JP4318929B2 - Aluminum alloy extruded tube and heat exchanger for heat exchanger - Google Patents

Aluminum alloy extruded tube and heat exchanger for heat exchanger Download PDF

Info

Publication number
JP4318929B2
JP4318929B2 JP2003037425A JP2003037425A JP4318929B2 JP 4318929 B2 JP4318929 B2 JP 4318929B2 JP 2003037425 A JP2003037425 A JP 2003037425A JP 2003037425 A JP2003037425 A JP 2003037425A JP 4318929 B2 JP4318929 B2 JP 4318929B2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
extruded
alloy
extruded tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037425A
Other languages
Japanese (ja)
Other versions
JP2004244696A (en
Inventor
恵津夫 長谷川
友彦 中村
靖憲 兵庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Denso Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Denso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2003037425A priority Critical patent/JP4318929B2/en
Publication of JP2004244696A publication Critical patent/JP2004244696A/en
Application granted granted Critical
Publication of JP4318929B2 publication Critical patent/JP4318929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カーエアコンのコンデンサ、エバポレータなどの熱交換器の構造用部材として用いるアルミニウム合金押出チューブおよび熱交換器に係る。より詳細には、薄肉化を図っても耐食性、特に耐孔食性に優れたアルミニウム合金押出チューブとこれを使用して製造した熱交換器に関する。
【0002】
【従来の技術】
AlおよびAl合金は軽量、かつ、熱伝導性が良好で耐食性にも優れていることから、アルミニウム合金の押出材からなるチューブ(以下、アルミニウム(Al)合金押出チューブと呼ぶ)は、車載用エアコンなどの熱交換器において広く用いられている。
【0003】
この熱交換器は、例えば図2に示すように、ヘッダーパイプ4と称される左右一対の管体と、そのヘッダーパイプ4の間に互いに平行に間隔を空けて設けられたアルミニウム合金からなる多数のチューブ1と、チューブ1とチューブ1との間に設けられたフィン2とで構成されている。
【0004】
そして、チューブ1とフィン2とはろう付けされており、さらに各チューブ1の内部空間とヘッダーパイプ4の内部空間は連通しており、ヘッダーパイプ4の内部空間と各チューブ1の内部空間に媒体を循環させ、前記フィン2を介して効率良く熱交換ができるようになっている。
【0005】
この熱交換器を構成する各チューブ1としては、図1の斜視図に示されるような複数の冷媒通路穴3を有する断面偏平状の押出材が用いられ、この押出材は押出し加工により形成されるため、一般に、押出し加工性に優れたJIS1050合金に代表される純アルミニウム(Al)系合金が用いられている。
【0006】
このような製品では更なる軽量化を図るため、中空形状(管状)とした押出材はより薄肉であることが望まれているが、肉厚が減少するにつれて所定の形状寸法のチューブを得るには、成形時の押出速度を低下させる必要があるなど、押出性が低下し、量産性が損なわれるという課題があった。この押出性の低下は、特に、押出材の外表面となす最も薄い部分の肉厚が0.30mm以下の場合に顕著に現れるものであった。
【0007】
ところで、熱交換器ではチューブ内を通過する冷媒により、チューブに内圧が加わり、チューブの材料強度、特に、耐力が低い場合には薄肉化するとこの圧力によってチューブの壁面が外側に膨らみ、極端な場合には破裂に至る恐れもある。
【0008】
一方、チューブを腐食環境下で使用した場合には孔食などの局部腐食が生じることがあるが、薄肉化を図った場合には比較的早期に貫通孔が生じ、使用に耐えられなくなることがあった。
【0009】
従来、このような耐食性の問題に対してはチューブ表面に亜鉛(Zn)を被覆して製品のろう付け時の加熱でチューブ内部へ拡散させる手法が用いられており、実環境ではチューブ肉厚が比較的厚い場合にはZnのいわゆる犠牲陽極効果によって局部腐食の進行を最小に抑える方法が用いられていた。
【0010】
通常、このようなZn被覆層は、押出成形された偏平状かつ管状の押出材は、その外表面にZnまたはZn含有層を溶射することにより形成する方法が開示されている(例えば、特許文献1参照)
【0011】
【特許文献1】
特開平9−137245号公報
【0012】
上記溶射は、押出材の外平坦部分にZn被覆層が均一な膜厚で形成されるように、押出材の外平坦部分の上下方向から行われる。すると、押出材をなす上下の外平坦部分が閉じる両端部はある曲率をもっているため、この両端部付近に形成されるZn被覆層の膜厚は、外平坦部分より薄くなると共に、不均一となる傾向があった。このような部位では低濃度の亜鉛拡散層となってしまう。
【0013】
この押出材の両端部付近におけるZn被覆層の膜厚減少や不均一は、耐食性の低下をもたらすという観点から危惧されていた。何故ならば、押出材の外表面となす最も薄い部分の肉厚が0.30mmより薄くなると従来の合金(例えば、1050や純Al等)では、局部腐食部の材料強度が著しく低下し、耐力が低いと熱交換冷媒の内圧によって、この局部腐食部での変形が進み、容易に破断に至る傾向があった。
【0014】
以上説明した背景から、アルミニウム合金押出チューブを構成する押出材において、その肉厚が薄くなった場合でも押出性に優れ、かつ、十分な材料強度を有し、加えて、低濃度亜鉛拡散層の耐局部腐食性にも優れた合金の開発が期待されていた。
【0015】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであって、中空形状をなす押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有すると共に、低濃度亜鉛拡散層の耐局部腐食性に優れた合金からなるアルミニウム合金押出チューブを提供することを目的とする。
【0016】
【課題を解決するための手段】
上記の目的を達成するために、本発明は次の構成を採用した。
すなわち、本発明に係る熱交換器用アルミニウム合金押出チューブは、質量%で0.5%以上1.0%以下のSiを含有し、更に、0.05%以上0.20%以下のMnが添加され、残りがAlおよび不可避不純物からなるAl合金押出材の外表面にZnまたはZn含有層を設けてなり、前記Al合金押出材は、その外表面となす最も薄い部分の肉厚が0.10mm以上0.25mm以下であることを特徴としている。
【0018】
た、上記構成の熱交換器用アルミニウム合金押出チューブにおいて、前記押出材は、更にCuの添加量が0.05%以上0.20%以下であることが望ましい。
【0019】
本発明に係る熱交換器は、上述した構成から成る熱交換器用アルミニウム合金押出チューブを使用して製造したことを特徴としている。
【0020】
本発明者らは、以下に述べる知見に基づき、上記構成の熱交換器用アルミニウム合金押出チューブを開発するに至った。
【0021】
従来、この用途でチューブ材として主に採用されているAl(1050)の薄肉化を試みた。その結果、押出材の外表面となす最も薄い部分の肉厚を0.30mm以下とした場合、Al(1050)では材料強度が不足のために薄肉化には堪えられないことが分かった。
【0022】
Siを合金添加元素に用いることによって、押出性、材料の室温強度、及び、亜鉛被覆量の比較的少ない場合の低濃度亜鉛拡散層の耐局部腐食性にも優れることを見出した。すなわち、Al合金中に添加したSi元素は、合金の熱間変形抵抗をほとんど上げることなく、室温での耐力を増加させ、かつ、比較的少量の亜鉛でも犠牲陽極を十分に発揮させるのに有効であることを意味する。
【0023】
上記の結果は、アルミニウム合金押出チューブを構成する押出材においてZn被覆層の厚さが薄くなる箇所、すなわち押出材の両端部付近においてZn被覆層の膜厚減少や不均一が生じている箇所における耐食性の低下を抑制する手段として、本発明に係るAl−Si系合金(質量%で0.5%以上1.0%以下のSiを含有し、更に、0.05%以上0.20%以下のMnが添加され、残りがAlおよび不可避不純物からなるAl合金)が優れていることを示している。
【0024】
したがって、本発明によれば、押出チューブを構成する押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有すると共に、低濃度亜鉛拡散層の耐局部腐食性に優れた合金からなるアルミニウム合金押出チューブが得られる。
【0025】
本発明は、以上のような知見に基づきなされたものであって、以下に、請求の範囲を上記のように定めた理由について説明する。
【0026】
(Si含有量)
Al合金中のSi元素は上記に示した作用・効果を有しているが、Si含有量が0.5%未満の場合は、耐食性(最大腐食深さ)や押出性には優れているが、室温での耐力すなわち引張強さが十分得られない傾向がある。
【0027】
一方、Si含有量が1.0%を越える場合は、引張強さは改善されるが耐食性や押出性が損なわれる傾向があると共に、Al合金の溶融開始温度が低下し、600℃程度のろう付け時の加熱に際し、材料の部分溶融が生じることがあり、正常な熱交換器を製造できなくなる。
【0028】
このような点を考慮すると、押出材のSi含有量は0.5%以上1.0%以下が好ましく、0.6%以上0.8%以下がより好ましい。
【0029】
(チューブ肉厚)
押出材の外表面となす最も薄い部分が0.30mmを越えるような従来の肉厚、例えば0.4mm程度の肉厚の場合は、上述したAlからなる従来材でも特性上、特に問題は無い。しかしながら、従来材は最も薄い部分が0.30mm以下の肉厚では押出性や強度の点で問題が生ずる。
【0030】
これに対し、押出材の外表面となす最も薄い部分が0.30mm以下の肉厚の場合に本発明に係る合金、すなわちAl−Si系合金の特徴が十分発揮される。押出材の外表面となす最も薄い部分の肉厚が0.10mm未満では本合金を用いても耐食性が著しく低下し、押出性や強度の点からも十分な特性を維持することが難しく、実用に耐えられない。
【0031】
一方、押出材の外表面となす最も薄い部分が0.30mmを越える場合は、必ずしも本合金である必要がない上に、製品の十分な軽量化が図れない、すなわち重量減少率が僅かとなり芳しくない。
【0032】
このような点を考慮すると、押出材の外表面となす最も薄い部分の肉厚は0.10mm以上0.30mm以下が好ましく、0.12mm以上0.25mm以下がより好ましい。
【0033】
なお、本願明細書において押出材の外表面となす最も薄い部分とは、例えば図1に示すような熱交換器を構成するチューブ1の場合、冷媒通路穴3とチューブ1の外表面との間をなすチューブ1の肉厚部において最もその肉厚が小さくなる部分を指す。
【0034】
図1では、冷媒通路穴3の断面形状が略方形をなす例を示しているが、方形の他に円形や楕円形など如何なる形状であっても構わない。また、設置する冷媒通路穴3の個数や、冷媒通路穴3を設ける間隔は、図1の例に限定されるものではない。
【0035】
(Mn含有量)
本発明に係る合金、すなわちAl−Si系合金は、更にMnを含有させることにより室温強度はもとより、高温強度も著しく増加する。Mn含有量が0.05%未満では室温、高温の強度改善効果が十分でなく、その含有量が増加すると押出性が低下するので上限を0.20%とした。
【0036】
(Cu含有量)
本発明に係る合金、すなわちAl−Si系合金は、更にCuを含有させることにより押出性や耐局部腐食性を損なうことなく、室温強度を上げることができる。これに対して、Cuの含有量が0.05%未満では上記効果が十分ではなく、0.20%を越えると押出性や耐食性を低下させることから芳しくない。
【0037】
チューブの外表面にZnまたはZn含有層を設けることで、ろう付け後のチューブ表面にZn拡散層が形成され、このZn拡散層が犠牲陽極層として機能することによりチューブの防食効果を高めることができる。
このZnまたはZn含有層は、ZnまたはZn含有合金を溶射、またはZn含有フラックスを塗布することで形成される。Zn含有フラックスとしては、例えばZnF、ZnCl、KZnF等の化合物が挙げられる。
【0038】
本発明に係る熱交換器は、上述した特徴を有するAl−Si系合金からなる押出材で形成された熱交換器用アルミニウム合金押出チューブを使用して製造される。この押出チューブは従来に比べて薄肉化を図っても十分にその機能を維持できるので、これを搭載することで従来より著しく軽量化を図ることができる熱交換器の提供が可能となる。
【0039】
【発明の実施の形態】
以下、本発明に係る実施形態について説明する。
▲1▼まず、Siの含有率を質量%で0.05%〜1.5%の範囲で変えたAl合金をそれぞれ溶解し、鋳造して直径:200mmの組成の異なるビレットを製造した。
【0040】
▲2▼次に、組成の異なるビレットごとに、ビレットを500℃、12時間保持の条件で均質化処理を行い、この均質化処理を施したビレットを温度:500℃、押出し速度:60m/minで熱間押出し加工することにより、図1に示すように冷媒通路用穴を10個有し、断面寸法が幅:20mm、高さ:2mm、肉厚:0.20mmである偏平状の押出材を成形した。
【0041】
▲3▼次いで、組成の異なるビレットから成形した押出材ごとに、押出材の温度が400℃以下に冷える前に溶射法を用いてその外表面に、工業用純ZnからなるZn被覆層を設けた。その際、押出材の外平坦部分におけるZn被覆層の重量は約10g/mとした。
【0042】
▲4▼さらに、組成の異なるビレットごとに、押出及び溶射処理を行った後、水冷することにより、図4に示すような押出チューブを作製した。
【0043】
上記手順により形成された押出チューブに対し、最大腐食深さ、押出性および引張強さを調べた。ろう付によりフィンと接合したチューブコアは10日間のSWAAT(See Water Acetic Acid Testの略称、規格:ASTM G85-85) によって耐食性を評価した。
【0044】
押出チューブの最大腐食深さは、局部腐食部を光学顕微鏡で観察し、試料表面と腐食部底面との間の距離を測定することにより求めた。
【0045】
押出チューブの押出性は、毎分60mの速度で加工したときの押出圧の大小により評価した。
【0046】
押出チューブの引張強さは、600℃、3分間のろう付け相当の熱処理を施した後、引張試験を行い、押出チューブが破断する際の荷重を試料の断面積で除した値で評価した。
【0047】
表1は、本発明に係る熱交換器用アルミニウム合金押出チューブを構成するAl合金押出材に含まれるSi含有量と、押出チューブの耐食性(最大腐食深さ)、押出性(押出圧)および引張強さとの関係を示すものである。
【0048】
【表1】

Figure 0004318929
【0049】
押出圧は、Si含有量が0.05%の試料(番号1)で得られた押出圧の値を1と定義して表記したものである。すなわち、番号が2〜8の各試料における押出圧は、Si含有量が0.05%の試料(番号1)で得られた押出圧の値で除し、規格化したものである。
【0050】
表1から、最大腐食深さについては以下の点が明らかとなった。
(a1)最大腐食深さは、Si含有量が増えるにつれて増加傾向を示す。
(a2)Si含有量が0.8%より多いと最大腐食深さは0.05mmを越え、局部腐食が促進し始める。
(a3)Si含有量が1.0%より多くなると更に最大腐食深さは加速し、0.15mmを越えてしまい、特にZn被覆層の厚さが薄くなる箇所では耐局部腐食性が維持できなくなる。
【0051】
表1から、押出圧については以下の点が明らかとなった。
(b1)押出圧は、Si含有量が増えるにつれて単調に増加するが、1.00%まではその増加は僅かである。
(b2)Si含有量が1.00%より多いと押出圧は急増し、1.50%では2.00となり、肉厚の薄い押出チューブを成形することが難しくなる。
【0052】
表1から、引張強さについては以下の点が明らかとなった。
(c1)引張強さは、Si含有量が1.5%のとき最大であり、Si含有量を減らすと次第に小さくなる傾向を示す。
【0053】
以上の結果より、最大腐食深さ、押出性および引張強さの評価において、同時に優れた特性を備えるためには、Si含有量を質量%で0.5%〜1.0%の範囲とする必要があることが分かった。また、Si含有量を質量%で0.6%〜0.8%の範囲とした場合は、更に優れた耐食性(最大腐食深さ)、押出性および引張強さを得るのでより好ましい。
【0054】
また、上記手順により得られる押出チューブの肉厚Tを0.05mm〜0.40mmの範囲で変えて作製し、その耐食性(日数)を纏めて示したものが表2である。その際、Si含有量は質量%で0.70%に固定した。
【0055】
押出チューブの耐食性は、前述したSWAATにおいてチューブが貫通するまでに要した日数で評価した。
【0056】
【表2】
Figure 0004318929
【0057】
表2より、以下の点が明らかとなった。
(d1)押出チューブはその肉厚を0.10mm以上とした場合、20日以上の耐食性を有することができる。
【0058】
したがって、押出チューブの肉厚を0.10mm以上0.30mm以下の範囲とすることにより、優れた耐食性を備えた押出チューブの提供が可能となる。
【0059】
表3は、押出チューブをなすAl−Si系合金に、Mnを0〜1.30%の範囲で、Cuを0〜0.30%の範囲で添加し、各組成の合金からなる押出チューブの最大腐食深さ、押出性および引張強さを調べた結果である。その際、Si含有量は質量%で0.70%に固定した。
【0060】
なお、表3における最大腐食深さ、押出性および引張強さの各数値は試料21(Mn,Cuを添加せず)の数値で除し規格化したものである。特に、押出性については1.5より小さい場合は○印、1.5以上2.0未満の場合は△印、2.0以上の場合は×印で示した。
【0061】
【表3】
Figure 0004318929
【0062】
表3より、熱交換器用アルミニウム合金押出チューブに使用されるAl−Si系合金からなる押出材は、Al−Si合金にMnの添加量を0.05%以上1.20%以下としたとき、押出性を損なうことなく、引張強さ(室温強度を表す指標)を向上させることができることが分かる。また、Cuの添加量を0.05%以上0.20%以下としたとき、押出性や最大腐食深さ(耐局部腐食性を表す指標)を損なうことなく、引張強さ(室温強度を表す指標)を向上させることができることが分かる。
【0063】
Mnは、その含有量が0.05%未満では上記効果が十分でなく、1.20%を越えると押出性が低下するので芳しくない。Cuは、その含有量が0.05%未満では上記効果が十分ではなく、0.20%を越えると最大腐食深さが大きくなり、押出性も低下することから芳しくない。
【0064】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述した作用・効果が損なわれない範囲で、従来から耐腐食性を改善する効果が確認されている元素、すなわち、FeやZnが含まれていてもよい。
【0065】
【発明の効果】
以上説明したように、本発明に係る熱交換器用アルミニウム合金押出チューブは、押出チューブを構成する押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有すると共に、低濃度亜鉛拡散層の耐局部腐食性に優れた合金からなるので、良好な耐食性を備えながら押出チューブの軽量化を一層図ることができる。
【0066】
このように、本発明に係る押出チューブは従来に比べて薄肉化を図っても十分にその機能を維持できるので、これを搭載することにより従来より更に一層の軽量化を図れる熱交換器の提供が可能となる。
【0067】
上記効果を備えた熱交換器ならば、これを搭載してなる自動車などの燃費向上に寄与すると共に、長期使用時における耐久性も改善されるので長期信頼性の向上にも貢献する。
【図面の簡単な説明】
【図1】押出チューブの一例を示す斜視図である。
【図2】熱交換器の一例を示す斜視図である。
【符号の説明】
1 チューブ(Al合金押出材)、
2 フィン、
3 冷媒通路穴、
4 ヘッダーパイプ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy extruded tube and a heat exchanger used as a structural member of a heat exchanger such as a condenser or an evaporator of a car air conditioner. More specifically, the present invention relates to an aluminum alloy extruded tube excellent in corrosion resistance, particularly pitting corrosion resistance even if it is thinned, and a heat exchanger manufactured using the same.
[0002]
[Prior art]
Since Al and Al alloys are lightweight, have good thermal conductivity and excellent corrosion resistance, tubes made of extruded aluminum alloys (hereinafter referred to as aluminum (Al) alloy extruded tubes) are used as automotive air conditioners. It is widely used in heat exchangers such as.
[0003]
For example, as shown in FIG. 2, the heat exchanger includes a pair of left and right tubes called header pipes 4 and a large number of aluminum alloys provided between the header pipes 4 so as to be spaced apart from each other in parallel. Tube 1 and fins 2 provided between the tube 1 and the tube 1.
[0004]
The tubes 1 and the fins 2 are brazed, and the internal space of each tube 1 and the internal space of the header pipe 4 communicate with each other, and the medium is connected to the internal space of the header pipe 4 and the internal space of each tube 1. Is circulated so that heat can be exchanged efficiently through the fins 2.
[0005]
As each tube 1 constituting this heat exchanger, an extruded material having a flat cross section having a plurality of refrigerant passage holes 3 as shown in the perspective view of FIG. 1 is used, and this extruded material is formed by extrusion processing. Therefore, in general, a pure aluminum (Al) -based alloy typified by JIS1050 alloy having excellent extrudability is used.
[0006]
In order to further reduce the weight of such products, it is desired that the extruded material having a hollow shape (tubular shape) be thinner. However, as the thickness decreases, a tube having a predetermined shape and dimension is obtained. However, there is a problem that the extrudability is lowered and the mass productivity is impaired because it is necessary to reduce the extrusion speed at the time of molding. This decrease in extrudability was particularly noticeable when the thickness of the thinnest part formed on the outer surface of the extruded material was 0.30 mm or less.
[0007]
By the way, in the heat exchanger, the internal pressure is applied to the tube by the refrigerant passing through the tube, and when the material strength of the tube, especially when the proof stress is low, if the wall is thinned, this pressure causes the wall surface of the tube to bulge outward, and in extreme cases There is also a risk of rupture.
[0008]
On the other hand, when the tube is used in a corrosive environment, local corrosion such as pitting corrosion may occur. However, when thinning is attempted, a through-hole may be formed relatively early and may not be able to withstand use. there were.
[0009]
Conventionally, to solve such corrosion resistance problems, a method has been used in which zinc (Zn) is coated on the tube surface and diffused into the tube by heating during brazing of the product. When it is relatively thick, a method of minimizing the progress of local corrosion by the so-called sacrificial anode effect of Zn has been used.
[0010]
In general, such a Zn coating layer is formed by extruding a flat and tubular extruded material by spraying a Zn or Zn-containing layer on its outer surface (for example, Patent Documents). 1)
[0011]
[Patent Document 1]
JP-A-9-137245 [0012]
The thermal spraying is performed from above and below the outer flat portion of the extruded material so that the Zn coating layer is formed with a uniform film thickness on the outer flat portion of the extruded material. Then, since both ends of the upper and lower outer flat portions forming the extruded material have a certain curvature, the thickness of the Zn coating layer formed in the vicinity of both ends becomes thinner than the outer flat portions and becomes nonuniform. There was a trend. In such a part, it becomes a low concentration zinc diffusion layer.
[0013]
The reduction in thickness and non-uniformity of the Zn coating layer in the vicinity of both ends of the extruded material has been a concern from the viewpoint of causing a decrease in corrosion resistance. This is because when the thickness of the thinnest part formed on the outer surface of the extruded material becomes thinner than 0.30 mm, the material strength of the locally corroded portion is remarkably lowered in the conventional alloy (for example, 1050 or pure Al), and the proof stress If the temperature is low, the internal pressure of the heat exchange refrigerant tends to cause deformation at the locally corroded portion and easily break.
[0014]
From the background described above, in the extruded material constituting the aluminum alloy extruded tube, even when the thickness is thin, it has excellent extrudability and sufficient material strength. In addition, the low concentration zinc diffusion layer The development of an alloy excellent in local corrosion resistance was expected.
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is excellent in extrudability at the time of molding even when the thickness of a hollow extruded material is thin, has sufficient material strength, and has a low concentration of zinc. An object of the present invention is to provide an aluminum alloy extruded tube made of an alloy excellent in local corrosion resistance of a diffusion layer.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
That is, the aluminum alloy extruded tube for a heat exchanger according to the present invention contains 0.5% or more and 1.0% or less of Si by mass%, and 0.05% or more and 0.20% or less of Mn is added. A Zn or Zn-containing layer is provided on the outer surface of the Al alloy extrudate made of Al and inevitable impurities, and the Al alloy extrudate has a thickness of the thinnest portion of the outer surface of 0.10 mm. It is characterized by being 0.25 mm or less .
[0018]
Also, in the above aluminum alloy extruded tube having the above structure, the extruded material is further desirably added amount of Cu is 0.20% or less 0.05% or more.
[0019]
The heat exchanger according to the present invention is characterized by being manufactured using an aluminum alloy extruded tube for a heat exchanger having the above-described configuration.
[0020]
Based on the knowledge described below, the present inventors have developed an aluminum alloy extruded tube for a heat exchanger having the above-described configuration.
[0021]
Conventionally, attempts have been made to reduce the thickness of Al (1050), which is mainly employed as a tube material for this application. As a result, it has been found that when the thickness of the thinnest portion formed on the outer surface of the extruded material is 0.30 mm or less, Al (1050) cannot withstand thinning due to insufficient material strength.
[0022]
It has been found that by using Si as an alloy additive element, the extrudability, the room temperature strength of the material, and the local corrosion resistance of the low-concentration zinc diffusion layer when the zinc coating amount is relatively small are also found. In other words, the Si element added to the Al alloy is effective in increasing the yield strength at room temperature and hardly exerting the sacrificial anode even with a relatively small amount of zinc without substantially increasing the hot deformation resistance of the alloy. It means that.
[0023]
The above results show that the thickness of the Zn coating layer is reduced in the extruded material constituting the aluminum alloy extruded tube, that is, where the thickness of the Zn coating layer is reduced or uneven in the vicinity of both ends of the extruded material. As a means for suppressing a decrease in corrosion resistance, an Al—Si alloy according to the present invention (containing 0.5% to 1.0% Si by mass%, and further 0.05% to 0.20%) Mn is added, and the remainder is Al and an Al alloy composed of Al and inevitable impurities) is excellent.
[0024]
Therefore, according to the present invention, even when the thickness of the extruded material constituting the extruded tube is thin, it has excellent extrudability at the time of molding, has sufficient material strength, and local corrosion resistance of the low concentration zinc diffusion layer. An aluminum alloy extruded tube made of an excellent alloy can be obtained.
[0025]
The present invention has been made on the basis of the above findings, and the reason why the claims are defined as described above will be described below.
[0026]
(Si content)
The Si element in the Al alloy has the actions and effects shown above, but when the Si content is less than 0.5%, the corrosion resistance (maximum corrosion depth) and extrudability are excellent. The yield strength at room temperature, that is, the tensile strength tends to be insufficient.
[0027]
On the other hand, when the Si content exceeds 1.0%, the tensile strength is improved, but the corrosion resistance and extrudability tend to be impaired, and the melting start temperature of the Al alloy is lowered, and the soldering temperature is about 600 ° C. During heating at the time of application, partial melting of the material may occur, and a normal heat exchanger cannot be manufactured.
[0028]
Considering such points, the Si content of the extruded material is preferably 0.5% or more and 1.0% or less, and more preferably 0.6% or more and 0.8% or less.
[0029]
(Tube thickness)
In the case of a conventional thickness such that the thinnest part formed on the outer surface of the extruded material exceeds 0.30 mm, for example, a thickness of about 0.4 mm, there is no particular problem in terms of characteristics even with the above-described conventional material made of Al. . However, when the thinnest part of the conventional material is 0.30 mm or less in thickness, problems arise in terms of extrudability and strength.
[0030]
On the other hand, when the thinnest part formed on the outer surface of the extruded material has a thickness of 0.30 mm or less, the characteristics of the alloy according to the present invention, that is, the Al—Si alloy are sufficiently exhibited. If the thickness of the thinnest part of the outer surface of the extruded material is less than 0.10 mm, even if this alloy is used, the corrosion resistance is remarkably reduced, and it is difficult to maintain sufficient characteristics from the point of extrudability and strength. I can't stand it.
[0031]
On the other hand, when the thinnest part formed on the outer surface of the extruded material exceeds 0.30 mm, it is not always necessary to use this alloy, and the product cannot be reduced in weight sufficiently. Absent.
[0032]
In consideration of such points, the thickness of the thinnest part formed on the outer surface of the extruded material is preferably 0.10 mm or more and 0.30 mm or less, and more preferably 0.12 mm or more and 0.25 mm or less.
[0033]
In the specification of the present application, the thinnest part that forms the outer surface of the extruded material is, for example, between the refrigerant passage hole 3 and the outer surface of the tube 1 in the case of the tube 1 constituting the heat exchanger as shown in FIG. In the thick part of the tube 1 which makes | forms, the part where the thickness becomes the smallest is pointed out.
[0034]
Although FIG. 1 shows an example in which the cross-sectional shape of the refrigerant passage hole 3 is a substantially square shape, it may be any shape such as a circle or an ellipse in addition to a square. Further, the number of refrigerant passage holes 3 to be installed and the interval at which the refrigerant passage holes 3 are provided are not limited to the example of FIG.
[0035]
(Mn content)
The alloy according to the present invention, that is, the Al—Si alloy, further increases Mt, so that not only room temperature strength but also high temperature strength is remarkably increased. If the Mn content is less than 0.05%, the effect of improving the strength at room temperature and high temperature is not sufficient, and if the content increases, the extrudability decreases, so the upper limit was made 0.20% .
[0036]
(Cu content)
The alloy according to the present invention, that is, the Al—Si alloy, can further increase the room temperature strength without impairing the extrudability and local corrosion resistance by further containing Cu. On the other hand, if the Cu content is less than 0.05%, the above effect is not sufficient, and if it exceeds 0.20%, the extrudability and the corrosion resistance are deteriorated.
[0037]
By providing a Zn or Zn-containing layer on the outer surface of the tube, a Zn diffusion layer is formed on the tube surface after brazing, and this Zn diffusion layer functions as a sacrificial anode layer, thereby enhancing the anticorrosion effect of the tube. it can.
This Zn or Zn-containing layer is formed by spraying Zn or a Zn-containing alloy or applying a Zn-containing flux. Examples of the Zn-containing flux include compounds such as ZnF 2 , ZnCl 2 , and KZnF 3 .
[0038]
The heat exchanger according to the present invention is manufactured using an aluminum alloy extruded tube for a heat exchanger formed of an extruded material made of an Al-Si alloy having the above-described characteristics. Since this extruded tube can maintain its function sufficiently even if it is made thinner than before, it is possible to provide a heat exchanger that can be significantly reduced in weight by mounting it.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below.
{Circle around (1)} First, Al alloys in which the Si content was changed in the range of 0.05% to 1.5% by mass were melted and cast to produce billets having different diameters of 200 mm.
[0040]
(2) Next, for each billet having a different composition, the billet is homogenized under conditions of holding at 500 ° C. for 12 hours, and the billet subjected to this homogenization treatment is temperature: 500 ° C., extrusion speed: 60 m / min. As shown in FIG. 1, a flat extruded material having ten refrigerant passage holes and having a cross-sectional dimension of a width of 20 mm, a height of 2 mm, and a wall thickness of 0.20 mm. Was molded.
[0041]
(3) Next, for each extruded material formed from billets having different compositions, before the temperature of the extruded material is cooled to 400 ° C. or lower, a thermal spraying method is used to provide a Zn coating layer made of industrial pure Zn on the outer surface. It was. At that time, the weight of the Zn coating layer in the outer flat portion of the extruded material was about 10 g / m 2 .
[0042]
(4) Further, extrusion and thermal spraying were performed for each billet having a different composition, followed by water cooling to produce an extruded tube as shown in FIG.
[0043]
The maximum corrosion depth, extrudability, and tensile strength of the extruded tube formed by the above procedure were examined. The tube core joined to the fin by brazing was evaluated for corrosion resistance by SWAAT (abbreviation of See Water Acetic Acid Test, standard: ASTM G85-85) for 10 days.
[0044]
The maximum corrosion depth of the extruded tube was determined by observing the local corrosion portion with an optical microscope and measuring the distance between the sample surface and the bottom surface of the corrosion portion.
[0045]
The extrudability of the extruded tube was evaluated by the magnitude of the extrusion pressure when processed at a speed of 60 m / min.
[0046]
The tensile strength of the extruded tube was evaluated by a value obtained by dividing the load when the extruded tube broke by the cross-sectional area of the sample after performing a heat treatment equivalent to brazing at 600 ° C. for 3 minutes.
[0047]
Table 1 shows the Si content, the corrosion resistance (maximum corrosion depth), the extrudability (extrusion pressure), and the tensile strength of the extruded aluminum tube constituting the aluminum alloy extruded tube for a heat exchanger according to the present invention. This shows the relationship between
[0048]
[Table 1]
Figure 0004318929
[0049]
The extrusion pressure is expressed by defining the value of the extrusion pressure obtained with a sample (No. 1) having a Si content of 0.05% as 1. That is, the extrusion pressure in each of the samples having numbers 2 to 8 is normalized by dividing by the value of the extrusion pressure obtained in the sample (number 1) having a Si content of 0.05%.
[0050]
From Table 1, the following points became clear about the maximum corrosion depth.
(A1) The maximum corrosion depth shows an increasing tendency as the Si content increases.
(A2) If the Si content is more than 0.8%, the maximum corrosion depth exceeds 0.05 mm, and local corrosion starts to accelerate.
(A3) When the Si content exceeds 1.0%, the maximum corrosion depth further accelerates and exceeds 0.15 mm, and in particular, where the thickness of the Zn coating layer is reduced, local corrosion resistance can be maintained. Disappear.
[0051]
From Table 1, the following points became clear about extrusion pressure.
(B1) The extrusion pressure increases monotonously as the Si content increases, but the increase is slight up to 1.00%.
(B2) When the Si content is more than 1.00%, the extrusion pressure increases rapidly, and when it is 1.50%, it becomes 2.00, which makes it difficult to form a thin extruded tube.
[0052]
From Table 1, the following points became clear about the tensile strength.
(C1) The tensile strength is maximum when the Si content is 1.5%, and tends to gradually decrease when the Si content is reduced.
[0053]
From the above results, in order to have excellent properties at the same time in the evaluation of the maximum corrosion depth, extrudability and tensile strength, the Si content is in the range of 0.5% to 1.0% by mass%. I found it necessary. Further, when the Si content is in the range of 0.6% to 0.8% by mass%, it is more preferable because further excellent corrosion resistance (maximum corrosion depth), extrudability and tensile strength can be obtained.
[0054]
Also, Table 2 shows the corrosion resistance (number of days) of the extruded tube obtained by the above-mentioned procedure by changing the thickness T in the range of 0.05 mm to 0.40 mm. At that time, the Si content was fixed at 0.70% by mass.
[0055]
The corrosion resistance of the extruded tube was evaluated by the number of days required for the tube to penetrate in the above-described SWAAT.
[0056]
[Table 2]
Figure 0004318929
[0057]
From Table 2, the following points became clear.
(D1) When the thickness of the extruded tube is 0.10 mm or more, the extruded tube can have corrosion resistance of 20 days or more.
[0058]
Therefore, by making the thickness of the extruded tube in the range of 0.10 mm to 0.30 mm, it is possible to provide an extruded tube having excellent corrosion resistance.
[0059]
Table 3 shows an extruded tube made of an alloy of each composition in which Mn is added in a range of 0 to 1.30% and Cu is added in a range of 0 to 0.30% to an Al-Si alloy forming an extruded tube. It is the result of investigating the maximum corrosion depth, extrudability and tensile strength. At that time, the Si content was fixed at 0.70% by mass.
[0060]
The numerical values of the maximum corrosion depth, extrudability, and tensile strength in Table 3 are normalized by dividing by the numerical values of Sample 21 (Mn and Cu are not added). In particular, the extrudability is indicated by a circle when it is smaller than 1.5, a mark when it is 1.5 or more and less than 2.0, and a mark when it is 2.0 or more.
[0061]
[Table 3]
Figure 0004318929
[0062]
From Table 3, when the extruded material made of an Al-Si based alloy used in an aluminum alloy extruded tube for a heat exchanger has an addition amount of Mn to the Al-Si alloy of 0.05% or more and 1.20% or less, It can be seen that the tensile strength (an index representing room temperature strength) can be improved without impairing the extrudability. Further, when the addition amount of Cu is 0.05% or more and 0.20% or less, the tensile strength (representing room temperature strength) is obtained without impairing the extrudability and the maximum corrosion depth (an index representing the local corrosion resistance). It can be seen that the index) can be improved.
[0063]
When the content of Mn is less than 0.05%, the above effect is not sufficient, and when it exceeds 1.20%, the extrudability is lowered, which is not good. If the content of Cu is less than 0.05%, the above effect is not sufficient, and if it exceeds 0.20%, the maximum corrosion depth increases and the extrudability also decreases, which is not good.
[0064]
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, an element that has been confirmed to have an effect of improving the corrosion resistance, that is, Fe or Zn may be contained within a range in which the above-described functions and effects are not impaired.
[0065]
【The invention's effect】
As described above, the aluminum alloy extruded tube for a heat exchanger according to the present invention is excellent in extrudability at the time of molding and has sufficient material strength even when the thickness of the extruded material constituting the extruded tube is thin. Since the low-concentration zinc diffusion layer is made of an alloy having excellent local corrosion resistance, it is possible to further reduce the weight of the extruded tube while having good corrosion resistance.
[0066]
As described above, since the extruded tube according to the present invention can sufficiently maintain its function even if it is made thinner than the conventional tube, it is possible to provide a heat exchanger that can be further reduced in weight by mounting it. Is possible.
[0067]
A heat exchanger having the above-described effects contributes to an improvement in fuel efficiency of an automobile or the like equipped with the heat exchanger, and also contributes to an improvement in long-term reliability because durability during long-term use is also improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an extruded tube.
FIG. 2 is a perspective view showing an example of a heat exchanger.
[Explanation of symbols]
1 Tube (Al alloy extruded material),
2 fins,
3 Refrigerant passage hole,
4 Header pipe.

Claims (3)

質量%で0.5%以上1.0%以下のSiを含有し、更に、0.05%以上0.20%以下のMnが添加され、残りがAlおよび不可避不純物からなるAl合金押出材の外表面にZnまたはZn含有層を設けてなり、前記Al合金押出材は、その外表面となす最も薄い部分の肉厚が0.10mm以上0.25mm以下であることを特徴とする熱交換器用アルミニウム合金押出チューブ。An Al alloy extruded material containing 0.5% or more and 1.0% or less of Si in terms of mass%, and further containing 0.05% or more and 0.20% or less of Mn, with the balance being Al and inevitable impurities. Zn or Zn-containing layer is provided on the outer surface, and the Al alloy extruded material has a thickness of the thinnest part formed on the outer surface of 0.10 mm or more and 0.25 mm or less. Aluminum alloy extruded tube. 前記押出材は、更にCuの添加量が0.05%以上0.20%以下であることを特徴とする請求項1に記載の熱交換器用アルミニウム合金押出チューブ。2. The aluminum alloy extruded tube for a heat exchanger according to claim 1 , wherein the extruded material further has an addition amount of Cu of 0.05% or more and 0.20% or less. 請求項1又は請求項2の何れかに記載の熱交換器用アルミニウム合金押出チューブを使用して製造したことを特徴とする熱交換器。A heat exchanger manufactured using the aluminum alloy extruded tube for a heat exchanger according to any one of claims 1 and 2 .
JP2003037425A 2003-02-14 2003-02-14 Aluminum alloy extruded tube and heat exchanger for heat exchanger Expired - Fee Related JP4318929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037425A JP4318929B2 (en) 2003-02-14 2003-02-14 Aluminum alloy extruded tube and heat exchanger for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037425A JP4318929B2 (en) 2003-02-14 2003-02-14 Aluminum alloy extruded tube and heat exchanger for heat exchanger

Publications (2)

Publication Number Publication Date
JP2004244696A JP2004244696A (en) 2004-09-02
JP4318929B2 true JP4318929B2 (en) 2009-08-26

Family

ID=33022236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037425A Expired - Fee Related JP4318929B2 (en) 2003-02-14 2003-02-14 Aluminum alloy extruded tube and heat exchanger for heat exchanger

Country Status (1)

Country Link
JP (1) JP4318929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313590B2 (en) 2009-12-03 2012-11-20 Rio Tinto Alcan International Limited High strength aluminium alloy extrusion
JP5916314B2 (en) * 2011-08-12 2016-05-11 三菱アルミニウム株式会社 Extruded pipe members such as aluminum alloy tanks for heat exchangers

Also Published As

Publication number Publication date
JP2004244696A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US11408690B2 (en) Method for producing aluminum alloy clad material
JP4825507B2 (en) Aluminum alloy brazing sheet
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
JP5188115B2 (en) High strength aluminum alloy brazing sheet
EP3093356B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
EP3121301B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP2005060790A (en) Aluminum alloy brazing fin material for heat exchanger
JP2008208416A (en) Extruded material of aluminum alloy used for heat exchanger using natural refrigerant
JP2008050657A (en) Aluminum piping material for automobile heat exchanger
JP2009022981A (en) Aluminum alloy brazing sheet having high-strength and production method therefor
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP2019167581A (en) Method for producing aluminum alloy extruded tube
JP4318929B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP5782357B2 (en) Side support material and manufacturing method thereof
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof
JP2002155332A (en) Aluminum alloy fin material for heat exchanger having excellent formability and brazability
JPH0797652A (en) Production of aluminum alloy brazing sheet fin material and heat exchanger made of aluminum alloy
JP2023045751A (en) Brazing sheet and manufacturing method of the same
JPH07116888A (en) Aluminum alloy brazing filler metal and production of aluminum alloy heat exchanger
JP2686037B2 (en) Method of manufacturing aluminum alloy brazing material and aluminum alloy heat exchanger
JPH0788682A (en) Manufacture of aluminum alloy brazing filler metal and heat exchanger made of aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees