JPH06212371A - Production of high strength aluminum alloy fin material for forming - Google Patents

Production of high strength aluminum alloy fin material for forming

Info

Publication number
JPH06212371A
JPH06212371A JP5023553A JP2355393A JPH06212371A JP H06212371 A JPH06212371 A JP H06212371A JP 5023553 A JP5023553 A JP 5023553A JP 2355393 A JP2355393 A JP 2355393A JP H06212371 A JPH06212371 A JP H06212371A
Authority
JP
Japan
Prior art keywords
molding
forming
rolling
fin material
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5023553A
Other languages
Japanese (ja)
Other versions
JP3345839B2 (en
Inventor
Hiroaki Takeuchi
宏明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP02355393A priority Critical patent/JP3345839B2/en
Publication of JPH06212371A publication Critical patent/JPH06212371A/en
Application granted granted Critical
Publication of JP3345839B2 publication Critical patent/JP3345839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength Al alloy fin material for forming by subjecting an Al alloy ingot having a specified compsn. constituted of Si, Fe, Mn, Ti and Al to specified homogenizing treatment, hot rolling, cold rolling and skinpass annealing. CONSTITUTION:An Al alloy ingot contg., by weight, <=0.1% Si, 0.10 to 1.0% Fe, 0.10 to 0.50% Mn and 0.01 to 0.15% Ti, and the balance Fe with inevitable impurities is subjected to homogenizng treatment of executing holding at 400 to 500 deg.C for 1 to 30hr. After that, thin ingot is subjected to hot rolling, and, at this time, the draft is regulated in such a manner that the rolling to the sheet thickness finished with the hot rolling from 100mm sheet thickness is executed by >=7 passes. This hot rolled sheet is subjected to cold rolling, and, at this time, the draft in the final cold rolling is regulated to >=80%. The thin sheet obtd. by this is subjected to skinpass annealing at 250 to 320 deg.C to distribute intermetallic compounds having <=0.1mum diameter into the metallic structure by >=10 pieces/mum<3> bulk density. In this way, the high strength Al alloy fin material for forming capable of draw forming or the like even in the case of a thin one can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ドロー成形、ドローレ
ス成形あるいはその両者の複合成形即ち、張出し加工、
絞り加工、バーリング加工、しごき加工、リフレアー加
工の全部又は一部の加工を施して成形され、ルームエア
コン用フィンとして使用される、成形用高強度アルミニ
ウム合金フィン材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to draw molding, drawless molding or composite molding of both, that is, overhang processing,
The present invention relates to a method for producing a high-strength aluminum alloy fin material for forming, which is formed by performing all or a part of drawing, burring, ironing, and refiring and is used as a fin for a room air conditioner.

【0002】[0002]

【従来技術およびその課題】一般に空調用熱交換器のア
ルミニウム合金フィンは図1(イ) 〜(ニ) に示すようにプ
レート部(1) に熱交チューブを装着するためのカラー部
(2) を形成したものでありプレート部形状に応じて、フ
ラットタイプ(イ) 、ルーバータイプ(ロ) 、スリットタイ
プ(ハ) 、コルゲートタイプ(ニ) に区分される。ドロー成
形(張り出し加工を主体とした成形)は図2(イ) 〜(ヘ)
に示すように、張り出し(イ) 、絞り(ロ) 〜(ニ) 、打ち抜
き、バーリング(ホ) 、リフレアー(ヘ) の工程からなり、
張り出し加工が中心をなしている。従って、このドロー
成形の場合、フィン材には優れた伸びが要求されてお
り、通常は厚さ0.12mm以上の厚い材料で、かつO材
あるいはH22等の調質を施しているのが現状である。
また、厚さ0.115mm以下の薄肉材をドロー成形した
場合、成形性劣化あるいは強度不足等の問題が生じるこ
とから、フィンの薄肉化あるいは薄肉材の高カラーハイ
ト成形は現行材料では非常に困難であった。上記の問題
を改善するために、数年前からドローレス成形(しごき
加工を主体とした成形)がフィン成形の主流となってい
る。ドローレス成形は図3(イ) 〜(ニ) に示すように、打
ち抜き−穴拡げ(イ) 、バーリング(ロ) 、しごき(ハ) 、リ
フレアー(ニ) の工程からなり、通常0.12mm以下の薄
いフィンの成形に用いられることから、低カラーハイト
成形におけるフィンの薄肉化(0.115〜0.105
mm前後の板厚)は可能となっている。ドローレス成形で
はしごき加工性に優れ、かつある程度の強度を必要とす
ることから、H24〜H26の半硬質材が使用されてい
る。しかし、0.12mm以下の薄肉材の高カラーハイト
成形は依然として困難であり、厚肉材を使用しているの
が現状である。また、ドローレス成形の長期プレス加工
におけるプレコート(表面処理)フィンの金型工具摩耗
に起因した成形不具合いが生じて、それによる金型・工
具メンテナンス費用が増大したり、潤滑油の低粘度化
(揮発性油の使用)に伴う成形性の劣化等が多発するな
ど、深刻な問題となっている。従って、現況に対し、成
形性能を維持し、かつ金型・工具メンテナンス費用の低
減化が強く望まれている。
2. Description of the Related Art Generally, an aluminum alloy fin for an air conditioner heat exchanger has a collar portion for mounting a heat exchange tube on a plate portion (1) as shown in FIGS. 1 (a) to 1 (d).
(2) is formed, and is classified into a flat type (a), a louver type (b), a slit type (c), and a corrugated type (d) according to the plate shape. Draw molding (molding mainly for overhanging) is shown in Figure 2 (a) to (f)
As shown in, the process consists of overhanging (a), squeezing (b) to (d), punching, burring (e), and flare (f).
The overhanging process is central. Therefore, in the case of this draw forming, the fin material is required to have an excellent elongation, and normally, it is a thick material with a thickness of 0.12 mm or more and is tempered with an O material or H22. Is.
Also, when thin-walled materials with a thickness of 0.115 mm or less are draw-formed, problems such as deterioration of formability or insufficient strength occur, so it is very difficult to thin fins or form high-color height of thin-walled materials with current materials Met. In order to improve the above problems, drawless molding (molding mainly based on ironing) has been the mainstream of fin molding for several years. Drawless molding consists of punching-hole expansion (a), burring (b), ironing (c), and re-flare (d) as shown in Fig. 3 (a) to (d). Since it is used for forming thin fins, the fins can be made thinner (0.115 to 0.105) in low color height molding.
Thickness of around mm) is possible. In drawless molding, a semi-hard material of H24 to H26 is used because it has excellent ironing workability and requires some strength. However, it is still difficult to form a thin material having a thickness of 0.12 mm or less at a high color height, and the present situation is to use a thick material. Also, in the long-term press processing of drawless molding, a molding failure occurs due to die tool wear of the precoat (surface treatment) fins, which increases die / tool maintenance costs and lowers the viscosity of lubricating oil ( This is a serious problem such as frequent deterioration of moldability due to use of volatile oil). Therefore, it is strongly desired to maintain molding performance and reduce mold / tool maintenance costs compared to the current situation.

【0003】なお、最近では上記ドロー成形とドローレ
ス成形を組み合わせた複合成形(以下単に複合成形とい
う)も行われている。複合成形は図4に示すように、張
り出し(イ) 、絞り(ロ) 、打ち抜き、バーリング(ハ) 、し
ごき(ニ)(ホ)、リフレアー(ヘ) の工程からなり、張り出し
加工と、絞り加工によりある程度のカラー高さを得た
後、しごき加工を施す成形方法であり、しごき率をドロ
ーレス成形の場合より小さくすることができる。しかし
ながら、現在使用されているアルミニウム合金フィン材
では、いずれの成形方法を採用しても充分な成形性能の
維持や、金型・工具のメンテナンス費の低減は実現され
ていない。
Recently, composite molding (hereinafter simply referred to as composite molding) in which the draw molding and the drawless molding are combined has been performed. As shown in Fig. 4, compound molding consists of the steps of overhanging (a), drawing (b), punching, burring (c), ironing (d) (e), and flare (f). This is a molding method in which ironing is performed after a certain color height is obtained, and the ironing rate can be made smaller than in drawless molding. However, with the aluminum alloy fin materials currently used, sufficient molding performance is not maintained and maintenance costs for molds and tools are not reduced by any of the molding methods.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するために種々の検討を重ねた結果、以下の知
見を得た。 従来のドロー成形に用いられる軟質フィン材では、
0.12mm以下に薄肉化した場合、強度不足のため、カ
ラー部への銅管挿入時、座屈を生じ、カラーと熱交チュ
ーブとの密着性を損ない、熱交性能を低下させるという
問題が起きる。また、従来のドローレス成形で用いられ
る硬質フィン材は、強度が高いことから、薄肉化が可能
であるが、伸び値が低いため、ドロー成形による高カラ
ーハイト成形は困難である。 ドローレス成形では、しごき加工が中心となること
から、潤滑油の低粘度化およびプレーコート皮膜に伴う
成形性の劣化、長期プレスでの工具摩耗等の問題を大幅
に低減させることは困難である。 上記を解決する手段として、ドロー成形により、
0.12mm以下の硬質プレコートフィンを成形できれ
ば、潤滑性低下による成形性劣化の抑制や工具摩耗に起
因するメンテナンス費用の低減が可能となるが、従来の
硬質材では伸び値が低く、特に板厚が0.105mm以下
の薄肉材ではドロー成形による良好な成形品が得られな
い。 又、成形後の洗浄を省略するための揮発性油の使用
に伴って、最近ではドロー成形とドローレス成形を組合
せ、張り出し加工、絞り加工によりある程度のカラー高
さを得た後、しごき加工を行うことでしごき率を小さく
した複合成形も登場していることから、複合成形によ
り、0.12mm以下の硬質プレコートフィンを成形でき
れば、上記に示す成形性劣化の抑制や工具摩耗に起因
するメンテナンス費用の低減が可能となるが、従来の硬
質材では伸び値が低く、特に板厚0.105mm以下の薄
肉材では複合成形で良好な成形品が得られない。 ドローレス成形で必要な強度、成形性、およびドロ
ー成形で必要な伸び値、成形性を兼備した材料が得られ
れば、0.12mm以下の薄肉フィンとしてドロー成形、
ドローレス成形あるいは複合成形による成形が可能とな
る。 Si、Fe、Mn、Tiの添加量、および製造工程
・条件を制御することにより、本願特許請求の範囲内の
金属組織状態を得ることができ、かつ上記に相当する
材料が得られる。
The present inventors have obtained the following findings as a result of various investigations for solving the above problems. With the soft fin material used for conventional draw molding,
When the wall thickness is reduced to 0.12 mm or less, there is a problem that due to insufficient strength, buckling occurs when inserting the copper tube into the collar, impairing the adhesion between the collar and the heat exchange tube, and lowering the heat exchange performance. Get up. Further, the hard fin material used in the conventional drawless molding can be thinned because of its high strength, but its elongation value is low, so that high color height molding by draw molding is difficult. In drawless molding, ironing is the main focus, so it is difficult to significantly reduce problems such as lowering the viscosity of lubricating oil, deterioration of moldability associated with the precoat film, and tool wear during long-term pressing. As a means to solve the above, by draw molding,
If hard pre-coated fins of 0.12 mm or less can be formed, it is possible to suppress formability deterioration due to deterioration of lubricity and reduce maintenance costs due to tool wear. However, conventional hard materials have a low elongation value, especially plate thickness. With a thin-walled material having a thickness of 0.105 mm or less, a good molded product cannot be obtained by draw molding. In addition, with the use of volatile oil to omit washing after molding, recently, draw molding and drawless molding have been combined to achieve a certain color height by overhanging and drawing, and then ironing is performed. Since composite molding with a reduced ironing rate has also appeared, if composite molding can form hard pre-coated fins of 0.12 mm or less, it is possible to reduce the above-mentioned deterioration of moldability and maintenance costs due to tool wear. Although it is possible to reduce the amount, the conventional hard material has a low elongation value, and in particular, a thin product having a plate thickness of 0.105 mm or less cannot obtain a good molded product by composite molding. If a material that has the strength and moldability required for drawless molding and the elongation value and moldability required for draw molding can be obtained, draw molding as a thin fin of 0.12 mm or less,
Molding by drawless molding or composite molding is possible. By controlling the addition amounts of Si, Fe, Mn, and Ti, and the manufacturing process / conditions, it is possible to obtain a metallographic state within the scope of the claims of the present application and to obtain a material corresponding to the above.

【0005】本発明は、上記知見から得られたもので、
Si0.1wt%以下、Fe0.10〜1.0wt%、Mn
0.10〜0.50wt%、Ti0.01〜0.15wt%
を含み、残部がAlと不可避的不純物とからなるAl合
金鋳塊に400〜500℃の温度で1〜30時間保持の
均質化処理を施した後、直ちに熱間圧延を施し、その熱
間圧延を板厚100mmから熱間圧延上りの板厚までの圧
延を7パス以上となるような圧下率で行い、次に最終冷
間圧延の圧下率が80%以上となるように冷間圧延を施
し、得られた薄板に250〜320℃の温度で調質焼鈍
を施し、金属組織中に直径0.1μm以下の金属間化合
物を数密度で10個/μm3 以上分布させることを特徴
とする成形用高強度アルミニウム合金フィン材の製造方
法である。
The present invention is obtained from the above findings,
Si 0.1 wt% or less, Fe 0.10 to 1.0 wt%, Mn
0.10 to 0.50 wt%, Ti 0.01 to 0.15 wt%
Al alloy ingot containing Al and unavoidable impurities in the balance is subjected to homogenizing treatment by holding at a temperature of 400 to 500 ° C. for 1 to 30 hours, immediately followed by hot rolling, and then hot rolling. Rolling is performed from a plate thickness of 100 mm to a plate thickness after hot rolling with a reduction ratio of 7 passes or more, and then cold rolling is performed so that the reduction ratio of the final cold rolling is 80% or more. The thin sheet thus obtained is subjected to temper annealing at a temperature of 250 to 320 ° C., and an intermetallic compound having a diameter of 0.1 μm or less is distributed in the metal structure at a density of 10 or more / μm 3 or more. A method for producing a high-strength aluminum alloy fin material for use in automobiles.

【0006】[0006]

【作用】本発明において合金組成、製造条件を上記のと
おり限定した理由を説明する。まず合金組成を本発明の
とおり限定した理由を説明する。本発明アルミニウム合
金フィン材は、Si0.1wt%(以下単に%と略記)以
下、Fe0.10〜1.0%、Mn0.10〜0.50
%、Ti0.01〜0.15%、を含み残部がAlと不
可避的不純物とからなり、成形加工前の金属組織中に直
径が、0.1μm以下の金属間化合物を数密度にして1
0個/μm3 以上分布していることを特徴とする。S
i、Fe、およびMnは一部アルミニウムに固溶し、フ
ィン材の強度を高める効果がある。特に、Mnは伸び値
を向上させる効果がある。Tiは一部アルミニウムに固
溶し、組織を微細化する働きがある。特に、調質焼鈍
時、均一に回復を進行させ、サブグレインを均一かつ微
細にする効果があることから、張出し、絞り加工性を向
上させる効果がある。また、Tiは材料の局部伸びを向
上させる働きがあると言われている。フィン成形加工の
中でも、特にリフレアーのようなフランジ成形を行う場
合、局部伸びが高いほど成形性能は向上する傾向にある
ことから、本発明ではTi添加量を規定している。ここ
で、FeおよびMnの添加量が0.10%未満では、元
素固溶による所望の強度、伸びが得られないばかりか、
直径が0.1μm以下の微細金属間化合物も少なくな
り、最終板の加工組織を調質焼鈍時、回復サブグレイン
の成長を抑制する働きが小さくなることから、結果とし
て伸び値を確保するために強度を低下せざるを得なくな
り、又複合成形におけるしごき性、リフレアー性も低下
する。さらに、サブグレイン分布が不均一となり易く、
このため、実際にドロー成形時、張出し性、絞り性等が
低下し、また強度不足のため成形品不良となってしま
う。一方、Siの添加量が0.1%より多く、Feの添
加量が1.00%より多く、またMnの添加量が0.5
0%より多くなると、金属間化合物の粗大化により0.
1μm以下の微細金属間化合物も少なくなり、また鋳造
時の晶出物も粗大することから、成形時、粗大晶出物近
傍で不均一な変形を伴い張り出し性、絞り性等が低下
し、結果として成形品不良となる。従って、Siの添加
量は0.1%以下、Fe添加量は0.10〜1.0%、
Mn添加量は0.10〜0.50%とすることが必要で
ある。Tiの添加量が0.01%未満ではサブグレイン
を均一かつ微細にする効果が得られないだけでなく、成
形性、特に張り出し性、絞り性、リフレアー性をさらに
向上させることができない。一方、Ti添加量が0.1
5%より多くなると、Ti系の粗大な化合物が分布する
ため、均一かつ微細なサブグレインを形成させることが
困難となる。従って、Ti添加量は0.01〜0.15
%であることが必要である。その他の元素として、強度
と伸びのバランス向上あるいは成形性向上を目的とし
て、Zr、Cu、Y、Hf等を、微量添加する分には問
題ない。
The function of the alloy composition and manufacturing conditions in the present invention will be described below. First, the reason why the alloy composition is limited as in the present invention will be described. The aluminum alloy fin material of the present invention has Si of 0.1 wt% (hereinafter simply referred to as%) or less, Fe of 0.10 to 1.0%, and Mn of 0.10 to 0.50.
%, Ti 0.01 to 0.15%, the balance consisting of Al and unavoidable impurities, and the intermetallic compound having a diameter of 0.1 μm or less in the metal structure before forming is made to have a number density of 1
It is characterized in that the number is 0 / μm 3 or more. S
Some of i, Fe, and Mn are solid-dissolved in aluminum and have the effect of increasing the strength of the fin material. In particular, Mn has the effect of improving the elongation value. Ti partially dissolves in aluminum and has a function of refining the structure. In particular, during temper annealing, it has an effect of uniformly promoting recovery and making the subgrain uniform and fine, and therefore has an effect of improving overhang and drawability. Further, Ti is said to have a function of improving local elongation of the material. In the fin forming process, particularly in the case of performing flange forming such as reflaring, the higher the local elongation, the higher the forming performance tends to be. Therefore, the Ti addition amount is specified in the present invention. Here, if the addition amount of Fe and Mn is less than 0.10%, not only the desired strength and elongation due to elemental solid solution cannot be obtained,
The amount of fine intermetallic compounds with a diameter of 0.1 μm or less is also reduced, and the function of suppressing the growth of recovery subgrains during temper annealing of the final plate is reduced, and as a result, an elongation value is secured. Inevitably, the strength is reduced, and the ironing property and the flare property in composite molding are also reduced. Furthermore, the subgrain distribution tends to be non-uniform,
Therefore, during draw forming, the overhanging property, drawability, etc. are actually deteriorated, and the strength is insufficient, resulting in a defective molded product. On the other hand, the addition amount of Si is more than 0.1%, the addition amount of Fe is more than 1.00%, and the addition amount of Mn is 0.5%.
When it is more than 0%, the intermetallic compound is coarsened to a value of 0.
The amount of fine intermetallic compounds of 1 μm or less is reduced, and the crystallized substances during casting are also coarsened. Therefore, during molding, the overhanging property and the drawability are deteriorated due to uneven deformation in the vicinity of the coarse crystallized substances. As a result, the molded product becomes defective. Therefore, the addition amount of Si is 0.1% or less, the addition amount of Fe is 0.10 to 1.0%,
The amount of Mn added needs to be 0.10 to 0.50%. If the addition amount of Ti is less than 0.01%, not only the effect of making the subgrain uniform and fine cannot be obtained, but also the moldability, particularly the overhanging property, the drawability, and the flare property cannot be further improved. On the other hand, the Ti addition amount is 0.1
If it exceeds 5%, coarse Ti-based compounds are distributed, and it becomes difficult to form uniform and fine subgrains. Therefore, the Ti addition amount is 0.01 to 0.15.
Must be%. There is no problem in adding a small amount of Zr, Cu, Y, Hf, etc. as other elements for the purpose of improving the balance between strength and elongation or improving moldability.

【0007】本発明で成形加工前の金属組織中の微細金
属間化合物を直径0.1μm以下と規定したのは、径が
0.1μmより大きいと最終板の加工組織を調質焼鈍
時、回復サブグレインの粒界移動遅延する働きが小さく
なり、結果として伸び値を確保するために強度を低下せ
ざるを得なくなり、さらにサブグレイン分布が不均一と
なり易いことから、実際にドロー成形、あるいは複合成
形時、張出し性、絞り性、リフレアー性等が低下し、ま
た強度不足のため成形品不良となり易い。更に、直径
0.1μm以下の金属間化合物の分布を数密度にして1
0個/μm3 以上と規定したのは、10個/μm3 未満
では上記の効果が得られにくく、従って張出し性、絞り
性、リフレアー性および強度等の向上効果がないためで
ある。
In the present invention, the fine intermetallic compound in the metal structure before forming is defined to have a diameter of 0.1 μm or less. The reason is that if the diameter is larger than 0.1 μm, the processed structure of the final plate is recovered during temper annealing. The effect of delaying the movement of the grain boundaries of the subgrains becomes smaller, and as a result, the strength must be reduced to secure the elongation value, and the subgrain distribution tends to become non-uniform. At the time of molding, the overhanging property, drawing property, and reflaring property are deteriorated, and the strength of the product is insufficient. Further, the distribution of intermetallic compounds having a diameter of 0.1 μm or less is set to a number density of 1
The reason for defining 0 or more / μm 3 or more is that if the number is less than 10 / μm 3, it is difficult to obtain the above-mentioned effect, and therefore there is no effect of improving the overhanging property, drawability, flare property and strength.

【0008】次に本発明の製造方法について説明する。
本発明アルミニウム合金フィン材の製造方法は、均質化
処理の粗大な析出を抑制し、熱間圧延時あるいは調質焼
鈍時に直径が0.1μm以下の微細な金属間化合物の析
出を促進することを目的としており、そのためにはまず
上記合金組成を有する鋳塊に400〜500℃の温度で
1〜30時間保持の均質化処理を施す。均質化処理温度
が400℃未満では、鋳塊組織の均質化が不充分である
とともに、鋳造時に強制固溶された添加元素の固溶量を
低減することが出来ないため、しごき加工時に加工硬化
し易く、成形割れを多発する。また、熱間圧延後の組織
も不均一となり、ドロー成形あるいは複合成形時の張り
出し性、絞り性、およびリフレアー性が劣化する。一
方、均質化処理温度が500℃を超えると、充分な固溶
度が得られるが、晶出物が粗大に球状化し、成形性に悪
影響を及ぼすので好ましくない。特に再結晶の発生を抑
制し、伸び値を向上させる0.1μm径以下の微細な金
属間化合物を充分に析出させることが困難となり、実際
にドロー成形、複合成形時、張り出し性、絞り性、リフ
レアー性等が劣化するため好ましくない。また、保持時
間が1時間未満では微細な金属間化合物を多数形成し得
るが、元素固溶量を低減できず、しごき加工性が劣化す
る。一方、30時間を超えて保持した場合は元素固溶量
はかなり低減されるが、析出物の粗大化を招き、調質焼
鈍時に再結晶核を多く形成し易いことから、かえって成
形性が劣化することから好ましくない。
Next, the manufacturing method of the present invention will be described.
The method for producing an aluminum alloy fin material of the present invention suppresses coarse precipitation during homogenization treatment and promotes precipitation of fine intermetallic compounds having a diameter of 0.1 μm or less during hot rolling or temper annealing. For that purpose, first, the ingot having the above alloy composition is subjected to a homogenizing treatment of holding at a temperature of 400 to 500 ° C. for 1 to 30 hours. If the homogenization temperature is less than 400 ° C, homogenization of the ingot structure will be insufficient and the solid solution amount of the additive element that was forced to form a solid solution during casting cannot be reduced, so work hardening occurs during ironing. It is easy to do and causes many molding cracks. In addition, the structure after hot rolling becomes non-uniform, and the overhanging property, drawability, and flare property during draw forming or composite forming deteriorate. On the other hand, if the homogenization treatment temperature exceeds 500 ° C., a sufficient solid solubility can be obtained, but the crystallized material is coarsely spheroidized, which adversely affects the moldability, which is not preferable. In particular, it becomes difficult to sufficiently deposit a fine intermetallic compound having a diameter of 0.1 μm or less, which suppresses the occurrence of recrystallization and improves the elongation value. It is not preferable because the refreshing property is deteriorated. If the holding time is less than 1 hour, many fine intermetallic compounds can be formed, but the amount of elemental solid solution cannot be reduced and ironing workability deteriorates. On the other hand, when it is held for more than 30 hours, the solid solution amount of the element is considerably reduced, but coarsening of precipitates is likely to occur, and many recrystallization nuclei are likely to be formed during temper annealing, so that formability is rather deteriorated. It is not preferable because

【0009】均質化処理後、直ちに熱間圧延を施すが、
この熱間圧延は板厚100mmから熱間圧延上りの板厚ま
での圧延を7パス以上となるような圧下率で行う必要が
ある。7パス未満では1パス毎の圧下量が大きくなるた
め、パス間に回復、再結晶を繰り返す結果、最終パス終
了後の熱間圧延板中に、調質焼鈍時の再結晶核となり易
い旧粒界を多数生じる結果となり、ドロー成形あるいは
複合成形時に張り出し性、絞り性、リフレアー性が著し
く劣化する。
Hot rolling is performed immediately after the homogenization treatment.
In this hot rolling, it is necessary to carry out rolling from a plate thickness of 100 mm to a plate thickness after hot rolling at a reduction rate of 7 passes or more. If the number of passes is less than 7 passes, the amount of reduction per pass becomes large, so recovery between passes is repeated and recrystallization is repeated. As a result, old grains that tend to become recrystallization nuclei during temper annealing in the hot-rolled sheet after the final pass As a result, a large number of boundaries are generated, and the overhanging property, drawability, and flare property are significantly deteriorated during draw molding or composite molding.

【0010】冷間圧延を最終冷間圧延の圧下率が80%
以上となるように施すのは80%未満の場合、0.12
0mm以下の薄いフィン材をドロー成形、あるいは複合成
形する場合、強度が不足して座屈等の問題を生じるから
である。
The reduction ratio of cold rolling to final cold rolling is 80%.
If less than 80%, it is 0.12
This is because when draw forming or composite forming a thin fin material having a thickness of 0 mm or less, strength is insufficient and problems such as buckling occur.

【0011】冷間圧延によって得られたフィン材に25
0〜320℃の温度で調質焼鈍を施すことにより、フィ
ン材はドロー成形に必要な伸び値、複合成形に必要な強
度を確保し、良好な張り出し性、絞り性、リフレアー性
が得られる。また、コルゲート性も良好となる。ここで
調質温度が250℃未満では充分な成形性が得られず、
320℃を超えると強度が低下するだけでなく、かえっ
て伸びも低下し、また再結晶粒を生じてこれが起点とな
って成形性が劣化してしまう。
The fin material obtained by cold rolling has 25
By subjecting the fin material to temper annealing at a temperature of 0 to 320 ° C., the fin material secures the elongation value necessary for draw molding and the strength necessary for composite molding, and good swelling property, drawability, and flare property can be obtained. Moreover, the corrugated property is also improved. If the tempering temperature is less than 250 ° C, sufficient moldability cannot be obtained,
If the temperature exceeds 320 ° C., not only the strength is lowered, but also the elongation is lowered, and recrystallized grains are generated, which becomes the starting point and deteriorates the formability.

【0012】[0012]

【実施例】以下本発明を実施例より更に詳細に説明す
る。 〔実施例1〕表1に示す合金組成のAl合金を水冷鋳造
により作製した。水冷鋳造法による鋳塊(厚さ400m
m)を片面10mmずつ両面面削後、表2に示した条件で
均質化処理、熱間圧延を行い、厚さ6mmの熱延板を得
た。熱延板を冷間圧延し、厚さ0.115mm、0.10
0mmの薄板とした後、250〜320℃の温度で調質焼
鈍を施して引張強さが10.0〜15.0kgf /mm2
成形用フィン材を得た。このようにして得られたフィン
材の金属間化合物の分布状態、および成形性評価結果を
表3に示す。ここで金属間化合物の分布状態は、透過型
電子顕微鏡を用いて化合物の粒子径およびその粒子の一
定体積中の存在数を測定した。なお、その粒子径は粒子
の投影面積と等しい面積の円の直径とした。成形性試験
については、まずドロー成形によるカラー成形高さの限
界値測定を板厚0.100mm、0.115mmにおいて行
った結果を示す。次に、実機成形による評価により、板
厚0.105mmのフィン材を用いて、カラー高さ1.6
mmの銅管固定穴をドロー成形用金型を用いて張出し、絞
りにより連続成形し、最終加工のリフレアー加工まで行
い、960個のカラーを得た後、リフレアー(カーリン
グ)部先端に割れの生じた穴数の測定から割れ不良率を
算出し、これを現行材の厚さ0.130mmのフィン材を
同様に成形した時のリフレアー割れ不良率と比較するこ
とにより、評価を行った。同様に複合成形用金型を用い
て、張り出し、絞り、しごき、リフレアーの連続加工を
行い、960個のカラーを得た後、リフレアー(カーリ
ング)部先端に割れを生じた穴数の測定から割れ不良率
を算出し、これを上記現行材と比較することにより、評
価を行った。
EXAMPLES The present invention will now be described in more detail with reference to examples. Example 1 An Al alloy having the alloy composition shown in Table 1 was produced by water cooling casting. Ingot made by water cooling method (thickness 400m
After m) was machined on both sides by 10 mm on each side, homogenization treatment and hot rolling were carried out under the conditions shown in Table 2 to obtain a hot rolled sheet having a thickness of 6 mm. Cold rolled hot rolled sheet, thickness 0.115mm, 0.10
After forming a thin plate of 0 mm, it was subjected to temper annealing at a temperature of 250 to 320 ° C. to obtain a fin material for molding having a tensile strength of 10.0 to 15.0 kgf / mm 2 . Table 3 shows the distribution state of the intermetallic compounds of the fin material thus obtained and the evaluation results of the formability. Here, for the distribution state of the intermetallic compound, the particle size of the compound and the number of the particles present in a given volume were measured using a transmission electron microscope. The particle diameter was the diameter of a circle having an area equal to the projected area of the particles. As for the formability test, first, the results of performing the limit value measurement of the color forming height by draw forming at plate thicknesses of 0.100 mm and 0.115 mm are shown. Next, as a result of evaluation by actual molding, using a fin material having a plate thickness of 0.105 mm, a collar height of 1.6
mm copper pipe fixing hole is overhanged using a draw forming die, continuously formed by drawing, up to the final processing of the reflare processing, and after obtaining 960 colors, cracks occur at the tip of the flare (curling) part. The evaluation was carried out by calculating the crack failure rate from the measurement of the number of holes and comparing it with the refresh failure crack failure rate when a fin material having a thickness of 0.130 mm of the current material was similarly formed. Similarly, using a composite molding die, continuous processing of overhanging, squeezing, ironing, and flare was performed, and after obtaining 960 colors, cracks occurred at the tip of the flare (curling) part. Evaluation was performed by calculating the defective rate and comparing it with the above-mentioned current material.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】表3から明らかなように、本発明材試料N
o.1〜11は、従来材試料No.22、23に比べ、よ
り薄い板厚においてドロー成形、あるいは複合成形が可
能であり、特に0.100mmの板厚でのドロー成形によ
る張出し成形性、リフレアー成形性は従来材に比べ優れ
ている。また、0.115mmの板厚でのカラー成形高さ
の限界値についても、本発明材は、従来材に比べ優れて
いる。本発明材は、従来材に比べ、0.1μm径以下の
金属間化合物が数多く分布していることから、本発明材
では最終板の加工組織を調質焼鈍した時、これらの微細
な化合物が回復サブグレインの粒界移動を遅延する働き
をし、それによって再結晶核の発生を抑制することか
ら、薄肉フィンを複合成形するのに必要な強度を維持
し、その上で本成形に必要な張出し、絞り成形性、しご
きリフレアー成形性も優れることになる。従って、本発
明材は、0.130mmから0.115mmへと板厚を薄肉
化しても、表3に示すように現行板厚(0.130mm)
同等以上の限界カラー高さレベルを確保することができ
る。又、複合成形においても現行材同等以上のリフレア
ー成形性を保持することができる。これに対して、本発
明の範囲からはずれる比較材試料No.12〜21は、ド
ロー成形における張出し性、絞り性、リフレアー性、お
よび複合成形におけるリフレアー性が本発明材に比べ劣
り、限界カラー高さも本発明材以下のレベルである。す
なわち、Si、Fe、Mn、含有量のいずれかが上限を
超える比較材試料No.12、15、16、20は、金属
間化合物の粗大化により、直径0.1μm以下の微細金
属間化合物も少なくなり、また鋳造時の晶出物も粗大化
することから、成形時の張出し性、絞り性、リフレアー
性は低下し、結果として成形品不良となる。また、比較
材試料No.17、18はTi含有量が上限を超えること
から、Ti系の粗大な化合物が分布し、均一かつ微細な
サブグレインを形成させることが困難となり、結果とし
て成形時、張出し性、絞り性、リフレアー性は低下す
る。
As is clear from Table 3, the material sample N of the present invention
o. Nos. 1 to 11 are conventional material sample Nos. Compared with Nos. 22 and 23, it is possible to perform draw forming or composite forming with a thinner plate thickness, and particularly, the overhang formability and the flare formability by draw forming with a plate thickness of 0.100 mm are superior to conventional materials. Further, the material of the present invention is superior to the conventional material also in the limit value of the color forming height at the plate thickness of 0.115 mm. Compared with the conventional material, the present material has a large number of intermetallic compounds having a diameter of 0.1 μm or less. Therefore, in the material of the present invention, when the work structure of the final plate is temper-annealed, these fine compounds are It acts to delay the grain boundary migration of the recovered subgrains, thereby suppressing the generation of recrystallized nuclei, thus maintaining the strength required for composite molding of thin fins, and then, necessary for main molding. The overhang, draw formability, and ironing flare formability are also excellent. Therefore, even if the material of the present invention is thinned from 0.130 mm to 0.115 mm, as shown in Table 3, the current plate thickness (0.130 mm)
It is possible to secure the same or higher limit color height level. Further, even in composite molding, it is possible to maintain the flare moldability equal to or higher than the current material. On the other hand, comparative material sample No. outside the scope of the present invention. Nos. 12 to 21 are inferior to the material of the present invention in overhanging property, drawability, reflaring property in draw molding, and the flare property in composite molding, and the limit color height is at a level not higher than that of the material of the present invention. That is, Comparative Material Sample No. in which any one of Si, Fe, Mn and the content exceeds the upper limit. Nos. 12, 15, 16, and 20 have small intermetallic compounds having a diameter of 0.1 μm or less due to coarsening of intermetallic compounds, and also have large crystallized substances at the time of casting. In addition, the drawability and the refreshing property are deteriorated, resulting in a defective molded product. In addition, the comparative material sample No. In Nos. 17 and 18, since the Ti content exceeds the upper limit, a coarse Ti-based compound is distributed, and it becomes difficult to form uniform and fine subgrains. Sex decreases.

【0017】製造条件が本発明の範囲からはずれる比較
材試料No.12、13、14、15、18、19、2
0、21は、板厚0.105mmでドロー成形および複合
成形した場合、張出し性、絞り性、あるいはリフレアー
性が劣化している。また、均質化処理条件が適正でも通
常の熱間圧延を施した比較材試料No.19は、旧粒界を
多数生じており、充分な張り出し性、リフレアー性向上
効果が得られず、成形性が著しく劣化する。また、熱間
圧延条件が適性でも均質化処理温度が低すぎる比較材試
料No.21は鋳塊組織の均質化が充分に行われず、熱延
後の組織も不均一となり、加工硬化し易く、しごき性が
劣化する。均質化処理温度が高すぎる比較材試料No.1
8は固溶元素量が大きく低下し、実際には0.1μm径
以上の粗大な金属間化合物がアルミマトリックス中に多
く析出してしまう。このため薄肉フィンを成形時、張り
出し性、リフレアー性が劣化するのである。
Comparative material sample No. whose manufacturing conditions are out of the range of the present invention 12, 13, 14, 15, 18, 19, 2
In Nos. 0 and 21, the drawability and drawability, or the flareability were deteriorated in the case of draw forming and composite forming with a plate thickness of 0.105 mm. In addition, even if the homogenization condition is appropriate, the comparative material sample No. In No. 19, a large number of old grain boundaries were formed, and sufficient effects of improving the overhanging property and the flare property were not obtained, and the formability was remarkably deteriorated. Even if the hot rolling conditions are appropriate, the homogenization treatment temperature is too low. In No. 21, the ingot structure is not sufficiently homogenized, the structure after hot rolling becomes nonuniform, work hardening easily occurs, and ironing property deteriorates. Comparative material sample No. whose homogenization temperature is too high 1
In No. 8, the amount of the solid solution element is greatly reduced, and actually, a large amount of coarse intermetallic compounds having a diameter of 0.1 μm or more are precipitated in the aluminum matrix. Therefore, when forming the thin fin, the overhanging property and the flare property are deteriorated.

【0018】〔実施例2〕表3に示した本発明材、比較
材の一部試料について、調質焼鈍ごとの素板性能、具体
的には、引張強さ、伸び、エリクセン値、限界穴拡げ率
を測定し、その結果を表4に示す。成形性評価について
は、表3での成形同様、板厚0.105mmのフィン材を
用いて、張出し絞りタイプのドロー成形型、および複合
成形型により、張出し、絞り、穴拡げ、しごき、リフレ
アー加工を行い、現行材の厚さ0.130mmフィン材の
リフレアー割れ不良率と比較することにより、評価を行
った。
Example 2 With respect to some samples of the present invention material and the comparative material shown in Table 3, bare plate performance for each temper annealing, specifically, tensile strength, elongation, Erichsen value, limit hole The expansion ratio was measured, and the results are shown in Table 4. As for the formability evaluation, as in the case of forming in Table 3, using a fin material with a plate thickness of 0.105 mm, an overhanging draw type draw mold and a compound forming mold were used for overhanging, drawing, hole expanding, ironing, and reflaring. Then, the evaluation was performed by comparing the defective ratio of the flare cracking of the fin material with the thickness of 0.130 mm of the current material.

【0019】[0019]

【表4】 [Table 4]

【0020】表4から明らかなように本発明材は、比較
材に比べ、強度を低下させずに、より高い伸び値、エリ
クセン値、限界穴拡げ率を有することから、実機のドロ
ー成形および複合成形においても優れた張出絞り性能、
しごき性能、リフレアー性能を維持するのである。
As is apparent from Table 4, the material of the present invention has higher elongation value, Erichsen value, and limit hole expansion ratio without lowering the strength as compared with the comparative material. Excellent squeezing performance in molding,
The ironing performance and the refreshing performance are maintained.

【0021】[0021]

【発明の効果】以上述べたように、本発明によって得ら
れたフィン材は、ドロー成形、複合成形における、張出
し性、絞り性、しごき性、リフレアー性に優れ、成形割
れ不良率を著しく低減し得るという顕著な効果を奏する
ものである。本発明フィン材はドローレス成形に適用で
きることは勿論である。特に、0.100mmなどの薄板
においてもドロー成形用の金型で1.8〜2.2mm高さ
までカラー成形できることから、大幅な設備および材料
のコストダウンを図ることが可能となった。
As described above, the fin material obtained by the present invention is excellent in overhanging property, drawability, ironing property, and reflaring property in draw molding and composite molding, and significantly reduces the molding crack defect rate. It has a remarkable effect of obtaining. It goes without saying that the fin material of the present invention can be applied to drawless molding. In particular, even a thin plate of 0.100 mm or the like can be color-molded to a height of 1.8 to 2.2 mm with a drawing mold, which makes it possible to significantly reduce the cost of equipment and materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ) 〜(ニ) はそれぞれ熱交換器のアルミニウム
フィンの形態を示すものである。(イ) はフラットタイ
プ、(ロ) はルーバータイプ、(ハ) はスリットタイプ、
(ニ)はコルゲートタイプ。
1 (a) to 1 (d) show the shapes of aluminum fins of a heat exchanger. (A) is a flat type, (B) is a louver type, (C) is a slit type,
(D) is a corrugated type.

【図2】(イ) 〜(ヘ) はドロー成形によるフィンの成形方
法を断面図で示す説明図。
FIGS. 2A to 2F are explanatory views showing a cross-sectional view of a fin forming method by draw forming.

【図3】(イ) 〜(ニ) はドローレス成形によるフィンの成
形方法を、断面図で示す説明図。
3A to 3D are explanatory views showing a cross-sectional view of a fin forming method by drawless forming.

【図4】(イ) 〜(ヘ) は複合成形によるフィンの成形方法
を断面図で示す説明図。
4 (a) to 4 (f) are explanatory views showing cross-sectional views of a fin forming method by composite forming.

【符号の説明】[Explanation of symbols]

1 プレート部 2 カラー部 1 Plate part 2 Color part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si0.1wt%以下、Fe0.10〜
1.0wt%、Mn0.10〜0.50wt%、Ti0.0
1〜0.15wt%を含み、残部がAlと不可避的不純物
とからなるAl合金鋳塊に400〜500℃の温度で1
〜30時間保持の均質化処理を施した後、直ちに熱間圧
延を施し、その熱間圧延を板厚100mmから熱間圧延上
りの板厚までの圧延を7パス以上となるような圧下率で
行い、次に最終冷間圧延の圧下率が80%以上となるよ
うに冷間圧延を施し、得られた薄板に250〜320℃
の温度で調質焼鈍を施し、金属組織中に直径0.1μm
以下の金属間化合物を数密度で10個/μm3 以上分布
させることを特徴とする成形用高強度アルミニウム合金
フィン材の製造方法。
1. Si 0.1 wt% or less, Fe 0.10 to
1.0 wt%, Mn 0.10 to 0.50 wt%, Ti0.0
1 to 0.15 wt% with the balance being Al and inevitable impurities in an Al alloy ingot at a temperature of 400 to 500 ° C.
After carrying out the homogenizing treatment of holding for ~ 30 hours, hot rolling is immediately performed, and the hot rolling is performed at a reduction rate such that rolling from a sheet thickness of 100 mm to a sheet thickness after hot rolling is performed in 7 passes or more. Then, cold rolling is performed so that the rolling reduction of the final cold rolling is 80% or more, and the obtained thin plate is 250 to 320 ° C.
Temperature-annealed at a temperature of 0.1 μm in the metal structure
A method for producing a high-strength aluminum alloy fin material for molding, which comprises distributing the following intermetallic compound at a density of 10 or more per μm 3 .
JP02355393A 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming Expired - Fee Related JP3345839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02355393A JP3345839B2 (en) 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02355393A JP3345839B2 (en) 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming

Publications (2)

Publication Number Publication Date
JPH06212371A true JPH06212371A (en) 1994-08-02
JP3345839B2 JP3345839B2 (en) 2002-11-18

Family

ID=12113691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02355393A Expired - Fee Related JP3345839B2 (en) 1993-01-19 1993-01-19 Method of manufacturing high strength aluminum alloy fin material for forming

Country Status (1)

Country Link
JP (1) JP3345839B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899350A1 (en) * 1997-07-17 1999-03-03 Norsk Hydro ASA High extrudability and high corrosion resistant aluminium alloy
KR100226515B1 (en) * 1997-07-14 1999-10-15 백창기 Aluminium alloy forheat-exchanger fin and method manufacturing the fin having advanced strength and forming
JP2002173725A (en) * 2000-12-05 2002-06-21 Sky Alum Co Ltd Aluminum alloy fin material having excellent reflare formability and its production method
US6458224B1 (en) 1999-12-23 2002-10-01 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6503446B1 (en) 2000-07-13 2003-01-07 Reynolds Metals Company Corrosion and grain growth resistant aluminum alloy
US6602363B2 (en) 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
JP2006104488A (en) * 2004-09-08 2006-04-20 Kobe Steel Ltd Aluminum alloy fin material having excellent forming workability
WO2015111182A1 (en) * 2014-01-24 2015-07-30 株式会社Uacj Aluminum alloy sheet for heat exchanger fin

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234542A (en) * 1988-03-16 1989-09-19 Furukawa Alum Co Ltd Aluminum clad fin material for heat exchanger
JPH03197652A (en) * 1989-12-26 1991-08-29 Furukawa Alum Co Ltd Production of aluminum alloy fin material for brazing
JPH04313403A (en) * 1991-04-11 1992-11-05 Furukawa Alum Co Ltd Manufacture of aluminum alloy plate for forming
JPH059673A (en) * 1991-07-04 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy fin material rxcellent in heat conductivity
JPH058087A (en) * 1991-06-28 1993-01-19 Furukawa Alum Co Ltd Production of high-strength aluminum brazing sheet
JPH059677A (en) * 1991-07-02 1993-01-19 Furukawa Alum Co Ltd Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability
JPH059674A (en) * 1991-06-27 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet excellent in formability
JPH059676A (en) * 1991-07-02 1993-01-19 Furukawa Alum Co Ltd Manufacture of thin aluminum alloy sheet for drawless fin excellent in bore expandability
JPH059675A (en) * 1991-06-27 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet for forming
JPH05104287A (en) * 1991-10-14 1993-04-27 Furukawa Alum Co Ltd Production of aluminum brazing sheet having excellent moldability
JPH05179382A (en) * 1991-10-28 1993-07-20 Furukawa Alum Co Ltd Aluminum alloy thin sheet for drawless fin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234542A (en) * 1988-03-16 1989-09-19 Furukawa Alum Co Ltd Aluminum clad fin material for heat exchanger
JPH03197652A (en) * 1989-12-26 1991-08-29 Furukawa Alum Co Ltd Production of aluminum alloy fin material for brazing
JPH04313403A (en) * 1991-04-11 1992-11-05 Furukawa Alum Co Ltd Manufacture of aluminum alloy plate for forming
JPH059674A (en) * 1991-06-27 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet excellent in formability
JPH059675A (en) * 1991-06-27 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy sheet for forming
JPH058087A (en) * 1991-06-28 1993-01-19 Furukawa Alum Co Ltd Production of high-strength aluminum brazing sheet
JPH059677A (en) * 1991-07-02 1993-01-19 Furukawa Alum Co Ltd Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability
JPH059676A (en) * 1991-07-02 1993-01-19 Furukawa Alum Co Ltd Manufacture of thin aluminum alloy sheet for drawless fin excellent in bore expandability
JPH059673A (en) * 1991-07-04 1993-01-19 Furukawa Alum Co Ltd Manufacture of aluminum alloy fin material rxcellent in heat conductivity
JPH05104287A (en) * 1991-10-14 1993-04-27 Furukawa Alum Co Ltd Production of aluminum brazing sheet having excellent moldability
JPH05179382A (en) * 1991-10-28 1993-07-20 Furukawa Alum Co Ltd Aluminum alloy thin sheet for drawless fin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100226515B1 (en) * 1997-07-14 1999-10-15 백창기 Aluminium alloy forheat-exchanger fin and method manufacturing the fin having advanced strength and forming
EP0899350A1 (en) * 1997-07-17 1999-03-03 Norsk Hydro ASA High extrudability and high corrosion resistant aluminium alloy
US6458224B1 (en) 1999-12-23 2002-10-01 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6602363B2 (en) 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
US6656296B2 (en) 1999-12-23 2003-12-02 Reynolds Metals Company Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use
US6660107B2 (en) 1999-12-23 2003-12-09 Alcoa Inc Aluminum alloy with intergranular corrosion resistance and methods of making and use
US6503446B1 (en) 2000-07-13 2003-01-07 Reynolds Metals Company Corrosion and grain growth resistant aluminum alloy
JP2002173725A (en) * 2000-12-05 2002-06-21 Sky Alum Co Ltd Aluminum alloy fin material having excellent reflare formability and its production method
JP4704557B2 (en) * 2000-12-05 2011-06-15 古河スカイ株式会社 Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
JP2006104488A (en) * 2004-09-08 2006-04-20 Kobe Steel Ltd Aluminum alloy fin material having excellent forming workability
WO2015111182A1 (en) * 2014-01-24 2015-07-30 株式会社Uacj Aluminum alloy sheet for heat exchanger fin

Also Published As

Publication number Publication date
JP3345839B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US7156930B2 (en) Aluminum alloy pipe having multistage formability
JPH06212371A (en) Production of high strength aluminum alloy fin material for forming
JPH05271833A (en) High strength aluminum alloy fin material for forming and its production
JP4275560B2 (en) Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JPS626740B2 (en)
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP5830451B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP2931136B2 (en) Method for producing aluminum alloy sheet for drawless fin with excellent hole enlargement processability
JP5843462B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
JPH10310834A (en) Aluminum alloy thin sheet for cross fin and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH05156412A (en) Production of aluminum alloy sheet for drawless fin having excellent formability
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JPH05230579A (en) High strength thin aluminum alloy sheet for fin of air conditioner and its production
JP2931137B2 (en) Manufacturing method of aluminum alloy sheet for drawless fins with excellent ironing workability
JP4704557B2 (en) Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
CN1045012C (en) Aluminum alloy processing superior strength and workability for use in forming fin, and manufacturing method for same
JPH06228696A (en) Aluminum alloy sheet for di can body
JPH05179382A (en) Aluminum alloy thin sheet for drawless fin
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH059636A (en) Thin aluminum alloy sheet for drawless fin having excellent ironing property and production thereof
WO2012132785A1 (en) Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
WO2012132784A1 (en) Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JPH05117795A (en) Thin aluminum alloy sheet for drawless fin having excellent suitability to burring and production thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees