JPH09316615A - Production of aluminum alloy sheet for can body low in earing ratio - Google Patents

Production of aluminum alloy sheet for can body low in earing ratio

Info

Publication number
JPH09316615A
JPH09316615A JP12796396A JP12796396A JPH09316615A JP H09316615 A JPH09316615 A JP H09316615A JP 12796396 A JP12796396 A JP 12796396A JP 12796396 A JP12796396 A JP 12796396A JP H09316615 A JPH09316615 A JP H09316615A
Authority
JP
Japan
Prior art keywords
rolling
hot
subjected
rate
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12796396A
Other languages
Japanese (ja)
Inventor
Yukio Urayoshi
幸男 浦吉
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12796396A priority Critical patent/JPH09316615A/en
Publication of JPH09316615A publication Critical patent/JPH09316615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a sheet material for an Al alloy having excellent characteristics as that for a beverage can body by subjecting an Al allaoy having a specified compsn. to homogenizing treatment, hot finish rolling, cold finish rolling and final finish annealing under specified temp. conditions. SOLUTION: The ingot of an Al alloy having a compsn. contg., by weight, 0.8 to 1.4% Mg, 0.8 to 1.4% Mn, 0.2 to 0.6% Fe, 0.1 to 0.4% Si, 0.1 to 0.3% Cu and 0.01 to 0.2% Zn and furthermore contg. a specified small amt. of Ti together with B according to necessary is heated at 530 to 630C for 1hr, is subjected to homogenizing treatment, is thereafter subjected to hot rough rolling and is furthermore subjected to finish rolling by tandem type hot finish rolling mill, and the hot rolled sheet is cooled by the injection of coolant oil and is subsequently subjected to cold rolling. Successively, it is rapidly heated at 360 to 560 deg.C at a heating rate of >=100 deg.C/min, is thereafter cooled to <=70 deg.C, is subjected to final cold finish rolling at >=60% rolling ratio and is furthermore subjected to final annealing treatment. The Al alloy sheet excellent in strength, ironing workability and flanging formability, low in an earing ratio and suitable for a can body can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強度、しごき加工
性、フランジ成形性に優れ、かつ耳率が低くキャンボデ
ィ(飲料缶胴)用などとして好適なアルミニウム合金板
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet which is excellent in strength, ironing workability and flange formability, has a low ear rate and is suitable for can bodies (beverage can bodies).

【0002】[0002]

【従来の技術】キャンボディ用のアルミニウム合金板に
は、缶形状を維持するための強度(耐圧強度)、板材を
円筒状にしごく際のしごき加工性、塗装焼付後のフラン
ジ加工性、フランジ加工時における低い耳率が要求され
る。前記耳率とは、板材を円筒状に絞ったカップの周縁
部に生じる凸部と凹部の高さの差をカップ高さで徐した
比率のことで、耳率が高いと次の弊害が生じる。 カップ成形およびしごき成形時に耳先端からチップが
飛散し、ピンホールやティアーオフ等の欠陥が生じる。 フランジ成形後の缶の寸法精度が低下する。 缶ボディ成形後のトリミング量が増し、トリミング後
も缶周縁部の凹部が除去できない場合がある。 ところで、キャンボディ用のアルミニウム合金板は、例
えば、JIS-3004合金鋳塊を均質化処理後、熱間圧延し、
次いで冷間圧延と焼鈍を繰返す常法により製造されてお
り、耳率は、最終冷間圧延後に冷間圧延集合組織が増加
すると高くなることが知られている。耳率を低くする方
法として、熱延終了あるいは焼鈍後の再結晶組織を耳率
を低下させる立方体方位が優先的に生じた集合組織と
し、耳率を高くする冷間圧延集合組織に抵抗させる方法
が採られている。
2. Description of the Related Art Aluminum alloy plates for can bodies have strength (compressive strength) for maintaining a can shape, ironing workability when ironing a plate material into a cylindrical shape, flange workability after baking and flanging. A low ear rate over time is required. The ear ratio is a ratio of the height difference between the convex portion and the concave portion generated at the peripheral portion of the cup formed by squeezing the plate material into a cylindrical shape, and the difference between the heights of the convex portion and the concave portion is divided by the cup height. . Chips scatter from the tips of the ears during cup molding and ironing, resulting in defects such as pinholes and tear-offs. The dimensional accuracy of the can after flange molding is reduced. The amount of trimming after forming the can body increases, and the recesses in the peripheral portion of the can cannot be removed even after trimming. By the way, the aluminum alloy plate for the can body, for example, after the homogenization treatment of JIS-3004 alloy ingot, hot rolling,
It is then manufactured by a conventional method in which cold rolling and annealing are repeated, and it is known that the ear ratio increases as the cold rolling texture increases after the final cold rolling. As a method of lowering the ear rate, the recrystallized structure after hot rolling or annealing is made to have a cubic orientation that preferentially reduces the ear rate, and a method to resist the cold rolling texture to increase the ear rate Is taken.

【0003】[0003]

【発明が解決しようとする課題】しかし、これまでの熱
延条件では、焼鈍時に立方体方位再結晶組織を優先して
成長させることができなかった。本発明者等は、その原
因について鋭意研究を行い、従来の熱間圧延条件では、
中間焼鈍後において、前記の立方体方位が優先した集合
組織が十分に生じていないことを知見し、前記集合組織
が十分に安定して生じる製造条件、特に熱間仕上圧延条
件を詳細に検討して本発明を完成させるに到った。本発
明は、高強度で、しごき加工性とフランジ成形性に優
れ、かつ耳率が低いキャンボディ用などとして好適なア
ルミニウム合金板の製造方法の提供を目的とする。
However, under the hot rolling conditions so far, it was not possible to preferentially grow the cubic orientation recrystallized structure during annealing. The present inventors have conducted diligent research on the cause, and under the conventional hot rolling conditions,
After the intermediate annealing, it was found that the texture in which the cubic orientation had priority is not sufficiently generated, and the manufacturing conditions in which the texture was sufficiently stable, particularly the hot finish rolling conditions were examined in detail. The present invention has been completed. An object of the present invention is to provide a method for producing an aluminum alloy sheet which has high strength, is excellent in ironing workability and flange formability, and has a low ear rate, which is suitable for a can body.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Mgを 0.8〜1.4wt%、Mnを 0.8〜1.4wt%、Feを 0.2〜0.6w
t%、Siを 0.1〜0.4wt%、Cuを 0.1〜0.3wt%、Znを0.01〜
0.2wt%含有し、さらにTi 0.005〜0.05wt% を単独で或い
はB 0.0001〜0.01wt% とともに含有し、残部がAlと不可
避的不純物からなるアルミニウム合金鋳塊に、均質化
処理を 530〜630 ℃で1時間以上の加熱条件で施し、次
いで熱間粗圧延を施し、次いで熱間仕上圧延を、ス
タンド数が3以上のタンデム式熱間仕上圧延機を使用
し、圧延開始温度を 300〜400 ℃、圧延終了温度を 240
〜290 ℃とし、クーラント油を 1000l/min.以上の流量
で噴射して熱延板を冷却して施し、次いで冷間圧延を
施し、次いで中間焼鈍を 100℃/分以上の加熱速度で
360〜560 ℃の温度範囲の所定温度に急速加熱し、前記
所定温度に到達後直ちに或いは 120秒以内の保持の後、
冷却速度 100℃/分以上で70℃以下に冷却して施し、次
いで圧延率60%以上の最終冷間圧延を施すことを特徴
とする耳率の低いキャンボディ用アルミニウム合金板の
製造方法である。
According to the first aspect of the present invention,
Mg 0.8-1.4wt%, Mn 0.8-1.4wt%, Fe 0.2-0.6w
t%, Si 0.1-0.4wt%, Cu 0.1-0.3wt%, Zn 0.01-
0.2 wt% Ti 0.005-0.05 wt% Ti alone or together with B 0.0001-0.01 wt%, the balance of which is aluminum and inevitable impurities. At a heating condition of 1 hour or longer, then hot rough rolling, then hot finish rolling, using a tandem hot finishing mill with three or more stands, and a rolling start temperature of 300 to 400 ° C. , The rolling end temperature is 240
To 290 ℃, coolant oil is sprayed at a flow rate of 1000 l / min. Or more to cool the hot-rolled sheet, then cold rolling is performed, and then intermediate annealing is performed at a heating rate of 100 ℃ / min or more.
Rapid heating to a specified temperature in the temperature range of 360 to 560 ℃, immediately after reaching the specified temperature or after holding for 120 seconds,
A method for producing an aluminum alloy sheet for a can body having a low earring rate, which comprises cooling to 70 ° C or less at a cooling rate of 100 ° C / min or more, and then performing final cold rolling with a rolling rate of 60% or more. .

【0005】請求項2記載の発明は、最終冷間圧延を施
した後、100 〜150 ℃の温度範囲で最終焼鈍処理を施す
ことを特徴とする請求項1 記載の耳率の低いキャンボデ
ィ用アルミニウム合金板の製造方法である。
The invention according to claim 2 is characterized in that, after the final cold rolling, the final annealing treatment is carried out in the temperature range of 100 to 150 ° C. It is a manufacturing method of an aluminum alloy plate.

【0006】[0006]

【発明の実施の形態】以下に本発明にて用いるアルミニ
ウム合金板の合金成分について説明する。Mgは強度向上
に寄与し、缶底部の高強度化に有効である。Mgの含有量
を 0.8〜1.4wt%に限定した理由は、0.8wt%未満ではその
効果が十分に得られず、1.4wt%を超えるとDI成形時に加
工硬化し易くなり、しごき加工時の割れの発生頻度が増
加するためである。強度とDI成形性とのバランスを考慮
したMgの最適含有量は、他元素の添加量や製造条件にも
よるが、 1.0〜1.35wt% で、さらに望ましくは 1.1〜1.
3wt%の範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy components of the aluminum alloy sheet used in the present invention will be described below. Mg contributes to strength improvement and is effective for increasing the strength of the bottom of the can. The reason for limiting the Mg content to 0.8-1.4 wt% is that if it is less than 0.8 wt%, the effect is not sufficiently obtained, and if it exceeds 1.4 wt%, work hardening tends to occur during DI molding and cracking during ironing. This is because the frequency of occurrence of is increased. The optimum Mg content considering the balance between strength and DI formability depends on the amount of other elements added and manufacturing conditions, but is 1.0 to 1.35 wt%, more preferably 1.1 to 1.
It is in the range of 3 wt%.

【0007】Mnは強度とDI成形性の向上に寄与する。Mn
がDI成形性を向上させるのは、Mnが固体潤滑作用を有す
る Al-Mn系、Al-Mn-Fe系、 Al-Mn-Fe-Si系等の晶出物を
形成するためである。DI成形には、通常エマルジョン型
の潤滑剤が使用されるが、これだけでは潤滑が不十分で
あり、合金板と金型との凝着によるビルトアップが発生
してゴーリングまたはスコアリングと呼ばれる擦傷や焼
付が発生することがある。Mnを所定量含有させることに
より、前記ビルトアップの発生が阻止される。Mnの含有
量を 0.8〜1.4wt%に限定した理由は、0.8wt%未満ではDI
成形性の改善効果が不十分なばかりか強度も不足し、1.
4wt%を超えるとDI成形性および強度向上効果が飽和する
上、後述するFeと結合してAl-Mn-Fe系の巨大(時として
数mm程度)な初晶化合物が溶解鋳造時に発生して、これ
が圧延後も残存してDI成形時に割れやピンホールの原因
になるためである。Mnの含有量は 0.9〜1.3wt%、さらに
は 1.0〜1.2wt%が望ましい。
Mn contributes to the improvement of strength and DI moldability. Mn
Improves the DI formability because Mn forms crystallized substances such as Al-Mn-based, Al-Mn-Fe-based, and Al-Mn-Fe-Si-based which have a solid lubricating action. Emulsion type lubricants are usually used for DI molding, but this alone is insufficient for lubrication, and buildup occurs due to the adhesion between the alloy plate and the die, causing scratches called galling or scoring. Seizure may occur. By containing a predetermined amount of Mn, the occurrence of the build-up is prevented. The reason for limiting the Mn content to 0.8-1.4 wt% is that DI is less than 0.8 wt%.
Not only the effect of improving moldability is insufficient, but also the strength is insufficient.
If it exceeds 4 wt%, the DI formability and strength improving effect will be saturated, and a huge (sometimes about several mm) primary crystal compound of Al-Mn-Fe system will be generated during melt casting by combining with Fe described later. This is because it remains after rolling and causes cracks and pinholes during DI molding. The Mn content is preferably 0.9 to 1.3 wt%, more preferably 1.0 to 1.2 wt%.

【0008】Feは前記Mnの晶出物の生成を促進するとと
もにその分布状態を均一化してDI成形性をより一層向上
させる。Feの含有量を 0.2〜0.6wt%に限定した理由は、
0.2wt%未満ではその効果が十分に得られず、0.6wt%を超
えると前述のAl-Mn-Fe系の巨大初晶化合物が発生し易く
なるためである。Feの含有量は望ましくは 0.3〜0.5wt
%、さらに望ましくは 0.3〜0.45wt% である。
[0008] Fe promotes the formation of the Mn crystallized substance and makes the distribution state uniform to further improve the DI formability. The reason for limiting the Fe content to 0.2-0.6 wt% is
This is because if it is less than 0.2 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.6 wt%, the above-mentioned giant primary crystal compound of Al-Mn-Fe system is likely to be generated. Fe content should be 0.3 ~ 0.5wt
%, And more preferably 0.3 to 0.45 wt%.

【0009】CuはMgと同じように缶底部の高強度化に有
効である。Cuの含有量を 0.1〜0.3wt%に限定した理由
は、0.1wt%未満では強度が不十分で、耐圧強度を確保す
るために必要な最終冷間圧延での圧延率が大きくなって
DI成形性が低下し、0.3wt%を超えると強度が高くなりす
ぎてフランジ成形性が低下するためである。
Cu, like Mg, is effective in increasing the strength of the bottom of the can. The reason for limiting the Cu content to 0.1 to 0.3 wt% is that if the content is less than 0.1 wt%, the strength is insufficient, and the rolling ratio in the final cold rolling required to secure pressure resistance becomes large.
This is because the DI formability deteriorates, and if it exceeds 0.3 wt%, the strength becomes too high and the flange formability deteriorates.

【0010】Siは、Al-Fe-Mn系の晶出物に相変態を起こ
させ、Al-Mn-Fe-Si 系析出物を形成してその硬度を高
め、しごき加工性の向上に寄与する。Siの含有量を 0.1
〜0.5wt%に限定した理由は、0.1wt%未満ではその効果が
十分に得られず、0.3wt%を超えると晶出物が巨大化し
て、逆にしごき加工性が低下するためである。
Si causes a phase transformation in an Al-Fe-Mn-based crystallized product to form an Al-Mn-Fe-Si-based precipitate to increase its hardness and contribute to the improvement of ironing workability. . 0.1% Si content
The reason for limiting the content to ˜0.5 wt% is that if it is less than 0.1 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.3 wt%, crystallized substances become enormous and conversely ironing workability deteriorates.

【0011】Znは、表層部のAl-Mn-Fe系晶出物[(MnFe)A
l6等] を微細に分散させて潤滑性向上に寄与し、また絞
りおよびしごき加工後の転位組織を改善してフランジ加
工性を向上させる。Znの含有量を0.01〜0.2wt%に限定し
た理由は、0.01wt% 未満ではその効果が十分に得られ
ず、0.2wt%を超えると成形性には効果を示すが、耐食性
が低下するためである。
Zn is an Al-Mn-Fe system crystallized product [(MnFe) A
l 6 etc.] are finely dispersed to contribute to the improvement of lubricity, and the dislocation structure after drawing and ironing is improved to improve the flange formability. The reason for limiting the Zn content to 0.01-0.2 wt% is that if it is less than 0.01 wt%, its effect is not sufficiently obtained, and if it exceeds 0.2 wt%, it has an effect on formability, but corrosion resistance decreases. Is.

【0012】Ti、またはTiおよびB は、鋳塊の結晶粒を
均一微細化する。Tiの含有量を 0.005〜0.05wt% に限定
した理由は、Tiが0.005wt%未満では鋳塊の結晶粒を均一
微細化する効果が得られず、 0.05wt%を超えるとAl-Ti
系の巨大双晶化合物が溶解鋳造時に発生し、これが圧延
後も残存してDI成形時に割れやピンホールを発生させる
ためである。B はTiの鋳塊結晶粒を均一微細化させる効
果を助長する。B の含有量が 0.0001wt%未満ではその効
果が十分に得られず、 0.01wt%を超えるとTi-B系の巨大
な双晶化合物が溶解鋳造時に発生し易くなり、これが圧
延後も残存してフランジ成形時での割れやピンホールの
発生原因になる。不純物は、本発明の効果が損なわれな
い程度の量であれば許容される。例えば、Znは0.5wt%以
下、Crは0.3%以下、Zrは0.1wt%以下、V は0.1wt%以下で
あれば問題ない。
Ti, or Ti and B, makes the crystal grains of the ingot uniform and fine. The reason for limiting the Ti content to 0.005 to 0.05 wt% is that if Ti is less than 0.005 wt%, the effect of uniformly refining the crystal grains of the ingot cannot be obtained, and if it exceeds 0.05 wt%, Al-Ti
This is because a giant twin compound of the system is generated during melt casting and remains after rolling to cause cracks and pinholes during DI molding. B promotes the effect of uniformly refining Ti ingot crystal grains. If the B content is less than 0.0001 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.01 wt%, a Ti-B system giant twin compound is likely to occur during melt casting, and this remains after rolling. Can cause cracks and pinholes during flange molding. Impurities are acceptable as long as the effects of the present invention are not impaired. For example, if Zn is 0.5 wt% or less, Cr is 0.3% or less, Zr is 0.1 wt% or less, and V is 0.1 wt% or less, there is no problem.

【0013】次に本発明の製造方法について説明する。
前述の組成のアルミニウム合金を通常のDC鋳造法(半連
続鋳造法)によりスラブ(板状鋳塊)に鋳造する。この
スラブに先ず均質化処理を施す。この均質化処理を行う
ことにより、得られるアルミニウム合金板の強度、靱
性、深絞り加工性が向上し、また耳率のばらつきが減少
する。この均質化処理温度は 530℃未満では十分に均質
化されず、 630℃を超えると鋳塊表面に膨れが生じたり
する。また保持時間が1時間未満では十分に均質化され
ない。従って均質化処理は 530〜630 ℃で1時間以上保
持して行う。生産性とその効果を勘案した最も望ましい
均質化処理条件は 530〜630 ℃で3〜12時間の条件であ
る。
Next, the manufacturing method of the present invention will be described.
The aluminum alloy having the above composition is cast into a slab (plate-shaped ingot) by a normal DC casting method (semi-continuous casting method). The slab is first homogenized. By performing this homogenizing treatment, the strength, toughness, and deep drawability of the obtained aluminum alloy plate are improved, and the variation in the ear ratio is reduced. If the homogenization temperature is less than 530 ° C, the homogenization will not be sufficiently carried out, and if it exceeds 630 ° C, the ingot surface will swell. Further, if the holding time is less than 1 hour, it will not be sufficiently homogenized. Therefore, the homogenization treatment is performed at 530 to 630 ° C for 1 hour or more. The most desirable homogenization treatment condition in consideration of productivity and its effect is at 530 to 630 ° C for 3 to 12 hours.

【0014】均質化処理後、熱間粗圧延を常法により施
し、次いで熱間仕上圧延を施す。熱間仕上圧延では、条
件を厳密に規定して、中間焼鈍後の組織が立方体方位が
より優先的に生じた集合組織になるようにする。前記立
方体方位優先の集合組織は、マトリックスの歪みが多く
蓄積されている部分(変形集中帯)から核生成し成長し
た1種の再結晶集合組織である。従ってこの熱間仕上圧
延工程では、マトリックスに歪を十分蓄積させる必要が
ある。
After the homogenization treatment, hot rough rolling is performed by a conventional method, and then hot finish rolling is performed. In the hot finish rolling, the conditions are rigorously defined so that the structure after the intermediate annealing is a texture in which the cubic orientation is more preferentially generated. The cubic orientation-oriented texture is one kind of recrystallized texture that nucleates and grows from a portion (deformation concentration zone) where a large amount of matrix strain is accumulated. Therefore, in this hot finish rolling step, it is necessary to sufficiently accumulate strain in the matrix.

【0015】本発明では、熱間仕上圧延工程で歪を十分
に蓄積させるためにスタンド数が3以上のタンデム式の
熱間圧延機を用いる。ここでスタンド数が3未満では、
歪みを十分に蓄積させることができず、また歪みの蓄積
を十分にするために開始板厚を厚くする等の無理なパス
スケジュールで圧延を行うと、表面性状(焼付け、肌荒
れ等)を悪化させてしまう。熱間仕上圧延の開始温度を
300〜400 ℃に限定した理由は、前記開始温度が 300℃
未満では、圧延途中で熱延板のエッジが割れる等の問題
が生じ、 400℃を超えると微細なα相(Al-Mn-Fe-Si 系
金属間化合物)が析出し、この微細なα相が、後工程の
焼鈍処理時に、耳率の制御に寄与する立方体方位の発生
や成長を抑えてしまうためである。尚、微細なα相(平
均粒径1μm 程度以下のもの)は 400℃以上 500℃未満
の温度で析出し易いことが知られている。熱間仕上圧延
の終了温度を 240〜290 ℃に限定した理由は、 240℃未
満では板の表面状態が悪化し、 290℃を超えると転位の
回復が進行し、中間焼鈍前に十分に歪みを蓄積させるこ
とができない。この熱間仕上圧延ではクーラント油量を
1000l/min.以上の流量で噴射して熱延板を冷却する。そ
の理由は、クーラント油量が1000l/min.未満では、所要
の終了温度(240〜290 ℃)が得られず、しかも歪みの蓄
積が不十分である。圧延速度を遅くして熱延板の温度を
下げるのでは生産性が低下し好ましくない。クーラント
油の供給は、例えば、各スタンド入側または最終スタン
ドを除く各スタンド入側にノズルを備えた冷却装置を少
なくとも1個以上配置して行う。上記のように、本発明
では、熱間圧延において、マトリックス中に十分に歪み
を蓄積させ、しかも熱延中の微細α相の析出を避けた条
件で圧延を行うことにより、焼鈍時において立方体方位
がより優先的に生じた集合組織を得ることが可能となっ
た。
In the present invention, a tandem hot rolling mill having three or more stands is used in order to sufficiently accumulate strain in the hot finish rolling step. Here, if the number of stands is less than 3,
Strain cannot be accumulated sufficiently, and if rolling is performed with an unreasonable pass schedule such as increasing the starting plate thickness in order to sufficiently accumulate strain, the surface properties (baking, rough skin, etc.) will deteriorate. Will end up. Start temperature of hot finish rolling
The reason for limiting the temperature to 300-400 ℃ is that the starting temperature is 300 ℃.
If it is less than 400 ° C, problems such as cracking of the edges of the hot-rolled sheet will occur during rolling, and if it exceeds 400 ° C, fine α-phase (Al-Mn-Fe-Si intermetallic compound) will precipitate, and this fine α-phase will be precipitated. However, this is because the occurrence or growth of the cubic orientation that contributes to the control of the ear rate is suppressed during the annealing process in the subsequent process. It is known that a fine α phase (having an average particle size of about 1 μm or less) is likely to precipitate at a temperature of 400 ° C. or higher and lower than 500 ° C. The reason why the finish temperature of hot finish rolling is limited to 240 to 290 ℃ is that the surface condition of the plate deteriorates below 240 ℃, and the recovery of dislocations progresses above 290 ℃, and sufficient strain is generated before the intermediate annealing. Can not be accumulated. This hot finish rolling reduces the amount of coolant oil
Cool the hot-rolled sheet by jetting at a flow rate of 1000 l / min. Or more. The reason is that if the amount of coolant oil is less than 1000 l / min., The required end temperature (240 to 290 ° C) cannot be obtained, and the accumulation of strain is insufficient. If the rolling speed is slowed to lower the temperature of the hot-rolled sheet, the productivity is lowered, which is not preferable. The supply of the coolant oil is performed, for example, by arranging at least one cooling device equipped with a nozzle on each stand entry side or each stand entry side except the last stand. As described above, in the present invention, in hot rolling, sufficient strain is accumulated in the matrix, and further, rolling is performed under the condition that precipitation of fine α phase during hot rolling is avoided, so that the cubic orientation during annealing is obtained. It has become possible to obtain a texture that has occurred more preferentially.

【0016】熱間仕上圧延が終了した後、常法により冷
間圧延し、次いで中間焼鈍処理を施す。中間焼鈍は 360
〜560 ℃の温度範囲で施す。前記焼鈍温度が 360℃未満
では、強度が上がりすぎてDI成形性が低下し、 560℃を
超えるとCuやSi等の析出物が再固溶しすぎて、これが塗
装焼付け時に析出してフランジ成形性が低下する。中間
焼鈍では、目標温度に到達後直ちに冷却しても良い。つ
まり保持時間0でも良い。保持時間が 120秒を超える
と、焼鈍温度が 560℃以下でも析出物が再固溶しすぎて
好ましくない。加熱および冷却速度をともに 100℃/分
以上にしたのは生産性を高めるためである。冷却速度の
場合は、 100℃/分未満では、固溶したCuおよびSiが析
出して次の最終冷間圧延で十分な強度が得られなくなる
ためでもある。
After the hot finish rolling is completed, cold rolling is carried out by a conventional method, and then an intermediate annealing treatment is carried out. Intermediate annealing is 360
Apply in the temperature range of ~ 560 ° C. If the annealing temperature is lower than 360 ° C, the strength will be too high and the DI formability will be reduced, and if it exceeds 560 ° C, the precipitates such as Cu and Si will be re-dissolved too much, which will precipitate during the baking of the paint and flange forming. Sex decreases. In the intermediate annealing, cooling may be performed immediately after reaching the target temperature. That is, the holding time may be zero. If the holding time exceeds 120 seconds, the precipitates are too solid-resolved even if the annealing temperature is 560 ° C or less, which is not preferable. The heating and cooling rates were both set to 100 ° C / min or more in order to improve productivity. This is also because at a cooling rate of less than 100 ° C./minute, solid solution Cu and Si are precipitated and sufficient strength cannot be obtained in the subsequent final cold rolling.

【0017】中間焼鈍後に最終冷間圧延を施す。このと
きの圧延率を 60%以上に限定した理由は、 60%未満では
合金板の耐圧強度が不足するためである。
After the intermediate annealing, final cold rolling is performed. The reason for limiting the rolling rate to 60% or more at this time is that the alloy sheet has insufficient pressure resistance at less than 60%.

【0018】最終冷間圧延後に、必要に応じて最終焼鈍
を施す。最終焼鈍により加工組織が回復して、DI成形性
やフランジ成形性がさらに向上し、また缶形状(真円度
等)がより良好になる。最終焼鈍温度が 100℃未満では
その効果が十分に得られず、 150℃を超え或いは保持時
間が8時間を超えると固溶元素が析出しすぎてDI成形性
やフランジ成形性が低下する。最も望ましい最終焼鈍条
件は 115〜150 ℃で 1〜4 時間である。
After the final cold rolling, final annealing is applied if necessary. The final annealing restores the work structure, further improves DI formability and flange formability, and improves the can shape (roundness, etc.). If the final annealing temperature is less than 100 ° C, the effect cannot be sufficiently obtained, and if it exceeds 150 ° C or the holding time exceeds 8 hours, the solid solution element is excessively precipitated and DI formability and flange formability are deteriorated. The most desirable final annealing condition is 115 to 150 ° C for 1 to 4 hours.

【0019】[0019]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す組成のアルミニウム合金を常法
により溶解鋳造して厚さ500mm の板状鋳塊(スラブ)を
得た。次にこのスラブを面削により 490mm厚さにし、そ
の後600℃で6時間の均質化処理を施した後、熱間粗圧
延を常法により行った。次に熱間仕上圧延を、圧延開始
温度 380℃、圧延終了温度 270℃、クーラント油の噴射
量 1100l/min.の条件で施した。その後冷間圧延を施し
た。次に連続焼鈍炉により 440℃で0分(材料が 440℃
に到達後直ちに空冷)の焼鈍を行った。この時の加熱速
度は 800℃/分、冷却速度は1050℃/分であった。続い
て常法により板厚 0.3mmまで最終冷間圧延し(圧延率65
%)、次いで 125℃で2時間の最終焼鈍を施して缶胴用
アルミニウム合金板を製造した。
The present invention will be described below in detail with reference to examples. Example 1 An aluminum alloy having the composition shown in Table 1 was melt cast by a conventional method to obtain a plate-shaped ingot (slab) having a thickness of 500 mm. Next, this slab was faced to a thickness of 490 mm, homogenized at 600 ° C. for 6 hours, and then hot rough rolled by a conventional method. Next, hot finish rolling was performed under the conditions of a rolling start temperature of 380 ° C., a rolling end temperature of 270 ° C., and a coolant oil injection amount of 1100 l / min. Then, cold rolling was performed. Next, in a continuous annealing furnace at 440 ℃ for 0 minutes
Immediately after reaching (1), annealing was performed. The heating rate at this time was 800 ° C / min, and the cooling rate was 1050 ° C / min. Then, the final cold rolling was performed to the plate thickness of 0.3 mm by the conventional method (rolling rate 65%
%), And then subjected to final annealing at 125 ° C. for 2 hours to produce an aluminum alloy plate for a can body.

【0020】このようにして得られた合金板について、
耳率、引張強度、DI成形性、フランジ成形性を下記方法
により調査した。 耳率:前記合金板から57mmφの円板を切出し、これを直
径33mm、肩R2.5mmのポンチを用いてクリアランス30% で
深絞りした。 引張強度:前記合金板を 200℃で20分間加熱(塗装焼付
け条件)し、加熱前後の引張強さ(TS)と0.2%耐力(Y
S)を測定した。 DI成形性:炭酸飲料用のDI缶胴(内径66mmφ、側壁板厚
100μm、側壁先端部板厚 150μm)に成形した。 フランジ成形性:前記成形したDI缶胴を、トリミングと
洗浄を施した後、 200℃で20分間加熱し、次いで4段の
ネッキング加工を施して開口部の内径dを57mmφに縮小
し、最後に角度90°の円錐状の治具をフランジ割れが発
生するまで押し込み、割れの発生した時の開口部の径D
を測定し、開口部の径の増加率Pを、次式P=〔(D−
d)/d〕×100%により算出した。 評価基準は、耳率2.5%以内、加熱処理(200℃×20分) 後
の耐力265MPa以上、フランジ成形での口径の限界増加率
15%以上を良好とした。結果を表2に示す。
With respect to the alloy plate thus obtained,
Ear ratio, tensile strength, DI moldability, and flange moldability were investigated by the following methods. Ear ratio: A disk of 57 mmφ was cut out from the alloy plate, and this was deep-drawn with a punch having a diameter of 33 mm and a shoulder R2.5 mm at a clearance of 30%. Tensile strength: The alloy plate was heated at 200 ° C for 20 minutes (paint baking conditions), and the tensile strength (TS) before and after heating and 0.2% proof stress (Y
S) was measured. DI formability: DI can body for carbonated drinks (inner diameter 66 mmφ, side wall plate thickness)
100 μm, the thickness of the side wall tip portion was 150 μm). Flange formability: After trimming and cleaning the molded DI can body, heat it at 200 ° C for 20 minutes, then perform four steps of necking to reduce the inner diameter d of the opening to 57 mmφ, and finally Push in a conical jig with an angle of 90 ° until a flange crack occurs, and the diameter D of the opening when the crack occurs.
Is measured, and the increase rate P of the diameter of the opening is calculated by the following equation P = [(D-
It was calculated by d) / d] × 100%. The evaluation criteria are ear ratio within 2.5%, proof stress after heat treatment (200 ° C x 20 minutes) 265MPa or more, limit increase rate of diameter in flange molding
15% or more was considered good. Table 2 shows the results.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表2より明らかなように、本発明例品 (N
o.1〜3)はいずれも、耳率が低く、フランジ成形での口
径の限界増加率も大きくフランジ成形性が良好であっ
た。また200℃で20分間加熱(塗装焼付け条件)後の強
度(耐力)が265MPa以上あり、缶底部の耐圧強度も問題
のない高水準であった。またDI成形性も良好であった。
これに対し、比較例品のNo.4,5は、ともに耳率は低い
が、各々MgまたはMnの添加量が多いためDI成形でしごき
割れが生じた。No.6はCuとSiの添加量が多いために 200
℃で20分の加熱で引張強さが高くなりフランジ成形性が
低下した。No.7はMg添加量が少ないため強度が低く、N
o.8はMnの添加量が少ないためDI成形時に焼付が生じ
た。No.9はCuとSiの添加量が少ないため強度が低下し
た。
As is clear from Table 2, the products of the present invention (N
In all of o.1 to 3), the ear ratio was low, the limit increase rate of the diameter in the flange molding was large, and the flange moldability was good. The strength (proof stress) after heating at 200 ° C for 20 minutes (paint baking conditions) was 265 MPa or more, and the pressure resistance of the bottom of the can was at a high level without any problem. DI moldability was also good.
On the other hand, Comparative Examples Nos. 4 and 5 both had a low ear rate, but due to the large addition amount of Mg or Mn, respectively, ironing cracking occurred in DI molding. No. 6 is 200 because the added amount of Cu and Si is large.
Heating at 20 ℃ for 20 minutes increased the tensile strength and decreased the flange formability. No. 7 has low strength because the amount of Mg added is small,
In o.8, the amount of Mn added was small, so seizure occurred during DI molding. In No. 9, the strength decreased because the added amounts of Cu and Si were small.

【0024】(実施例2)表1に示したNo.Aのアルミニ
ウム合金を常法により溶解鋳造して厚さ 500mmのスラブ
を鋳造した。次にこのスラブを 490mm厚さに面削し、次
いで均質化処理、熱間粗圧延、熱間仕上圧延を行って熱
延コイルを得、この熱延コイルを室温まで冷却して冷間
圧延し、次いで連続焼鈍炉にて中間焼鈍し、続いて常法
により冷間圧延して缶胴用アルミニウム合金板を製造し
た。一部のものは冷間圧延後最終焼鈍を施した。均質化
処理、熱間仕上圧延、冷間圧延、中間焼鈍、最終冷間圧
延、最終焼鈍の条件は表3に示すとおり種々に変化させ
た。このようにして得られた合金板について、実施例1
と同じ方法により、耳率、引張強度、DI成形性、フラン
ジ成形性を調査した。耳率は、直径33mm、肩R2.5mmのポ
ンチを用いて57mmφの円板をクリアランス30% で深絞り
を行って測定した。結果を表4に示す。評価は実施例1
の場合と同様にして行った。
Example 2 The No. A aluminum alloy shown in Table 1 was melt-cast by a conventional method to cast a slab having a thickness of 500 mm. Next, this slab is chamfered to a thickness of 490 mm, then subjected to homogenization treatment, hot rough rolling and hot finish rolling to obtain a hot rolled coil, which is cooled to room temperature and cold rolled. Then, it was subjected to intermediate annealing in a continuous annealing furnace, and subsequently cold rolled by a conventional method to produce an aluminum alloy sheet for can bodies. Some of them were subjected to final annealing after cold rolling. The conditions for homogenization, hot finish rolling, cold rolling, intermediate annealing, final cold rolling, and final annealing were variously changed as shown in Table 3. Regarding the alloy plate thus obtained, Example 1
Ear ratio, tensile strength, DI moldability, and flange moldability were investigated by the same method as described above. The ear rate was measured by using a punch with a diameter of 33 mm and a shoulder of R2.5 mm and performing deep drawing on a 57 mmφ disc with a clearance of 30%. The results are shown in Table 4. Evaluation is Example 1
Was performed in the same manner as in.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】表3、4より明らかなように、本発明例品
(No.10〜15) は耳率も2.5%以下と低く、フランジ成形性
も優れ、また焼付けを想定した加熱処理後の強度(耐
力)も270MPa以上で缶底部の耐圧性も問題なく、さらに
DI成形性も良好であった。他方、比較例品のNo.16 は仕
上圧延開始温度が高いため耳率が悪化した。 No.17は仕
上圧延開始温度が低いため圧延終了時にエッジ割れが生
じた。No.18 は仕上圧延終了温度が高く、クーラント油
量が少ないため耳率が悪化し、さらに仕上圧延後の表面
性状も悪化し、肌荒れや焼付きが生じた。No.19 は仕上
圧延終了温度が高いため耳率が悪化した。 No.20は中間
焼鈍を省略したため、 No.21は中間焼鈍温度が低かった
ため、ともに強度が高くなりすぎてDI成形で絞り割れが
生じた。No.22 は中間焼鈍温度が高いため焼付を想定し
た加熱処理(200℃で20分) で強度が高くなり、このため
缶胴側壁先端部分の塗装、焼付け加熱による熱軟化が起
こらず、フランジ成形性が低下した。No.23 は最終冷間
圧延率が低いため、加熱処理後(200℃×20分) の耐圧強
度が低下した。 No.24は均質化処理温度が低いため、十
分な均質化が行われず耳率が悪化した。
As is clear from Tables 3 and 4, the products of the present invention
(No. 10 to 15) has a low ear rate of 2.5% or less, excellent flange formability, and the strength (proof strength) after heat treatment assuming baking is 270 MPa or more, and there is no problem with the pressure resistance of the bottom of the can.
DI moldability was also good. On the other hand, in Comparative Example No. 16, the earring rate deteriorated because the finish rolling start temperature was high. Since No. 17 had a low finish rolling start temperature, edge cracking occurred at the end of rolling. No. 18 had a high finish rolling finish temperature and a small amount of coolant oil, which deteriorated the ear ratio, and also deteriorated the surface properties after finish rolling, resulting in rough skin and seizure. No. 19 had a high finish rolling temperature, resulting in poor ear coverage. In No. 20, the intermediate annealing was omitted, and in No. 21, the intermediate annealing temperature was low. Therefore, the strength was too high and draw cracking occurred in DI molding. Since No. 22 has a high intermediate annealing temperature, its strength is increased by heat treatment assuming baking (20 minutes at 200 ° C), and therefore, the coating of the tip of the can body side wall and thermal softening due to baking heating do not occur, and flange forming is performed. The sex has decreased. Since No. 23 had a low final cold rolling rate, the pressure resistance after heat treatment (200 ° C x 20 minutes) decreased. Since No. 24 had a low homogenization temperature, sufficient homogenization was not performed and the ear ratio deteriorated.

【0028】[0028]

【発明の効果】以上に述べたように、本発明によれば、
高強度で、しごき加工性および塗装焼付け後のフランジ
成形性に優れた、耳率の低いアルミニウム合金板が得ら
れ、工業上顕著な効果を奏する。
As described above, according to the present invention,
It is possible to obtain an aluminum alloy plate having high strength, excellent ironing workability, and flange formability after paint baking, and having a low ear rate, and it has a remarkable industrial effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mgを 0.8〜1.4wt%、Mnを 0.8〜1.4wt%、
Feを 0.2〜0.6wt%、Siを 0.1〜0.4wt%、Cuを 0.1〜0.3w
t%、Znを0.01〜0.2wt%含有し、さらにTi 0.005〜0.05wt
% を単独で或いはB 0.0001〜0.01wt% とともに含有し、
残部がAlと不可避的不純物からなるアルミニウム合金鋳
塊に、均質化処理を 530〜630 ℃で1時間以上の加熱
条件で施し、次いで熱間粗圧延を施し、次いで熱間
仕上圧延を、スタンド数が3以上のタンデム式熱間仕上
圧延機を使用し、圧延開始温度を 300〜400 ℃、圧延終
了温度を 240〜290 ℃とし、クーラント油を 1000l/mi
n.以上の流量で噴射して熱延板を冷却して施し、次いで
冷間圧延を施し、次いで中間焼鈍処理を 100℃/分
以上の加熱速度で 360〜560 ℃の温度範囲の所定温度に
急速加熱し、前記所定温度に到達後直ちに或いは 120秒
以内の保持の後、冷却速度 100℃/分以上で70℃以下に
冷却して施し、次いで圧延率60%以上の最終冷間圧延
を施すことを特徴とする耳率の低いキャンボディ用アル
ミニウム合金板の製造方法。
1. A Mg content of 0.8 to 1.4 wt%, a Mn content of 0.8 to 1.4 wt%,
Fe 0.2-0.6wt%, Si 0.1-0.4wt%, Cu 0.1-0.3w
t%, Zn 0.01-0.2wt%, Ti 0.005-0.05wt
% Alone or with B 0.0001-0.01 wt%,
The aluminum alloy ingot, the balance of which is Al and unavoidable impurities, is homogenized at 530 to 630 ℃ for 1 hour or more under heating conditions, followed by hot rough rolling, then hot finish rolling, and the number of stands. Use a tandem hot finishing mill with a rolling ratio of 3 or more, with a rolling start temperature of 300 to 400 ℃, a rolling finish temperature of 240 to 290 ℃, and 1000 l / mi of coolant oil.
It is injected at a flow rate of n. or more to cool the hot-rolled sheet, then cold-rolled, and then an intermediate annealing process is performed at a heating rate of 100 deg. Immediately after reaching the specified temperature or after holding for 120 seconds or less, cool to 70 ° C or less at a cooling rate of 100 ° C / min or more, and then perform final cold rolling with a rolling rate of 60% or more. A method of manufacturing an aluminum alloy sheet for a can body having a low ear rate.
【請求項2】 最終冷間圧延後、 100〜150 ℃の温度範
囲で最終焼鈍処理を施すことを特徴とする請求項1記載
の耳率の低いキャンボディ用アルミニウム合金板の製造
方法。
2. The method for producing an aluminum alloy sheet for a can body having a low ear rate according to claim 1, wherein a final annealing treatment is performed in a temperature range of 100 to 150 ° C. after the final cold rolling.
JP12796396A 1996-05-23 1996-05-23 Production of aluminum alloy sheet for can body low in earing ratio Pending JPH09316615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12796396A JPH09316615A (en) 1996-05-23 1996-05-23 Production of aluminum alloy sheet for can body low in earing ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12796396A JPH09316615A (en) 1996-05-23 1996-05-23 Production of aluminum alloy sheet for can body low in earing ratio

Publications (1)

Publication Number Publication Date
JPH09316615A true JPH09316615A (en) 1997-12-09

Family

ID=14973010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12796396A Pending JPH09316615A (en) 1996-05-23 1996-05-23 Production of aluminum alloy sheet for can body low in earing ratio

Country Status (1)

Country Link
JP (1) JPH09316615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068159B1 (en) * 2009-02-04 2011-09-27 한국생산기술연구원 Homogenization heat-treatment method of Al alloy materials for ??? DRUM
JP2012140664A (en) * 2010-12-28 2012-07-26 Mitsubishi Alum Co Ltd Method for manufacturing high strength plate material for can body having satisfactory surface property
WO2023204255A1 (en) * 2022-04-22 2023-10-26 株式会社Uacj Cold-rolled aluminum alloy sheet, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068159B1 (en) * 2009-02-04 2011-09-27 한국생산기술연구원 Homogenization heat-treatment method of Al alloy materials for ??? DRUM
JP2012140664A (en) * 2010-12-28 2012-07-26 Mitsubishi Alum Co Ltd Method for manufacturing high strength plate material for can body having satisfactory surface property
WO2023204255A1 (en) * 2022-04-22 2023-10-26 株式会社Uacj Cold-rolled aluminum alloy sheet, and method for producing same

Similar Documents

Publication Publication Date Title
CN112746204B (en) Aluminum alloy plate and preparation method thereof
JP3657738B2 (en) Method for producing aluminum alloy plate for can body with low ear rate
US5662750A (en) Method of manufacturing aluminum articles having improved bake hardenability
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JPH11140576A (en) Aluminum alloy sheet for can body minimal in dispersion of flange length and its production
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP3566448B2 (en) Manufacturing method of aluminum alloy plate for can body with low ear ratio
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JPH05271833A (en) High strength aluminum alloy fin material for forming and its production
JPH09316615A (en) Production of aluminum alloy sheet for can body low in earing ratio
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JPH04221036A (en) Aluminum two piece can body and its manufacture
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP3409195B2 (en) Aluminum alloy hard plate for forming and manufacturing method thereof
JPH08127850A (en) Production of aluminum alloy sheet for forming low in edge ratio
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JPH10195608A (en) Production of aluminum alloy sheet for can body low in earing ratio
JPH0813109A (en) Production of aluminum alloy sheet for forming
JP3708616B2 (en) Manufacturing method of Ai alloy plate for DI can body excellent in formability