JPH05271833A - High strength aluminum alloy fin material for forming and its production - Google Patents

High strength aluminum alloy fin material for forming and its production

Info

Publication number
JPH05271833A
JPH05271833A JP5033924A JP3392493A JPH05271833A JP H05271833 A JPH05271833 A JP H05271833A JP 5033924 A JP5033924 A JP 5033924A JP 3392493 A JP3392493 A JP 3392493A JP H05271833 A JPH05271833 A JP H05271833A
Authority
JP
Japan
Prior art keywords
less
forming
molding
temperature
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5033924A
Other languages
Japanese (ja)
Inventor
Hiroaki Takeuchi
宏明 竹内
Hiroshi Kano
浩 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Publication of JPH05271833A publication Critical patent/JPH05271833A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce a high strength aluminum alloy fin material for forming capable of draw forming, drawless forming, or combined forming of them in spite of its small thickness and also to produce a sheet thereof. CONSTITUTION:An ingot of an Al alloy having a composition consisting of, by weight, <=0.1% Si, 0.10-1.0% Fe, 0.10-0.50% Mn, 0.01-0.15% Ti, and the balance Al with inevitable impurities is subjected to temp. rise and to heating up to 430-580 deg.C. Hot rolling is done by starting hot rolling while the temp. drop from the temp. at the completion of temp. rise and heating stays within 50 deg.C. Then, cold rolling is done so that draft at the final cold rolling is >=80%. The resulting sheet is subjected to refining annealing at 250-320 deg.C, by which intermetallic compounds of <=0.1mum diameter are distributed into a metallic structure by >=10pieces/mum<3> of number density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ドロー成形、ドローレ
ス成形あるいはその両者の複合成形即ち、張出し加工、
絞り加工、バーリング加工、しごき加工、リフレアー加
工の全部又は一部の加工を施して成形され、ルームエア
コン用フィンとして使用される、成形用高強度アルミニ
ウム合金フィン材およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to draw molding, drawless molding or composite molding of both, that is, overhang processing,
TECHNICAL FIELD The present invention relates to a high-strength aluminum alloy fin material for forming, which is formed by performing all or a part of drawing, burring, ironing, and refiring, and is used as a fin for a room air conditioner, and a method for producing the same.

【0002】[0002]

【従来技術およびその課題】一般に空調用熱交換器のア
ルミニウム合金フィンは図1(イ) 〜(ニ) に示すようにプ
レート部(1) に熱交チューブを装着するためのカラー部
(2) を形成したものでありプレート部形状に応じて、フ
ラットタイプ(イ) 、ルーバータイプ(ロ) 、スリットタイ
プ(ハ) 、コルゲートタイプ(ニ) に区分される。ドロー成
形(張り出し加工を主体とした成形)は図2(イ) 〜(ヘ)
に示すように、張り出し(イ) 、絞り(ロ) 〜(ニ) 、打ち抜
き、バーリング(ホ) 、リフレアー(ヘ) の工程からなり、
張り出し加工が中心をなしている。従って、このドロー
成形の場合、フィン材には優れた伸びが要求されてお
り、通常は厚さ0.12mm以上の厚い材料で、かつO材
あるいはH22等の調質を施しているのが現状である。
また、厚さ0.115mm以下の薄肉材をドロー成形した
場合、成形性劣化あるいは強度不足等の問題が生じるこ
とから、フィンの薄肉化あるいは薄肉材の高カラーハイ
ト成形は現行材料では非常に困難であった。上記の問題
を改善するために、数年前からドローレス成形(しごき
加工を主体とした成形)がフィン成形の主流となってい
る。ドローレス成形は図3(イ) 〜(ニ) に示すように、打
ち抜き−穴拡げ(イ) 、バーリング(ロ) 、しごき(ハ) 、リ
フレアー(ニ) の工程からなり、通常0.12mm以下の薄
いフィンの成形に用いられることから、低カラーハイト
成形におけるフィンの薄肉化(0.115〜0.105
mm前後の板厚)は可能となっている。ドローレス成形で
はしごき加工性に優れ、かつある程度の強度を必要とす
ることから、H24〜H26の半硬質材が使用されてい
る。しかし、0.12mm以下の薄肉材の高カラーハイト
成形は依然として困難であり、厚肉材を使用しているの
が現状である。また、ドローレス成形の長期プレス加工
におけるプレコート(表面処理)フィンの金型工具摩耗
に起因した成形不具合いが生じて、それによる金型・工
具メンテナンス費用が増大したり、潤滑油の低粘度化
(揮発性油の使用)に伴う成形性の劣化等が多発するな
ど、深刻な問題となっている。従って、現況に対し、成
形性能を維持し、かつ金型・工具メンテナンス費用の低
減化が強く望まれている。
2. Description of the Related Art Generally, an aluminum alloy fin for an air conditioner heat exchanger has a collar portion for mounting a heat exchange tube on a plate portion (1) as shown in FIGS. 1 (a) to 1 (d).
(2) is formed, and is classified into a flat type (a), a louver type (b), a slit type (c), and a corrugated type (d) according to the plate shape. Draw molding (molding mainly for overhanging) is shown in Fig. 2 (a) to (f)
As shown in, the process consists of overhanging (a), squeezing (b) to (d), punching, burring (e), and flare (f).
The overhanging process is central. Therefore, in the case of this draw forming, the fin material is required to have an excellent elongation, and normally, it is a thick material with a thickness of 0.12 mm or more and is tempered with an O material or H22. Is.
Also, when thin-walled materials with a thickness of 0.115 mm or less are draw-formed, problems such as deterioration of formability or insufficient strength occur, so it is very difficult to thin fins or form high-color height of thin-walled materials with current materials Met. In order to improve the above problems, drawless molding (molding mainly based on ironing) has been the mainstream of fin molding for several years. Drawless molding consists of punching-hole expansion (a), burring (b), ironing (c), and re-flare (d) as shown in Fig. 3 (a) to (d). Since it is used for forming thin fins, the fins can be made thinner (0.115 to 0.105) in low color height molding.
Thickness of around mm) is possible. In drawless molding, a semi-hard material of H24 to H26 is used because it has excellent ironing workability and requires some strength. However, it is still difficult to form a thin material having a thickness of 0.12 mm or less at a high color height, and the present situation is to use a thick material. Also, in the long-term press processing of drawless molding, a molding failure occurs due to die tool wear of the precoat (surface treatment) fins, which increases die / tool maintenance costs and lowers the viscosity of lubricating oil ( This is a serious problem such as frequent deterioration of moldability due to use of volatile oil). Therefore, it is strongly desired to maintain molding performance and reduce mold / tool maintenance costs compared to the current situation.

【0003】なお、最近では上記ドロー成形とドローレ
ス成形を組み合わせた複合成形(以下単に複合成形とい
う)も行われている。複合成形は図4に示すように、張
り出し(イ) 、絞り(ロ) 、打ち抜き、バーリング(ハ) 、し
ごき(ニ)(ホ)、リフレアー(ヘ) の工程からなり、張り出し
加工と、絞り加工によりある程度のカラー高さを得た
後、しごき加工を施す成形方法であり、しごき率をドロ
ーレス成形の場合より小さくすることができる。しかし
ながら、現在使用されているアルミニウム合金フィン材
では、いずれの成形方法を採用しても充分な成形性能の
維持や、金型・工具のメンテナンス費の低減は実現され
ていない。
Recently, composite molding (hereinafter simply referred to as composite molding) in which the draw molding and the drawless molding are combined has been performed. As shown in Fig. 4, compound molding consists of the steps of overhanging (a), drawing (b), punching, burring (c), ironing (d) (e), and flare (f). This is a molding method in which ironing is performed after a certain color height is obtained, and the ironing rate can be made smaller than in drawless molding. However, with the aluminum alloy fin materials currently used, sufficient molding performance is not maintained and maintenance costs for molds and tools are not reduced by any of the molding methods.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために種々の検討を重ねた結果、以下の知
見を得た。 従来のドロー成形に用いられる軟質フィン材では、
0.12mm以下に薄肉化した場合、強度不足のため、カ
ラー部への銅管挿入時、座屈を生じ、カラーと熱交チュ
ーブとの密着性を損ない、熱交性能を低下させるという
問題が起きる。また、従来のドローレス成形で用いられ
る硬質フィン材は、強度が高いことから、薄肉化が可能
であるが、伸び値が低いため、ドロー成形による高カラ
ーハイト成形は困難である。 ドローレス成形では、しごき加工が中心となること
から、潤滑油の低粘度化およびプレーコート皮膜に伴う
成形性の劣化、長期プレスでの工具摩耗等の問題を大幅
に低減させることは困難である。 上記を解決する手段として、ドロー成形により、
0.12mm以下の硬質プレコートフィンを成形できれ
ば、潤滑性低下による成形性劣化の抑制や工具摩耗に起
因するメンテナンス費用の低減が可能となるが、従来の
硬質材では伸び値が低く、特に板厚が0.105mm以下
の薄肉材ではドロー成形による良好な成形品が得られな
い。 又、成形後の洗浄を省略するための揮発性油の使用
に伴って、最近ではドロー成形とドローレス成形を組合
せ、張り出し加工、絞り加工によりある程度のカラー高
さを得た後、しごき加工を行うことでしごき率を小さく
した複合成形も登場していることから、複合成形によ
り、0.12mm以下の硬質プレコートフィンを成形でき
れば、上記に示す成形性劣化の抑制や工具摩耗に起因
するメンテナンス費用の低減が可能となるが、従来の硬
質材では伸び値が低く、特に板厚0.105mm以下の薄
肉材では複合成形で良好な成形品が得られない。 ドローレス成形で必要な強度、成形性、およびドロ
ー成形で必要な伸び値、成形性を兼備した材料が得られ
れば、0.12mm以下の薄肉フィンとしてドロー成形、
ドローレス成形あるいは複合成形による成形が可能とな
る。 Si、Fe、Mn、Tiの添加量、および製造工程
・条件を制御することにより、本願特許請求の範囲内の
金属組織状態を得ることができ、かつ上記に相当する
材料が得られる。
The present inventors have obtained the following findings as a result of various investigations for solving the above problems. With the soft fin material used for conventional draw molding,
When the wall thickness is reduced to 0.12 mm or less, there is a problem that due to insufficient strength, buckling occurs when inserting the copper tube into the collar, impairing the adhesion between the collar and the heat exchange tube, and lowering the heat exchange performance. Get up. Further, the hard fin material used in the conventional drawless molding can be thinned because of its high strength, but its elongation value is low, so that high color height molding by draw molding is difficult. In drawless molding, ironing is the main focus, so it is difficult to significantly reduce problems such as lowering the viscosity of lubricating oil, deterioration of moldability associated with the precoat film, and tool wear during long-term pressing. As a means to solve the above, by draw molding,
If hard pre-coated fins of 0.12 mm or less can be formed, it is possible to suppress formability deterioration due to deterioration of lubricity and reduce maintenance costs due to tool wear. However, conventional hard materials have a low elongation value, especially plate thickness. With a thin-walled material having a thickness of 0.105 mm or less, a good molded product cannot be obtained by draw molding. In addition, with the use of volatile oil to omit washing after molding, recently, draw molding and drawless molding have been combined to achieve a certain color height by overhanging and drawing, and then ironing is performed. Since composite molding with a reduced ironing rate has also appeared, if composite molding can form hard pre-coated fins of 0.12 mm or less, it is possible to reduce the above-mentioned deterioration of moldability and maintenance costs due to tool wear. Although it is possible to reduce the amount, the conventional hard material has a low elongation value, and in particular, a thin product having a plate thickness of 0.105 mm or less cannot obtain a good molded product by composite molding. If a material that has the strength and moldability required for drawless molding and the elongation value and moldability required for draw molding can be obtained, draw molding as a thin fin of 0.12 mm or less,
Molding by drawless molding or composite molding is possible. By controlling the addition amounts of Si, Fe, Mn, and Ti, and the manufacturing process / conditions, it is possible to obtain a metallographic state within the scope of the claims of the present application and to obtain a material corresponding to the above.

【0005】本発明は、上記知見から得られたもので、
請求項1記載の発明はSi0.1wt%以下、Fe0.1
0〜1.0wt%、Mn0.10〜0.50wt%、Ti
0.01〜0.15wt%を含み、残部がAlと不可避的
不純物とからなり、かつ金属組織中に直径が0.1μm
以下の金属間化合物が数密度で10個/μm3 以上分布
していることを特徴とする成形用高強度アルミニウム合
金フィン材であり、請求項2記載の発明は、Si0.1
wt%以下、Fe0.10〜1.0wt%、Mn0.10〜
0.50wt%、Ti0.01〜0.15wt%を含み、残
部がAlと不可避的不純物とからなるAl合金鋳塊を4
30〜580℃の温度に昇温加熱し、昇温加熱終了時の
温度からの温度低下が50℃以内であるうちに熱間圧延
を開始して熱間圧延を施した後、最終冷間圧延の圧下率
が80%以上となるように冷間圧延を施し、得られた薄
板に250〜320℃の温度で調質焼鈍を施し、金属組
織中に直径0.1μm以下の金属間化合物を数密度で1
0個/μm3 以上分布させることを特徴とする成形用高
強度アルミニウム合金フィン材の製造方法であり、請求
項3記載の発明はSi0.1wt%以下、Fe0.10〜
1.0wt%、Mn0.01〜0.50wt%、Ti0.0
1〜0.15wt%を含み、残部がAlと不可避的不純物
とからなるAl合金溶湯を回転する一対の対向する冷却
鋳型の外周面に連続的に供給して2〜15mm厚の鋳造板
とし、該鋳造板に最終冷間圧延の圧下率が80%以上と
なるように冷間圧延を施し、得られた薄板に250〜3
50℃の温度で調質焼鈍を施し、金属組織中に直径0.
1μm以下の金属化合物を数密度で10個/μm3 以上
分布させることを特徴とする成形用高強度アルミニウム
合金フィン材の製造方法である。
The present invention is obtained from the above findings,
In the invention according to claim 1, Si 0.1 wt% or less, Fe 0.1
0 to 1.0 wt%, Mn 0.10 to 0.50 wt%, Ti
0.01 to 0.15 wt%, the balance consisting of Al and unavoidable impurities, and having a diameter of 0.1 μm in the metal structure.
A high-strength aluminum alloy fin material for molding, characterized in that the following intermetallic compounds are distributed in a number density of 10 / μm 3 or more.
wt% or less, Fe 0.10 to 1.0 wt%, Mn 0.10
An Al alloy ingot containing 0.50 wt% and Ti of 0.01 to 0.15 wt% and the balance of Al and unavoidable impurities was used.
After heating by heating to a temperature of 30 to 580 ° C., hot rolling is started while the temperature decrease from the temperature at the end of heating by heating is within 50 ° C., hot rolling is performed, and then final cold rolling is performed. Cold rolling is performed so that the rolling reduction is 80% or more, and the obtained thin plate is subjected to temper annealing at a temperature of 250 to 320 ° C., and an intermetallic compound having a diameter of 0.1 μm or less is added to the metal structure. 1 in density
A method for producing a high-strength aluminum alloy fin material for forming, characterized in that 0 or more / μm 3 is distributed. The invention according to claim 3 has Si of 0.1 wt% or less and Fe of 0.10 to 0.
1.0 wt%, Mn 0.01 to 0.50 wt%, Ti0.0
A casting plate having a thickness of 2 to 15 mm by continuously supplying an Al alloy molten metal containing 1 to 0.15 wt% and the remainder being Al and unavoidable impurities to the outer peripheral surfaces of a pair of opposing cooling molds, The cast plate was cold-rolled so that the final cold-rolling reduction rate was 80% or more, and the thin plate thus obtained was subjected to 250-3.
After tempering annealing at a temperature of 50 ° C., the metal structure has a diameter of 0.
A method for producing a high-strength aluminum alloy fin material for molding, characterized in that a metal compound of 1 μm or less is distributed at a density of 10 pieces / μm 3 or more.

【0006】[0006]

【作用】本発明において合金組成、製造条件を上記のと
おり限定した理由を説明する。まず合金組成を本発明の
とおり限定した理由を説明する。本発明アルミニウム合
金フィン材は、Si0.1wt%(以下単に%と略記)以
下、Fe0.10〜1.0%、Mn0.10〜0.50
%、Ti0.01〜0.15%、を含み残部がAlと不
可避的不純物とからなり、成形加工前の金属組織中に直
径が、0.1μm以下の金属間化合物を数密度にして1
0個/μm3 以上分布していることを特徴とする。S
i、Fe、およびMnは一部アルミニウムに固溶し、フ
ィン材の強度を高める効果がある。特に、Mnは伸び値
を向上させる効果がある。Tiは一部アルミニウムに固
溶し、組織を微細化する働きがある。特に、調質焼鈍
時、均一に回復を進行させ、サブグレインを均一かつ微
細にする効果があることから、張出し、絞り加工性を向
上させる効果がある。また、Tiは材料の局部伸びを向
上させる働きがあると言われている。フィン成形加工の
中でも、特にリフレアーのようなフランジ成形を行う場
合、局部伸びが高いほど成形性能は向上する傾向にある
ことから、本発明ではTi添加量を規定している。ここ
で、FeおよびMnの添加量が0.10%未満では、元
素固溶による所望の強度、伸びが得られないばかりか、
直径が0.1μm以下の微細金属間化合物も少なくな
り、最終板の加工組織を調質焼鈍時、回復サブグレイン
の成長を抑制する働きが小さくなることから、結果とし
て伸び値を確保するために強度を低下せざるを得なくな
り、又複合成形におけるしごき性、リフレアー性も低下
する。さらに、サブグレイン分布が不均一となり易く、
このため、実際にドロー成形時、張出し性、絞り性等が
低下し、また強度不足のため成形品不良となってしま
う。一方、Siの添加量が0.1%より多く、Feの添
加量が1.00%より多く、またMnの添加量が0.5
0%より多くなると、金属間化合物の粗大化により0.
1μm以下の微細金属間化合物も少なくなり、また鋳造
時の晶出物も粗大化することから、成形時、粗大晶出物
近傍で不均一な変形を伴い張り出し性、絞り性等が低下
し、結果として成形品不良となる。従って、Siの添加
量は0.1%以下、Fe添加量は0.10〜1.0%、
Mn添加量は0.10〜0.50%とすることが必要で
ある。Tiの添加量が0.01%未満ではサブグレイン
を均一かつ微細にする効果が得られないだけでなく、成
形性、特に張り出し性、絞り性、リフレアー性をさらに
向上させることができない。一方、Ti添加量が0.1
5%より多くなると、Ti系の粗大な化合物が分布する
ため、均一かつ微細なサブグレインを形成させることが
困難となる。従って、Ti添加量は0.01〜0.15
%であることが必要である。その他の元素として、強度
と伸びのバランス向上あるいは成形性向上を目的とし
て、Zr、Cu、Y、Hf等を、微量添加する分には問
題ない。
The function of the alloy composition and manufacturing conditions in the present invention will be described below. First, the reason why the alloy composition is limited as in the present invention will be described. The aluminum alloy fin material of the present invention contains Si 0.1 wt% (hereinafter simply referred to as%) or less, Fe 0.10 to 1.0%, and Mn 0.10 to 0.50.
%, Ti 0.01 to 0.15%, the balance consisting of Al and unavoidable impurities, and the intermetallic compound having a diameter of 0.1 μm or less in the metal structure before forming is made to have a number density of 1
It is characterized in that the number is 0 / μm 3 or more. S
Some of i, Fe, and Mn are solid-dissolved in aluminum and have the effect of increasing the strength of the fin material. In particular, Mn has the effect of improving the elongation value. Ti partially dissolves in aluminum and has a function of refining the structure. In particular, during temper annealing, it has an effect of uniformly promoting recovery and making the subgrain uniform and fine, and therefore has an effect of improving overhang and drawability. Further, Ti is said to have a function of improving local elongation of the material. In the fin forming process, particularly in the case of performing flange forming such as reflaring, the higher the local elongation, the higher the forming performance tends to be. Therefore, the Ti addition amount is specified in the present invention. Here, if the addition amount of Fe and Mn is less than 0.10%, not only the desired strength and elongation due to elemental solid solution cannot be obtained,
The amount of fine intermetallic compounds with a diameter of 0.1 μm or less is also reduced, and the function of suppressing the growth of recovery subgrains during temper annealing of the final plate is reduced, and as a result, an elongation value is secured. Inevitably, the strength is reduced, and the ironing property and the flare property in composite molding are also reduced. Furthermore, the subgrain distribution tends to be non-uniform,
Therefore, during draw forming, the overhanging property, drawability, etc. are actually deteriorated, and the strength is insufficient, resulting in a defective molded product. On the other hand, the addition amount of Si is more than 0.1%, the addition amount of Fe is more than 1.00%, and the addition amount of Mn is 0.5%.
When it is more than 0%, the intermetallic compound is coarsened to a value of 0.
The amount of fine intermetallic compounds of 1 μm or less is reduced, and the crystallized product during casting is also coarsened. Therefore, during molding, the overhanging property, the drawability, etc. are deteriorated due to uneven deformation in the vicinity of the coarse crystallized product, As a result, the molded product becomes defective. Therefore, the addition amount of Si is 0.1% or less, the addition amount of Fe is 0.10 to 1.0%,
The added amount of Mn needs to be 0.10 to 0.50%. If the addition amount of Ti is less than 0.01%, not only the effect of making the subgrain uniform and fine cannot be obtained, but also the formability, particularly the overhanging property, the drawability, and the flare property cannot be further improved. On the other hand, the Ti addition amount is 0.1
If it exceeds 5%, coarse Ti-based compounds are distributed, and it becomes difficult to form uniform and fine subgrains. Therefore, the Ti addition amount is 0.01 to 0.15.
Must be%. There is no problem in adding a small amount of other elements such as Zr, Cu, Y, and Hf for the purpose of improving the balance between strength and elongation or improving moldability.

【0007】本発明で成形加工前の金属組織中の微細金
属間化合物を直径0.1μm以下と規定したのは、径が
0.1μmより大きいと最終板の加工組織を調質焼鈍
時、回復サブグレインの粒界移動遅延する働きが小さく
なり、結果として伸び値を確保するために強度を低下せ
ざるを得なくなり、さらにサブグレイン分布が不均一と
なり易いことから、実際にドロー成形、あるいは複合成
形時、張出し性、絞り性、リフレアー性等が低下し、ま
た強度不足のため成形品不良となり易い。更に、直径
0.1μm以下の金属間化合物の分布を数密度にして1
0個/μm3 以上と規定したのは、10個/μm3 未満
では上記の効果が得られにくく、従って張出し性、絞り
性、リフレアー性および強度等の向上効果がないためで
ある。
In the present invention, the fine intermetallic compound in the metal structure before forming is defined to have a diameter of 0.1 μm or less. The reason is that if the diameter is larger than 0.1 μm, the processed structure of the final plate is recovered during temper annealing. The effect of delaying the movement of the grain boundaries of the subgrains becomes smaller, and as a result, the strength must be reduced to secure the elongation value, and the subgrain distribution tends to become non-uniform. At the time of molding, the overhanging property, drawing property, and reflaring property are deteriorated, and the strength of the product is insufficient. Further, the distribution of intermetallic compounds having a diameter of 0.1 μm or less is set to a number density of 1
The reason for defining 0 or more / μm 3 or more is that if the number is less than 10 / μm 3, it is difficult to obtain the above-mentioned effect, and therefore there is no effect of improving the overhanging property, drawability, flare property and strength.

【0008】次に本発明の請求項2の製造方法について
説明する。請求項2の製造方法については、均質化処理
時の粗大な析出を抑制し、熱間圧延時あるいは調質焼鈍
時に直径0.1μm以下の微細な金属間化合物の析出を
促進させることを目的としており、そのためにまず鋳塊
を430〜580℃の範囲内に昇温加熱し、できるだけ
短い保持時間で熱間圧延を開始することが必要である。
ここで鋳塊の均質化処理温度が430℃未満では、鋳
塊組織の均質化が十分に行われないことから、熱間圧延
後の組織も不均一となり、ドロー成形時の張出し性、絞
り性、およびリフレアー性、あるいは複合成形時のしご
き性、リフレアー性は劣化する。一方、580℃より高
い温度では十分な固溶度が得られるが、晶出物が粗大に
球状化し、成形性に悪影響を及ぼすため好ましくない。
Next, a manufacturing method according to claim 2 of the present invention will be described. The production method of claim 2 is intended to suppress coarse precipitation during homogenization treatment and to promote precipitation of fine intermetallic compounds having a diameter of 0.1 μm or less during hot rolling or temper annealing. Therefore, for that purpose, it is necessary to first heat the ingot within a range of 430 to 580 ° C. by heating to start hot rolling in a holding time as short as possible.
If the ingot homogenization treatment temperature is lower than 430 ° C., the ingot microstructure is not sufficiently homogenized, so that the microstructure after hot rolling also becomes nonuniform, and the overhanging property and drawability during draw forming are obtained. , And the flare property, or the ironing property and the flare property during composite molding are deteriorated. On the other hand, if the temperature is higher than 580 ° C., a sufficient solid solubility can be obtained, but the crystallized material is coarsely spheroidized, which adversely affects the moldability, which is not preferable.

【0009】また、いずれの温度域でも保持時間が長く
なるほど析出物が粗大となり成形性に悪影響を及ぼすた
め、保持時間はできるだけ短くし、好ましくは4時間以
内とした方が望ましい。上記の鋳塊昇温加熱後、直ちに
熱間圧延を施すにあたり、鋳塊の昇温加熱終了時の温度
に比べ、50℃以内の温度低下において、熱間圧延を開
始することが必要である。鋳塊の昇温加熱終了時の温度
に比べ、50℃を超えて低下した温度にて熱間圧延を開
始した場合、熱延開始の時点で既に固溶元素量が大きく
低下し、実際には0.1μm以上の粗大な化合物となっ
てアルミマトリックス中に多く析出してしまう。このた
め、熱延中、あるいは熱延および冷延後仕上げ焼鈍時に
おいて、0.1μm以下の微細な金属化合物が析出しに
くく、本発明で規定している化合物の分布が得られな
い。従って鋳塊昇温加熱後、熱間圧延を施すにあたり、
鋳塊の昇温加熱終了時の温度に比べ、50℃以内の温度
低下において、熱間圧延を開始することが必要である。
Further, in any temperature range, the longer the holding time is, the coarser the precipitates are and the adverse effect on the formability. Therefore, the holding time should be as short as possible, preferably within 4 hours. When performing hot rolling immediately after the above ingot temperature rising heating, it is necessary to start hot rolling at a temperature decrease of 50 ° C. or less compared to the temperature at the end of temperature rising heating of the ingot. When hot rolling is started at a temperature lower than 50 ° C. compared to the temperature at the end of temperature rising and heating of the ingot, the amount of solid solution element is already largely reduced at the start of hot rolling, and actually, It becomes a coarse compound of 0.1 μm or more and is largely precipitated in the aluminum matrix. Therefore, during hot rolling, or during finish annealing after hot rolling and cold rolling, fine metal compounds having a size of 0.1 μm or less are less likely to precipitate, and the distribution of the compounds defined in the present invention cannot be obtained. Therefore, when performing hot rolling after heating the ingot to raise the temperature,
It is necessary to start hot rolling when the temperature of the ingot is decreased by 50 ° C. or less as compared with the temperature at the end of heating by heating.

【0010】圧下率80%以上で最終冷間圧延を行うの
は、80%未満では0.120mm以下の薄板をドロー成
形、あるいは複合成形する場合、強度が不足し座屈等の
問題が生じるためである。また、得られた薄板に250
〜320℃の範囲内の温度で調質焼鈍を施すことによ
り、薄板フィンの複合成形として必要な強度、およびド
ロー成形として必要な伸び値を確保し、良好な張出し
性、絞り性、穴拡げ性、しごき性、リフレアー性が得ら
れる。また、コルゲート性も良好となる。ここで、調質
温度が250℃未満では十分な成形性が得られず、32
0℃より高い温度で焼鈍した場合、強度が低下するだけ
でなく、かえって伸びも低下し、また再結晶粒を生じて
これが起点となって成形性が劣化してしまう。従って、
圧下率80%以上で最終冷間圧延を行い、得られた薄板
に250〜320℃の範囲内の温度で調質焼鈍を施す必
要がある。
The final cold rolling is carried out at a rolling reduction of 80% or more because if it is less than 80%, when a thin plate having a thickness of 0.120 mm or less is draw-formed or compound-formed, strength is insufficient and problems such as buckling occur. Is. In addition, the obtained thin plate is 250
By performing temper annealing at a temperature within the range of up to 320 ° C, the strength required for composite forming of thin plate fins and the elongation value required for draw forming are secured, and good overhanging property, drawability, and hole expandability are ensured. The ironing property and the flare property are obtained. Moreover, the corrugated property is also improved. Here, if the tempering temperature is less than 250 ° C, sufficient moldability cannot be obtained.
When annealed at a temperature higher than 0 ° C., not only the strength is lowered, but also the elongation is lowered, and recrystallized grains are generated, which becomes a starting point and deteriorates the formability. Therefore,
It is necessary to perform final cold rolling at a rolling reduction of 80% or more, and to perform temper annealing on the obtained thin plate at a temperature in the range of 250 to 320 ° C.

【0011】次に請求項3の製造方法について説明す
る。本発明はAl合金溶湯を回転する一対の対向する冷
却鋳型の外周面間に連続的に供給して板厚2〜15mmに
鋳造し、得られた鋳造板を圧下率80%以上で最終冷間
圧延し、得られた薄板に250〜350℃の範囲内の温
度で調質焼鈍を施すことによって、直径が0.1μm以
下の金属間化合物の析出を促進させることを目的として
いる。ここで、アルミニウム合金溶湯を回転する一対の
対向する冷却鋳型の外周面に連続的に供給して板厚2〜
15mmに鋳造すると規定したのは、2mm未満では鋳造時
に凝固状態が不安定となり、割れ、ピンホール等の欠陥
が生じやすくなり、一方、15mmを超えると鋳造工程に
おける冷却速度が小さくなり、固溶量は減少し、金属間
化合物が粗大に析出し、前述で規定した組織が得られな
いためである。従って、板厚2〜15mmに鋳造する必要
がある。なお、本発明の鋳造板厚に鋳造する方法には水
冷ロール法、キャスター法等の各種方法があるが、いず
れの方法を採用しても本発明の効果を損なうものではな
い。
Next, the manufacturing method of claim 3 will be described. The present invention continuously supplies the molten Al alloy between the outer peripheral surfaces of a pair of rotating opposing cooling molds to cast a plate having a thickness of 2 to 15 mm, and the resulting cast plate is subjected to final cold rolling at a rolling reduction of 80% or more. The purpose of the present invention is to accelerate precipitation of intermetallic compounds having a diameter of 0.1 μm or less by rolling and tempering the obtained thin plate at a temperature in the range of 250 to 350 ° C. Here, the aluminum alloy melt is continuously supplied to the outer peripheral surfaces of a pair of rotating cooling molds that face each other, and the plate thickness 2 to
It was stipulated that casting should be 15 mm. If it is less than 2 mm, the solidification state becomes unstable during casting, and defects such as cracks and pinholes are likely to occur, while if it exceeds 15 mm, the cooling rate in the casting process decreases and solid solution occurs. This is because the amount is decreased and the intermetallic compound is coarsely precipitated, and the structure defined above cannot be obtained. Therefore, it is necessary to cast to a plate thickness of 2 to 15 mm. There are various methods such as a water-cooled roll method and a caster method as the method for casting to the cast plate thickness of the present invention, but the effect of the present invention is not impaired even if any method is adopted.

【0012】圧下率80%以上で最終冷間圧延を行う理
由は、前述した請求項2の製造方法での説明内容と同様
である。また、得られた薄板に250〜350℃の範囲
内の温度で調質焼鈍を施すことにより、薄板フィンの複
合成形として必要な強度、およびドロー成形として必要
な伸び値を確保し、良好な張出し性、絞り性、穴拡げ
性、しごき性、リフレアー性が得られる。また、コルゲ
ート性も良好となる。ここで、調質温度が250℃未満
では十分な成形性が得られず、350℃より高い温度で
焼鈍した場合、強度が低下するだけでなく、かえって伸
びも低下し、また再結晶粒を生じてこれが起点となって
成形性が劣化してしまう。従って、圧下率80%以上で
最終冷間圧延を行い、得られた薄板に250〜350℃
の範囲内の温度で調質焼鈍を施す必要がある。
The reason why the final cold rolling is performed at a rolling reduction of 80% or more is the same as that explained in the manufacturing method of claim 2. Further, by subjecting the obtained thin plate to temper annealing at a temperature in the range of 250 to 350 ° C., the strength required for composite forming of thin plate fins and the elongation value required for draw forming are secured, and good overhanging is achieved. Properties, drawability, hole expandability, ironing property, and flare property are obtained. Moreover, the corrugated property is also improved. Here, if the tempering temperature is less than 250 ° C., sufficient formability cannot be obtained, and when annealed at a temperature higher than 350 ° C., not only the strength decreases but also the elongation decreases, and recrystallized grains occur. As a starting point, the formability deteriorates. Therefore, the final cold rolling is performed at a rolling reduction of 80% or more, and the obtained thin plate is 250 to 350 ° C.
It is necessary to perform temper annealing at a temperature within the range.

【0013】〔実施例1〕表1に示す合金組成のAl合
金を水冷鋳造、あるいは連続鋳造(水冷ロール法)によ
り作製した。水冷鋳造法による鋳塊(厚さ400mm)を
片面10mmずつ両面面削後、表2、3に示した条件で均
質化処理(鋳塊昇温加熱を含む)、熱間圧延を行い、厚
さ6mmの熱延板を得た。また、連続鋳造法により、厚さ
5.0mm、および8.0mmの鋳造板を得た。熱延板ある
いは鋳造板を冷間圧延し、厚さ0.115mm、0.10
0mmの薄板とした後、250〜320℃(水冷鋳造によ
り得られた薄板)、あるいは250〜350℃(連続鋳
造により得られた薄板)範囲内の温度で調質焼鈍を施し
て引張強さが10.0〜15.0kgf /mm2 の成形用フ
ィン材を得た。このようにして得られたフィン材の金属
間化合物の分布状態、および成形性評価結果を表4、5
に示す。ここで金属間化合物の分布状態は、透過型電子
顕微鏡を用いて化合物の粒子径およびその粒子の一定体
積中の存在数を測定した。なお、その粒子径は粒子の投
影面積と等しい面積の円の直径とした。成形性試験につ
いては、まずドロー成形によるカラー成形高さの限界値
測定を板厚0.100mm、0.115mmにおいて行った
結果を示す。次に、実機成形による評価により、板厚
0.105mmのフィン材を用いて、カラー高さ1.6mm
の銅管固定穴をドロー成形用金型を用いて張出し、絞り
により連続成形し、最終加工のリフレアー加工まで行
い、960個のカラーを得た後、リフレアー(カーリン
グ)部先端に割れの生じた穴数の測定から割れ不良率を
算出し、これを現行材の厚さ0.130mmのフィン材を
同様に成形した時のリフレアー割れ不良率と比較するこ
とにより、評価を行った。同様に複合成形用金型を用い
て、張り出し、絞り、しごき、リフレアーの連続加工を
行い、960個のカラーを得た後、リフレアー(カーリ
ング)部先端に割れを生じた穴数の測定から割れ不良率
を算出し、これを上記現行材と比較することにより、評
価を行った。
Example 1 An Al alloy having an alloy composition shown in Table 1 was produced by water cooling casting or continuous casting (water cooling roll method). The ingot (thickness 400 mm) made by the water-cooled casting method is machined on both sides by 10 mm on each side, then homogenized under the conditions shown in Tables 2 and 3 (including heating and heating the ingot) and hot-rolled to obtain the thickness. A 6 mm hot rolled sheet was obtained. Further, a cast plate having a thickness of 5.0 mm and a thickness of 8.0 mm was obtained by the continuous casting method. Cold rolled hot-rolled sheet or cast sheet, thickness 0.115mm, 0.10
After making a thin plate of 0 mm, it is tempered at a temperature in the range of 250 to 320 ° C. (thin plate obtained by water cooling casting) or 250 to 350 ° C. (thin plate obtained by continuous casting) to obtain tensile strength. A molding fin material of 10.0 to 15.0 kgf / mm 2 was obtained. The distribution state of the intermetallic compound of the fin material thus obtained and the formability evaluation results are shown in Tables 4 and 5.
Shown in. Here, for the distribution state of the intermetallic compound, the particle size of the compound and the number of the particles present in a given volume were measured using a transmission electron microscope. The particle diameter was the diameter of a circle having an area equal to the projected area of the particles. As for the formability test, first, the results of performing the limit value measurement of the color forming height by draw forming at plate thicknesses of 0.100 mm and 0.115 mm are shown. Next, as a result of evaluation by actual molding, using a fin material with a plate thickness of 0.105 mm, a collar height of 1.6 mm
The copper tube fixing hole of No. 2 was overhanged using a draw forming die, continuously formed by drawing, and the final processing was performed to the re-flare processing, and after obtaining 960 colors, cracks occurred at the tip of the re-flare (curling) part. Evaluation was performed by calculating the crack defect rate from the measurement of the number of holes, and comparing it with the refresh flare crack defect rate when a fin material having a thickness of 0.130 mm of the current material was similarly formed. Similarly, using a composite molding die, continuous processing of overhanging, squeezing, ironing, and flare was performed, and after obtaining 960 colors, cracks occurred at the tip of the flare (curling) part. Evaluation was performed by calculating the defective rate and comparing it with the above-mentioned current material.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【表5】 [Table 5]

【0019】表4、5から明らかなように、本発明材試
料No.1〜8、22〜24は、従来材試料No.20、2
1に比べ、より薄い板厚においてドロー成形、あるいは
複合成形が可能であり、特に0.100mmの板厚でのド
ロー成形による張出し成形性、リフレアー成形性は従来
材に比べ優れている。また、0.115mmの板厚でのカ
ラー成形高さの限界値についても、本発明材は、従来材
に比べ優れている。本発明材は、従来材に比べ、0.1
μm以下の金属間化合物が数多く分布していることか
ら、本発明材では最終板の加工組織を調質焼鈍した時、
これらの微細な化合物が回復サブグレインの粒界移動を
遅延する働きをし、それによって再結晶核の発生を抑制
することから、薄肉フィンを複合成形するのに必要な強
度を維持し、その上で本成形に必要な張出し、絞り成形
性、しごきリフレアー成形性も優れることになる。従っ
て、本発明材は、0.130mmから0.115mmへと板
厚を薄肉化しても、表4、5に示すように現行板厚
(0.130mm)同等以上の限界カラー高さレベルを確
保することができる。又、複合成形においても現行材同
等以上のリフレアー成形性を保持することができる。
As is clear from Tables 4 and 5, the present invention material sample No. Nos. 1 to 8 and 22 to 24 are conventional material sample Nos. 20, 2
Compared with No. 1, draw forming or composite forming can be performed with a thinner plate thickness, and in particular, the overhang formability and the flare formability by draw forming with a plate thickness of 0.100 mm are superior to the conventional material. Further, the material of the present invention is superior to the conventional material also in the limit value of the color forming height at the plate thickness of 0.115 mm. The material of the present invention is 0.1 compared with the conventional material.
Since many intermetallic compounds having a size of μm or less are distributed, in the material of the present invention, when the processed structure of the final plate is temper-annealed,
These fine compounds function to delay the grain boundary migration of the recovered subgrains, thereby suppressing the generation of recrystallization nuclei, thus maintaining the strength required for composite molding of thin fins, and Therefore, the overhang, drawing formability, and ironing reflaring formability required for the main forming are excellent. Therefore, even if the thickness of the material of the present invention is reduced from 0.130 mm to 0.115 mm, as shown in Tables 4 and 5, a marginal color height level equal to or higher than the current thickness (0.130 mm) is secured. can do. Further, even in composite molding, it is possible to maintain the flare moldability equal to or higher than the current material.

【0020】これに対して、本発明の範囲からはずれる
比較材試料No.9〜19、25〜27は、ドロー成形に
おける張出し性、絞り性、リフレアー性、および複合成
形におけるリフレアー性が本発明材に比べ劣り、限界カ
ラー高さも本発明材以下のレベルである。すなわち、S
i、Fe、Mn、含有量のいずれかが上限を超える比較
材試料No.19、12、13、25は、金属間化合物の
粗大化により、直径0.1μm以下の微細金属間化合物
も少なくなり、また鋳造時の晶出物も粗大化することか
ら、成形時の張出し性、絞り性、リフレアー性は低下
し、結果として成形品不良となる。また、比較材試料N
o.14はTi含有量が上限を超えることから、Ti系
の粗大な化合物が分布し、均一かつ微細なサブグレイン
を形成させることが困難となり、結果として成形時、張
出し性、絞り性、リフレアー性は低下する。
On the other hand, Comparative Material Sample No. outside the scope of the present invention. Nos. 9 to 19 and 25 to 27 are inferior to the material of the present invention in the overhanging property, drawability, reflaring property in draw molding, and the reflaring property in composite molding, and the limit color height is at a level lower than that of the present invention material. That is, S
i, Fe, Mn, or any of the contents exceeds the upper limit, the comparative material sample No. In Nos. 19, 12, 13, and 25, the coarsening of intermetallic compounds reduces the amount of fine intermetallic compounds having a diameter of 0.1 μm or less, and the crystallized substances at the time of casting also become coarse. In addition, the drawability and the refreshing property are deteriorated, resulting in a defective molded product. Also, comparative material sample N
o. In No. 14, since the Ti content exceeds the upper limit, a coarse Ti-based compound is distributed, and it becomes difficult to form uniform and fine subgrains, and as a result, the bulging property, the drawability, and the flare property are reduced during molding. descend.

【0021】製造条件が本発明の範囲からはずれる比較
材試料No.9、12、25、15、16、17、26、
27、18、19は、板厚0.105mmでドロー成形お
よび複合成形した場合、張出し性、絞り性、あるいはリ
フレアー性が劣化している。比較材試料No.15、18
は、熱間圧延開始温度が均質化処理温度に比べ50℃以
上低下した温度となっていることから、熱延開始の時点
で既に固溶元素量が大きく低下し、実際には直径が0.
1μmを超える粗大な化合物となってアルミマトリック
ス中に多く析出してしまう。このため、熱延中、あるい
は熱延および冷延後仕上げ焼鈍時において、直径0.1
μm以下の微細な金属間化合物が析出しにくく、本発明
で規定している金属間化合物の分布状態が得られないこ
とから、薄肉フィンを成形時、張出し性、絞り性、リフ
レアー性が劣化するのである。比較材試料No.17は、
均質化処理温度が本発明の範囲下限未満であるため鋳塊
組織の均質化が十分に行われず、熱延後の組織も不均一
となり、ドロー成形時、張出し性、リフレアー性が劣化
するのである。比較材試料No.25、26、27の鋳造
板厚は、請求項3の製造方法における鋳造板厚の規定外
にあるため、凝固状態が不安定となり、あるいは冷却速
度の低下による固溶度減少から化合物が粗大化する、等
から本発明で規定している0.1μm以下の微細な金属
間化合物の分布状態が得られない。このため、成形時、
張出し性、絞り性、リフレアー性は劣化するのである。
Comparative material sample No. whose manufacturing conditions are out of the range of the present invention 9, 12, 25, 15, 16, 17, 26,
Nos. 27, 18, and 19 have poor bulging properties, drawability, or flare properties when subjected to draw molding and composite molding with a plate thickness of 0.105 mm. Comparative material sample No. 15, 18
Since the hot rolling start temperature is a temperature lower than the homogenization treatment temperature by 50 ° C. or more, the amount of the solid solution element has already dropped significantly at the start of hot rolling, and the diameter is actually 0.
It becomes a coarse compound exceeding 1 μm and is often precipitated in the aluminum matrix. Therefore, during hot rolling, or during finish annealing after hot rolling and cold rolling, a diameter of 0.1
Since a fine intermetallic compound having a size of μm or less is hard to precipitate and the distribution state of the intermetallic compound defined in the present invention cannot be obtained, the overhanging property, the drawability, and the flare property are deteriorated when the thin fin is formed. Of. Comparative material sample No. 17 is
Since the homogenization treatment temperature is less than the lower limit of the range of the present invention, homogenization of the ingot structure is not sufficiently performed, the structure after hot rolling also becomes non-uniform, and the overhanging property and the flare property deteriorate during draw forming. .. Comparative material sample No. Since the cast plate thicknesses of 25, 26, and 27 are out of the range of the cast plate thickness in the manufacturing method of claim 3, the solidification state becomes unstable, or the compound becomes coarse due to a decrease in solid solubility due to a decrease in cooling rate. Therefore, the distribution state of the fine intermetallic compound of 0.1 μm or less defined in the present invention cannot be obtained. Therefore, during molding,
The overhanging property, the drawability, and the flare property are deteriorated.

【0022】〔実施例2〕表4、5に示した本発明材、
比較材の一部試料について、調質焼鈍ごとの素板性能、
具体的には、引張強さ、伸び、エリクセン値、限界穴拡
げ率を測定し、その結果を表6に示す。成形性評価につ
いては、表4、5での成形同様、板厚0.105mmのフ
ィン材を用いて、張出し絞りタイプのドロー成形型、お
よび複合成形型により、張出し、絞り、穴拡げ、しご
き、リフレアー加工を行い、現行材の厚さ0.130mm
フィン材のリフレアー割れ不良率と比較することによ
り、評価を行った。
Example 2 The material of the present invention shown in Tables 4 and 5,
For some samples of comparative materials, the blank plate performance for each temper annealing,
Specifically, the tensile strength, elongation, Erichsen value, and limit hole expansion ratio were measured, and the results are shown in Table 6. As for the formability evaluation, as in the case of forming in Tables 4 and 5, using a fin material having a plate thickness of 0.105 mm, a draw forming die of an extension drawing type and a composite forming die were used to extend, draw, expand the hole, iron, The thickness of current material is 0.130mm
The evaluation was performed by comparing the defective rate of refraction cracking of the fin material.

【0023】[0023]

【表6】 [Table 6]

【0024】表6から明らかなように本発明材は、比較
材に比べ、強度を低下させずに、より高い伸び値、エリ
クセン値、限界穴拡げ率を有することから、実機のドロ
ー成形および複合成形においても優れた張出絞り性能、
しごき性能、リフレアー性能を維持するのである。
As is clear from Table 6, the material of the present invention has higher elongation value, Erichsen value, and limit hole expansion ratio than the comparative material without lowering the strength, and therefore, the draw molding and the composite molding of the actual machine are performed. Excellent overhanging performance in molding,
The ironing performance and the refreshing performance are maintained.

【0025】[0025]

【発明の効果】以上述べたように、本発明によって得ら
れたフィン材は、ドロー成形、複合成形における、張出
し性、絞り性、しごき性、リフレアー性に優れ、成形割
れ不良率を著しく低減し得るという顕著な効果を奏する
ものである。本発明フィン材はドローレス成形に適用で
きることは勿論である。特に、0.100mmなどの薄板
においてもドロー成形用の金型で1.8〜2.2mm高さ
までカラー成形できることから、大幅な設備および材料
のコストダウンを図ることが可能となった。
As described above, the fin material obtained by the present invention is excellent in overhanging property, drawability, ironing property, and reflaring property in draw molding and composite molding, and significantly reduces the molding crack defect rate. It has a remarkable effect of obtaining. It goes without saying that the fin material of the present invention can be applied to drawless molding. In particular, even a thin plate of 0.100 mm or the like can be color-molded to a height of 1.8 to 2.2 mm with a drawing mold, which makes it possible to significantly reduce the cost of equipment and materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ) 〜(ニ) はそれぞれ熱交換器のアルミニウム
フィンの形態を示すものである。(イ) はフラットタイ
プ、(ロ) はルーバータイプ、(ハ) はスリットタイプ、
(ニ)はコルゲートタイプ。
1 (a) to 1 (d) show the shapes of aluminum fins of a heat exchanger. (A) is a flat type, (B) is a louver type, (C) is a slit type,
(D) is a corrugated type.

【図2】(イ) 〜(ヘ) はドロー成形によるフィンの成形方
法を断面図で示す説明図。
FIGS. 2A to 2F are explanatory views showing a cross-sectional view of a fin forming method by draw forming.

【図3】(イ) 〜(ニ) はドローレス成形によるフィンの成
形方法を、断面図で示す説明図。
3A to 3D are explanatory views showing a cross-sectional view of a fin forming method by drawless forming.

【図4】(イ) 〜(ヘ) は複合成形によるフィンの成形方法
を断面図で示す説明図。
4 (a) to 4 (f) are cross-sectional explanatory views showing a fin forming method by composite forming.

【符号の説明】[Explanation of symbols]

1 プレート部 2 カラー部 1 Plate part 2 Color part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si0.1wt%以下、Fe0.10〜
1.0wt%、Mn0.10〜0.50wt%、Ti0.0
1〜0.15wt%を含み、残部がAlと不可避的不純物
とからなり、かつ金属組織中に直径0.1μm以下の金
属間化合物が数密度で10個/μm3 以上分布している
ことを特徴とする成形用高強度アルミニウム合金フィン
材。
1. Si 0.1 wt% or less, Fe 0.10 to
1.0 wt%, Mn 0.10 to 0.50 wt%, Ti0.0
1 to 0.15 wt%, the balance consisting of Al and unavoidable impurities, and 10 or more intermetallic compounds having a diameter of 0.1 μm or less are distributed in the metal structure at a number density of 10 / μm 3 or more. High strength aluminum alloy fin material for forming that is characteristic.
【請求項2】 Si0.1wt%以下、Fe0.10〜
1.0wt%、Mn0.10〜0.50wt%、Ti0.0
1〜0.15wt%を含み、残部がAlと不可避的不純物
とからなるAl合金鋳塊を430〜580℃の温度に昇
温加熱し、昇温加熱終了時の温度からの温度低下が50
℃以内であるうちに熱間圧延を開始して熱間圧延を施し
た後、最終冷間圧延の圧下率が80%以上となるように
冷間圧延を施し、得られた薄板に250〜320℃の温
度で調質焼鈍を施し、金属組織中に直径0.1μm以下
の金属間化合物を数密度で10個/μm3 以上分布させ
ることを特徴とする成形用高強度アルミニウム合金フィ
ン材の製造方法。
2. Si 0.1 wt% or less, Fe 0.10-
1.0 wt%, Mn 0.10 to 0.50 wt%, Ti0.0
An Al alloy ingot containing 1 to 0.15 wt% and the balance consisting of Al and unavoidable impurities is heated to a temperature of 430 to 580 ° C., and a temperature decrease from the temperature at the end of the heating is 50.
After the hot rolling was started while the temperature was within ℃, and the hot rolling was performed, the cold rolling was performed so that the rolling reduction of the final cold rolling was 80% or more. Manufacture of a high-strength aluminum alloy fin material for forming, characterized by performing temper annealing at a temperature of ℃ and distributing intermetallic compounds having a diameter of 0.1 μm or less in the metal structure at a density of 10 or more / μm 3 Method.
【請求項3】 Si0.1wt%以下、Fe0.10〜
1.0wt%、Mn0.01〜0.50wt%、Ti0.0
1〜0.15wt%を含み、残部がAlと不可避的不純物
とからなるAl合金溶湯を回転する一対の対向する冷却
鋳型の外周面に連続的に供給して2〜15mm厚の鋳造板
とし、該鋳造板に最終冷間圧延の圧下率が80%以上と
なるように冷間圧延を施し、得られた薄板に250〜3
50℃の温度で調質焼鈍を施し、金属組織中に直径0.
1μm以下の金属化合物を数密度で10個/μm3 以上
分布させることを特徴とする成形用高強度アルミニウム
合金フィン材の製造方法。
3. Si 0.1 wt% or less, Fe 0.10 ~
1.0 wt%, Mn 0.01 to 0.50 wt%, Ti0.0
A casting plate having a thickness of 2 to 15 mm by continuously supplying an Al alloy molten metal containing 1 to 0.15 wt% and the remainder being Al and unavoidable impurities to the outer peripheral surfaces of a pair of opposing cooling molds, The cast plate was cold-rolled so that the final cold-rolling reduction rate was 80% or more, and the thin plate thus obtained was subjected to 250-3.
After tempering annealing at a temperature of 50 ° C., the metal structure has a diameter of 0.
A method for producing a high-strength aluminum alloy fin material for molding, characterized in that a metal compound having a size of 1 μm or less is distributed at a density of 10 pieces / μm 3 or more.
JP5033924A 1992-01-28 1993-01-14 High strength aluminum alloy fin material for forming and its production Pending JPH05271833A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3707592 1992-01-28
JP4-37075 1992-01-28
CA002099697A CA2099697C (en) 1992-01-28 1993-06-29 High strength aluminum alloy for forming fin and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH05271833A true JPH05271833A (en) 1993-10-19

Family

ID=25676334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033924A Pending JPH05271833A (en) 1992-01-28 1993-01-14 High strength aluminum alloy fin material for forming and its production

Country Status (2)

Country Link
JP (1) JPH05271833A (en)
CA (1) CA2099697C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899350A1 (en) * 1997-07-17 1999-03-03 Norsk Hydro ASA High extrudability and high corrosion resistant aluminium alloy
KR100226515B1 (en) * 1997-07-14 1999-10-15 백창기 Aluminium alloy forheat-exchanger fin and method manufacturing the fin having advanced strength and forming
US6458224B1 (en) 1999-12-23 2002-10-01 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6503446B1 (en) 2000-07-13 2003-01-07 Reynolds Metals Company Corrosion and grain growth resistant aluminum alloy
US6602363B2 (en) 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
CN103072330A (en) * 2013-02-21 2013-05-01 南通恒秀铝热传输材料有限公司 Aluminum alloy sheet for lateral plate of automobile radiator and manufacturing method for aluminum alloy sheet
JP2014025112A (en) * 2012-07-27 2014-02-06 Uacj Corp Aluminum alloy sheet for heat exchanger fin
CN115478184A (en) * 2022-09-06 2022-12-16 甘肃东兴铝业有限公司 Preparation method of 3102 aluminum alloy strip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393784B (en) * 2007-12-28 2013-04-21 China Steel Corp Method for making heat resistant softened aluminum alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100226515B1 (en) * 1997-07-14 1999-10-15 백창기 Aluminium alloy forheat-exchanger fin and method manufacturing the fin having advanced strength and forming
EP0899350A1 (en) * 1997-07-17 1999-03-03 Norsk Hydro ASA High extrudability and high corrosion resistant aluminium alloy
US6458224B1 (en) 1999-12-23 2002-10-01 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6602363B2 (en) 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
US6656296B2 (en) 1999-12-23 2003-12-02 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6660107B2 (en) 1999-12-23 2003-12-09 Alcoa Inc Aluminum alloy with intergranular corrosion resistance and methods of making and use
US6503446B1 (en) 2000-07-13 2003-01-07 Reynolds Metals Company Corrosion and grain growth resistant aluminum alloy
JP2014025112A (en) * 2012-07-27 2014-02-06 Uacj Corp Aluminum alloy sheet for heat exchanger fin
CN103072330A (en) * 2013-02-21 2013-05-01 南通恒秀铝热传输材料有限公司 Aluminum alloy sheet for lateral plate of automobile radiator and manufacturing method for aluminum alloy sheet
CN115478184A (en) * 2022-09-06 2022-12-16 甘肃东兴铝业有限公司 Preparation method of 3102 aluminum alloy strip
CN115478184B (en) * 2022-09-06 2024-02-13 甘肃东兴铝业有限公司 Preparation method of 3102 aluminum alloy foil

Also Published As

Publication number Publication date
CA2099697C (en) 2000-06-27
CA2099697A1 (en) 1994-12-30

Similar Documents

Publication Publication Date Title
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JPH05271833A (en) High strength aluminum alloy fin material for forming and its production
JP3345839B2 (en) Method of manufacturing high strength aluminum alloy fin material for forming
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JPS626740B2 (en)
JP3810902B2 (en) Aluminum alloy fin material and method for producing aluminum alloy fin material
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JPH11140576A (en) Aluminum alloy sheet for can body minimal in dispersion of flange length and its production
JPH05230579A (en) High strength thin aluminum alloy sheet for fin of air conditioner and its production
US7172664B2 (en) Method of making aluminum foil for fins
JP2931136B2 (en) Method for producing aluminum alloy sheet for drawless fin with excellent hole enlargement processability
JPH10310834A (en) Aluminum alloy thin sheet for cross fin and its production
JP3566448B2 (en) Manufacturing method of aluminum alloy plate for can body with low ear ratio
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH05156412A (en) Production of aluminum alloy sheet for drawless fin having excellent formability
JP2862198B2 (en) Aluminum alloy plate for DI can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH11256290A (en) Manufacture of aluminum alloy sheet for can body
JP2002322530A (en) Aluminum foil for container and production method therefor
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP2931137B2 (en) Manufacturing method of aluminum alloy sheet for drawless fins with excellent ironing workability
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JP2988322B2 (en) Aluminum sheet for cross fin and method of manufacturing the same