JP3345839B2 - Method of manufacturing high strength aluminum alloy fin material for forming - Google Patents

Method of manufacturing high strength aluminum alloy fin material for forming

Info

Publication number
JP3345839B2
JP3345839B2 JP02355393A JP2355393A JP3345839B2 JP 3345839 B2 JP3345839 B2 JP 3345839B2 JP 02355393 A JP02355393 A JP 02355393A JP 2355393 A JP2355393 A JP 2355393A JP 3345839 B2 JP3345839 B2 JP 3345839B2
Authority
JP
Japan
Prior art keywords
molding
thickness
rolling
less
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02355393A
Other languages
Japanese (ja)
Other versions
JPH06212371A (en
Inventor
宏明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP02355393A priority Critical patent/JP3345839B2/en
Publication of JPH06212371A publication Critical patent/JPH06212371A/en
Application granted granted Critical
Publication of JP3345839B2 publication Critical patent/JP3345839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ドロー成形、ドローレ
ス成形あるいはその両者の複合成形即ち、張出し加工、
絞り加工、バーリング加工、しごき加工、リフレアー加
工の全部又は一部の加工を施して成形され、ルームエア
コン用フィンとして使用される、成形用高強度アルミニ
ウム合金フィン材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a draw molding, a drawless molding or a composite molding of both, that is, an overhanging process.
The present invention relates to a method for producing a high-strength aluminum alloy fin material for forming, which is formed by performing all or a part of drawing, burring, ironing, and flaring, and is used as a fin for a room air conditioner.

【0002】[0002]

【従来技術およびその課題】一般に空調用熱交換器のア
ルミニウム合金フィンは図1(イ) 〜(ニ) に示すようにプ
レート部(1) に熱交チューブを装着するためのカラー部
(2) を形成したものでありプレート部形状に応じて、フ
ラットタイプ(イ) 、ルーバータイプ(ロ) 、スリットタイ
プ(ハ) 、コルゲートタイプ(ニ) に区分される。ドロー成
形(張り出し加工を主体とした成形)は図2(イ) 〜(ヘ)
に示すように、張り出し(イ) 、絞り(ロ) 〜(ニ) 、打ち抜
き、バーリング(ホ) 、リフレアー(ヘ) の工程からなり、
張り出し加工が中心をなしている。従って、このドロー
成形の場合、フィン材には優れた伸びが要求されてお
り、通常は厚さ0.12mm以上の厚い材料で、かつO材
あるいはH22等の調質を施しているのが現状である。
また、厚さ0.115mm以下の薄肉材をドロー成形した
場合、成形性劣化あるいは強度不足等の問題が生じるこ
とから、フィンの薄肉化あるいは薄肉材の高カラーハイ
ト成形は現行材料では非常に困難であった。上記の問題
を改善するために、数年前からドローレス成形(しごき
加工を主体とした成形)がフィン成形の主流となってい
る。ドローレス成形は図3(イ) 〜(ニ) に示すように、打
ち抜き−穴拡げ(イ) 、バーリング(ロ) 、しごき(ハ) 、リ
フレアー(ニ) の工程からなり、通常0.12mm以下の薄
いフィンの成形に用いられることから、低カラーハイト
成形におけるフィンの薄肉化(0.115〜0.105
mm前後の板厚)は可能となっている。ドローレス成形で
はしごき加工性に優れ、かつある程度の強度を必要とす
ることから、H24〜H26の半硬質材が使用されてい
る。しかし、0.12mm以下の薄肉材の高カラーハイト
成形は依然として困難であり、厚肉材を使用しているの
が現状である。また、ドローレス成形の長期プレス加工
におけるプレコート(表面処理)フィンの金型工具摩耗
に起因した成形不具合いが生じて、それによる金型・工
具メンテナンス費用が増大したり、潤滑油の低粘度化
(揮発性油の使用)に伴う成形性の劣化等が多発するな
ど、深刻な問題となっている。従って、現況に対し、成
形性能を維持し、かつ金型・工具メンテナンス費用の低
減化が強く望まれている。
2. Description of the Related Art Generally, an aluminum alloy fin of a heat exchanger for air conditioning has a collar portion for mounting a heat exchange tube on a plate portion (1) as shown in FIGS. 1 (a) to 1 (d).
(2) is formed and is classified into a flat type (a), a louver type (b), a slit type (c), and a corrugated type (d) according to the shape of the plate portion. Draw molding (forming mainly by overhanging) is shown in Fig. 2 (a) to (f).
As shown in the figure, it consists of the process of overhanging (a), squeezing (b)-(d), punching, burring (e), and flaring (f),
Overhang processing is central. Therefore, in the case of this draw molding, excellent elongation is required for the fin material, and it is generally a thick material having a thickness of 0.12 mm or more, and a fining material such as O material or H22 is applied. It is.
In addition, when draw-forming a thin material having a thickness of 0.115 mm or less, problems such as deterioration of formability and insufficient strength may occur, so it is very difficult to reduce the thickness of the fins or to form a high color height of the thin material with the current material. Met. In order to improve the above problem, drawless molding (forming mainly by ironing) has been the mainstream of fin molding for several years. As shown in FIGS. 3 (a) to 3 (d), the drawless molding comprises the steps of punching-hole expansion (b), burring (b), ironing (c), and flaring (d). Since it is used for molding thin fins, it is possible to reduce the thickness of fins (0.115 to 0.105) in low color height molding.
mm). Since drawless molding is excellent in ironing workability and requires some strength, semi-hard materials of H24 to H26 are used. However, high color height molding of a thin material having a thickness of 0.12 mm or less is still difficult, and a thick material is used at present. In addition, molding defects due to mold tool wear of pre-coated (surface treated) fins in long-term press working in drawless molding cause increased mold and tool maintenance costs and lower the viscosity of lubricating oil ( The use of volatile oil) causes serious deterioration such as deterioration of moldability. Therefore, it is strongly desired to maintain the molding performance and to reduce the mold and tool maintenance costs.

【0003】なお、最近では上記ドロー成形とドローレ
ス成形を組み合わせた複合成形(以下単に複合成形とい
う)も行われている。複合成形は図4に示すように、張
り出し(イ) 、絞り(ロ) 、打ち抜き、バーリング(ハ) 、し
ごき(ニ)(ホ)、リフレアー(ヘ) の工程からなり、張り出し
加工と、絞り加工によりある程度のカラー高さを得た
後、しごき加工を施す成形方法であり、しごき率をドロ
ーレス成形の場合より小さくすることができる。しかし
ながら、現在使用されているアルミニウム合金フィン材
では、いずれの成形方法を採用しても充分な成形性能の
維持や、金型・工具のメンテナンス費の低減は実現され
ていない。
Recently, composite molding (hereinafter simply referred to as composite molding) combining the above draw molding and drawless molding has also been performed. As shown in FIG. 4, composite molding includes the steps of overhang (a), drawing (b), punching, burring (c), ironing (d) (e), and flaring (f). This is a molding method in which ironing is performed after a certain color height is obtained, and the ironing rate can be made smaller than in the case of drawless molding. However, in the currently used aluminum alloy fin material, maintenance of sufficient molding performance and reduction of maintenance cost of molds and tools have not been realized by using any of the molding methods.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために種々の検討を重ねた結果、以下の知
見を得た。 従来のドロー成形に用いられる軟質フィン材では、
0.12mm以下に薄肉化した場合、強度不足のため、カ
ラー部への銅管挿入時、座屈を生じ、カラーと熱交チュ
ーブとの密着性を損ない、熱交性能を低下させるという
問題が起きる。また、従来のドローレス成形で用いられ
る硬質フィン材は、強度が高いことから、薄肉化が可能
であるが、伸び値が低いため、ドロー成形による高カラ
ーハイト成形は困難である。 ドローレス成形では、しごき加工が中心となること
から、潤滑油の低粘度化およびプレーコート皮膜に伴う
成形性の劣化、長期プレスでの工具摩耗等の問題を大幅
に低減させることは困難である。 上記を解決する手段として、ドロー成形により、
0.12mm以下の硬質プレコートフィンを成形できれ
ば、潤滑性低下による成形性劣化の抑制や工具摩耗に起
因するメンテナンス費用の低減が可能となるが、従来の
硬質材では伸び値が低く、特に板厚が0.105mm以下
の薄肉材ではドロー成形による良好な成形品が得られな
い。 又、成形後の洗浄を省略するための揮発性油の使用
に伴って、最近ではドロー成形とドローレス成形を組合
せ、張り出し加工、絞り加工によりある程度のカラー高
さを得た後、しごき加工を行うことでしごき率を小さく
した複合成形も登場していることから、複合成形によ
り、0.12mm以下の硬質プレコートフィンを成形でき
れば、上記に示す成形性劣化の抑制や工具摩耗に起因
するメンテナンス費用の低減が可能となるが、従来の硬
質材では伸び値が低く、特に板厚0.105mm以下の薄
肉材では複合成形で良好な成形品が得られない。 ドローレス成形で必要な強度、成形性、およびドロ
ー成形で必要な伸び値、成形性を兼備した材料が得られ
れば、0.12mm以下の薄肉フィンとしてドロー成形、
ドローレス成形あるいは複合成形による成形が可能とな
る。 Si、Fe、Mn、Tiの添加量、および製造工程
・条件を制御することにより、本願特許請求の範囲内の
金属組織状態を得ることができ、かつ上記に相当する
材料が得られる。
Means for Solving the Problems The present inventors have made various studies to solve the above problems, and have obtained the following findings. In the soft fin material used for conventional draw molding,
When the thickness is reduced to 0.12 mm or less, there is a problem in that, due to insufficient strength, buckling occurs when the copper tube is inserted into the collar portion, the adhesion between the collar and the heat exchange tube is impaired, and the heat exchange performance is reduced. Get up. Further, the rigid fin material used in the conventional drawless molding can be reduced in thickness because of its high strength, but has a low elongation value, so that high color height molding by draw molding is difficult. In drawless molding, since ironing is mainly performed, it is difficult to significantly reduce problems such as lowering the viscosity of a lubricating oil, deterioration of moldability due to a play coat film, and tool wear in a long-term press. As a means to solve the above, by draw molding,
If a hard pre-coated fin of 0.12 mm or less can be formed, it is possible to suppress the deterioration of the formability due to the decrease in lubricity and to reduce the maintenance cost due to tool wear. However, with a thin material having a thickness of 0.105 mm or less, a good molded product by draw molding cannot be obtained. In addition, with the use of volatile oil to omit cleaning after molding, recently, draw molding and drawless molding are combined, and after a certain color height is obtained by overhanging and drawing, ironing is performed. Since composite molding with a reduced ironing rate has also appeared, it is possible to mold hard pre-coated fins of 0.12 mm or less by composite molding. Although the reduction can be achieved, a conventional hard material has a low elongation value, and particularly a thin material having a thickness of 0.105 mm or less cannot obtain a good molded product by composite molding. If a material having both the strength and moldability required for drawless molding, and the elongation value and moldability required for draw molding can be obtained, draw molding as thin fins of 0.12 mm or less,
Molding by drawless molding or composite molding becomes possible. By controlling the added amounts of Si, Fe, Mn, and Ti, and the manufacturing process and conditions, a metallographic state within the scope of the present invention can be obtained, and a material corresponding to the above can be obtained.

【0005】本発明は、上記知見から得られたもので、
Si0.1wt%以下、Fe0.10〜1.0wt%、Mn
0.10〜0.50wt%、Ti0.01〜0.15wt%
を含み、残部がAlと不可避的不純物とからなるAl合
金鋳塊に400〜500℃の温度で1〜30時間保持の
均質化処理を施した後、直ちに熱間圧延を施し、その熱
間圧延を板厚100mmから熱間圧延上りの板厚までの
圧延を7パス以上となるような圧下率で行い、次に最終
冷間圧延の圧下率が80%以上となるように冷間圧延を
施し、得られた薄板に250〜320℃の温度で調質焼
鈍を施し、金属組織中に直径0.1μm以下の金属間化
合物を数密度で10個/μm3 以上分布させ、最終板厚
を0.12mm以下とすることを特徴とする成形用高強
度アルミニウム合金フィン材の製造方法。
The present invention has been made based on the above findings.
Si 0.1 wt% or less, Fe 0.10-1.0 wt%, Mn
0.10 to 0.50 wt%, Ti 0.01 to 0.15 wt%
After the homogenization treatment of holding the Al alloy ingot consisting of Al and unavoidable impurities at a temperature of 400 to 500 ° C. for 1 to 30 hours, hot rolling is immediately performed, and the hot rolling is performed. Rolling from a thickness of 100 mm to the thickness after hot rolling is performed at a rolling reduction of 7 passes or more, and then cold rolling is performed so that the rolling reduction of the final cold rolling is 80% or more. , resulting thin plate subjected to temper annealing at a temperature of 250 to 320 ° C., 10 pieces in number density below intermetallic compounds diameter 0.1μm in metallographic / [mu] m 3 to more distributed, final thickness
Method for producing a molding aluminum alloy fin material, characterized in the following and to Rukoto 0.12mm to.

【0006】[0006]

【作用】本発明において合金組成、製造条件を上記のと
おり限定した理由を説明する。まず合金組成を本発明の
とおり限定した理由を説明する。本発明アルミニウム合
金フィン材は、Si0.1wt%(以下単に%と略記)以
下、Fe0.10〜1.0%、Mn0.10〜0.50
%、Ti0.01〜0.15%、を含み残部がAlと不
可避的不純物とからなり、成形加工前の金属組織中に直
径が、0.1μm以下の金属間化合物を数密度にして1
0個/μm3 以上分布していることを特徴とする。S
i、Fe、およびMnは一部アルミニウムに固溶し、フ
ィン材の強度を高める効果がある。特に、Mnは伸び値
を向上させる効果がある。Tiは一部アルミニウムに固
溶し、組織を微細化する働きがある。特に、調質焼鈍
時、均一に回復を進行させ、サブグレインを均一かつ微
細にする効果があることから、張出し、絞り加工性を向
上させる効果がある。また、Tiは材料の局部伸びを向
上させる働きがあると言われている。フィン成形加工の
中でも、特にリフレアーのようなフランジ成形を行う場
合、局部伸びが高いほど成形性能は向上する傾向にある
ことから、本発明ではTi添加量を規定している。ここ
で、FeおよびMnの添加量が0.10%未満では、元
素固溶による所望の強度、伸びが得られないばかりか、
直径が0.1μm以下の微細金属間化合物も少なくな
り、最終板の加工組織を調質焼鈍時、回復サブグレイン
の成長を抑制する働きが小さくなることから、結果とし
て伸び値を確保するために強度を低下せざるを得なくな
り、又複合成形におけるしごき性、リフレアー性も低下
する。さらに、サブグレイン分布が不均一となり易く、
このため、実際にドロー成形時、張出し性、絞り性等が
低下し、また強度不足のため成形品不良となってしま
う。一方、Siの添加量が0.1%より多く、Feの添
加量が1.00%より多く、またMnの添加量が0.5
0%より多くなると、金属間化合物の粗大化により0.
1μm以下の微細金属間化合物も少なくなり、また鋳造
時の晶出物も粗大することから、成形時、粗大晶出物近
傍で不均一な変形を伴い張り出し性、絞り性等が低下
し、結果として成形品不良となる。従って、Siの添加
量は0.1%以下、Fe添加量は0.10〜1.0%、
Mn添加量は0.10〜0.50%とすることが必要で
ある。Tiの添加量が0.01%未満ではサブグレイン
を均一かつ微細にする効果が得られないだけでなく、成
形性、特に張り出し性、絞り性、リフレアー性をさらに
向上させることができない。一方、Ti添加量が0.1
5%より多くなると、Ti系の粗大な化合物が分布する
ため、均一かつ微細なサブグレインを形成させることが
困難となる。従って、Ti添加量は0.01〜0.15
%であることが必要である。その他の元素として、強度
と伸びのバランス向上あるいは成形性向上を目的とし
て、Zr、Cu、Y、Hf等を、微量添加する分には問
題ない。
The reasons for limiting the alloy composition and the manufacturing conditions in the present invention as described above will be explained. First, the reason why the alloy composition is limited as in the present invention will be described. The aluminum alloy fin material of the present invention has an Si content of 0.1 wt% or less (hereinafter simply abbreviated as%), Fe 0.10 to 1.0%, Mn 0.10 to 0.50.
%, And 0.01 to 0.15% of Ti, the balance being Al and unavoidable impurities, and having an intermetallic compound having a diameter of 0.1 μm or less in the metal structure before forming by number density of 1 μm.
0 / μm 3 or more. S
i, Fe, and Mn are partially dissolved in aluminum and have an effect of increasing the strength of the fin material. In particular, Mn has the effect of improving the elongation value. Ti partially forms a solid solution in aluminum and has a function of refining the structure. In particular, at the time of temper annealing, it has the effect of promoting the recovery uniformly and making the sub-grains uniform and fine, and thus has the effect of improving the overhang and drawing workability. It is said that Ti has a function of improving the local elongation of the material. Among the fin forming processes, particularly in the case of performing flange forming such as flares, the higher the local elongation, the higher the forming performance tends to be. Therefore, the present invention specifies the amount of Ti added. Here, if the addition amounts of Fe and Mn are less than 0.10%, desired strength and elongation due to elemental solid solution cannot be obtained,
The fine intermetallic compound having a diameter of 0.1 μm or less is also reduced, and the effect of suppressing the growth of the recovery subgrain during the temper annealing of the processed structure of the final sheet is reduced. The strength must be reduced, and the ironing property and the flaring property in the composite molding are also reduced. Furthermore, the subgrain distribution tends to be uneven,
For this reason, the drawability, drawability, etc. are actually reduced during draw molding, and the molded product is defective due to insufficient strength. On the other hand, the addition amount of Si is more than 0.1%, the addition amount of Fe is more than 1.00%, and the addition amount of Mn is 0.5%.
If it is more than 0%, the intermetallic compound becomes coarse due to coarsening.
The amount of fine intermetallic compounds of 1 μm or less is reduced, and the crystallized material during casting is also coarse. Therefore, during molding, the overhanging property, drawability, etc. are reduced with uneven deformation near the coarse crystallized material. As a result, the molded article becomes defective. Therefore, the addition amount of Si is 0.1% or less, the addition amount of Fe is 0.10 to 1.0%,
It is necessary that the amount of added Mn be 0.10 to 0.50%. If the added amount of Ti is less than 0.01%, not only the effect of making the sub-grains uniform and fine cannot be obtained, but also the moldability, especially the overhang property, the drawability, and the flaring property cannot be further improved. On the other hand, when the amount of Ti added is 0.1
If it exceeds 5%, coarse Ti-based compounds are distributed, and it is difficult to form uniform and fine sub-grains. Therefore, the amount of Ti added is 0.01 to 0.15.
%. As other elements, Zr, Cu, Y, Hf, and the like are added for the purpose of improving the balance between strength and elongation or improving formability without any problem.

【0007】本発明で成形加工前の金属組織中の微細金
属間化合物を直径0.1μm以下と規定したのは、径が
0.1μmより大きいと最終板の加工組織を調質焼鈍
時、回復サブグレインの粒界移動遅延する働きが小さく
なり、結果として伸び値を確保するために強度を低下せ
ざるを得なくなり、さらにサブグレイン分布が不均一と
なり易いことから、実際にドロー成形、あるいは複合成
形時、張出し性、絞り性、リフレアー性等が低下し、ま
た強度不足のため成形品不良となり易い。更に、直径
0.1μm以下の金属間化合物の分布を数密度にして1
0個/μm3 以上と規定したのは、10個/μm3 未満
では上記の効果が得られにくく、従って張出し性、絞り
性、リフレアー性および強度等の向上効果がないためで
ある。
In the present invention, the fine intermetallic compound in the metal structure before forming is defined to have a diameter of 0.1 μm or less. If the diameter is larger than 0.1 μm, the processed structure of the final sheet is recovered during temper annealing. The effect of delaying the subgrain movement at the grain boundary is reduced, and as a result, the strength must be reduced in order to secure the elongation value, and the subgrain distribution tends to be non-uniform, so it is actually drawn molding or composite At the time of molding, overhanging property, drawability, flaring property and the like are reduced, and molded articles are liable to be defective due to insufficient strength. Further, the distribution of the intermetallic compound having a diameter of 0.1 μm or less
The reason why the number is defined as 0 / μm 3 or more is that if the number is less than 10 / μm 3 , the above-mentioned effects are hardly obtained, and therefore, there is no effect of improving the overhanging property, drawability, flaring property, strength and the like.

【0008】次に本発明の製造方法について説明する。
本発明アルミニウム合金フィン材の製造方法は、均質化
処理の粗大な析出を抑制し、熱間圧延時あるいは調質焼
鈍時に直径が0.1μm以下の微細な金属間化合物の析
出を促進することを目的としており、そのためにはまず
上記合金組成を有する鋳塊に400〜500℃の温度で
1〜30時間保持の均質化処理を施す。均質化処理温度
が400℃未満では、鋳塊組織の均質化が不充分である
とともに、鋳造時に強制固溶された添加元素の固溶量を
低減することが出来ないため、しごき加工時に加工硬化
し易く、成形割れを多発する。また、熱間圧延後の組織
も不均一となり、ドロー成形あるいは複合成形時の張り
出し性、絞り性、およびリフレアー性が劣化する。一
方、均質化処理温度が500℃を超えると、充分な固溶
度が得られるが、晶出物が粗大に球状化し、成形性に悪
影響を及ぼすので好ましくない。特に再結晶の発生を抑
制し、伸び値を向上させる0.1μm径以下の微細な金
属間化合物を充分に析出させることが困難となり、実際
にドロー成形、複合成形時、張り出し性、絞り性、リフ
レアー性等が劣化するため好ましくない。また、保持時
間が1時間未満では微細な金属間化合物を多数形成し得
るが、元素固溶量を低減できず、しごき加工性が劣化す
る。一方、30時間を超えて保持した場合は元素固溶量
はかなり低減されるが、析出物の粗大化を招き、調質焼
鈍時に再結晶核を多く形成し易いことから、かえって成
形性が劣化することから好ましくない。
Next, the manufacturing method of the present invention will be described.
The method for producing an aluminum alloy fin material of the present invention suppresses coarse precipitation in the homogenization treatment, and promotes precipitation of fine intermetallic compounds having a diameter of 0.1 μm or less during hot rolling or temper annealing. For this purpose, first, an ingot having the above alloy composition is subjected to a homogenization treatment at a temperature of 400 to 500 ° C. for 1 to 30 hours. If the homogenization temperature is lower than 400 ° C, the ingot structure is not sufficiently homogenized, and the solid solution amount of the additional element forcibly dissolved during casting cannot be reduced. It is easy to crack and mold cracks occur frequently. In addition, the structure after hot rolling becomes non-uniform, and the stretchability, drawability, and flaring properties during draw molding or composite molding are deteriorated. On the other hand, when the homogenization treatment temperature exceeds 500 ° C., a sufficient solid solubility is obtained, but the crystallized product is coarsely spherical and adversely affects the moldability, which is not preferable. In particular, it is difficult to sufficiently precipitate a fine intermetallic compound having a diameter of 0.1 μm or less, which suppresses the occurrence of recrystallization and improves the elongation value. Actually, at the time of draw molding, composite molding, overhanging property, drawability, It is not preferable because the flaring property and the like deteriorate. If the holding time is less than 1 hour, many fine intermetallic compounds can be formed, but the amount of elemental solid solution cannot be reduced, and ironing workability is deteriorated. On the other hand, when held for more than 30 hours, the amount of elemental solid solution is considerably reduced, but the precipitates are coarsened and many recrystallization nuclei are easily formed during temper annealing, so that the formability is rather deteriorated. Is not preferred.

【0009】均質化処理後、直ちに熱間圧延を施すが、
この熱間圧延は板厚100mmから熱間圧延上りの板厚ま
での圧延を7パス以上となるような圧下率で行う必要が
ある。7パス未満では1パス毎の圧下量が大きくなるた
め、パス間に回復、再結晶を繰り返す結果、最終パス終
了後の熱間圧延板中に、調質焼鈍時の再結晶核となり易
い旧粒界を多数生じる結果となり、ドロー成形あるいは
複合成形時に張り出し性、絞り性、リフレアー性が著し
く劣化する。
Immediately after the homogenization treatment, hot rolling is performed.
In this hot rolling, it is necessary to perform rolling from a thickness of 100 mm to a thickness after hot rolling at a rolling reduction of 7 passes or more. If the number of passes is less than 7 passes, the amount of reduction in each pass becomes large, and as a result of repeated recovery and recrystallization between passes, old grains that are likely to become recrystallization nuclei during temper annealing in the hot-rolled sheet after the final pass are completed. As a result, a large number of fields are generated, and the drawability, drawability, and flaring property are remarkably deteriorated during draw molding or composite molding.

【0010】冷間圧延を最終冷間圧延の圧下率が80%
以上となるように施すのは80%未満の場合、0.12
0mm以下の薄いフィン材をドロー成形、あるいは複合成
形する場合、強度が不足して座屈等の問題を生じるから
である。
[0010] The rolling reduction of the final cold rolling is 80%.
When less than 80% is applied, 0.12 is applied.
This is because when draw-forming or composite-forming a thin fin material having a thickness of 0 mm or less, strength is insufficient and problems such as buckling occur.

【0011】冷間圧延によって得られたフィン材に25
0〜320℃の温度で調質焼鈍を施すことにより、フィ
ン材はドロー成形に必要な伸び値、複合成形に必要な強
度を確保し、良好な張り出し性、絞り性、リフレアー性
が得られる。また、コルゲート性も良好となる。ここで
調質温度が250℃未満では充分な成形性が得られず、
320℃を超えると強度が低下するだけでなく、かえっ
て伸びも低下し、また再結晶粒を生じてこれが起点とな
って成形性が劣化してしまう。
[0011] The fin material obtained by cold rolling has 25
By performing the temper annealing at a temperature of 0 to 320 ° C., the fin material secures an elongation value required for draw molding and a strength required for composite molding, and good stretchability, drawability, and flaring properties can be obtained. Further, the corrugating property is also improved. If the tempering temperature is less than 250 ° C., sufficient moldability cannot be obtained,
If the temperature exceeds 320 ° C., not only the strength is reduced, but also the elongation is reduced, and recrystallized grains are formed, which serves as a starting point to deteriorate the formability.

【0012】[0012]

【実施例】以下本発明を実施例より更に詳細に説明す
る。 〔実施例1〕表1に示す合金組成のAl合金を水冷鋳造
により作製した。水冷鋳造法による鋳塊(厚さ400m
m)を片面10mmずつ両面面削後、表2に示した条件で
均質化処理、熱間圧延を行い、厚さ6mmの熱延板を得
た。熱延板を冷間圧延し、厚さ0.115mm、0.10
0mmの薄板とした後、250〜320℃の温度で調質焼
鈍を施して引張強さが10.0〜15.0kgf /mm2
成形用フィン材を得た。このようにして得られたフィン
材の金属間化合物の分布状態、および成形性評価結果を
表3に示す。ここで金属間化合物の分布状態は、透過型
電子顕微鏡を用いて化合物の粒子径およびその粒子の一
定体積中の存在数を測定した。なお、その粒子径は粒子
の投影面積と等しい面積の円の直径とした。成形性試験
については、まずドロー成形によるカラー成形高さの限
界値測定を板厚0.100mm、0.115mmにおいて行
った結果を示す。次に、実機成形による評価により、板
厚0.105mmのフィン材を用いて、カラー高さ1.6
mmの銅管固定穴をドロー成形用金型を用いて張出し、絞
りにより連続成形し、最終加工のリフレアー加工まで行
い、960個のカラーを得た後、リフレアー(カーリン
グ)部先端に割れの生じた穴数の測定から割れ不良率を
算出し、これを現行材の厚さ0.130mmのフィン材を
同様に成形した時のリフレアー割れ不良率と比較するこ
とにより、評価を行った。同様に複合成形用金型を用い
て、張り出し、絞り、しごき、リフレアーの連続加工を
行い、960個のカラーを得た後、リフレアー(カーリ
ング)部先端に割れを生じた穴数の測定から割れ不良率
を算出し、これを上記現行材と比較することにより、評
価を行った。
The present invention will be described below in more detail with reference to examples. Example 1 An Al alloy having an alloy composition shown in Table 1 was produced by water-cooled casting. Ingot by water cooling casting method (400m thick)
m) was subjected to homogenization treatment and hot rolling under the conditions shown in Table 2 by 10 mm on each side, and a hot-rolled sheet having a thickness of 6 mm was obtained. Cold rolled hot rolled sheet, 0.115mm thick, 0.10mm
After forming the sheet to a thickness of 0 mm, it was subjected to temper annealing at a temperature of 250 to 320 ° C. to obtain a forming fin material having a tensile strength of 10.0 to 15.0 kgf / mm 2 . Table 3 shows the distribution state of the intermetallic compound of the fin material thus obtained and the results of the evaluation of the formability. Here, regarding the distribution state of the intermetallic compound, the particle diameter of the compound and the number of particles present in a certain volume were measured using a transmission electron microscope. The particle diameter was the diameter of a circle having an area equal to the projected area of the particles. Regarding the moldability test, the result of measuring the limit value of the color molding height by draw molding at a plate thickness of 0.100 mm and 0.115 mm is shown. Next, according to the evaluation by actual molding, a fin material having a thickness of 0.105 mm was used and a color height of 1.6 was used.
The copper tube fixing hole of mm is stretched using a draw molding die, continuously formed by drawing, and performed until the final processing of flaring, and after obtaining 960 collars, a crack is generated at the tip of the flaring (curling) part. The percentage of defective cracks was calculated from the measurement of the number of holes, and the evaluation was performed by comparing the percentage of defective defects with the percentage of defective flare cracks when a 0.130 mm thick fin material of the current material was similarly molded. Similarly, using a composite molding die, continuous overhanging, drawing, ironing, and flaring were performed, and after obtaining 960 colors, the number of holes that had cracks at the tip of the flaring (curling) portion was measured. An evaluation was made by calculating the percentage defective and comparing this with the current material.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】表3から明らかなように、本発明材試料N
o.1〜11は、従来材試料No.22、23に比べ、よ
り薄い板厚においてドロー成形、あるいは複合成形が可
能であり、特に0.100mmの板厚でのドロー成形によ
る張出し成形性、リフレアー成形性は従来材に比べ優れ
ている。また、0.115mmの板厚でのカラー成形高さ
の限界値についても、本発明材は、従来材に比べ優れて
いる。本発明材は、従来材に比べ、0.1μm径以下の
金属間化合物が数多く分布していることから、本発明材
では最終板の加工組織を調質焼鈍した時、これらの微細
な化合物が回復サブグレインの粒界移動を遅延する働き
をし、それによって再結晶核の発生を抑制することか
ら、薄肉フィンを複合成形するのに必要な強度を維持
し、その上で本成形に必要な張出し、絞り成形性、しご
きリフレアー成形性も優れることになる。従って、本発
明材は、0.130mmから0.115mmへと板厚を薄肉
化しても、表3に示すように現行板厚(0.130mm)
同等以上の限界カラー高さレベルを確保することができ
る。又、複合成形においても現行材同等以上のリフレア
ー成形性を保持することができる。これに対して、本発
明の範囲からはずれる比較材試料No.12〜21は、ド
ロー成形における張出し性、絞り性、リフレアー性、お
よび複合成形におけるリフレアー性が本発明材に比べ劣
り、限界カラー高さも本発明材以下のレベルである。す
なわち、Si、Fe、Mn、含有量のいずれかが上限を
超える比較材試料No.12、15、16、20は、金属
間化合物の粗大化により、直径0.1μm以下の微細金
属間化合物も少なくなり、また鋳造時の晶出物も粗大化
することから、成形時の張出し性、絞り性、リフレアー
性は低下し、結果として成形品不良となる。また、比較
材試料No.17、18はTi含有量が上限を超えること
から、Ti系の粗大な化合物が分布し、均一かつ微細な
サブグレインを形成させることが困難となり、結果とし
て成形時、張出し性、絞り性、リフレアー性は低下す
る。
As is clear from Table 3, the sample N of the present invention
o. Nos. 1 to 11 are conventional material sample Nos. Compared to 22 and 23, draw molding or composite molding is possible with a thinner plate thickness. In particular, stretch forming and flaring moldability by draw molding with a plate thickness of 0.100 mm are superior to conventional materials. Also, the material of the present invention is superior to the conventional material in the limit value of the color molding height at a plate thickness of 0.115 mm. Compared to the conventional material, the material of the present invention has a larger distribution of intermetallic compounds having a diameter of 0.1 μm or less. It acts to delay the movement of the recovery subgrain at the grain boundary, thereby suppressing the generation of recrystallization nuclei, thereby maintaining the strength necessary for composite molding of thin fins, and Overhang, draw formability, and ironing flaring formability are also excellent. Therefore, even if the thickness of the material of the present invention is reduced from 0.130 mm to 0.115 mm, as shown in Table 3, the current sheet thickness (0.130 mm)
The same or higher critical color height level can be secured. Further, even in the composite molding, it is possible to maintain the flared moldability equal to or higher than that of the current material. On the other hand, the comparative material sample no. Nos. 12 to 21 are inferior in drawability, drawability, and flaring property in draw molding, and flaring property in composite molding as compared with the material of the present invention, and the critical collar height is at a level lower than that of the material of the present invention. That is, the comparative material sample No. in which any of Si, Fe, Mn, and the content exceeded the upper limit. Nos. 12, 15, 16, and 20 show that the intermetallic compound is coarsened, the number of fine intermetallic compounds having a diameter of 0.1 μm or less is reduced, and the crystallized product during casting is also coarsened. In addition, the drawability and the flaring property are reduced, resulting in defective molded products. In addition, the comparative material sample No. In Nos. 17 and 18, since the Ti content exceeds the upper limit, a coarse Ti-based compound is distributed, and it is difficult to form a uniform and fine sub-grain. Sex is reduced.

【0017】製造条件が本発明の範囲からはずれる比較
材試料No.12、13、14、15、18、19、2
0、21は、板厚0.105mmでドロー成形および複合
成形した場合、張出し性、絞り性、あるいはリフレアー
性が劣化している。また、均質化処理条件が適正でも通
常の熱間圧延を施した比較材試料No.19は、旧粒界を
多数生じており、充分な張り出し性、リフレアー性向上
効果が得られず、成形性が著しく劣化する。また、熱間
圧延条件が適性でも均質化処理温度が低すぎる比較材試
料No.21は鋳塊組織の均質化が充分に行われず、熱延
後の組織も不均一となり、加工硬化し易く、しごき性が
劣化する。均質化処理温度が高すぎる比較材試料No.1
8は固溶元素量が大きく低下し、実際には0.1μm径
以上の粗大な金属間化合物がアルミマトリックス中に多
く析出してしまう。このため薄肉フィンを成形時、張り
出し性、リフレアー性が劣化するのである。
The comparative material sample No. whose production conditions are out of the range of the present invention. 12, 13, 14, 15, 18, 19, 2,
In Nos. 0 and 21, when the draw molding and the composite molding were performed with a plate thickness of 0.105 mm, the overhang property, the drawability, and the flaring property were deteriorated. In addition, even if the homogenization treatment conditions are appropriate, the comparative material sample No. In No. 19, a large number of old grain boundaries are generated, and a sufficient overhang property and an effect of improving the flaring property are not obtained, and the moldability is significantly deteriorated. In addition, even if the hot rolling conditions were appropriate, the homogenization temperature was too low. In No. 21, the structure of the ingot is not sufficiently homogenized, the structure after hot rolling becomes uneven, the work hardens easily, and the ironability deteriorates. Comparative material sample No. with too high homogenization temperature 1
In No. 8, the amount of solid-solution elements is greatly reduced, and in fact, a large amount of coarse intermetallic compounds having a diameter of 0.1 μm or more precipitate in the aluminum matrix. Therefore, when the thin fin is formed, the overhang property and the flaring property are deteriorated.

【0018】〔実施例2〕表3に示した本発明材、比較
材の一部試料について、調質焼鈍ごとの素板性能、具体
的には、引張強さ、伸び、エリクセン値、限界穴拡げ率
を測定し、その結果を表4に示す。成形性評価について
は、表3での成形同様、板厚0.105mmのフィン材を
用いて、張出し絞りタイプのドロー成形型、および複合
成形型により、張出し、絞り、穴拡げ、しごき、リフレ
アー加工を行い、現行材の厚さ0.130mmフィン材の
リフレアー割れ不良率と比較することにより、評価を行
った。
[Example 2] With respect to some samples of the material of the present invention and the comparative material shown in Table 3, the performance of the base plate for each temper annealing, specifically, tensile strength, elongation, Erichsen value, critical hole The expansion rate was measured, and the results are shown in Table 4. As for the moldability evaluation, as in the case of the molding in Table 3, using a fin material having a thickness of 0.105 mm, using a draw-drawing die of a draw-drawing type and a composite forming die, drawing, drawing, hole-expanding, ironing, and flaring. The evaluation was performed by comparing with the defect rate of the flare crack of the 0.130 mm thick fin material of the current material.

【0019】[0019]

【表4】 [Table 4]

【0020】表4から明らかなように本発明材は、比較
材に比べ、強度を低下させずに、より高い伸び値、エリ
クセン値、限界穴拡げ率を有することから、実機のドロ
ー成形および複合成形においても優れた張出絞り性能、
しごき性能、リフレアー性能を維持するのである。
As is clear from Table 4, the material of the present invention has higher elongation value, Erichsen value and critical hole expansion ratio without lowering the strength as compared with the comparative material. Excellent overhang drawing performance in molding,
The ironing performance and the flare performance are maintained.

【0021】[0021]

【発明の効果】以上述べたように、本発明によって得ら
れたフィン材は、ドロー成形、複合成形における、張出
し性、絞り性、しごき性、リフレアー性に優れ、成形割
れ不良率を著しく低減し得るという顕著な効果を奏する
ものである。本発明フィン材はドローレス成形に適用で
きることは勿論である。特に、0.100mmなどの薄板
においてもドロー成形用の金型で1.8〜2.2mm高さ
までカラー成形できることから、大幅な設備および材料
のコストダウンを図ることが可能となった。
As described above, the fin material obtained by the present invention is excellent in stretchability, drawability, ironing property and flaring property in draw molding and composite molding, and significantly reduces the molding cracking defect rate. It has a remarkable effect of obtaining. Of course, the fin material of the present invention can be applied to drawless molding. In particular, even a thin plate such as 0.100 mm can be color-molded to a height of 1.8 to 2.2 mm with a mold for draw molding, so that it has become possible to significantly reduce equipment and material costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ) 〜(ニ) はそれぞれ熱交換器のアルミニウム
フィンの形態を示すものである。(イ) はフラットタイ
プ、(ロ) はルーバータイプ、(ハ) はスリットタイプ、
(ニ)はコルゲートタイプ。
FIGS. 1 (a) to 1 (d) each show a form of an aluminum fin of a heat exchanger. (A) is a flat type, (B) is a louver type, (C) is a slit type,
(D) Corrugated type.

【図2】(イ) 〜(ヘ) はドロー成形によるフィンの成形方
法を断面図で示す説明図。
FIGS. 2A to 2F are cross-sectional views illustrating a method of forming a fin by draw molding.

【図3】(イ) 〜(ニ) はドローレス成形によるフィンの成
形方法を、断面図で示す説明図。
FIGS. 3A to 3D are cross-sectional views illustrating a method of forming a fin by drawless molding.

【図4】(イ) 〜(ヘ) は複合成形によるフィンの成形方法
を断面図で示す説明図。
FIGS. 4A to 4F are cross-sectional views illustrating a method of forming a fin by composite molding.

【符号の説明】 1 プレート部 2 カラー部[Description of Signs] 1 Plate part 2 Color part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 C22F 1/00 630K 651 651A 683 683 685 685 691 691B 691C 694 694A 694Z (56)参考文献 特開 平4−313403(JP,A) 特開 平3−197652(JP,A) 特開 平1−234542(JP,A) 特開 平5−9676(JP,A) 特開 平5−179382(JP,A) 特開 平5−9673(JP,A) 特開 平5−8087(JP,A) 特開 平5−9674(JP,A) 特開 平5−9675(JP,A) 特開 平5−9677(JP,A) 特開 平5−104287(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 1/04 - 1/057 C22C 21/00 - 21/18 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 Identification code FI C22F 1/00 C22F 1/00 630K 651 651A 683 683 685 685 691 691B 691C 694 694A 694Z (56) Reference JP-A-4-313403 (JP, A) JP-A-3-197652 (JP, A) JP-A-1-234542 (JP, A) JP-A-5-9676 (JP, A) JP-A-5-179382 (JP, A) Japanese Unexamined Patent Application Publication No. Hei 5-9673 (JP, A) Japanese Unexamined Patent Application Publication No. 5-8087 (JP, A) Japanese Unexamined Patent Application Publication No. 5-9674 (JP, A) Japanese Unexamined Patent Application Publication No. 5-9675 (JP, A) JP, A) JP-A-5-104287 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/04-1/057 C22C 21/00-21/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si0.1wt%以下、Fe0.10〜
1.0wt%、Mn0.10〜0.50wt%、Ti0.0
1〜0.15wt%を含み、残部がAlと不可避的不純物
とからなるAl合金鋳塊に400〜500℃の温度で1
〜30時間保持の均質化処理を施した後、直ちに熱間圧
延を施し、その熱間圧延を板厚100mmから熱間圧延
上りの板厚までの圧延を7パス以上となるような圧下率
で行い、次に最終冷間圧延の圧下率が80%以上となる
ように冷間圧延を施し、得られた薄板に250〜320
℃の温度で調質焼鈍を施し、金属組織中に直径0.1μ
m以下の金属間化合物を数密度で10個/μm3 以上分
布させ、最終板厚を0.12mm以下とすることを特徴
とする成形用高強度アルミニウム合金フィン材の製造方
法。
1. Si 0.1 wt% or less, Fe 0.10
1.0 wt%, Mn 0.10-0.50 wt%, Ti0.0
An Al alloy ingot containing 1 to 0.15 wt%, the balance being Al and unavoidable impurities,
Immediately after performing the homogenization treatment of holding for up to 30 hours, hot rolling is performed, and the hot rolling is performed at a rolling reduction such that the rolling from the thickness of 100 mm to the thickness after hot rolling becomes 7 passes or more. Then, cold rolling is performed so that the rolling reduction of the final cold rolling is 80% or more, and the obtained thin plate is subjected to 250-320.
Temper annealing at a temperature of ℃, 0.1μ diameter in the metal structure
10 by the number density less intermetallic compound m / [mu] m 3 to more distributed method of molding a high-strength aluminum alloy fin material for a final sheet thickness characterized by the following and to Rukoto 0.12 mm.
JP02355393A 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming Expired - Fee Related JP3345839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02355393A JP3345839B2 (en) 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02355393A JP3345839B2 (en) 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming

Publications (2)

Publication Number Publication Date
JPH06212371A JPH06212371A (en) 1994-08-02
JP3345839B2 true JP3345839B2 (en) 2002-11-18

Family

ID=12113691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02355393A Expired - Fee Related JP3345839B2 (en) 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming

Country Status (1)

Country Link
JP (1) JP3345839B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100226515B1 (en) * 1997-07-14 1999-10-15 백창기 Aluminium alloy forheat-exchanger fin and method manufacturing the fin having advanced strength and forming
EP0899350A1 (en) * 1997-07-17 1999-03-03 Norsk Hydro ASA High extrudability and high corrosion resistant aluminium alloy
US6503446B1 (en) 2000-07-13 2003-01-07 Reynolds Metals Company Corrosion and grain growth resistant aluminum alloy
US6458224B1 (en) 1999-12-23 2002-10-01 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6602363B2 (en) 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
JP4704557B2 (en) * 2000-12-05 2011-06-15 古河スカイ株式会社 Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
JP4856368B2 (en) * 2004-09-08 2012-01-18 株式会社神戸製鋼所 Aluminum alloy fin material with excellent formability
WO2015111182A1 (en) * 2014-01-24 2015-07-30 株式会社Uacj Aluminum alloy sheet for heat exchanger fin

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234542A (en) * 1988-03-16 1989-09-19 Furukawa Alum Co Ltd Aluminum clad fin material for heat exchanger
JPH03197652A (en) * 1989-12-26 1991-08-29 Furukawa Alum Co Ltd Production of aluminum alloy fin material for brazing
JP2773989B2 (en) * 1991-04-11 1998-07-09 古河電気工業株式会社 Manufacturing method of aluminum alloy sheet for forming
JPH059674A (en) * 1991-06-27 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet excellent in formability
JP2945178B2 (en) * 1991-06-27 1999-09-06 古河電気工業株式会社 Manufacturing method of aluminum alloy sheet for forming
JPH058087A (en) * 1991-06-28 1993-01-19 Furukawa Alum Co Ltd Production of high-strength aluminum brazing sheet
JP2931137B2 (en) * 1991-07-02 1999-08-09 古河電気工業株式会社 Manufacturing method of aluminum alloy sheet for drawless fins with excellent ironing workability
JP2931136B2 (en) * 1991-07-02 1999-08-09 古河電気工業株式会社 Method for producing aluminum alloy sheet for drawless fin with excellent hole enlargement processability
JPH059673A (en) * 1991-07-04 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy fin material rxcellent in heat conductivity
JPH05104287A (en) * 1991-10-14 1993-04-27 Furukawa Alum Co Ltd Production of aluminum brazing sheet having excellent moldability
JPH05179382A (en) * 1991-10-28 1993-07-20 Furukawa Alum Co Ltd Aluminum alloy thin sheet for drawless fin

Also Published As

Publication number Publication date
JPH06212371A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
CN111004950B (en) 2000 aluminium alloy section bar and its manufacturing method
JPH11172388A (en) Aluminum alloy extruded pipe material for air conditioner piping and its production
JP3345839B2 (en) Method of manufacturing high strength aluminum alloy fin material for forming
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JPH05271833A (en) High strength aluminum alloy fin material for forming and its production
JP3810902B2 (en) Aluminum alloy fin material and method for producing aluminum alloy fin material
JP4275560B2 (en) Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JPS626740B2 (en)
JP3237492B2 (en) Aluminum alloy sheet for cross fin and method of manufacturing the same
US7172664B2 (en) Method of making aluminum foil for fins
JP5830451B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP2931136B2 (en) Method for producing aluminum alloy sheet for drawless fin with excellent hole enlargement processability
JPH10310834A (en) Aluminum alloy thin sheet for cross fin and its production
JPH05156412A (en) Production of aluminum alloy sheet for drawless fin having excellent formability
JPH05230579A (en) High strength thin aluminum alloy sheet for fin of air conditioner and its production
JP4704557B2 (en) Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
JP2931137B2 (en) Manufacturing method of aluminum alloy sheet for drawless fins with excellent ironing workability
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
CN116568850A (en) Aluminum alloy with improved strength and recyclability
CN1045012C (en) Aluminum alloy processing superior strength and workability for use in forming fin, and manufacturing method for same
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH05179382A (en) Aluminum alloy thin sheet for drawless fin
JP2988322B2 (en) Aluminum sheet for cross fin and method of manufacturing the same
JPH059636A (en) Thin aluminum alloy sheet for drawless fin having excellent ironing property and production thereof
JPH05117795A (en) Thin aluminum alloy sheet for drawless fin having excellent suitability to burring and production thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees