発光色も制御され、より高効率に正面方向に光が放出されるようになる。より具体的には、発光層26の発光位置から透明電極23と反射電極2の界面までの光学距離を発光波長のn/4(n=1、3、5、・・・)に調整することで、発光層26から光取り出し方向に向けた正面輝度をより高めることができる。尚、有機化合物層4全体としては、通常、150nm乃至350nmである。
光取り出し効率を高めるためには反射電極2の反射率はより高い方が好ましい。例えば、反射電極2の材料としては、アルミニウム(Al)電極よりも銀(Ag)電極の方が好ましい。更に反射率を高める手段として誘電多層膜ミラーのように屈折率の異なる層を積層する手法を用いてもよい。
図1の例では第2電極に透明電極5を用いることで素子内に発光が閉じ込められなくなり、この透明電極5の光出射側に高屈折率透明層6を設けることで、閉じ込め及び全反射することなく、光取り出し構造物7へ光が取り出されてくる。即ち、高屈折率透明層6と空気或いは別の媒体などとの間で起こる全反射を光取り出し構造物7を設けることで回避し、効果的に内部の光を外部に取り出すことができる。このようにして、有機EL素子の光取り出し効率は通常20%程度と言われるものが飛躍的に向上する。
また第2電極の透明電極5に代わって半透明電極を用いてもよい。その場合は第2電極の反射率が上昇し、光学共振器としての特性が発現してくる。しかしながら発光層26からの高角度放射光成分は、程度は少なくても発生している。ゆえに、透明電極5に比べて光取り出し効率の増加は小さいが効果はあるといえる。第2電極が透明かどうかそのものに特に限定されるものではない。
高屈折率透明層6は水蒸気や酸素などのガスの侵入に対するバリア層として用いてもよい。バリア層として機能するには用いる材料にもよるが、数μm程度の膜厚であればよいが、0.5μm以上6.0μm以下の範囲である。好ましい膜厚は光取り出し構造物7のサイズにもよるため、規定する必要はない。高屈折率透明層6の膜厚が6.0μmより大きいと該高屈折率透明層6中を長距離伝播し易くなり、隣の画素4上の光取り出し構造物7から光が取り出されやすくなるので好ましくない。高屈折率透明層6の膜厚は、光取り出し効率の向上という点では、より好ましくは0.5μm以上1.0μm以下である。
有機化合物層4の屈折率は材料によっても変化するが、概ね青の発光領域で1.6乃至2.0、緑では1.5乃至1.9、赤では1.5乃至1.8程度である。従って高屈折率透明層6は、青、緑、赤の各発光領域それぞれで少なくとも有機EL素子に用いる有機化合物層4よりも高い屈折率であればよい。
また、高屈折率透明層6としては、酸化チタンや酸化ジルコニウム、酸化亜鉛などが挙げられる。しかしながらこれらの材料を加工するとなると困難である。本発明において高屈折率透明層6は窒化ケイ素膜(SiNx)などが好ましい。窒化ケイ素膜(SiNx)の元素組成及び元素組成比は特に限定されるものではなく、窒素、ケイ素を主成分としてその他の元素が混合されていてもよい。窒化ケイ素膜を得る成膜プロセスとしてはCVD(Chemical Vapor Deposition)法が用いられる。窒化ケイ素膜は成膜条件、例えば基板温度や成膜速度などによっても、光学定数は変化するが、本発明においては有機化合物層4よりも高い屈折率を有する透明層であればよい。高屈折率透明層6の光透過率は、可視光域で85%以上が好ましく、より好ましくは90%以上である。
本発明に係る光取り出し構造物7は高屈折率透明層6を直接加工して形成され、高屈折率透明層6と光取り出し構造物7の間には屈折率の差を無くすことが好ましい。
光取り出し構造物7は図1(b)に示すようなレンズ構造を有するレンズ形状物だけではなく、凹凸構造、回折構造などでもよいが、より好ましくはレンズ形状物であることが好ましい。ここでレンズ形状物とは、光取り出し方向に対して凸な形状を指す。このような構造物があることで全反射による素子内部への光の戻りが低減され、光取り出し効率が向上する。レンズ形状物の底部形状は円、楕円、三角以上の多角形であり、該レンズの高さ方向の断面形状は半球状、台形、錐状のいずれか、或いは半球状、台形状、錐状の足し合わせからなるものである。また、副画素上に複数の光取り出し構造物7が配置された構成であることが望ましい。
これらは画素8内で平面内に360°放出される光をできるかぎり取り出すために配置されることが好ましい。例えば、底面の形状が円の場合は、光取り出し構造物7は図7に示すように六方最密配置がよい。また底面の形が四角形ならば、図3のような千鳥配置をとってもよい。尚、図3中、2B、2G、2Rはそれぞれ、青色副画素、緑色副画素、赤色副画素の反射電極である。
光取り出し構造物7の配置パターンは全面均一でもよい。また、図4(a)で示す光取り出し構造物7a,7b、図4(b)で示す光取り出し構造物7c,7d、図4(c)で示す光取り出し構造物7e,7fのように、副画素(反射電極2B、2G、2R)上と副画素間領域とでその形状が異なっていてもよい。例えば短辺10μmで長辺60μmの副画素の場合、数μmの半球レンズと数μm幅のシリンドリカルレンズ、数μmの円錐、四角錐、或いは多角形の錐と、幅が数μmで断面が直角三角形や二等辺三角形、或いは台形型の構造物などの組み合わせなどが挙げられる。
該光取り出し構造物7の製造方法については、特に限定するものではないが、例えばフォトリソグラフィによってSiNxなどの膜上にレジストパターンを形成後、ドライエッチを行って所望の構造に形成してもよい。ナノインプリントによって所望のモールドのパターンをSiN上に転写した後、ドライエッチによってSiNxを加工してもよい。
副画素の寸法(反射電極2の寸法)が数十μm角ならば、光取り出し構造物7のサイズ或いは幅はミクロンサイズが好ましい。なぜならば、高屈折率透明層6中に放出される高角度成分の光が光取り出し構造物7に入った場合に1回で取り出されるとは限らず、2個目、3個目の光取り出し構造物7中に入って取り出されることが考えられるためである。また光取り出し構造物7と空気或いは低屈折率層などとの界面で起こる反射があり、2個目、3個目の光取り出し構造物7に光が当たって角度が変わってから取り出されることも考えられる。従って、副画素の面積に対して十分な数と大きさの光取り出し構造物7があることが光取り出し効率向上には好ましい。即ち、より好ましくは各副画素上に加えて、画素4内の隣り合う二つの副画素の間の領域にも光取り出し構造物7が設けられていることが好適である。
また光取り出し構造物7が光取り出し効率の向上に十分寄与するためには、光取り出し構造物7が密に配置されていることが好ましい。より好ましくは図5(a)及び(b)に示すように光取り出し構造物7の底部の直径(図5(a)の場合)、又は隣り合う光取り出し構造物7の中心を通る軸に沿った底面の長さ(図5(b)の場合)(A)に対して、光取り出し構造物7の中心間の距離(B)が
1.0≦B/A≦1.2 (1)
であることが好ましい。尚、図5において、37,47は光取り出し構造物7の水平方向の配置軸、38,48は斜め方向の配置軸、35,45は光取り出し構造物7の中心である。また、31は配置軸37に沿った光取り出し構造物7の底部の直径(A)、32は配置軸37に沿った光取り出し構造物7の中心間の距離(B)である。また、33は配置軸38に沿った光取り出し構造物7の底部の直径(A)、34は配置軸38に沿った光取り出し構造物7の中心間の距離(B)である。さらに、41は配置軸47に沿った光取り出し構造物7の底面の長さ(A)、42は配置軸47に沿った光取り出し構造物7の中心間の距離(B)である。また、43は配置軸48に沿った光取り出し構造物7の底面の長さ(A)、44は配置軸48に沿った光取り出し構造物7の中心間の距離(B)である。
光取り出し構造物7がより密に配置されていることで高屈折率透明層6まで到達した光が該光取り出し構造物7を経て外に出る機会が増えることになる。例えば、ある特定の点からの発光は360°に放出されるため、隣り合う二つの光取り出し構造物7間に隙間がある場合は、その角度の光は取り出されずその次の光取り出し構造物7に入ったところで取り出される。
副画素間領域上に光取り出し構造物7が設けられていると、該副画素間領域に、該副画素間領域に隣り合う副画素の発光が侵入し取り出されることになる。しかしながら、画素8内の光取り出し構造物7によって起こる混色、例えば、青、緑、赤の間での混色は階調制御された色同士の加法混色なので、所望の色度を得るための制御に対して影響は与えない。むしろ隣り合う副画素へ伝播した光を取り出すことができるため、取り出し効率が向上するという利点がある。
一方、画素間領域上に設けられた光取り出し構造物7からは、それぞれ別の階調制御された副画素の発光が混ざり合うことになる。例えば互いに異なる画素8に含まれ、画素間領域を挟んで隣り合う赤色副画素と青色副画素の混色は、それぞれの副画素の階調制御が取り出したい発光色に合わせたものにならないため、全く意図しない加法混色された光として取り出される。
本発明においては、ここで、画素8内の副画素間、つまり隣り合う二つの副画素の反射電極2の間隔よりも、隣り合う二つの画素にそれぞれ含まれる最近接の副画素の反射電極2の間隔が広く構成されている。このような構成とすることで、画像のボケ、滲みを抑制しながら取り出し効率の改善を図ることができる。
これについて図2を用いて詳しく説明する。図2(a)、(b)はそれぞれ、図1中のA部分、B部分の拡大模式図であり、隣り合う副画素間で光が伝播する様子を模式的に示した図である。尚、図2においては、便宜上、反射電極2よりも光出射側に形成された透明電極23、有機化合物層4、透明電極5、高屈折率透明層6を透明層9として示す。
図2(a)のように同一画素内の隣り合う副画素間においては反射電極2の間隔を狭く設定する。この場合には、隣の副画素へ進んだ光の殆どは、反射電極2と光取り出し構造物7との間の透明層9内で反射を繰り返しながら進んだ後に外部に取り出される。よってこのような構造の場合、隣に位置する副画素の光取り出し構造物7を用いて発光した光を取り出すことができ、取り出し効率を高めることができる。また、上記のように副画素間の間隔が狭いのは画素内であることから、画像のボケや滲みの要因とならない。
一方、図2(b)のように、隣り合う画素にそれぞれ含まれ、互いに隣り合う副画素については、反射電極2の間隔を広く設定する。この場合には、隣の画素の副画素に伝播した光は、副画素間領域で反射電極2がないため、ほとんどの光が支持基板1側へ導かれ、外部に取り出されない。これにより当該画素で発した光が、隣の画素で取り出されることがなく、画像のボケや滲みを抑制できる。
ところで、光取り出し構造物7を配置する領域は、表示領域全域、副画素上のみ、副画素間等が考えられるが、いずれの配置でも適用することができる。例えば副画素上のみに光取り出し構造物7を配置し、副画素間領域には配置しなかった場合に、ある副画素で発光した光が、隣の副画素に伝播する様子を模式的に示した図を図2(c)、(d)に示す。尚、図2(c)、(d)は副画素間領域に光取り出し構造物7を設けない以外はそれぞれ、図1のA部分、B部分に相当する拡大模式図である。
副画素間領域に光取り出し構造物7を設けなかった場合も、図2(c)に示すように、隣り合う副画素の反射電極2の間隔が狭い場合は、反射電極2と透明層9の空気界面での反射を繰り返しながら次に現れる光取り出し構造物7以降で取り出されることになる。また図2(d)に示すように、副画素の反射電極2の間隔が広い場合には、図2(b)の光取り出し構造物7がある場合と同様に、画素間領域での反射電極の間隔が広いために、隣の画素の副画素への光の伝播を抑制することができる。
つまり、画素内で隣の副画素に伝播する光はできるだけ光出射側に反射するように、反射電極2のない領域を狭くし、画素外に伝播した光は、画素間領域で光出射側に反射しないように反射電極2のない領域を広くした構成となっている。
次に、透明層9(透明電極23、有機化合物4、透明電極5、高屈折率透明層6)の厚さと副画素間の間隔(隣り合う反射電極2の間隔)について述べる。
前述のように光取り出し構造物7と反射電極2との反射を繰り返して伝播光が進む場合、反射電極2と光取り出し構造物7との間の膜厚、つまり透明層9の膜厚が厚い程、1回の往復で進む距離が長くなる。よって透明層9の膜厚が厚い場合には、画素間領域の副画素間の間隔も広く設定すると良い。
一般に、有機EL素子の正面の放射強度が極大となる干渉条件として、発光領域と反射電極2の光学膜厚がλ/4(λ:発光波長)の奇数倍とすることが知られている。これらの干渉条件に応じて透明層9内における有機EL素子の放射強度分布が変化することが知られている。例えば発光領域と反射層の干渉条件を3λ/4とした場合、図8の様な放射強度分布となる。即ち、正面方向に一次極大があると共に高角側60°近傍にも放射強度の極大がある。この放射光が主に伝播成分となるため、隣り合う画素からの伝播光の取り出しを抑制するためには、少なくともこの角度で反射を繰り返す光の伝播を抑制する必要がある。
図9に示す通り、隣り合う画素間での光の伝播を抑制するためには、次の条件が好ましい。有機EL素子の透明層9内における放射強度分布において、正面放射(基板法線方向)以外の放射強度の極大が現れる方向と基板法線とのなす角度をθ、反射電極2から高屈折率透明層6の光出射面との距離をd、隣り合う反射電極間の間隔をWとすると、
tanθ<W/2d
となるようにd、Wを設定するとよい。尚、図9においては便宜上、透明層9上に形成される光取り出し構造物7の図示を省略している。また、高屈折率透明層6と光取り出し構造物7とが一体で形成されている場合には、光取り出し構造物7の光出射面の最も支持基板1に近い位置が高屈折率透明層6の光出射面に相当する。
副画素の開口形状(隔壁3の開口形状)は長方形に限定されるものではなく、円形であってもよい。例えば光が3次元に等方的に放射されるので、円形の開口に対して光取り出し構造物7が有効に配置できる。
尚、本発明の表示装置を駆動するための回路、配線、及び用いるTFTの配置や特性は特に規定するものではなく、必要な性能を得るために所望の設計を施し具備してもよい。
また、本発明の表示装置では光取り出し構造物は素子内部に閉じ込められる光を外に取り出すためのものであり、該光取り出し構造物上を更にガラスキャップや板ガラスなどの封止ガラスで封止してもよい。該封止ガラス上には色度の改善のためのカラーフィルタや、外光反射低減のために円偏光板を具備してもよい。
以下、本発明の具体的な実施例について説明する。
(実施例1)
実施例1として、図2のような断面構造の有機EL素子を持ち、図1(a)に示すように副画素が隔壁3で分断され、図6に示すように副画素及び画素が配置された構成の表示装置を、以下に示す方法で作製した。尚、図6中、4A、4Bは画素であり、61B、61G、61Rはそれぞれ青色副画素、緑色副画素、赤色副画素の開口部であり、2B、2G、2Rは反射電極である。即ち、本例の表示装置は、複数の画素を有し、これらの画素が青、緑、赤の複数色の副画素からなる表示装置であり、副画素それぞれが有機EL素子により構成されている。
先ず、支持体としてのガラス基板上に、低温ポリシリコンからなるTFT駆動回路(不図示)を形成し、その上にアクリル樹脂からなる平坦化膜(不図示)を形成して支持基板1とした。次に、支持基板1上に、反射電極2として、スパッタリングによりAg合金を約150nmの膜厚で形成した。Ag合金からなる反射電極2は、可視光の波長域(λ=380nm乃至780nm)で分光反射率80%以上の高反射膜である。さらにスパッタリングにより透明電極23として厚さ50nmのITO(Indium Tin Oxide)を成膜した。この後、隔壁3としてポリイミド系樹脂をスピンコートし、フォトリソグラフィによって所望の各副画素に開口部61B、61G、61Rを設けた。
このあと、各有機化合物層4を順次、真空蒸着法により成膜して積層した。厚さは200nmであった。本表示装置では各発光色において、発光層26から反射電極2までの光学膜厚が、各発光色波長の3/4に相当するように正孔輸送層25の膜厚を変えた。青色は蛍光材料を、緑色及び赤色に関してはより高い内部量子効率が期待できる燐光材料を発光層の発光ドーパンとして用いた。各副画素の有機化合物層のうち最も屈折率の高い層の屈折率は、青色副画素が1.86、緑色副画素が1.80、赤色副画素が1.78であった。
次に透明電極5として、厚さ50nmのIZO(Indium Zinc Oxide)をスパッタリングにより成膜した。その後、高屈折率透明層6としてCVD法により窒化ケイ素(SiN)膜を4μm成膜した。このSiN膜の屈折率は450nmで1.89、520nmで1.88、620nmで1.86であった。よって、いずれの副画素においても有機化合物層4よりも屈折率が高かった。
このSiN膜上にヘキサメチルジシラザンをスピンコートして表面を改質した後、フォトレジストのAZ1500をスピンコートし、約2.5μmの膜厚を得た。図7のような5μmのドットが画素領域上に配されたフォトマスクで、マスクアライナーMPA−600FAにより露光を行った。次いで、AZ312MIF現像液によって現像し、レジストパターンを得た。これを120℃で3分間のポストベークを行い、レジスト形状をリフローさせた。これを四フッ化炭素と酸素によるドライエッチによりレジストパターンごとSiNをエッチングすることで直径5μmのマイクロレンズにSiN膜を加工した。この時、有機化合物層4よりも屈折率の高い高屈折率透明層6の膜厚は1.5μm、マイクロレンズの高さは2.5μmであった。レンズピッチは7μmであった。
図6(a)に示す画素レイアウトにおいて、例えば、画素4Aと画素4Bについて考える。画素4Aに属する3つの副画素に対応する反射電極は2B、2G、2Rである。画素4A内でこれら反射電極2B、2G、2Rは互いに2μmの間隔で形成されている。一方、画素Bに属する3つの副画素に対応する反射電極も2B、2G、2Rであり、画素4Aと同様に互いに2μmの間隔で形成されている。そして画素Aと画素Bにそれぞれ含まれる副画素で画素間領域を挟んで最近接する副画素の反射電極(例えば、画素4Aの青色副画素の反射電極2Bと画素4Bの赤色副画素の反射電極2R)の間隔は15μmとした。
本例における透明層9(透明電極23、有化合物層4、透明電極10、高屈折率透明層6)の膜厚dはITO膜+有機化合物層+IZO膜+高屈折率透明層=50nm+200nm+50nm+1.5μmで、合計1.8μmであった。θは60°であった。よって、tanθは1.73であり、Wは15μmであるから、W/2d=4.2であり、tanθ<W/2dの関係を満たしている。
以上のようにして作製した表示装置のにじみ程度を確認するために、青空を背景に人物の画像を表示し、皮膚などの白色系の部位の輪郭部の発光色を確認した。本実施例によって得られた表示像の人物の輪郭部にはにじみに由来する発光色の変化は見られなかった。
また、本実施例における光取り出し効率については40%程度であった。発光強度は全視野角にわたって増加が見られた。
(比較例1)
隣り合う反射電極2の間隔を図6(b)に示すように均一にし、全て2μmとする以外は実施例1と同様の構成の表示装置を実施例1と同様にして作製した。
得られた表示装置のにじみ程度を実施例1と同様にして確認したところ、表示像の人物の輪郭部にはにじみに由来する発光色の変化が見られ、青紫色のにじみが輪郭部に視認された。一方で、光取り出し効率については42%程度で実施例1と比べてやや増加し、輝度は全視野角にわたって増加が見られた。
(比較例2)
隣り合う反射電極2の間隔を図6(b)に示すように均一にし、全て15μmとする以外は実施例1と同様の構成の表示装置を実施例1と同様にして作製した。
得られた表示装置のにじみ程度を実施例1と同様にして確認したところ、表示像の人物の輪郭部にはにじみに由来する発光色の変化は見られなかった。一方で、光取り出し効率については38%程度で実施例1と比べやや低下した。
2:反射電極、4:有機化合物層、6:高屈折率透明層、7:光取り出し構造物、8:画素

Claims (2)

  1. 互いに異なる色を発光する複数の副画素を有する画素を複数備え、
    前記副画素がそれぞれ、反射電極である第1電極と、第2電極と、前記第1電極と第2電極との間に配置された発光層を含む有機化合物層とを有する有機EL素子を備えた表示装置であって、
    前記有機EL素子の光出射側に、前記有機化合物層よりも屈折率の高い高屈折率透明層を有し、
    前記高屈折率透明層の光出射側に光取り出し構造物を有し、
    少なくとも前記副画素上には前記光取り出し構造物を有し、
    前記画素内の隣り合う二つの副画素の反射電極の間隔よりも、隣り合う二つの画素に含まれる最近接の副画素の反射電極の間隔が広いことを特徴とする表示装置。
  2. 前記反射電極から前記高屈折率透明層の光出射面までの距離をd、隣り合う二つの画素に含まれる最近接の副画素の反射電極の間隔をW、前記有機EL素子の前記反射電極から前記高屈折率透明層の光出射面までの透明層内における放射強度分布において、基板法線方向を除く放射強度の極大が現れる方向の基板法線からの角度をθとした時、tanθ<W/2dの関係を満たす請求項1に記載の表示装置。
JP2011160781A 2011-07-22 2011-07-22 表示装置 Withdrawn JP2013026067A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160781A JP2013026067A (ja) 2011-07-22 2011-07-22 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160781A JP2013026067A (ja) 2011-07-22 2011-07-22 表示装置

Publications (1)

Publication Number Publication Date
JP2013026067A true JP2013026067A (ja) 2013-02-04

Family

ID=47784174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160781A Withdrawn JP2013026067A (ja) 2011-07-22 2011-07-22 表示装置

Country Status (1)

Country Link
JP (1) JP2013026067A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159659A1 (zh) * 2022-02-22 2023-08-31 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
WO2023205920A1 (zh) * 2022-04-24 2023-11-02 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159659A1 (zh) * 2022-02-22 2023-08-31 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
WO2023205920A1 (zh) * 2022-04-24 2023-11-02 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Similar Documents

Publication Publication Date Title
JP2012226931A (ja) 表示装置
US7573193B2 (en) Optical device and organic EL display
JP5219493B2 (ja) 発光素子及びそれを用いた発光装置
US8648527B2 (en) Display apparatus
EP2648240B1 (en) Substrate for organic light-emitting device with enhanced light extraction efficiency, method of manufacturing the same and organic light-emitting device having the same
US20070290607A1 (en) Organic electroluminescent display device
US20130076236A1 (en) Display apparatus
US20190056543A1 (en) Display device and electronic apparatus
KR20090089151A (ko) 유기 발광 표시 장치 및 그 제조 방법
KR20170052455A (ko) 유기발광 표시장치
US20120256562A1 (en) Display apparatus
US20210288290A1 (en) Light emitting device and display apparatus including the same
US20220069182A1 (en) Image display element
JP2013120731A (ja) 表示装置
JP2013058447A (ja) 有機el発光装置
JP2012038542A (ja) 発光素子
WO2018119784A1 (zh) 底发光型oled显示单元及其制作方法
JP2009272194A (ja) 発光装置
US11402685B2 (en) Display substrate and method for manufacturing the same, and display apparatus
JP2012221687A (ja) 表示装置
JP2013026067A (ja) 表示装置
JP2013073887A (ja) 表示装置
JP2016136484A (ja) 面発光装置
WO2022094973A1 (zh) 显示面板及显示装置
KR20220056898A (ko) 발광 소자 유닛 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007