JP5188115B2 - High strength aluminum alloy brazing sheet - Google Patents

High strength aluminum alloy brazing sheet Download PDF

Info

Publication number
JP5188115B2
JP5188115B2 JP2007188856A JP2007188856A JP5188115B2 JP 5188115 B2 JP5188115 B2 JP 5188115B2 JP 2007188856 A JP2007188856 A JP 2007188856A JP 2007188856 A JP2007188856 A JP 2007188856A JP 5188115 B2 JP5188115 B2 JP 5188115B2
Authority
JP
Japan
Prior art keywords
brazing
core material
sacrificial anode
density
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007188856A
Other languages
Japanese (ja)
Other versions
JP2009024221A (en
Inventor
敦志 福元
浩 鹿野
昭男 新倉
洋一郎 戸次
健二 根倉
竜雄 尾崎
蜷川  稔英
恵一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Furukawa Sky Aluminum Corp
Original Assignee
Denso Corp
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Furukawa Sky Aluminum Corp filed Critical Denso Corp
Priority to JP2007188856A priority Critical patent/JP5188115B2/en
Priority to US12/218,440 priority patent/US8142907B2/en
Priority to EP08075642.2A priority patent/EP2017032B2/en
Priority to DE102008034031.6A priority patent/DE102008034031B4/en
Priority to CN 200810161188 priority patent/CN101358311B/en
Publication of JP2009024221A publication Critical patent/JP2009024221A/en
Application granted granted Critical
Publication of JP5188115B2 publication Critical patent/JP5188115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、自動車用熱交換器に使用されるアルミニウム合金ブレージングシート、特にラジエータ、コンデンサなどの熱交換器の冷却水や冷媒の通路構成材として好適に使用される高強度アルミニウム合金ブレージングシートに関する。   TECHNICAL FIELD The present invention relates to an aluminum alloy brazing sheet used for a heat exchanger for automobiles, and more particularly to a high-strength aluminum alloy brazing sheet suitably used as a coolant or refrigerant passage constituent material for heat exchangers such as radiators and condensers.

アルミニウム合金は軽量かつ高熱伝導性を備えているため、自動車用熱交換器、例えば、ラジエータ、コンデンサ、エバポレータ、ヒーター、インタークーラなどに用いられている。自動車用熱交換器は主にろう付法によって製造される。通常、ろう付はAl−Si系合金のろう材を用い、600℃程度の高温で行われる。
ろう付を用いて製造するアルミニウム合金製熱交換器は、主に放熱を担うコルゲート成形したフィンと、冷却水や冷媒を循環させるためのチューブとで構成される。チューブが破壊することで貫通すれば、内部を循環している冷却水や冷媒の漏洩が生じる。そのため、製品寿命を向上させるために、ろう付後の強度に優れたアルミニウム合金ブレージングシートが必要不可欠とされている。
Aluminum alloys are lightweight and have high thermal conductivity, and are therefore used in automotive heat exchangers such as radiators, condensers, evaporators, heaters, and intercoolers. Automotive heat exchangers are mainly manufactured by the brazing method. Usually, brazing is performed at a high temperature of about 600 ° C. using a brazing material of an Al—Si alloy.
An aluminum alloy heat exchanger manufactured by brazing is composed of corrugated fins that mainly perform heat dissipation and tubes for circulating cooling water and refrigerant. If the tube penetrates due to destruction, cooling water and refrigerant circulating inside the tube will leak. Therefore, in order to improve the product life, an aluminum alloy brazing sheet having excellent strength after brazing is indispensable.

ところで、近年は自動車の軽量化に対する要求が高まり、それに対応するため自動車用熱交換器の軽量化も求められている。そのため、熱交換器を構成する各部材の薄肉化が検討されており、アルミニウム合金ブレージングシートのろう付け後の強度をさらに向上させることが必要とされている。
従来、自動車用のラジエータやヒーターのように、冷却水がチューブ内面を循環する熱交換器のチューブ材として、JIS3003合金に代表されるようなAl−Mn系合金などの心材の内面側にAl−Zn系合金などの犠牲陽極材をクラッドし、大気側にAl−Si系合金などのろう材をクラッドした3層チューブ材が一般に用いられてきた。
By the way, in recent years, demands for weight reduction of automobiles have increased, and in order to meet such demands, weight reduction of automobile heat exchangers has also been demanded. Therefore, thinning of each member constituting the heat exchanger has been studied, and it is necessary to further improve the strength of the aluminum alloy brazing sheet after brazing.
Conventionally, as a heat exchanger tube material in which cooling water circulates on the inner surface of a tube, such as a radiator or heater for automobiles, an Al-Mn alloy such as an Al-Mn alloy typified by JIS3003 alloy is formed on the inner surface side. A three-layer tube material is generally used in which a sacrificial anode material such as a Zn-based alloy is clad and a brazing material such as an Al—Si alloy is clad on the atmosphere side.

しかしながら、JIS3003合金心材を使用したクラッド材のろう付け後強度は110MPa(110N/mm)程度であり、強度が不十分である。
心材の均質化処理条件を規定し、熱間圧延前の加熱を500℃以下とすることで、析出粒子の粗大化を抑制し、強度を向上させたアルミニウム合金ブレージングシートが提案されている(たとえば、特許文献1参照)。しかしながら、この製造工程では、熱間圧延時の開始温度と終了温度については考慮されておらず、ろう付後のMgSiによる時効硬化に悪影響を及ぼす金属間化合物が析出する可能性があるため、ろう付後強度が不十分となる問題がある。
特開平8−246117号公報
However, the strength after brazing of the clad material using the JIS3003 alloy core material is about 110 MPa (110 N / mm 2 ), and the strength is insufficient.
An aluminum alloy brazing sheet has been proposed that regulates the homogenization treatment conditions of the core material and suppresses the coarsening of the precipitated particles and improves the strength by setting the heating before hot rolling to 500 ° C. or less (for example, , See Patent Document 1). However, in this manufacturing process, the start temperature and end temperature during hot rolling are not considered, and there is a possibility that an intermetallic compound that adversely affects age hardening by Mg 2 Si after brazing may precipitate. There is a problem that the strength after brazing becomes insufficient.
JP-A-8-246117

アルミニウム合金ブレージングシートの薄肉化の要求を満たすべく、ろう付後強度等の特性を向上させる必要がある。従来技術では、肉薄でありながらさらなる強度向上を達成するに至る特性を得ることは困難であった。
本発明は、この問題点を解消するべく行われたものであって、アルミニウム合金ブレージングシートにおいて、ろう付時のろう拡散もなくろう付は良好であり、且つろう付後に優れた強度を有するアルミニウム合金ブレージングシート、特に自動車用熱交換器の流体通路構成材として好適に使用できるアルミニウム合金ブレージングシートを提供することを目的とするものである。
In order to satisfy the demand for thinning the aluminum alloy brazing sheet, it is necessary to improve properties such as strength after brazing. In the prior art, it has been difficult to obtain characteristics that achieve a further improvement in strength while being thin.
The present invention has been made to solve this problem, and in an aluminum alloy brazing sheet, aluminum has good brazing without brazing and diffusion during brazing, and has excellent strength after brazing. An object of the present invention is to provide an alloy brazing sheet, in particular, an aluminum alloy brazing sheet that can be suitably used as a fluid passage component of a heat exchanger for automobiles.

本発明者らは上記課題について研究した結果、特定の合金組成と合金組織を有するクラッド材がその目的に適合することを見出し、これに基づき本発明をなすに至った。
すなわち本発明は、
心材の片面にAl−Si系ろう材をクラッドし、心材の他方の面には犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートであって、前記心材が、Si:0.5〜1.0%(質量%、以下同じ)、Fe:0.1〜0.3%、Cu:0.3〜1.0%、Mn:1.0〜1.6%、Mg:0.1〜0.4%を含有し、さらにTi:0.05〜0.2%、Zr:0.05〜0.2%、V:0.05〜0.2%のうち1種以上を含有し、残部Alと不可避的不純物からなるAl合金であり、そのろう付後の心材の金属組織は、粒径0.1μm以上の金属間化合物の密度が10個/μm以下であり、且つろう付後の結晶粒径が100μm以上であるAl合金であり、前記犠牲陽極材が、Zn:2.0〜5.0%を含有し、さらにSi:0.05〜1.0%、Mn:0.05〜1.6%、Ti:0.05〜0.2%、V:0.05〜0.2%のうち1種以上を含有し、残部Alと不可避的不純物からなるAl合金であり、心材、犠牲陽極材は、ろう材と共に組み合わせ、この組み合わせ材を熱間圧延の開始温度を480℃以下、熱間圧延の終了温度を280℃以下として熱間圧延することによりクラッド材を作製したことを特徴とする高強度アルミニウム合金ブレージングシート。
(但し、粒径0.1μm以上の金属間化合物の密度は、心材のL−LT面(圧延方向(L方向)と、圧延面に対して平行でL方向に対して垂直な方向(LT方向)で形成される面)を研磨で面出し、心材の透過型電子顕微鏡(TEM)観察を以下のように行うことで調べた。等厚干渉縞から観察部の膜厚を測定し、膜厚が0.1〜0.3μmの箇所でのみTEM観察を行い、TEM写真を画像解析することで、ろう付後の金属間化合物の密度であり、この金属間化合物の密度は、10視野についての値の平均値をとる。)
を提供するものである。
As a result of studying the above problems, the present inventors have found that a clad material having a specific alloy composition and alloy structure is suitable for the purpose, and based on this, the present invention has been made.
That is, the present invention
An aluminum alloy brazing sheet in which an Al—Si brazing material is clad on one side of a core material and a sacrificial anode material is clad on the other side of the core material, wherein the core material contains Si: 0.5 to 1.0% ( % By mass, the same applies hereinafter), Fe: 0.1 to 0.3%, Cu: 0.3 to 1.0%, Mn: 1.0 to 1.6%, Mg: 0.1 to 0.4% In addition, Ti: 0.05-0.2%, Zr: 0.05-0.2%, V: 0.05-0.2%, containing at least one of the remaining, inevitable with the remaining Al The metal structure of the core material after brazing is an Al alloy composed of mechanical impurities, the density of intermetallic compounds having a particle size of 0.1 μm or more is 10 pieces / μm 2 or less, and the crystal grain size after brazing In which the sacrificial anode material contains Zn: 2.0-5.0%, and Si: 0.0 -1.0%, Mn: 0.05-1.6%, Ti: 0.05-0.2%, V: One or more of 0.05-0.2% are contained, and the balance is Al. It is an Al alloy composed of inevitable impurities, and the core material and sacrificial anode material are combined with the brazing material, and this combined material is hot with a hot rolling start temperature of 480 ° C. or lower and a hot rolling end temperature of 280 ° C. or lower. A high-strength aluminum alloy brazing sheet characterized by producing a clad material by rolling .
(However, the density of the intermetallic compound having a particle size of 0.1 μm or more is determined by the L-LT plane of the core material (the rolling direction (L direction) and the direction parallel to the rolling plane and perpendicular to the L direction (LT direction)). The surface formed by polishing) was surfaced by polishing, and the core material was examined by observation with a transmission electron microscope (TEM) as follows: The film thickness of the observation part was measured from the equal thickness interference fringes, and the film thickness was measured. Is a density of the intermetallic compound after brazing by performing TEM observation only at a location of 0.1 to 0.3 μm and analyzing the image of the TEM photograph. The density of the intermetallic compound is about 10 fields of view. (The average value is taken.)
Is to provide.

本発明によれば、肉薄でありながらフィン接合率、耐エロージョン性などろう付性に優れ、且つろう付後の強度が高いアルミニウム合金ブレージングシートを得ることができる。そして、このブレージングシートは肉薄であり、自動車用の熱交換器として軽量で熱伝導性に優れ、ろう付後強度が高いことにより、熱交換器の寿命をさらに長くさせることができる。   According to the present invention, it is possible to obtain an aluminum alloy brazing sheet that is thin but has excellent brazing properties such as a fin joining rate and erosion resistance and high strength after brazing. And this brazing sheet is thin, is lightweight as a heat exchanger for automobiles, is excellent in thermal conductivity, and has high strength after brazing, so that the life of the heat exchanger can be further extended.

本発明のアルミニウム合金ブレージングシートの好ましい実施の態様について、詳細に説明する。
本発明のアルミニウム合金ブレージングシートを構成する心材、犠牲陽極材の成分元素の添加理由および添加範囲について説明し、ろう材について述べる。
A preferred embodiment of the aluminum alloy brazing sheet of the present invention will be described in detail.
The reason for addition and the range of addition of the constituent elements of the core material and sacrificial anode material constituting the aluminum alloy brazing sheet of the present invention will be described, and the brazing material will be described.

[1.心材]
Siは、Fe、MnとともにAl−Fe−Mn−Si系の化合物を形成し、分散強化として作用し、或いはマトリクスに固溶して固溶強化により強度を向上させる。また、Mgと反応してMgSi化合物を形成することで強度が向上する。Siの含有量は、0.5〜1.0%(組成の%は質量%を表す、以下同じ)の範囲であり、0.5%未満ではその効果が小さく、1.0%を超えると心材の融点が低下し、溶融が起こる可能性が高くなる。好ましくは、0.6〜0.9%である。
Feは、再結晶核となり得るサイズの金属間化合物を作りやすい。ろう付後の結晶粒径を粗大にしてろう拡散を抑制するためには、Feの含有量は、0.1〜0.3%であり、0.1%未満では高純度アルミニウム地金を使用しなければならずコスト高となり、0.3%を超えるとろう付後の結晶粒径が微細となり、ろう拡散が生じる恐れがある。好ましくは、0.1〜0.2%である。
[1. Heartwood]
Si forms an Al—Fe—Mn—Si compound together with Fe and Mn, and acts as dispersion strengthening, or is dissolved in a matrix to improve strength by solid solution strengthening. Further, the strength is improved by reacting with Mg to form a Mg 2 Si compound. The content of Si is in the range of 0.5 to 1.0% (% of composition represents mass%, the same shall apply hereinafter), and if less than 0.5%, the effect is small, and exceeding 1.0% The melting point of the core material is lowered, and the possibility of melting is increased. Preferably, it is 0.6 to 0.9%.
Fe tends to make an intermetallic compound of a size that can be a recrystallization nucleus. In order to suppress the brazing diffusion by making the crystal grain size after brazing coarse, the Fe content is 0.1 to 0.3%, and if it is less than 0.1%, high-purity aluminum metal is used. If the content exceeds 0.3%, the crystal grain size after brazing becomes fine and brazing diffusion may occur. Preferably, it is 0.1 to 0.2%.

Cuは、固溶強化により強度を向上させ、また電位を貴にして犠牲陽極材、フィン材との電位差を大きくし、犠牲陽極効果による防食効果を向上させる。Cuの含有量は、0.3〜1.0%の範囲であり、0.3%未満ではその効果が小さく、1.0%を超えると粒界腐食が発生する可能性が高くなる。好ましくは、0.3〜0.9%である。
Mnは、強度とろう付性、耐食性を向上させ、また電位を貴にする効果がある。Mnの含有量は、1.0〜1.6%であり、1.0%未満ではその効果が小さく、1.6%を超えると鋳造時に巨大金属間化合物が形成されやすくなり、塑性加工性を低下させる。好ましくは、1.1〜1.5%である。
Mgは、MgSi析出による強度向上に効果がある。Mgの含有量は、0.1〜0.4%であり、0.1%未満ではその効果が小さく、0.4%を超えるとろう付性が低下する。好ましくは、0.15〜0.4%である
Cu improves the strength by solid solution strengthening, increases the potential difference between the sacrificial anode material and the fin material by making the potential noble, and improves the anticorrosion effect by the sacrificial anode effect. The Cu content is in the range of 0.3 to 1.0%. If the content is less than 0.3%, the effect is small. If the content exceeds 1.0%, the possibility of occurrence of intergranular corrosion increases. Preferably, it is 0.3 to 0.9%.
Mn has the effects of improving strength, brazing and corrosion resistance and making the potential noble. The content of Mn is 1.0 to 1.6%. If the content is less than 1.0%, the effect is small, and if it exceeds 1.6%, a giant intermetallic compound is easily formed during casting, and plastic workability is increased. Reduce. Preferably, it is 1.1 to 1.5%.
Mg is effective in improving the strength due to Mg 2 Si precipitation. The content of Mg is 0.1 to 0.4%. If the content is less than 0.1%, the effect is small, and if it exceeds 0.4%, the brazing property decreases. Preferably, it is 0.15-0.4%

本発明における心材には、さらにTi、ZrおよびVのうち1種以上を所定量含有させる。
Tiは、固溶強化により強度を向上させ、また耐食性の向上が図れる。好ましい含有量は、0.05〜0.2%であり、0.05%未満ではその効果は得られず、0.2%を超えると巨大金属間化合物を形成しやすくなり、塑性加工性を低下させる。より好ましくは、0.1〜0.15%である。
Zrは、固溶強化により強度を向上させ、またAl−Zr系の微細化合物が析出し、ろう付後の結晶粒粗大化に作用する。好ましい含有量は、0.05〜0.2%であり、0.05%未満ではその効果は得られず、0.2%を超えると巨大金属間化合物を形成しやすくなり、塑性加工性を低下させる。より好ましくは、0.1〜0.15%である。
Vは、固溶強化により強度を向上させ、また耐食性の向上が図れる。好ましい含有量は、0.05〜0.2%であり、0.05%未満ではその効果は得られず、0.2%を超えると巨大金属間化合物を形成しやすくなり、塑性加工性を低下させる。より好ましくは、0.1〜0.15%である。
The core material in the present invention further contains a predetermined amount of one or more of Ti, Zr and V.
Ti improves strength by solid solution strengthening and can improve corrosion resistance. The preferable content is 0.05 to 0.2%, and if it is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.2%, it becomes easy to form a giant intermetallic compound, and the plastic workability is reduced. Reduce. More preferably, it is 0.1 to 0.15%.
Zr improves the strength by solid solution strengthening, and Al-Zr-based fine compounds precipitate, which acts on the coarsening of crystal grains after brazing. The preferable content is 0.05 to 0.2%, and if it is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.2%, it becomes easy to form a giant intermetallic compound, and the plastic workability is reduced. Reduce. More preferably, it is 0.1 to 0.15%.
V improves strength by solid solution strengthening and can improve corrosion resistance. The preferable content is 0.05 to 0.2%, and if it is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.2%, it becomes easy to form a giant intermetallic compound, and the plastic workability is reduced. Reduce. More preferably, it is 0.1 to 0.15%.

[2.犠牲陽極材]
Znは、電位を卑にすることができ、心材との電位差を形成することで犠牲陽極効果により耐食性を向上できる。Znの含有量は、2.0〜5.0%であり、2.0%未満ではその効果が十分ではなく、5.0%を超えると、腐食速度が速くなり早期に犠牲陽極材が消失し、耐食性が低下する。好ましくは、3.0〜5.0%である。
Siは、Fe、MnとともにAl−Fe―Mn−Si系の化合物を形成し、分散強化として作用し、或いはマトリクスに固溶して固溶強化により強度を向上させる。また、ろう付時に心材から拡散してくるMgと反応してMgSi化合物を形成することで強度が向上する。好ましいSi含有量は0.05〜1.0%、より好ましくは0.1〜0.8%である。1.0%を超えると犠牲陽極材の融点が低下し、溶融が起こる可能性が高くなる。また犠牲陽極材の電位を貴にするため、犠牲陽極効果を阻害し、耐食性が低下する。0.05%未満では、強度の向上に対して不十分である。
Mnは、強度と耐食性を向上させる。好ましい含有量は0.05〜1.6%、より好ましくは0.1〜1.0%である。1.6%を超えると鋳造時に巨大金属間化合物が形成されやすくなり、塑性加工性を低下させる。また犠牲陽極材の電位を貴にするため、犠牲陽極効果を阻害し、耐食性が低下する。0.05%未満では、強度の向上に対して不十分である。
[2. Sacrificial anode material]
Zn can lower the potential, and can improve the corrosion resistance by the sacrificial anode effect by forming a potential difference with the core material. The Zn content is 2.0 to 5.0%. If the content is less than 2.0%, the effect is not sufficient. If the content exceeds 5.0%, the corrosion rate increases and the sacrificial anode material disappears early. In addition, the corrosion resistance decreases. Preferably, it is 3.0 to 5.0%.
Si forms an Al—Fe—Mn—Si compound together with Fe and Mn and acts as dispersion strengthening, or improves the strength by solid solution strengthening by solid solution. Further, the strength is improved by reacting with Mg diffused from the core material during brazing to form a Mg 2 Si compound. A preferable Si content is 0.05 to 1.0%, more preferably 0.1 to 0.8%. If it exceeds 1.0%, the melting point of the sacrificial anode material is lowered and the possibility of melting is increased. Moreover, since the potential of the sacrificial anode material is made noble, the sacrificial anode effect is hindered and the corrosion resistance is lowered. If it is less than 0.05%, it is insufficient for improving the strength.
Mn improves strength and corrosion resistance. The preferred content is 0.05 to 1.6%, more preferably 0.1 to 1.0%. If it exceeds 1.6%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. Moreover, since the potential of the sacrificial anode material is made noble, the sacrificial anode effect is hindered and the corrosion resistance is lowered. If it is less than 0.05%, it is insufficient for improving the strength.

Tiは、固溶強化により強度を向上させ、また耐食性の向上が図れる。好ましい含有量は、0.05〜0.2%以下である。0.2%を超えると巨大金属間化合物を形成しやすくなり、塑性加工性を低下させる。より好ましくは、0.1〜0.15%である。
Vは、固溶強化により強度を向上させ、また耐食性の向上が図れる。好ましい含有量は、0.05〜0.2%であり、0.05%未満ではその効果は得られず、0.2%を超えると巨大金属間化合物を形成しやすくなり、塑性加工性を低下させる。より好ましくは、0.1〜0.15%である。
これら、Si、Mn、Ti、Vは、犠牲陽極材中に必要により少なくとも1種が添加されていればよい。
なお、犠牲陽極材中には、不可避的不純物として0.05〜0.2%程度のFeが含有されていてもかまわない。
Ti improves strength by solid solution strengthening and can improve corrosion resistance. A preferable content is 0.05 to 0.2% or less. If it exceeds 0.2%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. More preferably, it is 0.1 to 0.15%.
V improves strength by solid solution strengthening and can improve corrosion resistance. The preferable content is 0.05 to 0.2%, and if it is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.2%, it becomes easy to form a giant intermetallic compound, and the plastic workability is reduced. Reduce. More preferably, it is 0.1 to 0.15%.
These Si, Mn, Ti, and V may be added in the sacrificial anode material if necessary.
The sacrificial anode material may contain about 0.05 to 0.2% Fe as an inevitable impurity.

[3.ろう材]
ろう材は通常使用されているAl−Si系合金ろう材を使用することができ、特に制限されるものではなく、例えば、JIS4343、4045、4047合金(Al−7〜13wt%Si)が好ましい。
[3. Brazing material]
As the brazing material, a commonly used Al—Si based alloy brazing material can be used, and is not particularly limited. For example, JIS 4343, 4045, 4047 alloy (Al-7 to 13 wt% Si) is preferable.

本発明のブレージングシートは、ろう付後の心材の金属組織は、粒径0.1μm以上の金属間化合物、例えばAl−Mn、Al−Mn−Si、Al−Fe−Mn―Si等、の密度が10個/μm以下、より好ましくは、5個/μm以下とする。本発明におけるアルミニウム合金ブレージングシートは、MgSiの時効硬化による強化をメインに強度アップを図っているが、粒径0.1μm以上の金属間化合物がろう付終了後に存在すると、ろう付後の冷却の過程において、MgSiがそれら金属間化合物の表面に析出し、時効硬化に寄与しないMgSi量が増える。その結果、心材に添加したMgおよびSiが強度向上に有効に作用せず、十分なろう付後の強度が得られない可能性がある。そこで、MgSiの時効硬化を効果的に作用させるため、ろう付後心材中に存在する粒径0.1μm以上の金属間化合物の密度が10個/μm以下とした。好ましくは、5個/μm以下である。粒径0.1μm以上の金属間化合物の密度は、心材のL−LT面(圧延方向(L方向)と、圧延面に対して平行でL方向に対して垂直な方向(LT方向)で形成される面)を研磨で面出しし、心材の透過型電子顕微鏡(TEM)観察を行うことで調べた。等厚干渉縞から観察部の膜厚を測定し、膜厚が0.1〜0.3μmの箇所でのみTEM観察を行った。TEM写真を画像解析することで、ろう付後の金属間化合物の密度を求めた。ここで、金属間化合物の粒径は円相当径のことである。 In the brazing sheet of the present invention, the metal structure of the core material after brazing has a density of an intermetallic compound having a particle size of 0.1 μm or more, such as Al—Mn, Al—Mn—Si, Al—Fe—Mn—Si, and the like. Is 10 pieces / μm 2 or less, more preferably 5 pieces / μm 2 or less. The aluminum alloy brazing sheet in the present invention is intended to increase the strength mainly by strengthening by age hardening of Mg 2 Si, but if an intermetallic compound having a particle size of 0.1 μm or more is present after brazing, In the cooling process, Mg 2 Si is deposited on the surface of these intermetallic compounds, and the amount of Mg 2 Si that does not contribute to age hardening increases. As a result, there is a possibility that Mg and Si added to the core material do not effectively work to improve the strength and sufficient strength after brazing cannot be obtained. Therefore, in order to effectively cause age hardening of Mg 2 Si, the density of intermetallic compounds having a particle size of 0.1 μm or more present in the core material after brazing is set to 10 / μm 2 or less. Preferably, it is 5 pieces / μm 2 or less. The density of the intermetallic compound having a particle size of 0.1 μm or more is formed in the L-LT surface of the core (the rolling direction (L direction) and the direction parallel to the rolling surface and perpendicular to the L direction (LT direction). The surface to be surfaced was polished and examined by observing the core material with a transmission electron microscope (TEM). The film thickness of the observation part was measured from the equal-thickness interference fringes, and TEM observation was performed only at locations where the film thickness was 0.1 to 0.3 μm. The density of the intermetallic compound after brazing was determined by image analysis of the TEM photograph. Here, the particle diameter of the intermetallic compound is the equivalent circle diameter.

また、本発明ではろう付後の心材の結晶粒径を100μm以上とする。ろう付時に溶融したろうは、結晶粒界を経路として心材側へ拡散し、エロージョンが生じることがある。ろう付後の心材の結晶粒径が微細であれば、溶融ろうの経路が増えるため、心材側へ拡散するろうが多くなり、エロージョンが発生する。エロージョンが発生すると、強度、耐食性等のろう付後の特性が低下し、接合に使用される有効ろう量が少なくなってろう付性の低下をまねく。そのため、ろう付後の心材の結晶粒径は100μm以上であり、より好ましくは150μm以上とする。
心材の結晶粒径は、心材のL−LT面を研磨で面出しし、その後バーカーエッチングを行い、光学顕微鏡で写真撮影し、面積法にて平均結晶粒径を求めたものである。
Moreover, in this invention, the crystal grain diameter of the core material after brazing shall be 100 micrometers or more. The solder melted at the time of brazing may diffuse to the core material side through the crystal grain boundary and cause erosion. If the crystal grain size of the core material after brazing is fine, the number of brazing wax paths increases, so that the amount of wax that diffuses toward the core material side increases, and erosion occurs. When erosion occurs, properties after brazing such as strength and corrosion resistance are lowered, and the amount of brazing used for joining is reduced, resulting in a reduction in brazing. Therefore, the crystal grain size of the core material after brazing is 100 μm or more, more preferably 150 μm or more.
The crystal grain size of the core material is obtained by polishing the L-LT surface of the core material, then performing Barker etching, taking a photograph with an optical microscope, and obtaining the average crystal grain size by the area method.

次に、本発明のアルミニウム合金ブレージングシートの製造方法について説明する。
本発明のアルミニウム合金ブレージングシートは、上記記載の合金からなる心材の片面にAl−Si系ろう材をクラッドし、心材の他方の面には犠牲陽極材をクラッドすることで製造される。
心材、犠牲陽極材用として、前記した所望の成分組成を有するアルミニウム合金をそれぞれ溶解し、鋳造し、面削して仕上げ、熱間圧延前に、心材に対しては、鋳塊の均質化処理を行わないか、または550℃以上で行い、熱間圧延により所望の厚さまで圧延し、それぞれ心材および犠牲陽極材を作製する。心材の均質化処理を550℃以上で行うことで、心材中のAl−Mn系化合物の分布を疎にすることができ、ろう付後の心材の金属間化合物密度を下げることができる。或いは、心材の均質化処理を行わないことで、熱間圧延前の心材の固溶度を高い状態に維持できるため、熱間圧延時に微細な金属間化合物を析出させ、これらの微細な金属間化合物はろう付時に再固溶するため、ろう付後の心材の金属間化合物密度を下げることができる。
Next, the manufacturing method of the aluminum alloy brazing sheet of this invention is demonstrated.
The aluminum alloy brazing sheet of the present invention is manufactured by clad an Al—Si brazing material on one side of a core material made of the above-described alloy and clad a sacrificial anode material on the other side of the core material.
For the core material and sacrificial anode material, the above-mentioned aluminum alloys having the desired component composition are respectively melted, cast, chamfered and finished, and the ingot is homogenized before hot rolling. Or is performed at 550 ° C. or higher and rolled to a desired thickness by hot rolling to produce a core material and a sacrificial anode material, respectively. By performing the homogenization treatment of the core material at 550 ° C. or more, the distribution of the Al—Mn compound in the core material can be made sparse, and the intermetallic compound density of the core material after brazing can be lowered. Alternatively, since the solid solution of the core material before hot rolling can be maintained in a high state by not homogenizing the core material, fine intermetallic compounds are precipitated during hot rolling, Since the compound is re-dissolved during brazing, the density of intermetallic compounds in the core material after brazing can be lowered.

得られた心材、犠牲陽極材は、公知のろう材と共に組み合わせ、この組み合わせ材を熱間圧延の開始温度を480℃以下、熱間圧延の終了温度を280℃以下として熱間圧延することによりクラッド材を作製する。熱間圧延の開始温度を480℃以下とすることで、熱間圧延終了後の心材中の金属間化合物の分布を微細とすることができる。開始温度が480℃を超えると、金属間化合物の粗大な分布が得られる。熱間圧延時の析出物を微細にしておくことで、ろう付中に微細な金属化合物がマトリクスに再固溶し、ろう付後の金属間化合物の密度を低くすることができる。熱間圧延の開始温度は、より好ましくは460℃以下である。また、熱間圧延の終了温度を280℃以下とすることで、熱間圧延終了後にコイルに巻いた後の析出を抑制することができる。終了温度が280℃を超えると、コイルに巻いた後も心材で金属間化合物の析出或いは粗大化が起こり、適正な金属間化合物の分布が得られない。熱間圧延の終了温度は、より好ましくは260℃以下である。   The obtained core material and sacrificial anode material are combined with a known brazing material, and this combined material is clad by hot rolling at a hot rolling start temperature of 480 ° C. or lower and a hot rolling end temperature of 280 ° C. or lower. Make the material. By setting the hot rolling start temperature to 480 ° C. or less, the distribution of the intermetallic compound in the core material after the hot rolling can be made fine. When the starting temperature exceeds 480 ° C., a coarse distribution of intermetallic compounds is obtained. By making the precipitates during hot rolling fine, the fine metal compound is re-dissolved in the matrix during brazing, and the density of the intermetallic compound after brazing can be lowered. The starting temperature of hot rolling is more preferably 460 ° C. or less. Moreover, the precipitation after winding to a coil after completion | finish of hot rolling can be suppressed because the completion | finish temperature of hot rolling shall be 280 degrees C or less. When the end temperature exceeds 280 ° C., the intermetallic compound is precipitated or coarsened in the core material even after being wound around the coil, and an appropriate intermetallic compound distribution cannot be obtained. The end temperature of hot rolling is more preferably 260 ° C. or lower.

本発明の方法は、この後このクラッド材を冷間圧延するが、冷間圧延の間に中間焼鈍を少なくとも1回行うものである。その後、最終板厚まで冷間圧延を行う。ここで中間焼鈍には、バッチ式焼鈍炉、或いは連続焼鈍炉(CAL)のいずれを用いてもよい。
なお、本発明のアルミニウム合金ブレージングシートの厚さ、各層のクラッド率には特に制限はないが、通常冷却水や冷媒を循環させるチューブ材として使う場合では、約0.3mm程度以下の薄肉ブレージングシートとすることができる。犠牲陽極材層、ろう材層のクラッド率は通常7〜20%程度である。
このアルミニウム合金ブレージングシートは、肉薄でありながら強度に優れ、ろう付性も良好であるので、軽量の自動車用熱交換器の作製に好適である。
In the method of the present invention, the clad material is then cold-rolled, and intermediate annealing is performed at least once during the cold-rolling. Thereafter, cold rolling is performed to the final thickness. Here, either a batch-type annealing furnace or a continuous annealing furnace (CAL) may be used for the intermediate annealing.
In addition, although there is no restriction | limiting in particular in the thickness of the aluminum alloy brazing sheet of this invention, and the clad rate of each layer, When using as a tube material which circulates cooling water or a refrigerant | coolant normally, a thin brazing sheet of about 0.3 mm or less It can be. The clad rate of the sacrificial anode material layer and the brazing material layer is usually about 7 to 20%.
Although this aluminum alloy brazing sheet is thin, it has excellent strength and brazing properties, and is therefore suitable for production of a lightweight automotive heat exchanger.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
表1、2に示す金属成分および組成をもつ心材、犠牲陽極材合金をそれぞれDC鋳造により鋳造して各々両面を面削して仕上げた。ろう材には、JIS4045合金を用い、ろう材、犠牲陽極材を熱間圧延によりそれぞれ所望の厚さまで圧延した。これらの合金材をろう材―心材―犠牲陽極材の組み合わせで表3に示すように組み合わせて、その際のろう材、犠牲陽極材のクラッド率を全て15%とし、熱間圧延の開始温度を460℃、熱間圧延の終了温度を260℃として熱間圧延を行い、3.5mmの3層クラッド材とした。その後、中間焼鈍、最終冷間圧延を実施し、H1n調質の板厚0.25mmの板材とした。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
A core material and a sacrificial anode material alloy having the metal components and compositions shown in Tables 1 and 2 were each cast by DC casting, and each side was chamfered and finished. JIS4045 alloy was used for the brazing material, and the brazing material and the sacrificial anode material were each rolled to a desired thickness by hot rolling. These alloy materials are combined as shown in Table 3 with a combination of brazing material, core material, and sacrificial anode material. The clad rate of the brazing material and sacrificial anode material at that time is 15%, and the hot rolling start temperature is Hot rolling was performed at 460 ° C. and the end temperature of hot rolling was 260 ° C. to obtain a 3.5 mm three-layer clad material. Thereafter, intermediate annealing and final cold rolling were performed to obtain a plate material of H1n tempered plate thickness of 0.25 mm.

Figure 0005188115
Figure 0005188115

Figure 0005188115
Figure 0005188115

Figure 0005188115
Figure 0005188115

次に、前記作製した板材の一部を供試材とし、供試材のろう付後の金属間化合物の密度、ろう付後の結晶粒径、およびろう付後強度、ろう付性の評価を下記に示す方法で行い、それらの結果を表4に示した。   Next, a part of the prepared plate material is used as a test material, and the density of the intermetallic compound after brazing of the test material, the crystal grain size after brazing, the strength after brazing, and the evaluation of brazing properties are evaluated. The results are shown in Table 4 and the results are shown below.

(1)ろう付後の金属間化合物の密度:
600℃×3分のろう付加熱後、心材のL−LT面を研磨で面出しし、心材の透過型電子顕微鏡(TEM)観察を行うことで調べた。具体的には、等厚干渉縞から観察部の膜厚を測定し、膜厚が0.1〜0.3μmの箇所でのみTEM観察を行った。各サンプル10視野ずつ観察を行い、それぞれの視野のTEM写真を画像解析することで、ろう付後の粒径0.1μm以上の金属間化合物の密度を求めた。表記したろう付後の金属間化合物の密度は、各10視野より求めた値の平均値とした。
(2)ろう付加熱後の結晶粒径:
600℃×3分のろう付加熱後、心材のL−LT面を研磨して面出しし、その後バーカーエッチングを行い、面積法にて平均結晶粒径の算出を行った。(参考文献;金属学会会報 第10巻(1971)、p.279−289)
(1) Density of intermetallic compound after brazing:
After brazing heat at 600 ° C. for 3 minutes, the L-LT surface of the core material was surfaced by polishing, and the core material was examined by observation with a transmission electron microscope (TEM). Specifically, the film thickness of the observation part was measured from the equal-thickness interference fringes, and TEM observation was performed only at locations where the film thickness was 0.1 to 0.3 μm. Ten samples of each field of view were observed, and TEM photographs of each field of view were subjected to image analysis to determine the density of intermetallic compounds having a particle size of 0.1 μm or more after brazing. The density of the intermetallic compound after brazing represented was an average value obtained from 10 fields of view.
(2) Crystal grain size after heat of brazing addition:
After heat addition at 600 ° C. for 3 minutes, the L-LT surface of the core material was polished and surfaced, then Barker etching was performed, and the average crystal grain size was calculated by the area method. (Reference: The Japan Institute of Metals, Vol. 10 (1971), p. 279-289)

(3)ろう付後の引張強度:
600℃×3分のろう付加熱後、200℃/minの冷却速度で冷却し、その後室温で1週間放置した。このサンプルを引張速度10mm/min、ゲージ長50mmの条件で、JIS Z2241に従って、常温にて引張試験を実施した。
(4)フィン接合率:
JIS 3003合金に1.5%のZnを添加した合金のフィン材をコルゲート成形し、供試材のろう材面とあわせた後、これを5%のフッ化物フラックス懸濁液中に浸漬し、200℃で乾燥後に600℃×3分のノコロックろう付加熱を行った。この試験コアのフィンの全山数に対する接合したフィンの山数の割合をフィン接合率とした。
フィン接合率が95%以上のものはろう付性が良好「○」、95%未満のものはろう付性が不十分「×」とした。
(5)耐エロージョン性:
上記と同様の条件で試験コアを作製後、断面ミクロ観察を行い、エロージョン発生の有無を確認した。エロージョン無しは「○」、エロージョン有りは「×」とした。
(3) Tensile strength after brazing:
After the brazing heat of 600 ° C. × 3 minutes, it was cooled at a cooling rate of 200 ° C./min, and then allowed to stand at room temperature for 1 week. This sample was subjected to a tensile test at room temperature according to JIS Z2241 under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm.
(4) Fin joint rate:
After corrugating a fin material of an alloy obtained by adding 1.5% Zn to JIS 3003 alloy and combining it with the brazing material surface of the test material, this was immersed in a 5% fluoride flux suspension, After drying at 200 ° C., nocollock brazing heat was applied at 600 ° C. for 3 minutes. The ratio of the number of fins joined to the total number of fins of the test core was defined as the fin joining rate.
Those with a fin joint ratio of 95% or more were rated as “Good” with a good brazing property, and those with a fin bonding rate of less than 95% were evaluated as “B” with an insufficient brazing property.
(5) Erosion resistance:
After producing a test core under the same conditions as described above, cross-sectional micro observation was performed to confirm the presence or absence of erosion. “○” indicates no erosion, and “×” indicates erosion.

(6)外部耐食性評価:
上記と同様の条件で試験コアを作製後、犠牲陽極材側をシールし、CASS試験(JIS H8681)500hを実施し、最大孔食深さを測定した。
(7)内部耐食性評価:
引張試験試料と同様、600℃×3分のろう付加熱を行った後、ろう材側をシールし、Cl500ppm、SO 2−100ppm、Cu2+10ppmを含む88℃の高温水中で8h、室温放置で16hのサイクル浸漬試験を3ヶ月実施し、最大孔食深さを測定した。
(6) External corrosion resistance evaluation:
After producing a test core under the same conditions as described above, the sacrificial anode material side was sealed, a CASS test (JIS H8681) 500 h was performed, and the maximum pitting depth was measured.
(7) Internal corrosion resistance evaluation:
Similar to the tensile test specimen, after brazing heating of 600 ° C. × 3 minutes, to seal the brazing material side, Cl - 500ppm, SO 4 2- 100ppm, 8h in high-temperature water of 88 ° C. containing Cu 2+ 10 ppm, A 16-hour cycle immersion test was conducted for 3 months at room temperature, and the maximum pitting corrosion depth was measured.

Figure 0005188115
Figure 0005188115

表4から明らかなように、本発明例である試験材No.1〜4は、ろう付後の引張強さが185N/mm以上と高く、またフィン接合率、耐エロージョン性などのろう付性が優れており、さらに外側(熱交換器の大気側に相当)、内側(冷媒側に相当)共に耐食性が良好である。
それに対して、比較例である試験材No.5、6は、ろう付後の引張強さが180N/mm未満であり、本発明例よりも低かった。試験材No.5、6、7については、フィン接合率の低下、或いはエロージョンの発生により、ろう付性が低下した。試験材No.5、8、9については、外側もしくは内側で貫通腐食が生じた。試験材No.6、8、9については、心材或いは犠牲材において鋳造時に巨大金属間化合物が生成した。
As is apparent from Table 4, the test material No. 1-4 have a high tensile strength of 185 N / mm 2 or more after brazing, excellent brazing properties such as fin joint ratio and erosion resistance, and the outside (corresponding to the atmosphere side of the heat exchanger) ) And inside (corresponding to the refrigerant side) have good corrosion resistance.
On the other hand, test material No. which is a comparative example. In Nos. 5 and 6, the tensile strength after brazing was less than 180 N / mm 2 , which was lower than the examples of the present invention. Test material No. As for 5, 6, and 7, the brazing performance was lowered due to the decrease in the fin joint ratio or the occurrence of erosion. Test material No. For 5, 8, and 9, penetration corrosion occurred outside or inside. Test material No. For 6, 8, and 9, giant intermetallic compounds were formed in the core material or sacrificial material during casting.

Claims (1)

心材の片面にAl−Si系ろう材をクラッドし、心材の他方の面には犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートであって、前記心材が、Si:0.5〜1.0%(質量%、以下同じ)、Fe:0.1〜0.3%、Cu:0.3〜1.0%、Mn:1.0〜1.6%、Mg:0.1〜0.4%を含有し、さらにTi:0.05〜0.2%、Zr:0.05〜0.2%、V:0.05〜0.2%のうち1種以上を含有し、残部Alと不可避的不純物からなるAl合金であり、そのろう付後の心材の金属組織は、粒径0.1μm以上の金属間化合物の密度が10個/μm以下であり、且つろう付後の結晶粒径が100μm以上であるAl合金であり、前記犠牲陽極材が、Zn:2.0〜5.0%を含有し、さらにSi:0.05〜1.0%、Mn:0.05〜1.6%、Ti:0.05〜0.2%、V:0.05〜0.2%のうち1種以上を含有し、残部Alと不可避的不純物からなるAl合金であり、心材、犠牲陽極材は、ろう材と共に組み合わせ、この組み合わせ材を熱間圧延の開始温度を480℃以下、熱間圧延の終了温度を280℃以下として熱間圧延することによりクラッド材を作製したことを特徴とする高強度アルミニウム合金ブレージングシート。
(但し、粒径0.1μm以上の金属間化合物の密度は、心材のL−LT面(圧延方向(L方向)と、圧延面に対して平行でL方向に対して垂直な方向(LT方向)で形成される面)を研磨で面出し、心材の透過型電子顕微鏡(TEM)観察を以下のように行うことで調べた。等厚干渉縞から観察部の膜厚を測定し、膜厚が0.1〜0.3μmの箇所でのみTEM観察を行い、TEM写真を画像解析することで、ろう付後の金属間化合物の密度であり、この金属間化合物の密度は、10視野についての値の平均値をとる。)
An aluminum alloy brazing sheet in which an Al—Si brazing material is clad on one side of a core material and a sacrificial anode material is clad on the other side of the core material, wherein the core material contains Si: 0.5 to 1.0% ( % By mass, the same applies hereinafter), Fe: 0.1 to 0.3%, Cu: 0.3 to 1.0%, Mn: 1.0 to 1.6%, Mg: 0.1 to 0.4% In addition, Ti: 0.05-0.2%, Zr: 0.05-0.2%, V: 0.05-0.2%, containing at least one of the remaining, inevitable with the remaining Al The metal structure of the core material after brazing is an Al alloy composed of mechanical impurities, the density of intermetallic compounds having a particle size of 0.1 μm or more is 10 pieces / μm 2 or less, and the crystal grain size after brazing In which the sacrificial anode material contains Zn: 2.0-5.0%, and Si: 0.0 -1.0%, Mn: 0.05-1.6%, Ti: 0.05-0.2%, V: One or more of 0.05-0.2% are contained, and the balance is Al. It is an Al alloy composed of inevitable impurities, and the core material and sacrificial anode material are combined with the brazing material, and this combined material is hot with a hot rolling start temperature of 480 ° C. or lower and a hot rolling end temperature of 280 ° C. or lower. A high-strength aluminum alloy brazing sheet characterized by producing a clad material by rolling .
(However, the density of the intermetallic compound having a particle size of 0.1 μm or more is determined by the L-LT plane of the core material (the rolling direction (L direction) and the direction parallel to the rolling plane and perpendicular to the L direction (LT direction)). The surface formed by polishing) was surfaced by polishing, and the core material was examined by observation with a transmission electron microscope (TEM) as follows: The film thickness of the observation part was measured from the equal thickness interference fringes, and the film thickness was measured. Is a density of the intermetallic compound after brazing by performing TEM observation only at a location of 0.1 to 0.3 μm and analyzing the image of the TEM photograph. The density of the intermetallic compound is about 10 fields of view. (The average value is taken.)
JP2007188856A 2007-07-19 2007-07-19 High strength aluminum alloy brazing sheet Active JP5188115B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007188856A JP5188115B2 (en) 2007-07-19 2007-07-19 High strength aluminum alloy brazing sheet
US12/218,440 US8142907B2 (en) 2007-07-19 2008-07-15 Aluminum alloy brazing sheet having high-strength and production method therefor
EP08075642.2A EP2017032B2 (en) 2007-07-19 2008-07-17 Aluminum alloy brazing sheet having high-strength and production method therefor
DE102008034031.6A DE102008034031B4 (en) 2007-07-19 2008-07-17 High strength aluminum alloy brazing sheet and manufacturing method thereof
CN 200810161188 CN101358311B (en) 2007-07-19 2008-07-18 Aluminum alloy brazing sheet having high-strength and production method therefore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188856A JP5188115B2 (en) 2007-07-19 2007-07-19 High strength aluminum alloy brazing sheet

Publications (2)

Publication Number Publication Date
JP2009024221A JP2009024221A (en) 2009-02-05
JP5188115B2 true JP5188115B2 (en) 2013-04-24

Family

ID=40330908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188856A Active JP5188115B2 (en) 2007-07-19 2007-07-19 High strength aluminum alloy brazing sheet

Country Status (2)

Country Link
JP (1) JP5188115B2 (en)
CN (1) CN101358311B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944088B2 (en) * 2008-02-12 2016-07-05 株式会社神戸製鋼所 Aluminum alloy laminate with excellent fatigue characteristics
US8343635B2 (en) 2008-02-12 2013-01-01 Kobe Steel, Ltd. Multi-layered sheet of aluminum alloys
JP5917786B2 (en) * 2008-02-12 2016-05-18 株式会社神戸製鋼所 Aluminum alloy laminate with excellent fatigue characteristics
EP2540848B1 (en) * 2010-02-26 2018-05-23 Furukawa Electric Co., Ltd. Aluminum alloy conductor
JP5537256B2 (en) * 2010-05-18 2014-07-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP5466080B2 (en) * 2010-05-18 2014-04-09 株式会社神戸製鋼所 Aluminum alloy brazing sheet
CN102773626B (en) * 2012-07-11 2014-12-03 东莞市闻誉实业有限公司 Corrosion-resistant aluminum alloy soldering material
CN103255324B (en) * 2013-04-19 2017-02-08 北京有色金属研究总院 Aluminum alloy material suitable for manufacturing car body panel and preparation method
DE112014003155T5 (en) * 2013-07-05 2016-03-24 Uacj Corporation Aluminum alloy brazing sheet and process for its production
CN103572100A (en) * 2013-10-21 2014-02-12 姚富云 Aluminum alloy material for heat exchanger
CN103572078A (en) * 2013-10-21 2014-02-12 姚富云 Refining method of aluminum alloy for heat exchangers
CN103572099A (en) * 2013-10-21 2014-02-12 姚富云 Aluminum alloy material for heat exchangers and refining method thereof
JP6228500B2 (en) * 2014-03-28 2017-11-08 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP6942449B2 (en) * 2016-08-30 2021-09-29 株式会社Uacj Aluminum alloy brazing sheet
CN107090557A (en) * 2017-03-13 2017-08-25 北京工业大学 A kind of aluminium alloy and preparation method for being used to prepare inexpensive high temperature resistant brazed aluminum/steel composite strip
CN109554571B (en) * 2018-12-27 2019-10-22 吉林大学 A kind of preparation method of two-way vertical controlled rolling trace Ti C REINFORCED Al-Cu-Mg sheet alloy
CN109943796A (en) * 2019-03-21 2019-06-28 珠海弘德表面技术有限公司 A kind of thermal spraying material and preparation method thereof of resistance to molten aluminum etch
CN112577336B (en) * 2019-09-30 2022-06-21 杭州三花微通道换热器有限公司 Fin for heat exchanger and heat exchanger
CN114346518A (en) * 2021-12-03 2022-04-15 中车永济电机有限公司 Application of flux-cored solder and brazing method
CN114752819A (en) * 2022-04-19 2022-07-15 中国第一汽车股份有限公司 Nano ceramic particle reinforced aluminum alloy and preparation method thereof
CN117230348B (en) * 2023-09-18 2024-04-26 华北铝业新材料科技有限公司 1100B high-strength battery foil and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790454A (en) * 1993-09-08 1995-04-04 Furukawa Electric Co Ltd:The Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
EP0718072B1 (en) * 1994-12-19 2003-07-09 Corus Aluminium Walzprodukte GmbH Brazing sheet
JP4030006B2 (en) * 2002-07-05 2008-01-09 住友軽金属工業株式会社 Aluminum alloy clad material and manufacturing method thereof
JP4181607B2 (en) * 2007-03-29 2008-11-19 株式会社神戸製鋼所 Aluminum alloy brazing sheet and method for producing the same

Also Published As

Publication number Publication date
CN101358311A (en) 2009-02-04
CN101358311B (en) 2013-03-06
JP2009024221A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5188115B2 (en) High strength aluminum alloy brazing sheet
JP5793336B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
US11408690B2 (en) Method for producing aluminum alloy clad material
JP4825507B2 (en) Aluminum alloy brazing sheet
JP5188116B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
WO2015001725A1 (en) Aluminum alloy brazing sheet and method for producing same
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP6047304B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP2016522311A (en) Brazing sheet core alloy for heat exchanger
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2013216935A (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP5543119B2 (en) Method for producing high heat resistant aluminum alloy brazing sheet
JP6758281B2 (en) Aluminum alloy brazing sheet fin material for heat exchanger and its manufacturing method
JP5396042B2 (en) Aluminum alloy brazing sheet with excellent brazeability
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP2010209444A (en) Brazing sheet of highly heat-resistant aluminum alloy and method for manufacturing the same
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP5306836B2 (en) Aluminum alloy brazing sheet with excellent strength and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250