WO2023204255A1 - Cold-rolled aluminum alloy sheet, and method for producing same - Google Patents

Cold-rolled aluminum alloy sheet, and method for producing same Download PDF

Info

Publication number
WO2023204255A1
WO2023204255A1 PCT/JP2023/015657 JP2023015657W WO2023204255A1 WO 2023204255 A1 WO2023204255 A1 WO 2023204255A1 JP 2023015657 W JP2023015657 W JP 2023015657W WO 2023204255 A1 WO2023204255 A1 WO 2023204255A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
slab
cold
rolled plate
Prior art date
Application number
PCT/JP2023/015657
Other languages
French (fr)
Japanese (ja)
Inventor
智太郎 江崎
智行 工藤
宏樹 田中
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2023204255A1 publication Critical patent/WO2023204255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • an aluminum alloy cold-rolled plate is a rolled aluminum alloy plate rolled by hot rolling and cold rolling, and refers to a cold-rolled plate or a plate that has been further heat-treated.
  • a tempered rolled plate is sometimes referred to as an Al alloy.
  • Two-piece aluminum cans which are obtained by seaming a can body and a can end, are widely used as aluminum beverage cans.
  • Can bodies are generally manufactured through the following steps. First, a cold-rolled aluminum alloy plate is subjected to DI processing (Drawing and Ironing) and trimmed to a predetermined size. Then, after degreasing and cleaning, painting and printing are performed, followed by baking. Subsequently, the can body is obtained by necking and flanging the can body edge. Two-piece cans are sometimes called DI cans.
  • the recycled UBC mass may contain impurities such as Si and Fe.
  • Si or Fe When Si or Fe is contained in the Al alloy ingot, Si forms an intermetallic compound with Mn or Fe during heat treatment, reducing the amount of solid solution of Mn or Fe. A decrease in the amount of solid solution Mn causes a decrease in the strength of the manufactured Al alloy plate, leading to a decrease in the strength of the can body.
  • Patent Document 1 an Al alloy cold rolled plate for can bodies, in which the amount of solid solute Mn after hot rolling is 0.25% by mass or more, and the amount of solid solute Fe is 0.02% by mass. % or more and the amount of solid solution Si is 0.07 mass% or more, the fine precipitated particles ( ⁇ phase) that precipitate during cold rolling are optimized, ensuring excellent formability and high heat resistance. It is disclosed that it is imparted with softening properties and can exhibit excellent can body strength even after heat treatment.
  • An object of the present invention is to provide a cold-rolled aluminum alloy plate in which strength reduction due to impurity Si is suppressed, and a method for manufacturing the same.
  • Si 0.15 to 0.40% by mass
  • Fe 0.30 to 0.80% by mass
  • Cu 0.10 to 0.50% by mass
  • Mn 0.80 to 1.20% by mass
  • Mg 0.50 to 1.70% by mass
  • Zn 0.30% by mass or less
  • Ti 0.15% by mass or less, with the balance consisting of Al and unavoidable impurities.
  • the mass % ratio of Fe to Si is within the range of 1.97 ⁇ Fe/Si ⁇ 4.00, the solid solution Mn amount/total Mn amount is 0.17 or more, and the solid solution Si amount is 0.
  • the value obtained by subtracting the electrical conductivity of the slab before the homogenization treatment from the electrical conductivity of the hot-rolled plate is plotted with the vertical axis and Fe/Si on the horizontal axis, and the slope is -1.1 or more, 0. 2 or less, the homogenization treatment and the hot rolling are performed.
  • a method for manufacturing the cold-rolled aluminum alloy plate according to item 1, comprising: Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg : 0.50 to 1.70% by mass, Zn: 0.30% by mass or less, and Ti: 0.15% by mass or less as optional elements, and the ratio of Fe to Si by mass % is 1.
  • a cold-rolled aluminum alloy sheet and a method for manufacturing the same are provided in which strength reduction due to impurity Si is suppressed.
  • FIG. 3 is a diagram showing X-ray diffraction patterns of samples Nos. 1 to 15 of experimental examples.
  • the aluminum alloy cold rolled plate according to the embodiment of the present invention includes Si: 0.15 to 0.40 mass%, Fe: 0.30 to 0.80 mass%, Cu: 0.10 to 0.50 mass%, Mn: 0.80 to 1.20 mass%, Mg: 0.50 to 1.70 mass%, and as optional elements, Zn: 0.30 mass% or less, and Ti: 0.15 mass% or less.
  • the balance consists of Al and unavoidable impurities, the mass % ratio of Fe to Si is within the range of 1.97 ⁇ Fe/Si ⁇ 4.00, and the amount of dissolved Mn/total Mn amount is 0.17 or more, the amount of solid solution Si is 0.03% by mass or less, and in the X-ray diffraction pattern using CuK ⁇ rays, the Al-Fe-Mn-Si intermetallic compound phase (that is, ⁇ phase)
  • the Bragg angle (2 ⁇ 0.2°) derived from the peak of 18.26° ⁇ 0.1° and the Bragg angle (2 ⁇ 0.1°) derived from the Al 6 (Fe, Mn)-based intermetallic compound phase i.e.
  • the alloy composition can be controlled, such as by adding fresh metal depending on the composition of the recycled ingot. Further, the volume ratio between the ⁇ phase and the ⁇ phase can be controlled by the manufacturing method described below.
  • the alloy composition is expressed in mass % of each element based on the total mass of the cold-rolled aluminum alloy plate.
  • the alloy composition can be measured, for example, by an optical emission analyzer (SPECTROLAB manufactured by SPECTRO).
  • Mn manganese
  • Mn contributes to increasing the strength and heat softening resistance of cold-rolled aluminum alloy plates (hereinafter sometimes simply referred to as "cold-rolled plates").
  • Mn forms an intermetallic compound (Al-Mn-Fe-Si based intermetallic compound or Al 6 (Mn, Fe) based intermetallic compound) together with Fe during casting.
  • the ⁇ phase (Al-Mn-Fe-Si-based intermetallic compound phase) or the ⁇ -phase (Al 6 (Fe, Mn)-based intermetallic compound phase) has a solid lubricating effect and sinters with the mold during molding. To improve the surface quality of a can body by suppressing adhesion.
  • the ⁇ phase appears as particles with a Vickers hardness of over 800, and is highly effective in suppressing seizure and improving the surface quality of the can body. If the Mn content is less than 0.8% by mass, these effects cannot be fully exhibited, and if it exceeds 1.2% by mass, the strength may become too high. Therefore, the Mn content is controlled to 0.8 to 1.2% by mass (meaning 0.8% by mass or more and 1.2% by mass or less; the same applies hereinafter).
  • Mg 0.5 to 1.7% by mass
  • Mg manganesium contributes to increasing the strength of the cold rolled sheet by existing in a solid solution state. If the Mg content is less than 0.5% by mass, sufficient strength may not be obtained, and if it exceeds 1.7% by mass, moldability may be impaired.
  • Fe forms an intermetallic compound (Al-Mn-Fe-Si based intermetallic compound or Al 6 (Mn, Fe) based intermetallic compound) together with Mn during casting.
  • the ⁇ phase (Al-Mn-Fe-Si-based intermetallic compound phase) or the ⁇ -phase (Al 6 (Fe, Mn)-based intermetallic compound phase) has a solid lubricating effect and suppresses seizure during molding. . If the Fe content is less than 0.25% by mass, seizure may not be sufficiently suppressed. On the other hand, when the content of Fe exceeds 0.6% by mass, crystallized substances ( ⁇ phase, ⁇ phase) increase, coarse crystallized substances are formed excessively, and formability may be impaired.
  • Si [Si: 0.15 to 0.40% by mass] Si (silicon) forms the above-mentioned intermetallic compound together with Mn and/or Fe during casting, and has the effect of suppressing seizure during molding. If the Si content is less than 0.15% by mass, seizure may not be sufficiently suppressed. On the other hand, if the Si content exceeds 0.40% by mass, ⁇ phase may be formed excessively and formability may be impaired. Furthermore, the amount of solid solution of Mn may decrease, resulting in a decrease in heat softening resistance.
  • Cu [Cu: 0.10 to 0.50% by mass]
  • Cu (copper) forms an Al-Cu-Mg based intermetallic compound together with Mg during casting.
  • the Al-Cu-Mg intermetallic compound phase exhibits the effect of suppressing strength reduction during the paint baking process. If the Cu content is less than 0.10% by mass, the above effects may not be sufficiently obtained, whereas if it exceeds 0.50% by mass, work hardening during molding increases, resulting in poor moldability. may decrease.
  • Zn 0.30% by mass or less
  • Zn zinc
  • the Zn content is preferably 0.30% by mass or less.
  • the Zn content is 0.05% by mass or more.
  • Ti 0.15% by mass or less
  • Ti titanium
  • primary TiAl 3 may crystallize, reducing formability.
  • the content of Ti is preferably 0.15% by mass or less.
  • B boron
  • the content of B is preferably 0.01% by mass or less.
  • each of the above components may be Al and unavoidable impurities.
  • Fe/Si 1.97 to 4.00 or less
  • the present inventors have found that the mass % ratio of Fe to Si (Fe/Si) is important in optimizing the amount of solid solution Mn and the amount of solid solution Si. If Fe/Si is less than 1.97, the Al-Mn-Fe- A large amount of Si that does not form a Si-based intermetallic compound remains, and it combines with solid solution Mn during hot rolling after homogenization treatment to form an Al-Mn-Fe-Si based intermetallic compound, Promotes precipitation of ⁇ phase.
  • the ⁇ phase that precipitates here is sparser and coarser than the ⁇ phase that precipitates during cold rolling, so the effect of increasing strength is very small.
  • Fe/Si exceeds 4.0 Fe becomes excessive and coarse crystallized substances are likely to be formed during casting. Since coarse crystallized substances tend to become starting points for cracks during molding, it is preferable to suppress the formation of coarse crystallized substances.
  • the above-described cold-rolled aluminum alloy plate according to the embodiment of the present invention can be manufactured by the following manufacturing method, as will be described later with experimental examples.
  • the manufacturing method includes a step of preparing a slab having the above-described predetermined composition, a step of homogenizing the slab, hot rolling the homogenized slab, and forming a hot rolled plate. and a step of cold rolling a hot rolled plate to obtain a cold rolled plate.
  • a step of preparing a slab having the above-described predetermined composition a step of homogenizing the slab, hot rolling the homogenized slab, and forming a hot rolled plate.
  • a step of cold rolling a hot rolled plate to obtain a cold rolled plate.
  • Changes in the amount of solid solution from after casting to after hot rolling can be evaluated by monitoring changes in electrical conductivity.
  • the cooling rate is fast, so each element is dissolved in a supersaturated state in the aluminum matrix, and the electrical conductivity of the ingot is determined by the amount of crystallized substances.
  • the electrical conductivity of the hot rolled sheet after hot rolling increases mainly due to the formation of precipitates between the homogenization treatment and the hot rolling, and the amount of solid solution Mn decreases.
  • the mass % ratio of Fe to Si (Fe/Si) is small, such as Fe/Si ⁇ 1.97, the smaller the Fe/Si, the greater the decrease in electrical conductivity. That is, the slope of the change in conductivity with respect to Fe/Si is large.
  • the change in conductivity in the range of 1.97 ⁇ Fe/Si ⁇ 4.00 is a nearly constant value regardless of Fe/Si, and the conductivity for Fe/Si in Fe/Si ⁇ 1.97 is small compared to the slope of change.
  • the change in conductivity that occurs from homogenization treatment to hot rolling is small, and the change in conductivity is within the above range. It can be said that this is an alloy in which the decrease in solid solution atoms due to Si is suppressed.
  • the target values of each component of the slab are Cu0, Mn0, Mg0
  • the tensile strength of the cold rolled plate is TS0
  • the yield strength is YS0.
  • the corrected tensile strength TS and the corrected yield strength YS which are expressed by the following formula, the variation in TS is ⁇ 2.7 MPa or less, and the variation in YS is ⁇ 3.0 MPa or less.
  • a manufacturing method includes a step of preparing a slab having the above-described predetermined composition, a step of homogenizing the slab, hot rolling the homogenized slab, and hot rolling the slab.
  • the method includes a step of obtaining a plate, and a step of cold rolling a hot rolled plate to obtain a cold rolled plate.
  • the equilibrium phase diagram of each element can be determined using the software J Mat Pro (manufactured by Sente Software, UK) based on a thermodynamic model called the CALPHAD method.
  • the maximum volume fraction V1 of the Al 6 (Fe, Mn) phase at 600° C. to 700° C. and the volume fraction V2 of the ⁇ phase at the homogenization temperature can be determined.
  • the material structure such that V1/V2 ⁇ 1.04, it is possible to suppress a decrease in the materiality due to solid solution Si.
  • FIG. 1 shows a graph in which the result of subtracting the conductivity of the slab before homogenization treatment from the conductivity of the hot-rolled plate is plotted against Fe/Si.
  • the amount of Al-Fe-Mn-Si intermetallic compounds produced at the homogenization temperature for example, 595°C
  • the Al-Fe-Mn-based compound phase, the Al-Fe-Mn-Si based intermetallic compound phase, and the The volume ratio of the compound phase was defined.
  • Table 1 shows the alloy compositions of each of Samples 1 to 15 of Experimental Examples 1 to 15.
  • an ingot was obtained using a laboratory casting machine by a DC casting method.
  • the obtained ingot was subjected to surface cutting in the same manner as before, and then heated to 595°C at a temperature increase rate of 40°C/hour using an air furnace, and then heated to 90°C at 595°C. Homogenization treatment was performed for more than 1 minute.
  • Test pieces were prepared from the cold-rolled plates of each experimental example obtained as described above, and evaluated by the method described above. The results are shown in Table 2 below.
  • Table 2 shows the tensile strength of the cold rolled plate, the work hardening index n at a strain of 1.5-3% assuming that the true stress ⁇ is expressed as the nth power of the true strain ⁇ , the corrected strength, and the sample No.
  • sample No. 1 ⁇ No. 7 is sample No. 7 (comparative example). It can be seen that the strength is lower than that of Sample No. 13, indicating that the strength is lowered due to Si.
  • the volumes of the ⁇ phase and ⁇ phase are appropriately controlled, and the solid solution Mn amount/total Mn amount is 0. 17 or more, and the amount of solid solution Si can be 0.03% by mass or less.
  • the amount of solid solution Si can be 0.03% by mass or less.
  • the cold-rolled aluminum alloy plate and the method for manufacturing the same according to the embodiment of the present invention are suitably used for the cold-rolled aluminum alloy plate for bottle cans (raw material plate for bottle cans) and the method for manufacturing the same. According to the embodiments of the present invention, it is possible to suppress a decrease in strength due to the impurity Si contained in the recycled UBC lump, so it is possible to promote the use of the recycled UBC lump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

This cold-rolled aluminum alloy sheet has a composition containing 0.15 to 0.40% by mass of Si, 0.30 to 0.80% by mass of Fe, 0.10 to 0.50% by mass of Cu, 0.80 to 1.20% by mass of Mn, and 0.50 to 1.70% by mass of Mg and optionally containing, as optional elements, 0.30% by mass or less of Zn and 0.15% by mass or less of Ti, with the remainder comprising Al and unavoidable impurities. In the cold-rolled aluminum alloy sheet, the content ratio, expressed in % by mass, of Fe to Si is within the range represented by the formula: 1.97 ≤ Fe/Si ≤ 4.00, the (amount of solid-solubilized Mn)/(total amount of Mn) ratio is 0.17 or more, the amount of solid-solubilized Si is 0.03% by mass or less, and a peak ratio I(18.26°±0.1°)/I(22.45°±0.1°) between a diffraction intensity I at a bragg angle (2θ±0.2°) of 18.26°±0.1° and a diffraction intensity I at a bragg angle of 22.45°±0.1° in an X-ray diffraction pattern is 0.11 or more.

Description

アルミニウム合金冷間圧延板およびその製造方法Aluminum alloy cold rolled plate and its manufacturing method
 本発明はアルミニウム合金冷間圧延板およびその製造方法に関する。なお、本明細書において、アルミニウム合金冷間圧延板とは、熱間圧延および冷間圧延によって圧延されたアルミニウム合金の圧延板であって、冷間圧延上がりの板、あるいは更に熱処理を施されて調質された圧延板をいう。また、アルミニウム合金をAl合金と表記することがある。 The present invention relates to a cold rolled aluminum alloy plate and a method for manufacturing the same. In addition, in this specification, an aluminum alloy cold-rolled plate is a rolled aluminum alloy plate rolled by hot rolling and cold rolling, and refers to a cold-rolled plate or a plate that has been further heat-treated. A tempered rolled plate. Further, an aluminum alloy is sometimes referred to as an Al alloy.
 アルミニウム系飲料缶として、缶胴体(缶ボディ)と缶蓋(缶エンド)とをシーミング加工することによって得られる2ピースアルミニウム缶が広く用いられている。缶胴体は、一般に次のような工程を経て製造される。まず、アルミニウム合金冷間圧延板をDI加工(Drawing and Ironing:絞り加工およびしごき加工)し、所定のサイズにトリミングする。その後、脱脂・洗浄処理を行った後、塗装および印刷を行って焼付け(ベーキング)を行う。続いて、缶胴縁部をネッキング加工及びフランジ加工することによって、缶胴体が得られる。2ピース缶は、DI缶と呼ばれることもある。 Two-piece aluminum cans, which are obtained by seaming a can body and a can end, are widely used as aluminum beverage cans. Can bodies are generally manufactured through the following steps. First, a cold-rolled aluminum alloy plate is subjected to DI processing (Drawing and Ironing) and trimmed to a predetermined size. Then, after degreasing and cleaning, painting and printing are performed, followed by baking. Subsequently, the can body is obtained by necking and flanging the can body edge. Two-piece cans are sometimes called DI cans.
 近年、飲料缶ボディの製造において、使用済み飲料缶(UBC:Used Beverage Can)の再生塊をリサイクル利用する技術の開発が進められている。再生塊を利用すると、新地金を利用する場合に比べてCO排出量を約97%削減することが可能であり、カーボンニュートラルな社会の実現に貢献すると期待される。 2. Description of the Related Art In recent years, in the production of beverage can bodies, technology has been developed to recycle recycled lumps of used beverage cans (UBCs). Using recycled ingots can reduce CO2 emissions by approximately 97% compared to using new ingots, and is expected to contribute to the realization of a carbon-neutral society.
 UBCの再生塊には、不純物としてSiやFe等が混入することがある。Al合金鋳塊にSiやFeが含まれると、加熱処理時に、SiがMnやFeと金属間化合物を形成し、MnやFeの固溶量を減少させる。固溶Mn量の減少は、製造されるAl合金板の強度低下を引き起こし、缶体強度の低下につながる。 The recycled UBC mass may contain impurities such as Si and Fe. When Si or Fe is contained in the Al alloy ingot, Si forms an intermetallic compound with Mn or Fe during heat treatment, reducing the amount of solid solution of Mn or Fe. A decrease in the amount of solid solution Mn causes a decrease in the strength of the manufactured Al alloy plate, leading to a decrease in the strength of the can body.
 本願の出願人は、特許文献1に、缶ボディ用Al合金冷間圧延板であって、熱間圧延後の固溶Mn量を0.25質量%以上、固溶Fe量を0.02質量%以上、かつ固溶Si量を0.07質量%以上とすることで、冷間圧延中に析出する微細な析出粒子(α相)を最適化し、優れた成形性を確保しつつ、高い耐熱軟化特性が付与され、更に熱処理後においても、優れた缶体強度を発揮し得ることを開示している。 The applicant of the present application discloses in Patent Document 1 an Al alloy cold rolled plate for can bodies, in which the amount of solid solute Mn after hot rolling is 0.25% by mass or more, and the amount of solid solute Fe is 0.02% by mass. % or more and the amount of solid solution Si is 0.07 mass% or more, the fine precipitated particles (α phase) that precipitate during cold rolling are optimized, ensuring excellent formability and high heat resistance. It is disclosed that it is imparted with softening properties and can exhibit excellent can body strength even after heat treatment.
国際公開第2017/110869号International Publication No. 2017/110869
 本発明は、不純物Siによる強度低下が抑制されたアルミニウム合金冷間圧延板およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a cold-rolled aluminum alloy plate in which strength reduction due to impurity Si is suppressed, and a method for manufacturing the same.
 本発明の実施形態によると、以下の項目に記載の解決手段が提供される。 According to an embodiment of the present invention, the solution described in the following items is provided.
[項目1]
 Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、残部がAlと不可避的不純物からなる組成を有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあり、固溶Mn量/全Mn量が0.17以上で、固溶Si量が0.03質量%以下であり、
 X線回折パターンにおけるブラッグ角(2θ±0.2°)が18.26°±0.1°と22.45°±0.1°の回折強度Iについてピーク比I(18.26°±0.1°)/I(22.45°±0.1°)が0.11以上である、アルミニウム合金冷間圧延板。
[項目2]
 項目1に記載のアルミニウム合金冷間圧延板を製造する方法であって、
 Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあるスラブを用意する工程と、
 前記スラブを均質化処理する工程と、
 前記均質化処理を経た前記スラブを熱間圧延し、熱間圧延板を得る工程と、
 前記熱間圧延板を冷間圧延し、冷間圧延板を得る工程と
を包含し、
 前記熱間圧延板の導電率から前記均質化処理前の前記スラブの導電率を差し引いた値を縦軸、Fe/Siを横軸としてプロットした場合の傾きが、-1.1以上、0.2以下となるように、前記均質化処理および前記熱間圧延を行う、製造方法。
[項目3]
 項目1に記載のアルミニウム合金冷間圧延板を製造する方法であって、
 Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあるスラブを用意する工程と、
 前記スラブを均質化処理する工程と、
 前記均質化処理を経た前記スラブを熱間圧延し、熱間圧延板を得る工程と、
 前記熱間圧延板を冷間圧延し、冷間圧延板を得る工程と
を包含し、
 前記スラブの各成分の狙い値をCu0、Mn0、Mg0、前記冷間圧延板の引張強度をTS0、降伏強度をYS0とすると、下記式で表される補正を行った補正後の引張強度をTS、補正後の降伏強度をYSについて、TSの変動が±2.7MPa以下、YSの変動が±3.0MPa以下となる、製造方法。
  補正TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
  補正YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
[項目4]
 項目1に記載のアルミニウム合金冷間圧延板を製造する方法であって、
 Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあるスラブを用意する工程と、
 前記スラブを均質化処理する工程と、
 前記均質化処理を経た前記スラブを熱間圧延し、熱間圧延板を得る工程と、
 前記熱間圧延板を冷間圧延し、冷間圧延板を得る工程と
を包含し、
 平衡状態図による計算において600℃~700℃におけるβ相の最大体積率をV1、均質化処理温度におけるα相の体積率をV2とした場合にV1/V2≧1.04を満足する、製造方法。
[Item 1]
Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg :0.50 to 1.70% by mass, and as optional elements, Zn: 0.30% by mass or less and Ti: 0.15% by mass or less, with the balance consisting of Al and unavoidable impurities. The mass % ratio of Fe to Si is within the range of 1.97≦Fe/Si≦4.00, the solid solution Mn amount/total Mn amount is 0.17 or more, and the solid solution Si amount is 0. .03% by mass or less,
In the X-ray diffraction pattern, the peak ratio I (18.26° ± 0.0 .1°)/I(22.45°±0.1°) is 0.11 or more, a cold rolled aluminum alloy plate.
[Item 2]
A method for manufacturing the cold-rolled aluminum alloy plate according to item 1, comprising:
Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg : 0.50 to 1.70% by mass, Zn: 0.30% by mass or less, and Ti: 0.15% by mass or less as optional elements, and the ratio of Fe to Si by mass % is 1. A step of preparing a slab within the range of 97≦Fe/Si≦4.00;
homogenizing the slab;
hot rolling the slab that has undergone the homogenization treatment to obtain a hot rolled plate;
cold rolling the hot rolled plate to obtain a cold rolled plate,
The value obtained by subtracting the electrical conductivity of the slab before the homogenization treatment from the electrical conductivity of the hot-rolled plate is plotted with the vertical axis and Fe/Si on the horizontal axis, and the slope is -1.1 or more, 0. 2 or less, the homogenization treatment and the hot rolling are performed.
[Item 3]
A method for manufacturing the cold-rolled aluminum alloy plate according to item 1, comprising:
Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg : 0.50 to 1.70% by mass, Zn: 0.30% by mass or less, and Ti: 0.15% by mass or less as optional elements, and the ratio of Fe to Si by mass % is 1. A step of preparing a slab within the range of 97≦Fe/Si≦4.00;
homogenizing the slab;
hot rolling the slab that has undergone the homogenization treatment to obtain a hot rolled plate;
cold rolling the hot rolled plate to obtain a cold rolled plate,
If the target values of each component of the slab are Cu0, Mn0, Mg0, the tensile strength of the cold rolled plate is TS0, and the yield strength is YS0, then the tensile strength after correction expressed by the following formula is TS , a manufacturing method in which the variation in TS is ±2.7 MPa or less, and the variation in YS is ±3.0 MPa or less, with respect to YS, the yield strength after correction.
Correction TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
Correction YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
[Item 4]
A method for manufacturing the cold-rolled aluminum alloy plate according to item 1, comprising:
Si: 0.15 to 0.40 mass%, Fe: 0.30 to 0.80 mass%, Cu: 0.10 to 0.50 mass%, Mn: 0.80 to 1.20 mass%, and Mg :0.50 to 1.70% by mass, and as optional elements, Zn: 0.30% by mass or less and Ti: 0.15% by mass or less, and the ratio of Fe to Si by mass is 1. A step of preparing a slab within the range of 97≦Fe/Si≦4.00;
homogenizing the slab;
hot rolling the slab that has undergone the homogenization treatment to obtain a hot rolled plate;
cold rolling the hot rolled plate to obtain a cold rolled plate,
A manufacturing method that satisfies V1/V2≧1.04, where V1 is the maximum volume fraction of the β phase at 600°C to 700°C and V2 is the volume fraction of the α phase at the homogenization temperature in calculations using an equilibrium phase diagram. .
 本発明の実施形態によると、不純物Siによる強度低下が抑制されたアルミニウム合金冷間圧延板およびその製造方法が提供される。 According to an embodiment of the present invention, a cold-rolled aluminum alloy sheet and a method for manufacturing the same are provided in which strength reduction due to impurity Si is suppressed.
熱間圧延板の導電率から均質化処理前のスラブの導電率を差し引いた結果をFe/Siに対してプロットしたグラフである。It is a graph in which the result of subtracting the conductivity of the slab before homogenization treatment from the conductivity of the hot rolled plate is plotted against Fe/Si. 実験例の試料No.1~15のX線回折パターンを示す図である。FIG. 3 is a diagram showing X-ray diffraction patterns of samples Nos. 1 to 15 of experimental examples.
 以下、図面を参照して、本発明の実施形態によるアルミニウム合金冷間圧延板およびその製造方法を説明する。本発明の実施形態によるアルミニウム合金冷間圧延板およびその製造方法は、以下で例示するものに限定されない。 Hereinafter, a cold rolled aluminum alloy plate and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. The aluminum alloy cold rolled plate and the manufacturing method thereof according to the embodiments of the present invention are not limited to those exemplified below.
 本発明の実施形態によるアルミニウム合金冷間圧延板は、Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、残部がAlと不可避的不純物からなる組成を有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあり、固溶Mn量/全Mn量が0.17以上、固溶Si量が0.03質量%以下であり、CuKα線を用いたX線回折パターンにおいて、Al-Fe-Mn-Si系金属間化合物相(すなわちα相)に由来するブラッグ角(2θ±0.2°)=18.26°±0.1°のピークとAl(Fe,Mn)系金属間化合物相(すなわちβ相)に由来するブラッグ角(2θ±0.2°)=22.45°±0.1°のピークの強度比I(18.26°±0.1°)/I(22.45°±0.1°)が0.11以上である組織を有する。本発明の実施形態によるアルミニウム合金冷間圧延板は、後に実験例を示して説明するように、SiおよびFeを含む合金組成、固溶Si量、および固溶Mn量が上記の範囲内に制御されるとともに、α相とβ相との体積比率が上記の範囲に制御されており、その結果、ボトル缶用、特にDI缶の胴体用のアルミニウム合金冷間圧延板として好適に用いられる特性(特に強度)を備える。合金組成は、再生塊の組成に応じて新地金を加えるなどして、制御され得る。また、α相とβ相との体積比率は、後述する製造方法によって制御され得る。 The aluminum alloy cold rolled plate according to the embodiment of the present invention includes Si: 0.15 to 0.40 mass%, Fe: 0.30 to 0.80 mass%, Cu: 0.10 to 0.50 mass%, Mn: 0.80 to 1.20 mass%, Mg: 0.50 to 1.70 mass%, and as optional elements, Zn: 0.30 mass% or less, and Ti: 0.15 mass% or less. The balance consists of Al and unavoidable impurities, the mass % ratio of Fe to Si is within the range of 1.97≦Fe/Si≦4.00, and the amount of dissolved Mn/total Mn amount is 0.17 or more, the amount of solid solution Si is 0.03% by mass or less, and in the X-ray diffraction pattern using CuKα rays, the Al-Fe-Mn-Si intermetallic compound phase (that is, α phase) The Bragg angle (2θ±0.2°) derived from the peak of 18.26°±0.1° and the Bragg angle (2θ±0.1°) derived from the Al 6 (Fe, Mn)-based intermetallic compound phase (i.e. β phase) 0.2°) = 22.45°±0.1° peak intensity ratio I(18.26°±0.1°)/I(22.45°±0.1°) is 0.11 or more has an organization that is In the cold-rolled aluminum alloy sheet according to the embodiment of the present invention, as will be explained later by showing experimental examples, the alloy composition containing Si and Fe, the amount of solid solution Si, and the amount of solid solution Mn are controlled within the above ranges. At the same time, the volume ratio of α phase and β phase is controlled within the above range, and as a result, it has the characteristics ( especially strength). The alloy composition can be controlled, such as by adding fresh metal depending on the composition of the recycled ingot. Further, the volume ratio between the α phase and the β phase can be controlled by the manufacturing method described below.
 まず、合金組成を上記の範囲に制御する技術的な意味を説明する。本明細書において、合金組成は、アルミニウム合金冷間圧延板の全体の質量に対する各元素の質量%で表す。合金組成は、例えば、発光分析装置(SPECTRO社製、SPECTROLAB)によって測定され得る。 First, the technical meaning of controlling the alloy composition within the above range will be explained. In this specification, the alloy composition is expressed in mass % of each element based on the total mass of the cold-rolled aluminum alloy plate. The alloy composition can be measured, for example, by an optical emission analyzer (SPECTROLAB manufactured by SPECTRO).
 [Mn:0.8~1.2質量%]
 Mn(マンガン)は、アルミニウム合金冷間圧延板(以下、単に「冷間圧延板」ということがある。)の強度の上昇および耐熱軟化性の向上に寄与する。Mnは、鋳造時に、Feと共に、金属間化合物(Al-Mn-Fe-Si系金属間化合物またはAl(Mn,Fe)系金属間化合物)を形成する。α相(Al-Mn-Fe-Si系金属間化合物相)またはβ相(Al(Fe,Mn)系金属間化合物相)は、固体潤滑作用を有し、成形時において成形型との焼付きを抑制して、缶胴体の表面性状を向上させる。特にα相は、ビッカース硬さが800を超える粒子として出現し、焼付きを抑制して、缶胴体の表面性状を向上させる効果が大きい。Mnの含有量が0.8質量%未満であると、これらの効果が充分に発揮され得ず、また1.2質量%を超えると、強度が高くなり過ぎることがある。したがって、Mnの含有量は、0.8~1.2質量%(0.8質量%以上1.2質量%以下を意味する。以下、同じ。)に制御する。
[Mn: 0.8 to 1.2% by mass]
Mn (manganese) contributes to increasing the strength and heat softening resistance of cold-rolled aluminum alloy plates (hereinafter sometimes simply referred to as "cold-rolled plates"). Mn forms an intermetallic compound (Al-Mn-Fe-Si based intermetallic compound or Al 6 (Mn, Fe) based intermetallic compound) together with Fe during casting. The α phase (Al-Mn-Fe-Si-based intermetallic compound phase) or the β-phase (Al 6 (Fe, Mn)-based intermetallic compound phase) has a solid lubricating effect and sinters with the mold during molding. To improve the surface quality of a can body by suppressing adhesion. In particular, the α phase appears as particles with a Vickers hardness of over 800, and is highly effective in suppressing seizure and improving the surface quality of the can body. If the Mn content is less than 0.8% by mass, these effects cannot be fully exhibited, and if it exceeds 1.2% by mass, the strength may become too high. Therefore, the Mn content is controlled to 0.8 to 1.2% by mass (meaning 0.8% by mass or more and 1.2% by mass or less; the same applies hereinafter).
 [Mg:0.5~1.7質量%]
 Mg(マグネシウム)は、固溶状態で存在することにより、冷間圧延板の強度の上昇に寄与する。Mgの含有量が0.5質量%未満であると、十分な強度が得られないことがあり、1.7質量%を超えると、成形性が損なわれることがある。
[Mg: 0.5 to 1.7% by mass]
Mg (magnesium) contributes to increasing the strength of the cold rolled sheet by existing in a solid solution state. If the Mg content is less than 0.5% by mass, sufficient strength may not be obtained, and if it exceeds 1.7% by mass, moldability may be impaired.
 [Fe:0.30~0.80質量%]
 Fe(鉄)は、鋳造時に、Mnと共に、金属間化合物(Al-Mn-Fe-Si系金属間化合物またはAl(Mn,Fe)系金属間化合物)を形成する。α相(Al-Mn-Fe-Si系金属間化合物相)またはβ相(Al(Fe,Mn)系金属間化合物相)は、固体潤滑作用を有し、成形時における焼付きを抑制する。Feの含有量が0.25質量%未満であると、焼付きを十分に抑制できないことがある。一方、Feの含有量が0.6質量%を超えると、晶出物(β相、α相)が増加し、粗大晶出物が過剰に形成され、成形性が損なわれることがある。
[Fe: 0.30 to 0.80% by mass]
Fe (iron) forms an intermetallic compound (Al-Mn-Fe-Si based intermetallic compound or Al 6 (Mn, Fe) based intermetallic compound) together with Mn during casting. The α phase (Al-Mn-Fe-Si-based intermetallic compound phase) or the β-phase (Al 6 (Fe, Mn)-based intermetallic compound phase) has a solid lubricating effect and suppresses seizure during molding. . If the Fe content is less than 0.25% by mass, seizure may not be sufficiently suppressed. On the other hand, when the content of Fe exceeds 0.6% by mass, crystallized substances (β phase, α phase) increase, coarse crystallized substances are formed excessively, and formability may be impaired.
 [Si:0.15~0.40質量%]
 Si(珪素)は、鋳造時に、Mnおよび/またはFeと共に、上記の金属間化合物を形成し、成形時における焼付きを抑制する効果を有する。Siの含有量が0.15質量%未満であると、焼付きを十分に抑制できないことがある。一方、Siの含有量が0.40質量%を超えると、α相が過剰に形成され、成形性が損なわれることがある。また、Mn固溶量の減少を招き、その結果、耐熱軟化性が低下することがある。
[Si: 0.15 to 0.40% by mass]
Si (silicon) forms the above-mentioned intermetallic compound together with Mn and/or Fe during casting, and has the effect of suppressing seizure during molding. If the Si content is less than 0.15% by mass, seizure may not be sufficiently suppressed. On the other hand, if the Si content exceeds 0.40% by mass, α phase may be formed excessively and formability may be impaired. Furthermore, the amount of solid solution of Mn may decrease, resulting in a decrease in heat softening resistance.
 [Cu:0.10~0.50質量%]
 Cu(銅)は、鋳造時に、Mgと共に、Al-Cu-Mg系金属間化合物を形成する。Al-Cu-Mg系金属間化合物相は、塗装焼付け工程における強度低下を抑制する効果を発揮する。Cuの含有量が0.10質量%未満では、上記の効果が充分に得られないことがあり、逆に0.50質量%を超えると、成形加工時の加工硬化性が大きくなり、成形性が低下することがある。
[Cu: 0.10 to 0.50% by mass]
Cu (copper) forms an Al-Cu-Mg based intermetallic compound together with Mg during casting. The Al-Cu-Mg intermetallic compound phase exhibits the effect of suppressing strength reduction during the paint baking process. If the Cu content is less than 0.10% by mass, the above effects may not be sufficiently obtained, whereas if it exceeds 0.50% by mass, work hardening during molding increases, resulting in poor moldability. may decrease.
 [Zn:0.30質量%以下]
 Zn(亜鉛)は、MgZnAl金属間化合物相を時効析出させ、強度の上昇に寄与する。ただし、Znの含有量が0.30質量%を越えると、耐食性を低下させることがある。したがって、Znを添加する場合、Znの含有量は、0.30質量%以下とすることが好ましい。Znは添加しなくてもよいが、上記の効果を得るためには、Znの含有量を0.05質量%以上とすることが好ましい。
[Zn: 0.30% by mass or less]
Zn (zinc) causes the Mg 2 Zn 3 Al 2 intermetallic compound phase to precipitate with aging and contributes to an increase in strength. However, if the Zn content exceeds 0.30% by mass, corrosion resistance may be reduced. Therefore, when adding Zn, the Zn content is preferably 0.30% by mass or less. Although it is not necessary to add Zn, in order to obtain the above effects, it is preferable that the Zn content is 0.05% by mass or more.
 [Ti:0.15質量%以下]
 Ti(チタン)は、鋳塊結晶粒を微細化する効果を有する。ただし、Tiの含有量が0.15質量%を超えると初晶TiAlが晶出し、成形性を低下させることがある。Tiを添加する場合、Tiの含有量は、0.15質量%以下とすることが好ましい。Tiは添加しなくてもよいが、上記の効果を得るためには、Tiの含有量を0.005質量%以上とすることが好ましい。また、Tiと共にB(ホウ素)を添加してもよい。このとき、Bの含有量は、0.01質量%以下であることが好ましい。
[Ti: 0.15% by mass or less]
Ti (titanium) has the effect of refining the ingot crystal grains. However, if the Ti content exceeds 0.15% by mass, primary TiAl 3 may crystallize, reducing formability. When adding Ti, the content of Ti is preferably 0.15% by mass or less. Although it is not necessary to add Ti, in order to obtain the above effects, it is preferable that the Ti content is 0.005% by mass or more. Further, B (boron) may be added together with Ti. At this time, the content of B is preferably 0.01% by mass or less.
 以上の各成分の残部はAlおよび不可避的不純物とすれば良い。 The remainder of each of the above components may be Al and unavoidable impurities.
 [Fe/Si:1.97~4.00以下]
 本発明者は、固溶Mn量、固溶Si量の最適化において、Siに対するFeの質量%の比(Fe/Si)が重要であることを見出した。Fe/Siが1.97未満であると、均質化処理(「均熱処理」、「ソーキング」ともいう。)中に、Al-Fe-Mn系金属間化合物と反応してAl-Mn-Fe-Si系金属間化合物を形成することがないSiが多く残存し、均質化処理後の熱間圧延中に固溶Mnと結合して、Al-Mn-Fe-Si系金属間化合物を形成し、α相の析出を促進する。ここで析出するα相は冷間圧延中に析出するα相に比べて疎で粗大なので、強度を上昇させる効果は非常に小さい。Fe/Siが4.0を超えると、Feが過剰となり、鋳造中に粗大晶出物が形成されやすくなる。粗大晶出物は、成形時に割れの起点となりやすいので、粗大晶出物の形成を抑制することが好ましい。
[Fe/Si: 1.97 to 4.00 or less]
The present inventors have found that the mass % ratio of Fe to Si (Fe/Si) is important in optimizing the amount of solid solution Mn and the amount of solid solution Si. If Fe/Si is less than 1.97, the Al-Mn-Fe- A large amount of Si that does not form a Si-based intermetallic compound remains, and it combines with solid solution Mn during hot rolling after homogenization treatment to form an Al-Mn-Fe-Si based intermetallic compound, Promotes precipitation of α phase. The α phase that precipitates here is sparser and coarser than the α phase that precipitates during cold rolling, so the effect of increasing strength is very small. When Fe/Si exceeds 4.0, Fe becomes excessive and coarse crystallized substances are likely to be formed during casting. Since coarse crystallized substances tend to become starting points for cracks during molding, it is preferable to suppress the formation of coarse crystallized substances.
 Fe/Siの最適化によって、均質化処理において固溶Siと反応するのに十分な量のAl(Fe,Mn)系金属間化合物を鋳造時に存在させ、均質化処理において固溶Siを十分に減少させることによって、その後の熱間圧延中にα相が析出することを抑制し、固溶Mn量が過度に減少することを抑制する。 By optimizing Fe/Si, a sufficient amount of Al 6 (Fe, Mn)-based intermetallic compounds to react with solid solution Si in the homogenization process is present during casting, and a sufficient amount of solid solution Si is present in the homogenization process. By reducing the amount of Mn to 1, the precipitation of the α phase during subsequent hot rolling is suppressed, and the amount of solid solution Mn is suppressed from decreasing excessively.
 本発明の実施形態による上述のアルミニウム合金冷間圧延板は、実験例を示して後述する様に、下記の製造方法によって製造され得る。 The above-described cold-rolled aluminum alloy plate according to the embodiment of the present invention can be manufactured by the following manufacturing method, as will be described later with experimental examples.
 本発明の実施形態による製造方法は、上記の所定の組成を有するスラブを用意する工程と、スラブを均質化処理する工程と、均質化処理を経たスラブを熱間圧延し、熱間圧延板を得る工程と、熱間圧延板を冷間圧延し、冷間圧延板を得る工程とを包含する。ここで、熱間圧延板の導電率から均質化処理前のスラブの導電率を差し引いた値を縦軸、Fe/Siを横軸としてプロットした場合の傾きが、-1.1以上、0.2以下となるように、均質化処理および熱間圧延を行うことによって、上述の冷間圧延板を得ることができる。 The manufacturing method according to the embodiment of the present invention includes a step of preparing a slab having the above-described predetermined composition, a step of homogenizing the slab, hot rolling the homogenized slab, and forming a hot rolled plate. and a step of cold rolling a hot rolled plate to obtain a cold rolled plate. Here, when plotting the value obtained by subtracting the conductivity of the slab before homogenization treatment from the conductivity of the hot-rolled plate with the vertical axis and Fe/Si as the horizontal axis, the slope is -1.1 or more, 0. The above-mentioned cold rolled plate can be obtained by performing homogenization treatment and hot rolling so that the particle diameter is 2 or less.
 鋳造後から熱間圧延後に至るまでの固溶量の変化を導電率の変化をモニターすることによって評価することができる。鋳造直後は冷却速度が速いため、各元素はアルミニウム母相中に過飽和状態で固溶しており、鋳塊の導電率は晶出物の量によって決定される。また、熱間圧延後の熱間圧延板の導電率は、主に均質化処理から熱間圧延までの間に析出物が生成され固溶Mn量が減少することによって上昇する。Siに対するFeの質量%の比(Fe/Si)がFe/Si<1.97と小さいと、Fe/Siが小さいほど導電率の減少量は大きい。すなわち、Fe/Siに対する導電率の変化の傾きは大きい。一方、1.97≦Fe/Si≦4.00の範囲での導電率の変化は、Fe/Siによらずほぼ一定の値であり、Fe/Si<1.97におけるFe/Siに対する導電率の変化の傾きに比べると小さい。すなわち、Siに対して一定以上の割合のFeが含まれた組成を有する合金では、均質化処理から熱間圧延において生じる導電率の変化が小さく、導電率の変化が上記の範囲内である合金は、Siによる固溶原子の減少が抑制された合金であるといえる。 Changes in the amount of solid solution from after casting to after hot rolling can be evaluated by monitoring changes in electrical conductivity. Immediately after casting, the cooling rate is fast, so each element is dissolved in a supersaturated state in the aluminum matrix, and the electrical conductivity of the ingot is determined by the amount of crystallized substances. Further, the electrical conductivity of the hot rolled sheet after hot rolling increases mainly due to the formation of precipitates between the homogenization treatment and the hot rolling, and the amount of solid solution Mn decreases. When the mass % ratio of Fe to Si (Fe/Si) is small, such as Fe/Si<1.97, the smaller the Fe/Si, the greater the decrease in electrical conductivity. That is, the slope of the change in conductivity with respect to Fe/Si is large. On the other hand, the change in conductivity in the range of 1.97≦Fe/Si≦4.00 is a nearly constant value regardless of Fe/Si, and the conductivity for Fe/Si in Fe/Si<1.97 is small compared to the slope of change. In other words, in an alloy having a composition containing a certain proportion of Fe to Si, the change in conductivity that occurs from homogenization treatment to hot rolling is small, and the change in conductivity is within the above range. It can be said that this is an alloy in which the decrease in solid solution atoms due to Si is suppressed.
 本発明の他の実施形態による製造方法は、スラブを用意する工程において、スラブの各成分の狙い値をCu0、Mn0、Mg0、冷間圧延板の引張強度をTS0、降伏強度をYS0とすると、下記式で表される補正を行った補正後の引張強度TS、補正後の降伏強度YSについて、TSの変動が±2.7MPa以下、YSの変動が±3.0MPa以下となる。
  補正TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
  補正YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
In the manufacturing method according to another embodiment of the present invention, in the step of preparing a slab, the target values of each component of the slab are Cu0, Mn0, Mg0, the tensile strength of the cold rolled plate is TS0, and the yield strength is YS0. Regarding the corrected tensile strength TS and the corrected yield strength YS, which are expressed by the following formula, the variation in TS is ±2.7 MPa or less, and the variation in YS is ±3.0 MPa or less.
Correction TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
Correction YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
 本発明の実施形態による上述の冷間圧延板を上述の製造方法を用いて製造すると、このように、安定した強度を有する冷間圧延板を製造することができる。 When the above-mentioned cold-rolled plate according to the embodiment of the present invention is manufactured using the above-mentioned manufacturing method, a cold-rolled plate having stable strength can be manufactured in this way.
 本発明の他の実施形態による製造方法は、上記の所定の組成を有するスラブを用意する工程と、スラブを均質化処理する工程と、均質化処理を経たスラブを熱間圧延し、熱間圧延板を得る工程と、熱間圧延板を冷間圧延し、冷間圧延板を得る工程とを包含する。ここで、平衡状態図による計算において600℃~700℃におけるAl(Fe,Mn)相の最大体積率をV1、均質化処理温度におけるα相の体積率をV2とした場合にV1/V2≧1.04を満足する。V1/V2がこの条件を満足すると、上述のように安定した強度を有する冷間圧延板を製造することができる。 A manufacturing method according to another embodiment of the present invention includes a step of preparing a slab having the above-described predetermined composition, a step of homogenizing the slab, hot rolling the homogenized slab, and hot rolling the slab. The method includes a step of obtaining a plate, and a step of cold rolling a hot rolled plate to obtain a cold rolled plate. Here, in the calculation using the equilibrium phase diagram, if the maximum volume fraction of the Al 6 (Fe, Mn) phase at 600°C to 700°C is V1, and the volume fraction of the α phase at the homogenization temperature is V2, then V1/V2 ≧ 1.04 is satisfied. When V1/V2 satisfies this condition, a cold rolled plate having stable strength as described above can be manufactured.
 各元素の平衡状態図は、ソフトウェア、J Mat Pro(英国Sente Software社製)を用い、CALPHAD法という熱力学モデルに基づいて求めることができる。得られた平衡状態図に基づく計算によって、600℃~700℃におけるAl(Fe,Mn)相の最大体積率V1、均質化処理温度におけるα相の体積率V2を求めることができる。V1/V2≧1.04である材料組織とすることで、固溶Siに起因する材料度低下を抑制できる。 The equilibrium phase diagram of each element can be determined using the software J Mat Pro (manufactured by Sente Software, UK) based on a thermodynamic model called the CALPHAD method. By calculation based on the obtained equilibrium phase diagram, the maximum volume fraction V1 of the Al 6 (Fe, Mn) phase at 600° C. to 700° C. and the volume fraction V2 of the α phase at the homogenization temperature can be determined. By setting the material structure such that V1/V2≧1.04, it is possible to suppress a decrease in the materiality due to solid solution Si.
 以下に、代表的な実験例を示して、本発明の実施形態によるアルミニウム合金冷間圧延板およびその製造方法を具体的に説明する。 Hereinafter, a cold-rolled aluminum alloy plate and a method for manufacturing the same according to an embodiment of the present invention will be specifically explained by showing typical experimental examples.
 なお、以下の実験例では、最終的に得られた冷間圧延板、および製造プロセス中の中間品である熱間圧延板から作製された試験片を用いて、以下の評価項目を以下に説明する手法に従って評価した。 In addition, in the following experimental examples, the following evaluation items are explained below using test pieces made from the finally obtained cold-rolled plate and the hot-rolled plate that is an intermediate product in the manufacturing process. The evaluation was carried out according to the following method.
 (1)冷間圧延板の圧延方向の引張強さ(TS)および0.2%耐力(YS)
 各実験例において得られた、冷間圧延板(元板)から、圧延方向において、JIS 5号試験片を作製し、JIS-Z-2241に従って引張試験を実施することにより、圧延方向の引張強さ(TS)と0.2%耐力(YS)を測定した。また、各実験例におけるCu、Mn、Mgの狙い値はそれぞれCu0=0.15質量%、Mn0=0.86質量%、Mg0=1.00質量%であり、下式から補正TS、補正YSを算出した。
  補正TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
  補正YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
(1) Tensile strength (TS) and 0.2% proof stress (YS) of cold rolled plate in rolling direction
A JIS No. 5 test piece was prepared in the rolling direction from the cold-rolled plate (original plate) obtained in each experimental example, and a tensile test was conducted in accordance with JIS-Z-2241 to determine the tensile strength in the rolling direction. The strength (TS) and 0.2% yield strength (YS) were measured. In addition, the target values of Cu, Mn, and Mg in each experimental example are Cu0 = 0.15% by mass, Mn0 = 0.86% by mass, and Mg0 = 1.00% by mass, respectively, and the corrected TS and corrected YS are calculated from the following formulas. was calculated.
Correction TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
Correction YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
 なお、上記の補正式は、過去実験データと本実験データに基づいて求めた。これらの実験データを用いて、機械学習によって、強度と成分との関係を求めると、ほぼ直線関係が得られた。これらのことから、上記の組成範囲内であれば、Cu0、Mn0、Mg0の値が上記の値と異なって、上記の式を用いることができると考えられる。 Note that the above correction formula was determined based on past experimental data and this experimental data. When the relationship between intensity and component was determined by machine learning using these experimental data, an almost linear relationship was obtained. From these facts, it is considered that as long as the composition is within the above composition range, the values of Cu0, Mn0, and Mg0 are different from the above values, and the above formula can be used.
 (2)固溶Si量、固溶Mn量の測定(フェノール溶解法)
 各実験例において、それぞれ得られた冷間圧延板から切り出した小片サンプルを、170℃のフェノールに浸漬することにより、Al合金中のマトリックス成分を溶解させた後、ベンジルアルコールを添加して、その溶液を液体状態に保ちつつ、0.1μmの孔径を有するフィルターを用いてろ過した。フィルター上に捕捉された析出物を、塩酸・フッ酸混合液にて溶解し、得られた溶液を希釈した液を用いて、ICP(Inductively Coupled Plasma)発光分光分析を行うことにより、固溶Si量および固溶Mn量を求めた。
(2) Measurement of solid solution Si amount and solid solution Mn amount (phenol dissolution method)
In each experimental example, a small piece sample cut from the obtained cold rolled plate was immersed in phenol at 170°C to dissolve the matrix component in the Al alloy, and then benzyl alcohol was added to dissolve the matrix component. While keeping the solution in a liquid state, it was filtered using a filter with a pore size of 0.1 μm. The precipitate captured on the filter was dissolved in a mixed solution of hydrochloric acid and hydrofluoric acid, and the resulting solution was diluted to perform ICP (Inductively Coupled Plasma) emission spectrometry analysis to determine the solid solution Si. The amount and solid solution Mn amount were determined.
 (3)導電率
 均質化処理を施していない鋳塊、熱間圧延後の板材(熱間圧延板)および冷間圧延後の板材(冷間圧延板)に対して、それぞれ、導電率測定器(フェルスター社製SIGMATEST2.069)を用いて、周波数:960kHzにおいて、導電率を測定し、n=3の平均値を求めた。なお、試験片の厚さが1mm未満の場合には、総厚が1mm以上となるように試験片(板)を重ね合わせて、導電率の測定に供した。図1に、熱間圧延板の導電率から均質化処理前のスラブの導電率を差し引いた結果をFe/Siに対してプロットしたグラフを示す。
(3) Electrical conductivity For ingots that have not been homogenized, hot-rolled plates (hot-rolled plates), and cold-rolled plates (cold-rolled plates), conductivity measuring instruments are used. The conductivity was measured at a frequency of 960 kHz using SIGMATEST 2.069 (manufactured by Förster), and the average value of n=3 was determined. In addition, when the thickness of the test piece was less than 1 mm, the test pieces (plates) were stacked on top of each other so that the total thickness was 1 mm or more, and the conductivity was measured. FIG. 1 shows a graph in which the result of subtracting the conductivity of the slab before homogenization treatment from the conductivity of the hot-rolled plate is plotted against Fe/Si.
 (4)結晶相の同定
 各実験例において、それぞれ得られた冷間圧延板をX線回折装置(リガク社製、RINT-2000)によって、波長λ=1.54180nmのCuKα線を用いてX線回折パターンを測定した。図2に、各試料のX線回折パターンを示す。測定された回折パターンについて、ICDD(International Centre for Diffraction Data)によると18.26°±0.1°がAl-Fe-Mn系金属化合物相である(Fe0.5Mn0.5)Alの(1,1,0)によるピークであり、22.45°±0.1°がAl-Fe-Mn-Si系金属化合物相であるAl17(Fe3.2Mn0.8)Siの(0,1,3)によるピークである。これらのピークの強度比I(18.26)/I(22.45)を算出した。
(4) Identification of crystal phase In each experimental example, the obtained cold-rolled plate was subjected to The diffraction pattern was measured. Figure 2 shows the X-ray diffraction patterns of each sample. According to the International Center for Diffraction Data (ICDD), 18.26°±0.1° of the measured diffraction pattern is an Al-Fe-Mn metal compound phase (Fe 0.5 Mn 0.5 )Al 6 (1,1,0), and 22.45°±0.1° is the Al-Fe-Mn-Si metal compound phase, Al 17 (Fe 3.2 Mn 0.8 )Si 2 This is the peak due to (0, 1, 3). The intensity ratio of these peaks, I( 18.26o )/I( 22.45o ), was calculated.
 (5)平衡熱力学計算
 主要5元素(Si、Fe、Cu、Mn、Mg)の組成を設定し、残部をAlとして、J-mat Proによって700℃から室温までの平衡熱力学状態図を算出した。缶胴材に使用される3104系アルミニウム合金の融点は650℃前後であり、600℃~700℃の範囲内の、合金組成に特有の温度で液相の体積率は0となる。鋳塊の晶出物は600℃~700℃の範囲内で生じた相であることから、600℃~700℃におけるAl(Fe,Mn)相の体積率が最大となる点をV1と規定した。また、均質化処理温度(例えば595℃)におけるAl-Fe-Mn-Si系金属間化合物の生成量をV2とすることで、Al-Fe-Mn系化合物相、Al-Fe-Mn-Si系化合物相の体積比を定義した。
(5) Equilibrium thermodynamics calculation Set the composition of the main five elements (Si, Fe, Cu, Mn, Mg), set the balance as Al, and calculate the equilibrium thermodynamics phase diagram from 700°C to room temperature using J-mat Pro. did. The melting point of the 3104 series aluminum alloy used for can body material is around 650°C, and the volume fraction of the liquid phase becomes 0 at a temperature specific to the alloy composition within the range of 600°C to 700°C. Since the crystallized product of the ingot is a phase generated within the range of 600°C to 700°C, the point where the volume fraction of the Al 6 (Fe, Mn) phase at 600°C to 700°C is maximum is defined as V1. did. In addition, by setting the amount of Al-Fe-Mn-Si intermetallic compounds produced at the homogenization temperature (for example, 595°C) to V2, the Al-Fe-Mn-based compound phase, the Al-Fe-Mn-Si based intermetallic compound phase, and the The volume ratio of the compound phase was defined.
 表1に実験例1~15の各試料1~15の合金組成を示す。各組成のアルミニウム合金を、常法に従って溶製した後、DC鋳造法により、ラボ鋳造機を用いて鋳塊を得た。次いで、得られた鋳塊に対して、従来と同様に面削を施した後、空気炉を用いて、40℃/時間の昇温速度にて595℃まで昇温し、引き続き595℃で90分間以上の均質化処理を施した。 Table 1 shows the alloy compositions of each of Samples 1 to 15 of Experimental Examples 1 to 15. After melting aluminum alloys of each composition according to a conventional method, an ingot was obtained using a laboratory casting machine by a DC casting method. Next, the obtained ingot was subjected to surface cutting in the same manner as before, and then heated to 595°C at a temperature increase rate of 40°C/hour using an air furnace, and then heated to 90°C at 595°C. Homogenization treatment was performed for more than 1 minute.
 次いで、均質化処理の後、厚さが2.8mmとなるまで、ラボ圧延機を用いて実機の熱間圧延を模擬して圧延した。なお、ラボ試験では実機の操業に比べて材料の熱容量が小さく自己焼鈍による再結晶が生じないので、実機を模擬して、熱間圧延板を355℃で60分間、熱処理した。再結晶した熱間圧延板について冷間圧延を行い、厚さが0.28mmの冷間圧延板を得た。この冷間圧延工程における総加工度は、90.0%であった。 Next, after homogenization treatment, rolling was performed using a laboratory rolling mill to simulate actual hot rolling until the thickness was 2.8 mm. In the lab test, the heat capacity of the material is smaller than in the operation of the actual machine, and recrystallization due to self-annealing does not occur, so the hot rolled plate was heat-treated at 355° C. for 60 minutes to simulate the actual machine. The recrystallized hot rolled plate was cold rolled to obtain a cold rolled plate having a thickness of 0.28 mm. The total working degree in this cold rolling process was 90.0%.
 上述のようにして得られた各実験例の冷間圧延板から試験片を作製し、上述の方法で評価を行った結果を下記の表2に示す。表2には、冷間圧延板の引張強度、真応力σが真歪みεのn乗で示されると仮定した場合のひずみ1.5-3%における加工硬化指数n、補正強度、試料No.13を基準(0.0)とした場合のΔYS、ΔTS、およびXRDのピーク強度比I(18.26)/I(22.45)、相体積比V1/V2、固溶量の結果を示している。 Test pieces were prepared from the cold-rolled plates of each experimental example obtained as described above, and evaluated by the method described above. The results are shown in Table 2 below. Table 2 shows the tensile strength of the cold rolled plate, the work hardening index n at a strain of 1.5-3% assuming that the true stress σ is expressed as the nth power of the true strain ε, the corrected strength, and the sample No. Results of ΔYS, ΔTS, and XRD peak intensity ratio I( 18.26o )/I( 22.45o ), phase volume ratio V1/V2, and solid solution amount when 13 is used as the reference (0.0) It shows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、試料No.1~No.15のうち、試料No.8~No.15(実施例)は、Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%を含有し、残部がAlと不可避的不純物からなる組成を有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあり、固溶Mn量/全Mn量が0.17以上、固溶Si量が0.03質量%以下であり、CuKα線を用いたX線回折パターンにおいて、Al-Fe-Mn-Si系金属間化合物相(すなわちα相)に由来するブラッグ角(2θ±0.2°)=18.26°±0.1°のピークとAl(Fe,Mn)系金属間化合物相(すなわちβ相)に由来するブラッグ角(2θ±0.2°)=22.45°±0.1°のピークの強度比I(18.26°±0.1°)/I(22.45°±0.1°)が0.11以上である組織を有する。試料No.8~No.15は、Fe,Siの違いによらず、ΔYS,ΔTSは±2MPa内で強度が安定しており、Siに起因する強度の低下が抑制されている。 As is clear from Table 2, sample No. 1~No. Among 15 samples, sample No. 8~No. 15 (Example) is Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1 .20% by mass, and Mg: 0.50 to 1.70% by mass, with the remainder consisting of Al and inevitable impurities, and the ratio of the mass% of Fe to Si is 1.97≦Fe/ Si≦4.00, the solid solution Mn amount/total Mn amount is 0.17 or more, the solid solution Si amount is 0.03% by mass or less, and in the X-ray diffraction pattern using CuKα rays, The peak of Bragg angle (2θ ± 0.2°) = 18.26° ± 0.1° derived from the Al-Fe-Mn-Si intermetallic compound phase (i.e. α phase) and Al 6 (Fe, Mn) Intensity ratio I (18.26° ± 0.1°) of the peak of Bragg angle (2θ ± 0.2°) = 22.45° ± 0.1° derived from the intermetallic phase (i.e. β phase) /I (22.45°±0.1°) is 0.11 or more. Sample No. 8~No. In No. 15, the strength is stable within ±2 MPa for ΔYS and ΔTS regardless of the difference in Fe and Si, and the decrease in strength due to Si is suppressed.
 これに対し、試料No.1~No.7(比較例)は、基準とした試料No.13に比べて強度が低く、Siに起因する強度低下が生じていることがわかる。 On the other hand, sample No. 1~No. 7 (comparative example) is sample No. 7 (comparative example). It can be seen that the strength is lower than that of Sample No. 13, indicating that the strength is lowered due to Si.
 また、図1から、Fe/Si<1.97となるプロットでは、鋳塊から熱間圧延板までの導電率の増加が大きく、1.97≦Fe/Si≦4.00では導電率増加量が小さいことがわかる。すなわち、合金組成が1.97≦Fe/Si≦4.00の領域であればUBCに含まれる不純物の組成がある程度変動したとしても、固溶量変化に起因する強度の変動は小さいといえる。 Also, from Figure 1, in the plot where Fe/Si < 1.97, the increase in electrical conductivity from the ingot to the hot rolled plate is large, and when 1.97≦Fe/Si≦4.00, the increase in electrical conductivity It can be seen that is small. That is, if the alloy composition is in the range of 1.97≦Fe/Si≦4.00, it can be said that even if the composition of impurities contained in UBC varies to some extent, the variation in strength due to the change in the amount of solid solution is small.
 上述したように、本発明の実施形態によれば、アルミニウム合金の組成を適切に調整することによって、α相およびβ相の体積を適切に制御し、固溶Mn量/全Mn量が0.17以上、固溶Si量が0.03質量%以下とすることができる。これによって均質化処理から熱間圧延中に生じるSiに起因する固溶Mn量の減少を抑制できるので、強度の低下を抑制することができる。 As described above, according to the embodiment of the present invention, by appropriately adjusting the composition of the aluminum alloy, the volumes of the α phase and β phase are appropriately controlled, and the solid solution Mn amount/total Mn amount is 0. 17 or more, and the amount of solid solution Si can be 0.03% by mass or less. As a result, it is possible to suppress a decrease in the amount of solid solution Mn caused by Si generated during the homogenization treatment and hot rolling, and therefore it is possible to suppress a decrease in strength.
 本発明の実施形態によるアルミニウム合金冷間圧延板およびその製造方法は、ボトル缶用のアルミニウム合金冷間圧延板(ボトル缶用素材板)およびその製造方法に好適に用いられる。本発明の実施形態によれば、UBCの再生塊に含まれる不純物Siに起因する強度低下を抑制できるので、UBCの再生塊の利用を促進することができる。 The cold-rolled aluminum alloy plate and the method for manufacturing the same according to the embodiment of the present invention are suitably used for the cold-rolled aluminum alloy plate for bottle cans (raw material plate for bottle cans) and the method for manufacturing the same. According to the embodiments of the present invention, it is possible to suppress a decrease in strength due to the impurity Si contained in the recycled UBC lump, so it is possible to promote the use of the recycled UBC lump.

Claims (4)

  1.  Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、Mg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、残部がAlと不可避的不純物からなる組成を有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあり、固溶Mn量/全Mn量が0.17以上で、固溶Si量が0.03質量%以下であり、
     X線回折パターンにおけるブラッグ角(2θ±0.2°)が18.26°±0.1°と22.45°±0.1°の回折強度Iについてピーク比I(18.26°±0.1°)/I(22.45°±0.1°)が0.11以上である、アルミニウム合金冷間圧延板。
    Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, Mg: 0.50 to 1.70% by mass, Zn: 0.30% by mass or less, and Ti: 0.15% by mass or less as optional elements, with the balance consisting of Al and inevitable impurities. However, the mass % ratio of Fe to Si is within the range of 1.97≦Fe/Si≦4.00, the solid solution Mn amount/total Mn amount is 0.17 or more, and the solid solution Si amount is 0. 03% by mass or less,
    In the X-ray diffraction pattern, the peak ratio I (18.26° ± 0.0 .1°)/I(22.45°±0.1°) is 0.11 or more, a cold rolled aluminum alloy plate.
  2.  請求項1に記載のアルミニウム合金冷間圧延板を製造する方法であって、
     Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、残部がAlと不可避的不純物からなる組成を有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあるスラブを用意する工程と、
     前記スラブを均質化処理する工程と、
     前記均質化処理を経た前記スラブを熱間圧延し、熱間圧延板を得る工程と、
     前記熱間圧延板を冷間圧延し、冷間圧延板を得る工程と
    を包含し、
     前記熱間圧延板の導電率から前記均質化処理前の前記スラブの導電率を差し引いた値を縦軸、Fe/Siを横軸としてプロットした場合の傾きが、-1.1以上、0.2以下となるように、前記均質化処理および前記熱間圧延を行う、製造方法。
    A method for manufacturing the cold rolled aluminum alloy plate according to claim 1, comprising:
    Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg :0.50 to 1.70% by mass, and as optional elements, Zn: 0.30% by mass or less and Ti: 0.15% by mass or less, with the balance consisting of Al and unavoidable impurities. preparing a slab having a mass % ratio of Fe to Si in the range of 1.97≦Fe/Si≦4.00;
    homogenizing the slab;
    hot rolling the slab that has undergone the homogenization treatment to obtain a hot rolled plate;
    cold rolling the hot rolled plate to obtain a cold rolled plate,
    The value obtained by subtracting the electrical conductivity of the slab before the homogenization treatment from the electrical conductivity of the hot-rolled plate is plotted with the vertical axis and Fe/Si on the horizontal axis, and the slope is -1.1 or more, 0. 2 or less, the homogenization treatment and the hot rolling are performed.
  3.  請求項1に記載のアルミニウム合金冷間圧延板を製造する方法であって、
     Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあるスラブを用意する工程と、
     前記スラブを均質化処理する工程と、
     前記均質化処理を経た前記スラブを熱間圧延し、熱間圧延板を得る工程と、
     前記熱間圧延板を冷間圧延し、冷間圧延板を得る工程と
    を包含し、
     前記スラブの各成分の狙い値をCu0、Mn0、Mg0、前記冷間圧延板の引張強度をTS0、降伏強度をYS0とすると、下記式で表される補正を行った補正後の引張強度TS、補正後の降伏強度YSについて、TSの変動が±2.7MPa以下、YSの変動が±3.0MPa以下となる、製造方法。
      補正TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
      補正YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
    A method for manufacturing the cold rolled aluminum alloy plate according to claim 1, comprising:
    Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg : 0.50 to 1.70% by mass, Zn: 0.30% by mass or less, and Ti: 0.15% by mass or less as optional elements, and the ratio of Fe to Si by mass % is 1. A step of preparing a slab within the range of 97≦Fe/Si≦4.00;
    homogenizing the slab;
    hot rolling the slab that has undergone the homogenization treatment to obtain a hot rolled plate;
    cold rolling the hot rolled plate to obtain a cold rolled plate,
    Assuming that the target values of each component of the slab are Cu0, Mn0, Mg0, the tensile strength of the cold rolled plate is TS0, and the yield strength is YS0, the tensile strength after correction TS after correction expressed by the following formula, Regarding the corrected yield strength YS, a manufacturing method in which the variation in TS is ±2.7 MPa or less and the variation in YS is ±3.0 MPa or less.
    Correction TS=TS0-{(Cu-Cu0)×87.5+(Mn-Mn0)×70.0+(Mg-Mg0)×50.5}
    Correction YS=YS0-{(Cu-Cu0)×88.0+(Mn-Mn0)×69.5+(Mg-Mg0)×49.0}
  4.  請求項1に記載のアルミニウム合金冷間圧延板を製造する方法であって、
     Si:0.15~0.40質量%、Fe:0.30~0.80質量%、Cu:0.10~0.50質量%、Mn:0.80~1.20質量%、およびMg:0.50~1.70質量%と、オプショナルな元素として、Zn:0.30質量%以下、およびTi:0.15質量%以下を含有し、残部がAlと不可避的不純物からなる組成を有し、Siに対するFeの質量%の比が1.97≦Fe/Si≦4.00の範囲内にあるスラブを用意する工程と、
     前記スラブを均質化処理する工程と、
     前記均質化処理を経た前記スラブを熱間圧延し、熱間圧延板を得る工程と、
     前記熱間圧延板を冷間圧延し、冷間圧延板を得る工程と
    を包含し、
     平衡状態図による計算において600℃~700℃におけるAl(Fe,Mn)相の最大体積率をV1、均質化処理温度におけるα相の体積率をV2とした場合にV1/V2≧1.04を満足する、製造方法。
    A method for manufacturing the cold rolled aluminum alloy plate according to claim 1, comprising:
    Si: 0.15 to 0.40% by mass, Fe: 0.30 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mn: 0.80 to 1.20% by mass, and Mg :0.50 to 1.70% by mass, and as optional elements, Zn: 0.30% by mass or less and Ti: 0.15% by mass or less, with the balance consisting of Al and unavoidable impurities. preparing a slab having a mass % ratio of Fe to Si in the range of 1.97≦Fe/Si≦4.00;
    homogenizing the slab;
    hot rolling the slab that has undergone the homogenization treatment to obtain a hot rolled plate;
    cold rolling the hot rolled plate to obtain a cold rolled plate,
    In calculations using the equilibrium phase diagram, when the maximum volume fraction of the Al 6 (Fe, Mn) phase at 600°C to 700°C is V1, and the volume fraction of the α phase at the homogenization temperature is V2, V1/V2 ≧ 1.04. A manufacturing method that satisfies the following.
PCT/JP2023/015657 2022-04-22 2023-04-19 Cold-rolled aluminum alloy sheet, and method for producing same WO2023204255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070902 2022-04-22
JP2022070902A JP2023160496A (en) 2022-04-22 2022-04-22 Cold-rolled aluminum alloy sheet and method for producing the same

Publications (1)

Publication Number Publication Date
WO2023204255A1 true WO2023204255A1 (en) 2023-10-26

Family

ID=88419930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015657 WO2023204255A1 (en) 2022-04-22 2023-04-19 Cold-rolled aluminum alloy sheet, and method for producing same

Country Status (2)

Country Link
JP (1) JP2023160496A (en)
WO (1) WO2023204255A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146632A (en) * 1989-10-28 1991-06-21 Kobe Steel Ltd Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture
JPH0578797A (en) * 1991-09-25 1993-03-30 Furukawa Alum Co Ltd Production of aluminum alloy sheet excellent in formability
JPH062090A (en) * 1992-06-16 1994-01-11 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH07233456A (en) * 1994-02-23 1995-09-05 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet excellent in formability
JPH0860283A (en) * 1994-08-15 1996-03-05 Sky Alum Co Ltd Aluminum alloy sheet for di can body and its production
JPH08239729A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Production of aluminum alloy sheet excellent in di can bottom formability
JPH09287063A (en) * 1996-04-19 1997-11-04 Sky Alum Co Ltd Production of aluminum alloy sheet for di(drawn and ironed) can barrel excellent in flange formability
JPH09316615A (en) * 1996-05-23 1997-12-09 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body low in earing ratio
JP2004232009A (en) * 2003-01-29 2004-08-19 Kobe Steel Ltd Aluminum alloy sheet for battery case, its manufacturing method, and battery case made of aluminum alloy
JP2019056134A (en) * 2017-09-20 2019-04-11 株式会社Uacj Aluminum alloy sheet for bottle can shell and method of producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146632A (en) * 1989-10-28 1991-06-21 Kobe Steel Ltd Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture
JPH0578797A (en) * 1991-09-25 1993-03-30 Furukawa Alum Co Ltd Production of aluminum alloy sheet excellent in formability
JPH062090A (en) * 1992-06-16 1994-01-11 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH07233456A (en) * 1994-02-23 1995-09-05 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet excellent in formability
JPH0860283A (en) * 1994-08-15 1996-03-05 Sky Alum Co Ltd Aluminum alloy sheet for di can body and its production
JPH08239729A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Production of aluminum alloy sheet excellent in di can bottom formability
JPH09287063A (en) * 1996-04-19 1997-11-04 Sky Alum Co Ltd Production of aluminum alloy sheet for di(drawn and ironed) can barrel excellent in flange formability
JPH09316615A (en) * 1996-05-23 1997-12-09 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body low in earing ratio
JP2004232009A (en) * 2003-01-29 2004-08-19 Kobe Steel Ltd Aluminum alloy sheet for battery case, its manufacturing method, and battery case made of aluminum alloy
JP2019056134A (en) * 2017-09-20 2019-04-11 株式会社Uacj Aluminum alloy sheet for bottle can shell and method of producing the same

Also Published As

Publication number Publication date
JP2023160496A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
CN108425046B (en) Aluminum alloy for anodic oxidation and preparation method thereof
US9896754B2 (en) Aluminum alloy sheet excellent in press-formability and shape fixability and method of production of same
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP6898254B2 (en) Aluminum alloy plate for can body and its manufacturing method
US20170349979A1 (en) Aluminum alloy sheet
CN104561668A (en) Aluminum alloy sheet for wine cover material and production method of aluminum alloy sheet
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4200082B2 (en) Aluminum alloy plate for forming and method for producing the same
JP7414453B2 (en) Aluminum alloy material and its manufacturing method
WO2023204255A1 (en) Cold-rolled aluminum alloy sheet, and method for producing same
JP4164437B2 (en) Method for producing aluminum alloy sheet for forming
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP2003268475A (en) Aluminum alloy sheet for forming, and manufacturing method therefor
CN110983117A (en) Aluminum alloy for capacitor shell and preparation method of aluminum alloy plate strip of aluminum alloy
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
TW202033775A (en) Method for manufacturing aluminum-manganese alloy
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP5400510B2 (en) Aluminum alloy sheet for forming with excellent deep drawability and bending workability
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JP4238019B2 (en) Aluminum alloy panel for flat hem processing
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP4267284B2 (en) Al-Mg alloy rolled sheet tempered material with excellent bending workability
JPH0346541B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791903

Country of ref document: EP

Kind code of ref document: A1