WO2015111182A1 - Aluminum alloy sheet for heat exchanger fin - Google Patents

Aluminum alloy sheet for heat exchanger fin Download PDF

Info

Publication number
WO2015111182A1
WO2015111182A1 PCT/JP2014/051474 JP2014051474W WO2015111182A1 WO 2015111182 A1 WO2015111182 A1 WO 2015111182A1 JP 2014051474 W JP2014051474 W JP 2014051474W WO 2015111182 A1 WO2015111182 A1 WO 2015111182A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
fin
heat exchanger
plate
alloy
Prior art date
Application number
PCT/JP2014/051474
Other languages
French (fr)
Japanese (ja)
Inventor
好生 佐藤
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to PCT/JP2014/051474 priority Critical patent/WO2015111182A1/en
Publication of WO2015111182A1 publication Critical patent/WO2015111182A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Definitions

  • the present invention relates to a heat exchanger, and in particular, to an aluminum alloy plate used as a fin material of a plate fin type aluminum alloy heat exchanger in which an aluminum alloy refrigerant circulation pipe is inserted into an aluminum alloy fin.
  • General heat exchanger structures widely used include plate fin type and corrugated fin type.
  • the plate fin type is frequently used for heat exchangers for home or commercial air conditioners, and the corrugated fin type is often used for heat exchangers for automotive air conditioners.
  • plate fin material In the fin material (hereinafter referred to as plate fin material) of the former plate fin type heat exchanger, a hole for inserting a pipe (hereinafter referred to as a refrigerant distribution pipe) through which the heat exchange refrigerant flows is formed, and It is necessary to form a collar for raising the inner peripheral edge portion and closely contacting the outer wall of the refrigerant flow pipe.
  • plate fin materials are generally drawn (drawn) and then punched, expanded, etc. The so-called draw method combined with overhanging and ironing. Is formed by.
  • the components and tempering of the plate fin material include pure aluminum-based 1100 alloy O material and H22 material, 1050 alloy O material and H22 material, and further Al-0.2 to 0.6% Mn alloy H22. Materials and H26 materials are widely used.
  • 1100 alloy or 1050 alloy O material or H22 material having better color formability is used from the viewpoint of emphasizing ductility.
  • drawless molding strength that can withstand ironing is required, so it is common to use H22 or H26 material of Al-0.1 to 0.5% Mn alloy. .
  • the aluminum alloy refrigerant flow tube is manufactured by extrusion, and the material of the aluminum alloy refrigerant flow tube is a non-heat-treatable alloy such as a 1000 series alloy such as 1050 alloy or 1100 alloy, or a 3000 series such as 3003 alloy or 3004 alloy.
  • a 1000 series alloy such as 1050 alloy or 1100 alloy
  • a 3000 series such as 3003 alloy or 3004 alloy.
  • An alloy, a 5000 series alloy such as a 5005 alloy or a 5052 alloy is applied, and a 6000 series alloy such as a 6N01 alloy or a 6063 alloy is applied as the heat treatment type alloy.
  • Al—Zn-based 7000 series alloy which is the most electrically base alloy among aluminum alloys, for the fin material.
  • 7072 alloy which can be cold-rolled to the plate thickness of the plate fin material represented by 0.1 mm with low strength is mentioned, 7072 alloy has a problem that color formability is insufficient.
  • the present invention has been made as a result of repeated testing and examination based on 7072 alloy in order to eliminate the above-mentioned problems, and its purpose is to make a refrigerant flow tube made of aluminum alloy and aluminum alloy. Even if it is a combination of plate fin materials, by making the fin material side an electrically base composition, the fin materials are preferentially corroded in a corrosive environment, and in particular, the color moldability is drawn.
  • An object of the present invention is to provide an aluminum alloy plate for a heat exchanger fin that has improved properties and stretchability.
  • an aluminum alloy plate for heat exchanger fins is configured such that an aluminum alloy refrigerant flow pipe is inserted into a hole with a collar of a fin in which a hole with a collar is formed.
  • An aluminum alloy plate for heat exchanger fins according to claim 2 is the aluminum alloy plate according to claim 1, wherein the aluminum alloy plate has an Erichsen value determined by an Ericksen test according to JIS Z2247 at a tensile speed of 20 mm / min according to JIS Z2241. In the region of tensile strength of 115 to 145 MPa determined by a tensile test using JIS No. 5 test piece, the thickness is 7 to 9 mm.
  • the fin material can be used even in a corrosive environment by making the fin material side electrically base composition.
  • an aluminum alloy plate for a heat exchanger fin that is preferentially corroded and has improved drawability and stretchability among color formability.
  • Zn is an alloy component that functions to make the plate fin material electrically base, and the preferable content of Zn is in the range of 0.3% to 1.3%. If Zn is less than 0.3%, it is less likely to be electrically lower than the aluminum alloy refrigerant flow pipe made of 1000 series, 3000 series, 5000 series, and 6000 series alloys, and has the effect of preferentially corroding the plate fin material. It is hard to get. If it exceeds 1.3%, a coarse Al—Zn-based intermetallic compound is likely to be formed, which becomes a starting point of cracking during color molding and deteriorates moldability. The more preferable content range of Zn is 0.5% or more and 1.3% or less, and the more preferable content range of Zn is 0.8% or more and 1.3% or less.
  • Fe is an alloy component that functions to improve the color formability, and the preferable content of Fe is in the range of 0.4% to 1.0%. If Fe is less than 0.4%, the dispersion of fine Al—Fe intermetallic compounds is small and the effect of improving color moldability is insufficient. If it exceeds 1.0%, coarse Al—Fe intermetallic compounds are present. This is a starting point of cracking during color molding and deteriorates moldability.
  • the more preferable content of Fe is in the range of more than 0.7% and 1.0% or less. By containing Fe in this range, a more remarkable moldability improvement effect can be obtained.
  • the balance consists of inevitable impurities and Al, but Ti: 0.005 to 0.05%, more preferably 0.01 to 0.03% can be added for refining the ingot structure. : 5 to 300 ppm, more preferably 10 to 100 ppm can be added.
  • Si it may combine with Al and Fe to form an Al—Fe—Si intermetallic alloy and hinder color moldability. Therefore, the purity of the metal used is increased, and Si is 0.1%. In the following, it is more preferable to limit the content to 0.03 to 0.08%. If a high-purity metal is used, the manufacturing cost increases, so it is not preferable to make Si less than 0.03%.
  • the aluminum alloy plate according to the present invention is an tensile test using a JIS No. 5 test piece at a tensile speed of 20 mm / min in accordance with JIS Z2241, in which the Erichsen value determined in accordance with JIS Z2247 is determined.
  • the required tensile strength is 115 to 145 MPa, and it is 7 to 9 mm.
  • the Erichsen value is less than 7 mm, cracking is likely to occur during drawing and overhanging during color molding, and if it exceeds 9 mm, it is advantageous for color molding, but the tensile strength decreases, and it is used as a plate fin material. It becomes difficult to ensure a tensile strength of 120 MPa or more.
  • the tensile strength is less than 115 MPa, the strength as a plate fin material is too low, and the fin tends to bend or bend during handling, and if it exceeds 145 MPa, it is difficult to secure an Erichsen value of 7 mm or more. Since the value is low, cracks are likely to occur during drawing and overhanging during color molding.
  • an Erichsen value of 7 mm to 9 mm can be ensured by setting the Zn content and the Fe content in the above ranges and adjusting the final annealing conditions to have a tensile strength of 115 MPa to 145 MPa.
  • An aluminum alloy having the above specific composition is melted and ingot-formed by semi-continuous casting, and the surface layer of the resulting ingot is uneven. After chamfering one layer, a homogenization heat treatment is performed at a temperature of 450 to 550 ° C. for 3 to 12 hours. After that, without cooling to room temperature or after cooling to or near room temperature, reheating is performed. Hot rolling is performed.
  • Hot rolling is industrially performed by a combination of hot rough rolling of reverse rolling and hot finish rolling which is rolled up in one direction by 3 or 4 stands in succession following hot rough rolling.
  • the hot rough rolling is preferably finished at 420 to 520 ° C.
  • the hot finish rolling is preferably finished at 250 to 300 ° C.
  • the hot finish rolling finished plate thickness is 1.5 to 2.5 mm.
  • cold rolling is performed to a plate thickness of 0.08 to 0.12 mm, which is a plate thickness equivalent to a plate fin material, with a reduction rate of 90% or more.
  • intermediate annealing may be performed by a continuous annealing furnace or a batch furnace for forming recrystallized grains before or during cold rolling, and when intermediate annealing is performed, cooling with uniform mechanical properties over the entire width and length is possible.
  • An intermediate-rolled sheet can be obtained, but if manufacturing condition management such as temperature management and speed management in hot rolling is sufficiently performed, there is no need to dare to perform intermediate annealing that requires manufacturing costs.
  • the cold-rolled sheet having the final thickness is subjected to final annealing so as to have a tensile strength of 115 to 145 MPa. Usually, the final annealing is performed in a batch furnace.
  • Example 1 and Comparative Example 1 An ingot (500 mm width) of an aluminum alloy having the composition shown in Table 1 was ingoted by semi-continuous casting, and after rolling the front and back rolling surfaces by 10 mm, homogenization treatment was performed at 520 ° C. for 8 hours, Hot rough rolling was performed without forced cooling. The hot rough rolling end temperature was 480 ° C., and the hot rough rolling end plate thickness was 32 mm. Subsequently, hot finish rolling was performed to a final plate thickness of 2 mm using a hot finish rolling mill consisting of 4 stands. End temperature was 280 ° C. in hot finish rolling. In Table 1, those outside the conditions of the present invention are underlined.
  • the obtained hot-finished rolled sheet was cold-rolled (rolling rate 95%) without intermediate annealing to a final sheet thickness of 0.1 mm, and the cold-rolled sheet was finally annealed.
  • the final annealing was performed using a batch furnace, and the final annealing conditions were changed according to the alloy components so that the tensile strength was 115 to 145 MPa. Table 2 shows the final annealing conditions.
  • Example: Test materials 1 to 7, Comparative example: Test materials 8 to 10 a tensile test and an Erichsen test were performed by the following methods. The results are shown in Tables 3 and 4.
  • As the tensile test piece a JIS No. 5 test piece of JIS Z2201 was used, and the tensile speed was 20 mm / min.
  • the test piece was 90 mm wide ⁇ 90 mm long.
  • test materials 1 to 5 according to the present invention were tested under conditions where the final annealing condition was the B condition (tensile strength in the 130 MPa range (see Tables 2 and 3)).
  • the final annealing condition was the B condition (tensile strength in the 130 MPa range (see Tables 2 and 3)).
  • comparative materials JIS A1050 (Fe: 0.3%, Si: 0.1%) H26 material (0.1 mm thickness) (comparative material 1) and JIS A1100 (Fe :), which are generally used as fin materials, are used. 0.8%, Si: 0.07%) H26 material (0.1 mm thickness) (comparative material 2), as a reference material, JIS A7072 (Zn: 1%, Fe: 0.3%) based on the present invention.
  • H26 material (0.1 mm thickness) was used. Furthermore, for potential difference evaluation, JIS A3003 (Mn: 1.2%, Cu: 0.12%, Fe: 0.5%, Si: 0.3%) O material generally used as a refrigerant flow pipe ( 0.5 mm thickness) was used.
  • test material was cut into 15 mm width ⁇ 70 mm length, and masked with a room temperature dry paint, leaving the upper end and the 10 mm ⁇ 10 mm measurement part to obtain a measurement sample.
  • a measurement sample and a reference electrode saturated calomel electrode
  • the immersion potential was measured. The results are shown in Table 5.
  • test materials 1 to 7 according to the present invention have a tensile strength of 115 to 145 MPa and an Erichsen value of 7 to 9 mm in the region of the tensile strength of 115 to 145 MPa. It was confirmed that the actual color molding had excellent drawability and stretchability.
  • the Erichsen value is less than 7 mm in the region where the tensile strength is 115 to 145 MPa. Cracks occurred in drawing and stretch forming during actual color molding.
  • the test materials 1 to 7 and the reference material according to the present invention have a lower potential than the evaluation material, and the potential difference between them is as large as around 150 mV, so that the fin collar closely contacting the refrigerant flow pipe In the part, it was confirmed that the fin side corrodes preferentially.
  • the comparative material 1 and the comparative material 2 which are conventional materials are both lower in potential than the evaluation material, the difference between the two is as small as 50 mV or less, so the fin side does not necessarily corrode and the refrigerant flow pipe corrodes. It was confirmed that the refrigerant could leak.

Abstract

Provided is an aluminum alloy sheet for a heat exchanger fin. Under corrosive conditions, the aluminum alloy sheet promotes the preferential corrosion of an aluminum alloy plate-fin material even when the plate-fin material is used in combination with aluminum alloy refrigerant pipes. With regard to collar moldability, the aluminum alloy sheet has particularly improved draw moldability and stretch formability. An aluminum alloy sheet for a fin that is used in a plate-fin heat exchanger wherein fins have collared holes formed therein and aluminum alloy refrigerant flow pipes are inserted into the collared holes, and wherein the outer walls of the refrigerant flow tubes adhere to the inner surfaces of the collars. The composition of the aluminum alloy sheet comprises 0.3%-1.3% Zn and 0.4%-1.0% Fe, the remainder being Al and unavoidable impurities.

Description

熱交換器フィン用アルミニウム合金板Aluminum alloy plate for heat exchanger fins
 本発明は、熱交換器、特にアルミニウム合金製フィンにアルミニウム合金製冷媒流通管を挿通させるプレートフィン型アルミニウム合金製熱交換器のフィン材として用いられるアルミニウム合金板に関する。 The present invention relates to a heat exchanger, and in particular, to an aluminum alloy plate used as a fin material of a plate fin type aluminum alloy heat exchanger in which an aluminum alloy refrigerant circulation pipe is inserted into an aluminum alloy fin.
 一般に広く使用されている熱交換器の構造としてはプレートフィンタイプのものと、コルゲートフィンタイプのものとがある。プレートフィンタイプは家庭用あるいは業務用エアコン用熱交換器に、コルゲートフィンタイプは自動車用エアコン用熱交換器に多用されている。 General heat exchanger structures widely used include plate fin type and corrugated fin type. The plate fin type is frequently used for heat exchangers for home or commercial air conditioners, and the corrugated fin type is often used for heat exchangers for automotive air conditioners.
 前者のプレートフィンタイプの熱交換器のフィン材(以下、プレートフィン材)においては、熱交換冷媒が流通する管(以下、冷媒流通管)を挿通させるための孔を形成し、且つその孔の内周縁部分を立ち上がらせて、冷媒流通管の外壁と密着させるためのカラーを形成しておく必要がある。このようなプレートフィン材は、従来、一般に絞り成形(ドロー加工)を行なった後、孔打抜加工、孔拡げ加工等を行なう、所謂ドロー方式と、張り出し成形としごき成形とを組合せたドローレス方式により成形される。 In the fin material (hereinafter referred to as plate fin material) of the former plate fin type heat exchanger, a hole for inserting a pipe (hereinafter referred to as a refrigerant distribution pipe) through which the heat exchange refrigerant flows is formed, and It is necessary to form a collar for raising the inner peripheral edge portion and closely contacting the outer wall of the refrigerant flow pipe. Conventionally, such plate fin materials are generally drawn (drawn) and then punched, expanded, etc. The so-called draw method combined with overhanging and ironing. Is formed by.
 プレートフィン材の成分および調質としては、純アルミニウム系の1100合金のO材やH22材、あるいは1050合金のO材やH22材、さらにはAl-0.2~0.6%Mn合金のH22材やH26材が広く用いられている。従来のドロー加工によるプレートフィン材については、延性重視の観点から、よりカラー成形性が良好な1100合金や1050合金のO材あるいはH22材が用いられている。ドローレス方式の成形を適用する場合は、しごき成形に耐えうる強度が必要となるため、Al-0.1~0.5%Mn合金のH22材もしくはH26材を用いるのが一般的となっている。 The components and tempering of the plate fin material include pure aluminum-based 1100 alloy O material and H22 material, 1050 alloy O material and H22 material, and further Al-0.2 to 0.6% Mn alloy H22. Materials and H26 materials are widely used. As for the conventional plate fin material by drawing, 1100 alloy or 1050 alloy O material or H22 material having better color formability is used from the viewpoint of emphasizing ductility. When applying drawless molding, strength that can withstand ironing is required, so it is common to use H22 or H26 material of Al-0.1 to 0.5% Mn alloy. .
 一方、プレートフィン材に挿通させる冷媒流通管としては、永らく熱伝導性の観点からリン脱酸銅等の純銅材からなる銅管が用いられてきたが、銅の価格がアルミニウム材に比べ高いこと、また単位重量あたりの重さも大きいことから、軽量小型化の要求に応えるために、最近では冷媒流通管にもアルミニウム合金管を適用した熱交換器、すなわち全ての部材がアルミニウム合金からなるアルミニウム合金製熱交換器が好まれるようになってきている。 On the other hand, copper pipes made of pure copper materials such as phosphorous deoxidized copper have been used for a long time from the viewpoint of thermal conductivity as refrigerant flow pipes inserted into plate fin materials, but the price of copper is higher than aluminum materials In addition, since the weight per unit weight is large, in order to meet the demand for light weight and downsizing, a heat exchanger in which aluminum alloy pipes are recently applied to refrigerant flow pipes, that is, aluminum alloys in which all members are made of aluminum alloys. Heat exchangers are becoming popular.
 アルミニウム合金製冷媒流通管は押出加工により製造され、アルミニウム合金製冷媒流通管の材質は、非熱処理型合金としては、1050合金や1100合金などの1000系合金、3003合金や3004合金などの3000系合金、5005合金や5052合金などの5000系合金が適用され、熱処理型合金としては、6N01合金や6063合金などの6000系合金が適用される。 The aluminum alloy refrigerant flow tube is manufactured by extrusion, and the material of the aluminum alloy refrigerant flow tube is a non-heat-treatable alloy such as a 1000 series alloy such as 1050 alloy or 1100 alloy, or a 3000 series such as 3003 alloy or 3004 alloy. An alloy, a 5000 series alloy such as a 5005 alloy or a 5052 alloy is applied, and a 6000 series alloy such as a 6N01 alloy or a 6063 alloy is applied as the heat treatment type alloy.
特開平9-176805号公報JP-A-9-176805 特開2005-264289号公報JP 2005-264289 A 特開平9-176805号公報JP-A-9-176805 特開2005-264289号公報JP 2005-264289 A 特開2005-264289号公報JP 2005-264289 A
 銅製の冷媒流通管とアルミニウム合金製プレートフィン材との組合せでは、アルミニウムの方が銅よりも電気的に卑であり、従って、熱交換器の腐食性使用環境においては、アルミニウムの方が優先的に腐食するため、冷媒流通管の腐食による冷媒の漏れが生じることはないが、アルミニウム合金製冷媒流通管とアルミニウム製プレートフィン材との組合せでは、両者の電気的な差異が小さく、従って、プレートフィン材が優先的に腐食することはなく、冷媒流通管が腐食して冷媒が漏れる恐れがある。 In the combination of copper refrigerant flow pipe and aluminum alloy plate fin material, aluminum is more electrically base than copper, so aluminum is preferred in the corrosive environment of heat exchangers. However, in the combination of the aluminum alloy refrigerant flow pipe and the aluminum plate fin material, the electrical difference between the two is small. The fin material does not corrode preferentially, and the refrigerant flow pipe may corrode and the refrigerant may leak.
 そこで、アルミニウム合金のなかでも最も電気的に卑な合金であるAl-Zn系の7000系合金をフィン材に採用することが考えられ、フィン材として適した7000系合金として、7000系合金の中でも低強度で、0.1mmに代表されるプレートフィン材の板厚まで冷間圧延が可能な7072合金が挙げられるが、7072合金ではカラー成形性が不十分であるという難点がある。 Therefore, it is conceivable to use Al—Zn-based 7000 series alloy, which is the most electrically base alloy among aluminum alloys, for the fin material. Although 7072 alloy which can be cold-rolled to the plate thickness of the plate fin material represented by 0.1 mm with low strength is mentioned, 7072 alloy has a problem that color formability is insufficient.
 本発明は、上記の問題点を解消するために、7072合金をベースとし、試験、検討を重ねた結果としてなされたものであり、その目的は、アルミニウム合金製の冷媒流通管とアルミニウム合金製のプレートフィン材の組合せであっても、フィン材側を電気的に卑な組成とすることにより、腐食環境下でフィン材が優先的に腐食するようにするとともに、カラー成形性のうち特に絞り成形性および張り出し成形性を向上させた熱交換器フィン用アルミニウム合金板を提供することにある。 The present invention has been made as a result of repeated testing and examination based on 7072 alloy in order to eliminate the above-mentioned problems, and its purpose is to make a refrigerant flow tube made of aluminum alloy and aluminum alloy. Even if it is a combination of plate fin materials, by making the fin material side an electrically base composition, the fin materials are preferentially corroded in a corrosive environment, and in particular, the color moldability is drawn. An object of the present invention is to provide an aluminum alloy plate for a heat exchanger fin that has improved properties and stretchability.
 上記の目的を達成するための請求項1による熱交換器フィン用アルミニウム合金板は、カラー付きの孔を形成したフィンのカラー付きの孔にアルミニウム合金製冷媒流通管を挿通させて、該冷媒流通管の外壁をカラーの内面に密着させる形式のプレートフィン型熱交換器に用いられるフィン用アルミニウム合金板であって、Zn:0.3%(質量%、以下同じ)以上1.3%以下、Fe:0.4%以上1.0%以下を含有し、残部がAlおよび不可避的不純物よりなる組成を有することを特徴とする。 In order to achieve the above object, an aluminum alloy plate for heat exchanger fins according to claim 1 is configured such that an aluminum alloy refrigerant flow pipe is inserted into a hole with a collar of a fin in which a hole with a collar is formed. An aluminum alloy plate for fins used in a plate fin type heat exchanger of the type in which the outer wall of the tube is closely attached to the inner surface of the collar, Zn: 0.3% (mass%, the same applies hereinafter) to 1.3%, Fe: 0.4% or more and 1.0% or less, with the balance being composed of Al and inevitable impurities.
 請求項2による熱交換器フィン用アルミニウム合金板は、請求項1において、前記アルミニウム合金板のJIS Z2247に準拠したエリクセン試験で求められるエリクセン値が、JIS Z2241に準拠した20mm/minの引張速度でのJIS5号試験片を用いた引張試験で求められる引張強さ115~145MPaの領域で、7~9mmであることを特徴とする。 An aluminum alloy plate for heat exchanger fins according to claim 2 is the aluminum alloy plate according to claim 1, wherein the aluminum alloy plate has an Erichsen value determined by an Ericksen test according to JIS Z2247 at a tensile speed of 20 mm / min according to JIS Z2241. In the region of tensile strength of 115 to 145 MPa determined by a tensile test using JIS No. 5 test piece, the thickness is 7 to 9 mm.
 本発明によれば、アルミニウム合金製の冷媒流通管とアルミニウム合金製のプレートフィン材の組合せであっても、フィン材側を電気的に卑な組成とすることにより、腐食環境下でもフィン材が優先的に腐食するようにするとともに、カラー成形性のうち特に絞り成形性および張り出し成形性を向上させた熱交換器フィン用アルミニウム合金板が提供される。 According to the present invention, even in a combination of an aluminum alloy refrigerant distribution pipe and an aluminum alloy plate fin material, the fin material can be used even in a corrosive environment by making the fin material side electrically base composition. Provided is an aluminum alloy plate for a heat exchanger fin that is preferentially corroded and has improved drawability and stretchability among color formability.
 本発明の熱交換器フィン用アルミニウム合金板の合金成分の意義およびその限定理由について説明する。
Zn:
Znはプレートフィン材を電気的に卑にするよう機能する合金成分であり、Znの好ましい含有量は0.3%以上1.3%以下の範囲である。Znが0.3%未満では、1000系、3000系、5000系、6000系の合金からなるアルミニウム合金製冷媒流通管より電気的に卑になり難く、プレートフィン材を優先的に腐食させる効果が得難い。1.3%を超えると、粗大なAl-Zn系金属間化合物を生成し易く、これがカラー成形時に割れの起点となり、成形性を劣化させる。Znのより好ましい含有範囲は0.5%以上1.3%以下であり、Znのさらに好ましい含有範囲は0.8%以上1.3%以下である。
The significance of the alloy component of the aluminum alloy plate for heat exchanger fins of the present invention and the reason for the limitation will be described.
Zn:
Zn is an alloy component that functions to make the plate fin material electrically base, and the preferable content of Zn is in the range of 0.3% to 1.3%. If Zn is less than 0.3%, it is less likely to be electrically lower than the aluminum alloy refrigerant flow pipe made of 1000 series, 3000 series, 5000 series, and 6000 series alloys, and has the effect of preferentially corroding the plate fin material. It is hard to get. If it exceeds 1.3%, a coarse Al—Zn-based intermetallic compound is likely to be formed, which becomes a starting point of cracking during color molding and deteriorates moldability. The more preferable content range of Zn is 0.5% or more and 1.3% or less, and the more preferable content range of Zn is 0.8% or more and 1.3% or less.
Fe:
Feはカラー成形性を向上させるよう機能する合金成分であり、Feの好ましい含有量は0.4%以上1.0%以下の範囲である。Feが0.4%未満では、微細なAl-Fe系金属間化合物の分散が少なく、カラー成形性向上効果が不十分となり、1.0%を超えると、粗大なAl-Fe系金属間化合物を生成し易く、これがカラー成形時に割れの起点となり、成形性を劣化させる。Feのさらに好ましい含有量は0.7%を超え1.0%以下の範囲であり、Feをこの範囲で含有させることによって、さらに顕著な成形性向上効果を得ることができる。
Fe:
Fe is an alloy component that functions to improve the color formability, and the preferable content of Fe is in the range of 0.4% to 1.0%. If Fe is less than 0.4%, the dispersion of fine Al—Fe intermetallic compounds is small and the effect of improving color moldability is insufficient. If it exceeds 1.0%, coarse Al—Fe intermetallic compounds are present. This is a starting point of cracking during color molding and deteriorates moldability. The more preferable content of Fe is in the range of more than 0.7% and 1.0% or less. By containing Fe in this range, a more remarkable moldability improvement effect can be obtained.
 残部は、不可避的不純物とAlからなるが、鋳塊組織微細化のために、Ti:0.005~0.05%、より好ましくは0.01~0.03%添加することができ、B:5~300ppm、より好ましくは10~100ppm添加することができる。Siについては、Al、Feと化合してAl-Fe-Si系金属間合金を形成してカラー成形性を阻害するおそれがあるから、使用する地金の純度を上げ、Siを0.1%以下、より好ましくは0.03~0.08%に制限することが望ましい。高純度地金を用いると製造コストの高騰を招くのでSiを0.03%未満とすることは好ましくない。 The balance consists of inevitable impurities and Al, but Ti: 0.005 to 0.05%, more preferably 0.01 to 0.03% can be added for refining the ingot structure. : 5 to 300 ppm, more preferably 10 to 100 ppm can be added. As for Si, it may combine with Al and Fe to form an Al—Fe—Si intermetallic alloy and hinder color moldability. Therefore, the purity of the metal used is increased, and Si is 0.1%. In the following, it is more preferable to limit the content to 0.03 to 0.08%. If a high-purity metal is used, the manufacturing cost increases, so it is not preferable to make Si less than 0.03%.
 本発明においては、前記本発明によるアルミニウム合金板のJIS Z2247に準拠したエリクセン試験で求められるエリクセン値が、JIS Z2241に準拠した20mm/minの引張速度でのJIS5号試験片を用いた引張試験で求められる引張強さ115~145MPaの領域で、7~9mmであることを特徴とする。 In the present invention, the aluminum alloy plate according to the present invention is an tensile test using a JIS No. 5 test piece at a tensile speed of 20 mm / min in accordance with JIS Z2241, in which the Erichsen value determined in accordance with JIS Z2247 is determined. The required tensile strength is 115 to 145 MPa, and it is 7 to 9 mm.
 エリクセン値が7mm未満では、カラー成形時の絞りおよび張り出し加工で割れが発生し易く、9mmを超えると、カラー成形にとっては有利であるが、引張強さが低くなってしまい、プレートフィン材として使用できる引張強さ120MPa以上を確保することが難しくなる。 If the Erichsen value is less than 7 mm, cracking is likely to occur during drawing and overhanging during color molding, and if it exceeds 9 mm, it is advantageous for color molding, but the tensile strength decreases, and it is used as a plate fin material. It becomes difficult to ensure a tensile strength of 120 MPa or more.
 引張強さが115MPa未満では、プレートフィン材としての強度が低すぎて、取扱い時にフィンに曲がりや折れなどの変形が生じ易くなり、145MPaを超えると、7mm以上のエリクセン値を確保し難く、エリクセン値が低いために、カラー成形時の絞りおよび張り出し加工で割れが生じ易い。 If the tensile strength is less than 115 MPa, the strength as a plate fin material is too low, and the fin tends to bend or bend during handling, and if it exceeds 145 MPa, it is difficult to secure an Erichsen value of 7 mm or more. Since the value is low, cracks are likely to occur during drawing and overhanging during color molding.
 本発明においては、Zn量およびFe量を上記範囲に設定し、最終焼鈍条件を115MPa~145MPaの引張強さとなるように調整すれば7mm~9mmのエリクセン値を確保することができる。 In the present invention, an Erichsen value of 7 mm to 9 mm can be ensured by setting the Zn content and the Fe content in the above ranges and adjusting the final annealing conditions to have a tensile strength of 115 MPa to 145 MPa.
 以下の本発明による熱交換器フィン用アルミニウム合金板の好ましい製造方法について説明すると、前記特定組成のアルミニウム合金を溶解して、半連続鋳造により造塊し、得られた鋳塊の表層の不均一層を面削した後、450~550℃の温度で3~12時間保持する均質化熱処理を行い、その後、室温まで冷却することなく、あるいは室温かその近傍まで冷却してから再加熱して熱間圧延を行う。 The following describes a preferred method for producing an aluminum alloy plate for heat exchanger fins according to the present invention. An aluminum alloy having the above specific composition is melted and ingot-formed by semi-continuous casting, and the surface layer of the resulting ingot is uneven. After chamfering one layer, a homogenization heat treatment is performed at a temperature of 450 to 550 ° C. for 3 to 12 hours. After that, without cooling to room temperature or after cooling to or near room temperature, reheating is performed. Hot rolling is performed.
 熱間圧延は、工業的にはリバース圧延の熱間粗圧延と、熱間粗圧延に引続き連続して3スタンドあるいは4スタンドにより一方向に圧延してコイルアップする熱間仕上圧延の組み合わせにより行い、熱間粗圧延を420~520℃で終了し、熱間仕上圧延を250~300℃で終了するのが好ましい。熱間仕上圧延終了板厚は1.5~2.5mmとする。 Hot rolling is industrially performed by a combination of hot rough rolling of reverse rolling and hot finish rolling which is rolled up in one direction by 3 or 4 stands in succession following hot rough rolling. The hot rough rolling is preferably finished at 420 to 520 ° C., and the hot finish rolling is preferably finished at 250 to 300 ° C. The hot finish rolling finished plate thickness is 1.5 to 2.5 mm.
 その後、90%以上の圧下率でプレートフィン材相当の板厚である0.08~0.12mmの板厚まで冷間圧延を行う。なお、冷間圧延前あるいは冷間圧延途中で再結晶粒形成のための連続焼鈍炉あるいはバッチ炉による中間焼鈍を行ってもよく、中間焼鈍を行うと全幅全長において均一な機械的性質を有する冷間圧延板を得ることができるが、熱間圧延での温度管理、速度管理等の製造条件管理が十分になされていれば、敢えて製造コストのかかる中間焼鈍を行う必要はない。最後に、最終板厚となった冷間圧延板を115~145MPaの引張強さとなるように最終焼鈍を行う。通常、最終焼鈍はバッチ炉で行う。 Then, cold rolling is performed to a plate thickness of 0.08 to 0.12 mm, which is a plate thickness equivalent to a plate fin material, with a reduction rate of 90% or more. In addition, intermediate annealing may be performed by a continuous annealing furnace or a batch furnace for forming recrystallized grains before or during cold rolling, and when intermediate annealing is performed, cooling with uniform mechanical properties over the entire width and length is possible. An intermediate-rolled sheet can be obtained, but if manufacturing condition management such as temperature management and speed management in hot rolling is sufficiently performed, there is no need to dare to perform intermediate annealing that requires manufacturing costs. Finally, the cold-rolled sheet having the final thickness is subjected to final annealing so as to have a tensile strength of 115 to 145 MPa. Usually, the final annealing is performed in a batch furnace.
 以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。 Hereinafter, examples of the present invention will be described in comparison with comparative examples to demonstrate the effects of the present invention. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.
実施例1、比較例1
 表1に示す組成を有するアルミニウム合金の鋳塊(500mm幅)を、半連続鋳造により造塊し、表裏の圧延面を各々10mm面削した後、520℃で8時間の均質化処理を行い、強制冷却することなく熱間粗圧延を行った。熱間粗圧延終了温度は480℃であり、熱間粗圧延終了板厚は32mmとした。引続き、4スタンドからなる熱間仕上圧延機により終了板厚2mmまで熱間仕上圧延を行った。熱間仕上圧延で終了温度は280℃であった。なお、表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
An ingot (500 mm width) of an aluminum alloy having the composition shown in Table 1 was ingoted by semi-continuous casting, and after rolling the front and back rolling surfaces by 10 mm, homogenization treatment was performed at 520 ° C. for 8 hours, Hot rough rolling was performed without forced cooling. The hot rough rolling end temperature was 480 ° C., and the hot rough rolling end plate thickness was 32 mm. Subsequently, hot finish rolling was performed to a final plate thickness of 2 mm using a hot finish rolling mill consisting of 4 stands. End temperature was 280 ° C. in hot finish rolling. In Table 1, those outside the conditions of the present invention are underlined.
 得られた熱間仕上圧延板を、最終板厚0.1mmまで中間焼鈍なしで冷間圧延(圧下率95%)し、冷間圧延板を最終焼鈍した。最終焼鈍はバッチ炉を用い、引張強さが115~145MPaとなるように、最終焼鈍条件を合金成分に応じて変化させた。最終焼鈍条件を表2に示す。 The obtained hot-finished rolled sheet was cold-rolled (rolling rate 95%) without intermediate annealing to a final sheet thickness of 0.1 mm, and the cold-rolled sheet was finally annealed. The final annealing was performed using a batch furnace, and the final annealing conditions were changed according to the alloy components so that the tensile strength was 115 to 145 MPa. Table 2 shows the final annealing conditions.
 得られた最終焼鈍板を試験材(実施例:試験材1~7、比較例:試験材8~10)として、以下の方法により引張試験、エリクセン試験を行った。結果を表3、表4に示す。
引張試験:JIS Z2241に準拠した。引張試験片は、JIS Z2201のJIS5号試験片を用い、引張速度は20mm/minとした。
エリクセン試験:JISZ2247に準拠した。試験片は、90mm幅×90mm長さとした。
Using the obtained final annealed plate as a test material (Example: Test materials 1 to 7, Comparative example: Test materials 8 to 10), a tensile test and an Erichsen test were performed by the following methods. The results are shown in Tables 3 and 4.
Tensile test: compliant with JIS Z2241. As the tensile test piece, a JIS No. 5 test piece of JIS Z2201 was used, and the tensile speed was 20 mm / min.
Eriksen test: compliant with JISZ2247. The test piece was 90 mm wide × 90 mm long.
 また、以下の方法により電位評価を行った。電位を評価する材料として、本発明に従う試験材1~5については、最終焼鈍条件がB条件のもの(引張強さが130MPa台(表2、表3参照))を供試した。比較材として、フィン材として一般的に使用されているJIS A1050(Fe:0.3%、Si:0.1%)H26材(0.1mm厚)(比較材1)およびJIS A1100(Fe:0.8%、Si:0.07%)H26材(0.1mm厚)(比較材2)、参考材として、本発明のベースとしたJIS A7072(Zn:1%、Fe:0.3%、Si:0.1%)H26材(0.1mm厚)を供試した。さらに、電位差評価用として、冷媒流通管として一般に使用されているJIS A3003(Mn:1.2%、Cu;0.12%、Fe:0.5%、Si:0.3%)O材(0.5mm厚)を供試した。 Moreover, the potential evaluation was performed by the following method. As materials for evaluating the potential, test materials 1 to 5 according to the present invention were tested under conditions where the final annealing condition was the B condition (tensile strength in the 130 MPa range (see Tables 2 and 3)). As comparative materials, JIS A1050 (Fe: 0.3%, Si: 0.1%) H26 material (0.1 mm thickness) (comparative material 1) and JIS A1100 (Fe :), which are generally used as fin materials, are used. 0.8%, Si: 0.07%) H26 material (0.1 mm thickness) (comparative material 2), as a reference material, JIS A7072 (Zn: 1%, Fe: 0.3%) based on the present invention. , Si: 0.1%) H26 material (0.1 mm thickness) was used. Furthermore, for potential difference evaluation, JIS A3003 (Mn: 1.2%, Cu: 0.12%, Fe: 0.5%, Si: 0.3%) O material generally used as a refrigerant flow pipe ( 0.5 mm thickness) was used.
 供試材を、15mm幅×70mm長さに切断し、常温乾燥型塗料により、上端部と10mm×10mmの測定部とを残してマスキングして測定試料とした。5%NaCl溶液に酢酸を添加してpH=3に調整した室温(25℃)の溶液中に測定試料と参照電極(飽和カロメル電極)を浸漬し、電位計を用いて両者の電位差を測定することにより浸漬電位を測定した。結果を表5に示す。 The test material was cut into 15 mm width × 70 mm length, and masked with a room temperature dry paint, leaving the upper end and the 10 mm × 10 mm measurement part to obtain a measurement sample. A measurement sample and a reference electrode (saturated calomel electrode) are immersed in a solution at room temperature (25 ° C.) adjusted to pH = 3 by adding acetic acid to a 5% NaCl solution, and the potential difference between the two is measured using an electrometer. The immersion potential was measured. The results are shown in Table 5.
 表3、表4に示すように、本発明に従う試験材1~7はいずれも、引張強さが115~145MPaで、エリクセン値が、引張強さ115~145MPaの領域で7~9mmであり、実際のカラー成形において、優れた絞り成形性、張り出し成形性をそなえていることが確認された。 As shown in Tables 3 and 4, all of the test materials 1 to 7 according to the present invention have a tensile strength of 115 to 145 MPa and an Erichsen value of 7 to 9 mm in the region of the tensile strength of 115 to 145 MPa. It was confirmed that the actual color molding had excellent drawability and stretchability.
 これに対して、試験材8はFe量が少なく、試験材9はFe量が多く、試験材10はZn量が多いため、いずれもエリクセン値が引張強さ115~145MPaの領域で7mm未満となり、実際のカラー成形時の絞り成形、張り出し成形において割れが生じた。 On the other hand, since the test material 8 has a small amount of Fe, the test material 9 has a large amount of Fe, and the test material 10 has a large amount of Zn, the Erichsen value is less than 7 mm in the region where the tensile strength is 115 to 145 MPa. Cracks occurred in drawing and stretch forming during actual color molding.
 また、表5に示すように、本発明に従う試験材1~7および参考材は、評価材よりも電位が卑であり、両者の電位差は150mV前後と大きいため、冷媒流通管と密着するフィンカラー部においては、フィン側が優先的に腐食することが確認された。 Further, as shown in Table 5, the test materials 1 to 7 and the reference material according to the present invention have a lower potential than the evaluation material, and the potential difference between them is as large as around 150 mV, so that the fin collar closely contacting the refrigerant flow pipe In the part, it was confirmed that the fin side corrodes preferentially.
 一方、従来材である比較材1、比較材2はいずれも、評価材より電位が卑ではあるものの、両者の差は50mV以下と小さいため、フィン側が必ずしも腐食せず、冷媒流通管が腐食して冷媒が漏洩するおそれのあることが確認された。 On the other hand, although the comparative material 1 and the comparative material 2 which are conventional materials are both lower in potential than the evaluation material, the difference between the two is as small as 50 mV or less, so the fin side does not necessarily corrode and the refrigerant flow pipe corrodes. It was confirmed that the refrigerant could leak.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (2)

  1. カラー付きの孔を形成したフィンのカラー付きの孔にアルミニウム合金製冷媒流通管を挿通させて、該冷媒流通管の外壁をカラーの内面に密着させる形式のプレートフィン型熱交換器に用いられるフィン用アルミニウム合金板であって、Zn:0.3%(質量%、以下同じ)以上1.3%以下、Fe:0.4%以上1.0%以下を含有し、残部がAlおよび不可避的不純物よりなる組成を有することを特徴とする熱交換器フィン用アルミニウム合金板。 Fin used in a plate fin type heat exchanger of a type in which an aluminum alloy refrigerant flow pipe is inserted into a collar hole of a fin having a collar hole and the outer wall of the refrigerant flow pipe is in close contact with the inner surface of the collar Aluminum alloy plate for use, containing Zn: 0.3% (mass%, the same shall apply hereinafter) to 1.3%, Fe: 0.4% to 1.0%, the balance being Al and inevitable An aluminum alloy plate for heat exchanger fins, characterized by having a composition comprising impurities.
  2. 前記アルミニウム合金板のJIS Z2247に準拠したエリクセン試験で求められるエリクセン値が、JIS Z2241に準拠した20mm/minの引張速度でのJIS5号試験片を用いた引張試験で求められる引張強さ115~145MPaの領域で、7~9mmであることを特徴とする請求項1記載の熱交換器フィン用アルミニウム合金板。 The Erichsen value determined by the Erichsen test in accordance with JIS Z2247 of the aluminum alloy plate is a tensile strength of 115 to 145 MPa determined by a tensile test using a JIS No. 5 test piece at a tensile speed of 20 mm / min according to JIS Z2241. The aluminum alloy plate for heat exchanger fins according to claim 1, wherein the thickness is 7 to 9 mm.
PCT/JP2014/051474 2014-01-24 2014-01-24 Aluminum alloy sheet for heat exchanger fin WO2015111182A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051474 WO2015111182A1 (en) 2014-01-24 2014-01-24 Aluminum alloy sheet for heat exchanger fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051474 WO2015111182A1 (en) 2014-01-24 2014-01-24 Aluminum alloy sheet for heat exchanger fin

Publications (1)

Publication Number Publication Date
WO2015111182A1 true WO2015111182A1 (en) 2015-07-30

Family

ID=53681011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051474 WO2015111182A1 (en) 2014-01-24 2014-01-24 Aluminum alloy sheet for heat exchanger fin

Country Status (1)

Country Link
WO (1) WO2015111182A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107050A (en) * 1985-11-01 1987-05-18 Mitsubishi Alum Co Ltd Fin material of al base alloy containing fe for heat exchanger
JPH03197652A (en) * 1989-12-26 1991-08-29 Furukawa Alum Co Ltd Production of aluminum alloy fin material for brazing
JPH06212371A (en) * 1993-01-19 1994-08-02 Furukawa Alum Co Ltd Production of high strength aluminum alloy fin material for forming
JPH1180869A (en) * 1997-09-11 1999-03-26 Kobe Steel Ltd Aluminum alloy fin material and production of aluminum alloy fin material
JP2000169926A (en) * 1998-12-04 2000-06-20 Furukawa Electric Co Ltd:The Fin material for mechanical caulking type heat exchanger
JP2014025112A (en) * 2012-07-27 2014-02-06 Uacj Corp Aluminum alloy sheet for heat exchanger fin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107050A (en) * 1985-11-01 1987-05-18 Mitsubishi Alum Co Ltd Fin material of al base alloy containing fe for heat exchanger
JPH03197652A (en) * 1989-12-26 1991-08-29 Furukawa Alum Co Ltd Production of aluminum alloy fin material for brazing
JPH06212371A (en) * 1993-01-19 1994-08-02 Furukawa Alum Co Ltd Production of high strength aluminum alloy fin material for forming
JPH1180869A (en) * 1997-09-11 1999-03-26 Kobe Steel Ltd Aluminum alloy fin material and production of aluminum alloy fin material
JP2000169926A (en) * 1998-12-04 2000-06-20 Furukawa Electric Co Ltd:The Fin material for mechanical caulking type heat exchanger
JP2014025112A (en) * 2012-07-27 2014-02-06 Uacj Corp Aluminum alloy sheet for heat exchanger fin

Similar Documents

Publication Publication Date Title
US11408690B2 (en) Method for producing aluminum alloy clad material
JP7155100B2 (en) Heat exchanger, use of aluminum alloy and aluminum strip, and method of manufacturing aluminum strip
US9976200B2 (en) Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
JP5336967B2 (en) Aluminum alloy clad material
US20160319401A1 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP2012513539A5 (en)
JP6105561B2 (en) Aluminum alloy inner surface grooved heat transfer tube
EP3121301B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
US20160153073A1 (en) Aluminum alloy having an excellent combination of strength, extrudability and corrosion resistance
JP2014098185A (en) Aluminum alloy brazing sheet and manufacturing method thereof
WO2014165017A2 (en) Brazing sheet core alloy for heat exchanger
JP2008050657A (en) Aluminum piping material for automobile heat exchanger
CN104955971A (en) Aluminum alloy cladding material and heat exchanger incorporating tube obtained by molding said cladding material
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
WO2012098991A1 (en) Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing same
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP6090734B2 (en) Aluminum alloy plate for heat exchanger fins
TWI608110B (en) Copper alloy seamless tube for heat exchanger tube
WO2015111182A1 (en) Aluminum alloy sheet for heat exchanger fin
TWI614353B (en) Cold/hot water supply copper alloy seamless tube
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP5552181B2 (en) Aluminum alloy clad material
JP6518804B2 (en) Method of manufacturing aluminum alloy pipe for heat exchanger
JP4318929B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201604865

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP