JP2009149936A - Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger - Google Patents

Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger Download PDF

Info

Publication number
JP2009149936A
JP2009149936A JP2007328197A JP2007328197A JP2009149936A JP 2009149936 A JP2009149936 A JP 2009149936A JP 2007328197 A JP2007328197 A JP 2007328197A JP 2007328197 A JP2007328197 A JP 2007328197A JP 2009149936 A JP2009149936 A JP 2009149936A
Authority
JP
Japan
Prior art keywords
brazing
strength
aluminum alloy
core material
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007328197A
Other languages
Japanese (ja)
Inventor
Michihide Yoshino
路英 吉野
Masakazu Edo
正和 江戸
Masazo Asano
雅三 麻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007328197A priority Critical patent/JP2009149936A/en
Publication of JP2009149936A publication Critical patent/JP2009149936A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a heat-exchanger to be made thin in thickness and light in weight when using a clad material having a sacrificial material by improving the strength without impairing the brazing property and the workability. <P>SOLUTION: The sacrificial material is clad on the one-side surface of a core material which is composed of 0.1 to 0.3% Mg, 0.6 to 1.5% Si, 0.7 to 2.5% Cu, 0.05 to 0.5% Mn, and if necessary, 0.05 to 0.5% Zn and further, if necessary, one or two elements of 0.05 to 0.3% Zr and 0.05 to 0.3% Ti and the balance Al with inevitable impurities and further, satisfies such conditions that the composition ratio by mass% of Si, Mn and Fe is 12Si-(4Mn+3Fe)=6 to 15, and an Al-Si series brazing material is clad on the other-side surface of the core material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ろう付法によって製造される熱交換器チューブ、特に自動車熱交換器チューブおよび該チューブの製造に好適なろう付け造管用熱交換器用アルミニウム合金クラッド材に関するものである。   The present invention relates to a heat exchanger tube manufactured by a brazing method, in particular, an automotive heat exchanger tube, and an aluminum alloy clad material for a heat exchanger for brazing pipe making suitable for manufacturing the tube.

従来、自動車用熱交換器のチューブ材にはJIS3003合金を芯材として、その片面に犠牲材としてJIS7072合金を、さらに他の片面にろう材としてJIS4045合金をクラッドした複合材をパイプ状に形成し、突合せ部を高周波加熱により接合する、電縫溶接チューブ(以下、非ろう付型チューブ)が使用されていた。
ところで近年は熱交換器の軽量化、コスト低減を目的とし、使用部材、特にチューブ材は薄肉化の傾向にある。しかし、前記非ろう付型チューブは成形性の問題から薄肉化の限界が0.20mm程度である。それ以上の薄肉化を実現するため、前記チューブ材の犠牲材が内側になるようにチューブ材をB型形状に折り曲げて、それら両側部をろう付により接合してなるチューブ(以下、ろう付型チューブ)が提案され(例えば特許文献1参照)、昨今では主流になりつつある。
Conventionally, a tube material of an automotive heat exchanger has a pipe material formed of a JIS3003 alloy as a core material, a JIS7072 alloy as a sacrificial material on one side, and a JIS4045 alloy as a brazing material on the other side. An electric resistance welded tube (hereinafter referred to as a non-brazed tube) for joining the butt portions by high-frequency heating has been used.
By the way, in recent years, for the purpose of reducing the weight of the heat exchanger and reducing the cost, the members used, particularly the tube material, tend to be thinner. However, the limit of thinning the non-brazed tube is about 0.20 mm due to the problem of formability. In order to achieve further thinning, the tube material is bent into a B shape so that the sacrificial material of the tube material is on the inside, and both sides are joined by brazing (hereinafter referred to as brazing mold). Tube) has been proposed (see, for example, Patent Document 1), and is becoming mainstream nowadays.

部材の薄肉化にあたっては肉厚減少分に見合うように素材強度を高める必要がある。前記非ろう付型チューブでは、例えば特許文献2に開示されているように、犠牲材にMgやSiを添加し、ろう付熱処理時の拡散を利用して芯材の強度向上を図るとともに、犠牲材そのものの強度も向上させる手法等が提案されている。しかし、ろう付型チューブ材では犠牲材が接合面となるため、犠牲材にMgが添加されているとろう付け性が低下することから、犠牲材へMgを多量に添加する手法は適用し難い。   In reducing the thickness of the member, it is necessary to increase the strength of the material to meet the thickness reduction. In the non-brazing tube, for example, as disclosed in Patent Document 2, Mg and Si are added to the sacrificial material, and the core material is improved in strength by using diffusion during brazing heat treatment. A method for improving the strength of the material itself has been proposed. However, since the sacrificial material becomes a joint surface in the brazed tube material, the brazing property is reduced when Mg is added to the sacrificial material, and therefore a method of adding a large amount of Mg to the sacrificial material is difficult to apply. .

犠牲材にMgが添加されていないものとしては、例えば特許文献3では芯材にMgを添加し、且つろう材と芯材との間に中間層を設け、芯材からろう材へのMg拡散を抑制する4層材が提案されている。しかし、4層構造とすることによりコストが増し、製造も困難であるため実用的ではない。また、特許文献4、5で開示されているものは、芯材にMnを、或いはMnとともにFeを添加することで強度向上を図っている。
特開平2−75414号公報 特開平2−175093号公報 特開2006−131923号公報 特開平10−130760号公報 特開平11−315335号公報
For example, in Patent Document 3, Mg is added to the core material, and an intermediate layer is provided between the brazing material and the core material so that Mg diffuses from the core material to the brazing material. A four-layer material that suppresses the above has been proposed. However, the four-layer structure is not practical because it increases costs and is difficult to manufacture. Moreover, what is disclosed by patent document 4, 5 is aiming at the strength improvement by adding Mn to a core material, or adding Fe with Mn.
JP-A-2-75414 Japanese Patent Laid-Open No. 2-175093 JP 2006-131923 A Japanese Patent Laid-Open No. 10-130760 JP 11-315335 A

しかし、Mn添加は材料強度を高める効果はあるものの、製造上の問題から添加量に限界がある。また、Feの添加も同様に強度を高めるが、添加量が多い場合、材料の自己耐食性の低下や、鋳造時の巨大晶出物の生成により成形性が低下してしまう等の問題が生じる。ろう付け造管形状への成形のために、素材には高い成形性が求められている。また、成形後の製品では薄肉化のために、チューブ材としての高い強度も求められている。その一方で基材強度を高くすると、B型形状への成形時に、スプリングバックにより形状不良が発生する問題があり、これらの相反する特性を満足する必要がある。
以上のように従来発明材ではろう付性、製造(加工性)、耐食性等の観点からより一層の材料強度の向上は極めて困難といえる。
However, although the addition of Mn has the effect of increasing the material strength, the addition amount is limited due to manufacturing problems. Similarly, the addition of Fe increases the strength, but when the addition amount is large, problems such as a decrease in the self-corrosion resistance of the material and a decrease in formability due to the formation of giant crystallized products during casting occur. For molding into a brazed tube shape, the material is required to have high formability. Moreover, high strength as a tube material is also required for the product after molding to reduce the thickness. On the other hand, when the strength of the base material is increased, there is a problem that a shape defect occurs due to a spring back during molding into a B-shape, and it is necessary to satisfy these contradictory characteristics.
As described above, it can be said that it is extremely difficult to further improve the material strength from the viewpoints of brazing property, manufacturing (workability), corrosion resistance, and the like in the conventional invention material.

本発明は、上記事情を背景としてなされたものであり、ろう付造管においても、ろう付け性、加工性を損なうことなく強度を向上させることができ、よって薄肉、軽量化が可能な強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材を提供することを基本的な目的とし、さらに好適には、使用部材を薄肉化し、自動車用熱交換器の軽量化を図ることができ熱交換器用アルミニウム合金チューブを提供することを目的とする。   The present invention has been made against the background of the above circumstances, and in brazed pipes, it is possible to improve the strength without impairing the brazability and workability, and thus the strength capable of reducing the thickness and weight, It is a basic object to provide an aluminum alloy clad material for a heat exchanger for brazing pipe making that is excellent in brazing, and more preferably, a member to be used is thinned to reduce the weight of an automotive heat exchanger. An object of the present invention is to provide an aluminum alloy tube for a heat exchanger.

そこで本発明者らは、上述のごとき従来技術における問題を解決し、強度、ろう付性、加工性をともに満足するろう付け造管用クラッド材を得ることを目的に鋭意検討を重ねた結果、芯材の成分をAl−少Mg−高Si−少Mn−高Cu系合金とすることにより、ろう付け前の強度は成形性を阻害しない程度とし、ろう付後、MgSi化合物が時効析出されることで、ろう付後強度を大幅に向上できることを見出し、本発明を完成させるに至ったものである。以下に、具体的に説明する。   Accordingly, the present inventors have conducted extensive studies for the purpose of solving the problems in the prior art as described above and obtaining a clad material for brazing pipe making that satisfies both strength, brazing property and workability. By using an Al-low Mg-high Si-low Mn-high Cu alloy as the component of the material, the strength before brazing is such that the formability is not hindered, and after brazing, the MgSi compound is aged. Thus, the present inventors have found that the strength after brazing can be significantly improved and have completed the present invention. This will be specifically described below.

すなわち、本発明の強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材のうち、第1の本発明は、質量%で、Mgを0.1〜0.3%、Siを0.6〜1.5%、Cuを0.7〜2.5%、Mnを0.05〜0.5%含有し、残部がAlおよび不可避不純物よりなり、さらに前記Si、Mn、Feの組成比が質量%で12Si−(4Mn+3Fe)=6〜15なる条件を満たす芯材の片面に、犠牲材がクラッドされ、さらに前記芯材の他の片面に、Al−Si系ろう材がクラッドされていることを特徴とする。   That is, among the aluminum alloy clad materials for brazing tube heat exchangers excellent in strength and brazing property of the present invention, the first present invention is mass%, Mg is 0.1 to 0.3%, Si is 0.6-1.5%, Cu 0.7-2.5%, Mn 0.05-0.5%, the balance is made of Al and inevitable impurities, and the Si, Mn, Fe A sacrificial material is clad on one side of the core material satisfying the condition that the composition ratio is 12% by mass and 12Si- (4Mn + 3Fe) = 6-15, and an Al-Si brazing material is clad on the other side of the core material. It is characterized by.

第2の本発明の強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材は、前記第1の本発明において、前記芯材に、さらに質量%で0.05〜0.5%のZnを含有することを特徴とする。   The aluminum alloy clad material for heat exchangers for brazing pipe making excellent in strength and brazing property according to the second aspect of the present invention, in the first aspect of the present invention, is further added to the core material by 0.05 to 0.5% by mass. % Zn is contained.

第3の本発明の強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材は、前記第1または第2の本発明において、前記芯材に、さらに質量%で0.05〜0.3%のZr、0.05〜0.3%のTiの内の1種または2種を含有することを特徴とする。   The aluminum alloy clad material for a heat exchanger for brazing pipe making having excellent strength and brazing property according to the third aspect of the present invention is the above core material according to the first or second aspect of the present invention, further comprising 0.05 to It is characterized by containing one or two of 0.3% Zr and 0.05-0.3% Ti.

第4の本発明の熱交換器用アルミニウム合金チューブは、前記第1〜第3の本発明のいずれかに記載のろう付け造管用熱交換器用アルミニウム合金クラッド材の端部が内側に曲げ込まれ、該端部が該アルミニウム合金クラッド材の内面側にろう付けされて管形状とされていることを特徴とする。   An aluminum alloy tube for a heat exchanger according to a fourth aspect of the present invention is such that an end of the aluminum alloy clad material for a heat exchanger for brazing pipes according to any one of the first to third aspects of the present invention is bent inward. The end portion is brazed to the inner surface side of the aluminum alloy clad material to form a tube shape.

本発明のAl合金芯材は、AlにMgとSiを添加したことにより、ろう付処理時の冷却過程におけるMgSi化合物の微細析出による析出硬化、さらにその後の人工時効による時効析出硬化、加えて少量のMn添加によるAl−Mn−Si系化合物による分散強化、さらにCu添加による固溶硬化によって芯材の強度を大幅に向上させている。なお、本願発明としては、ろう付後の時効処理は実施しても良いが、使用時に熱交換器は熱を持つため、使用において自然と時効析出がなされることから、特に時効処理の実施を義務付けない。さらに12Si−(4Mn+3Fe)=6〜15(いずれも質量%)を満たすことにより強度、耐食性の観点から最良の芯材にできることを明らかにし本発明に至ったものである。 The Al alloy core material of the present invention is obtained by adding Mg and Si to Al, thereby precipitating and hardening due to fine precipitation of the Mg 2 Si compound in the cooling process during the brazing treatment, and then aging precipitation and hardening due to artificial aging. In addition, the strength of the core material is greatly improved by dispersion strengthening with an Al—Mn—Si compound by addition of a small amount of Mn and solid solution hardening by addition of Cu. As for the invention of the present application, aging treatment after brazing may be carried out, but since the heat exchanger has heat at the time of use, aging precipitation is naturally made during use. Do not obligate. Furthermore, by satisfying 12Si- (4Mn + 3Fe) = 6 to 15 (both mass%), it was clarified that the best core material can be obtained from the viewpoint of strength and corrosion resistance, and the present invention has been achieved.

以下に本発明における芯材の成分を限定した理由を説明する。なお、以降における成分含有量はいずれも質量%で示されている。   The reason why the components of the core material in the present invention are limited will be described below. In addition, all the component content in the following is shown by the mass%.

(芯材)
Mg:0.1〜0.3%
Mgは、SiとMgSi化合物を形成し、ろう付後の強度、また人工時効後の強度を高める効果がある。その含有量が下限未満ではMgSi化合物の生成量が少なく、所望の強度が得られない。また上限を超えると、Mgはフラックスと高融点のフッ化マグネを生成して、フラックスのAl酸化皮膜の除去作用を阻害し、結果としてろう付性を低下させる。さらに、過剰のMgは材料の耐力を増大させるので、造管時のスプリングバック量が増大し、成形性を低下させる。そのためMg含有量は0.1〜0.3%とする。なお、同様の理由で、下限を0.15%、上限を0.3%とするのが望ましい。
(Core material)
Mg: 0.1 to 0.3%
Mg forms an Si and Mg 2 Si compound, and has the effect of increasing the strength after brazing and the strength after artificial aging. If the content is less than the lower limit, the amount of Mg 2 Si compound produced is small and the desired strength cannot be obtained. When the upper limit is exceeded, Mg generates flux and high melting point magnesium fluoride, which inhibits the action of the flux to remove the Al oxide film, resulting in reduced brazing. Furthermore, excessive Mg increases the yield strength of the material, so that the amount of springback during pipe forming increases and the formability decreases. Therefore, the Mg content is 0.1 to 0.3%. For the same reason, it is desirable that the lower limit is 0.15% and the upper limit is 0.3%.

Si:0.6〜1.5%
Siは、MgとMgSi化合物を形成し、ろう付後の強度、また人工時効後の強度を高める効果がある。その含有量が下限未満では上述の効果が十分に発揮されない。また上限を超えると芯材の溶融開始温度が低下する。そのため添加量は0.6〜1.5%とする。なお、同様の理由で、下限を0.8%、上限を1.2%とするのが望ましい。
Si: 0.6 to 1.5%
Si forms an Mg and Mg 2 Si compound, and has the effect of increasing the strength after brazing and the strength after artificial aging. If the content is less than the lower limit, the above-described effects are not sufficiently exhibited. When the upper limit is exceeded, the melting start temperature of the core material decreases. Therefore, the addition amount is set to 0.6 to 1.5%. For the same reason, it is desirable to set the lower limit to 0.8% and the upper limit to 1.2%.

Cu:0.7〜2.5%
Cuは、固溶強化によりろう付後の強度を高める効果と電位を貴にするため、芯材に添加した場合、犠牲材との電位差を大きくし耐食性を向上させる効果がある。なお本発明の場合、ろう付時の冷却過程においてCu系化合物の析出に先立ちMgSi化合物の析出を生じる。その場合Cu系金属間化合物の析出が促進され、MgSi化合物の周囲に粗大なCu系化合物が析出するためマトリックスの固溶度が低下してしまう。そのため本発明クラッド材の芯材では従来合金よりもCu含有量を増大させる必要がある。その含有量が下限未満ではその効果が少なく、上限を超えると溶融開始温度の低下、また鋳造性が著しく低下する。そのため添加量は0.7〜2.5%とする。より一層好ましくは、下限0.9%、上限2.0%である。
Cu: 0.7 to 2.5%
Cu has the effect of increasing the strength after brazing by solid solution strengthening and making the potential noble, so when added to the core material, it has the effect of increasing the potential difference from the sacrificial material and improving the corrosion resistance. In the case of the present invention, the Mg 2 Si compound is precipitated prior to the precipitation of the Cu-based compound in the cooling process during brazing. In this case, precipitation of the Cu-based intermetallic compound is promoted, and a coarse Cu-based compound is precipitated around the Mg 2 Si compound, so that the solid solubility of the matrix is lowered. Therefore, it is necessary to increase the Cu content in the core material of the clad material of the present invention as compared with the conventional alloy. If the content is less than the lower limit, the effect is small, and if the content exceeds the upper limit, the melting start temperature is lowered and the castability is remarkably lowered. Therefore, the addition amount is set to 0.7 to 2.5%. More preferably, the lower limit is 0.9% and the upper limit is 2.0%.

Mn:0.05〜0.5%
Mnの含有はAl−Mn−Si系化合物を形成し、ろう付後の強度を向上させる効果、および溶融開始温度を上昇させる効果がある。ただし、MnはSiと優先的に結合するため固溶Si量が減少し、MgSi金属間化合物による時効硬化性が低下するので、少量の含有にとどめる。その含有量が下限未満ではその効果が十分発揮されず、上限を超えると上記のように固溶Si量が減少し、時効硬化性が低下する。そのため含有量は0.05〜0.5%とする。なお、同様の理由で、下限を0.2%、上限を0.5%とするのが望ましい。
Mn: 0.05 to 0.5%
Inclusion of Mn has the effect of forming an Al—Mn—Si-based compound, improving the strength after brazing, and increasing the melting start temperature. However, since Mn is preferentially bonded to Si, the amount of dissolved Si is reduced, and the age-hardening property due to the Mg 2 Si intermetallic compound is lowered, so that only a small amount is contained. If the content is less than the lower limit, the effect is not sufficiently exhibited. If the content exceeds the upper limit, the amount of dissolved Si is reduced as described above, and age-hardening is reduced. Therefore, the content is made 0.05 to 0.5%. For the same reason, it is desirable that the lower limit is 0.2% and the upper limit is 0.5%.

Zn:0.05〜0.5%
Znは、MgSi化合物の時効硬化性を高める効果があるので、所望により芯材に含有させる。その含有量が下限未満ではその効果が少なく、上限を超えると溶融開始温度の低下を生じる。なおZnは電位を卑にするため、芯材に添加した場合、犠牲材、また、ろう材との電位差が小さくなり耐食性が低下してしまうが、本発明芯材の組成範囲の場合、その効果が小さくなるためそのような不都合は生じない。そのため添加量は0.05%〜0.5%とする。なお、同様の理由で、下限を0.1%、上限を0.3%とするのが望ましい。
Zn: 0.05-0.5%
Zn has the effect of increasing the age-hardening property of the Mg 2 Si compound, so it is contained in the core material as desired. If the content is less than the lower limit, the effect is small, and if it exceeds the upper limit, the melting start temperature is lowered. In addition, since Zn makes a potential lower, when added to the core material, the potential difference between the sacrificial material and the brazing material is reduced and the corrosion resistance is reduced, but in the case of the composition range of the core material of the present invention, the effect Such inconvenience does not occur because of the decrease of. Therefore, the addition amount is set to 0.05% to 0.5%. For the same reason, it is desirable that the lower limit is 0.1% and the upper limit is 0.3%.

Zr:0.05〜0.3%
Ti:0.05〜0.3%
Zr、Tiは均質化処理時にAlZr系化合物、またはAlTi系化合物を形成し、材料の強度を高める効果があるので、所望により一種または二種を芯材に添加する。その含有量がそれぞれ下限未満ではその効果が少なく、上限を超えると鋳造時に巨大化合物を形成し、成形性が低下する。そのため含有量はそれぞれ0.05%〜0.3%とする。
Zr: 0.05-0.3%
Ti: 0.05-0.3%
Zr and Ti form an Al 3 Zr-based compound or an Al 3 Ti-based compound during the homogenization treatment and have an effect of increasing the strength of the material. Therefore, one or two of Zr and Ti are added to the core as desired. If the content is less than the lower limit, the effect is small. If the content exceeds the upper limit, a giant compound is formed at the time of casting, and the moldability is lowered. Therefore, the content is 0.05% to 0.3%, respectively.

12Si−(4Mn+3Fe)=6〜15
本発明材の強度は主としてMgSi化合物の析出硬化に起因するものである。MgSiの析出硬化は固溶Si量が多いほど優れたものとなる。固溶Si量は同時に添加されたMn、不可避不純物であるFeとAl−Mn−Si−Fe化合物、またAl−Si−Fe化合物を優先的に形成するため、両元素が存在すると固溶Si量は減少する。Al−Mn−Si−Fe化合物におけるMn、Siの構成比はMn:Si=3:1、またAl−Si−Fe化合物におけるFe、Siの構成比はFe:Si=4:1となる。したがって両元素が存在する場合の固溶Si量は固溶Si量=Si添加量−1/3Mn添加量−1/4Fe添加量(いずれも質量%)となる。その組成範囲が下限未満ではその効果が少なく、上限を超えると耐食性が低下してしまう。そのため上記組成範囲は12Si−(4Mn+3Fe)=6〜15とする。より一層好ましくは、上記組成範囲12Si−(4Mn+3Fe)の下限が9、上限が15である。
12Si- (4Mn + 3Fe) = 6-15
The strength of the material of the present invention is mainly due to precipitation hardening of the Mg 2 Si compound. The precipitation hardening of Mg 2 Si becomes better as the amount of dissolved Si increases. The amount of solid solution Si preferentially forms Mn added at the same time, Fe, which is an inevitable impurity, and Al—Mn—Si—Fe compound, and Al—Si—Fe compound. Decrease. The composition ratio of Mn and Si in the Al—Mn—Si—Fe compound is Mn: Si = 3: 1, and the composition ratio of Fe and Si in the Al—Si—Fe compound is Fe: Si = 4: 1. Therefore, when both elements are present, the amount of solute Si is solute Si amount = Si addition amount-1 / 3 Mn addition amount-1 / 4 Fe addition amount (both mass%). If the composition range is less than the lower limit, the effect is small, and if it exceeds the upper limit, the corrosion resistance decreases. Therefore, the composition range is set to 12Si- (4Mn + 3Fe) = 6-15. More preferably, the lower limit of the composition range 12Si- (4Mn + 3Fe) is 9 and the upper limit is 15.

なお、本発明では、芯材の片面に設けられる犠牲材の組成は特定のものに限定されないが、Al−(Zn)−Si系犠牲材を芯材の片面に設けた場合、芯材から犠牲材へのMg拡散によって犠牲材に添加されたSiとMgSi化合物を形成し犠牲材の強度が向上することによって芯材と犠牲材の強度差が小さくなるとともに、芯材から犠牲材へのMg拡散、また犠牲材から芯材へのSi拡散により芯材/犠牲材界面近傍に多量のMgSi化合物が形成されることによって界面強度が向上し、双方の効果によって熱間加工性が良好になる。これは、本発明の芯材中に添加された多量のCuが芯材マトリックスの結晶格子を歪ませることにより、犠牲材から芯材へのSiの拡散が容易になるためである。
さらに本発明では、犠牲材に添加したSiと芯材に添加したMgがMgSi化合物を形成するため芯材から犠牲材表面へのMg拡散が抑制され、ろう付性が著しく良好になる。
In the present invention, the composition of the sacrificial material provided on one side of the core material is not limited to a specific one, but when an Al- (Zn) -Si-based sacrificial material is provided on one side of the core material, the sacrificial material is sacrificed from the core material. The strength difference between the core material and the sacrificial material is reduced by forming the Si and Mg 2 Si compound added to the sacrificial material by Mg diffusion into the material and improving the strength of the sacrificial material. Interfacial strength is improved by forming a large amount of Mg 2 Si compound near the core / sacrificial material interface due to Mg diffusion and Si diffusion from the sacrificial material to the core material, and good hot workability due to both effects become. This is because a large amount of Cu added to the core material of the present invention distorts the crystal lattice of the core material matrix, thereby facilitating the diffusion of Si from the sacrificial material to the core material.
Furthermore, in the present invention, since Si added to the sacrificial material and Mg added to the core material form an Mg 2 Si compound, Mg diffusion from the core material to the surface of the sacrificial material is suppressed, and the brazing property is remarkably improved.

また、芯材にMgが添加されたチューブ材の場合、芯材の片面に組み合わされたろう材から、芯材へSiが拡散しMgSi化合物を形成し強度が向上するため、芯材中ではろう材側に強度のピークを有する勾配が形成される。Al−Zn系犠牲材と組み合わせた場合には、ろう材、芯材界面近傍での芯材強度のみが高くなるため芯材の強度バランスが悪く成形性が悪くなる等の影響が出る場合がある。しかし本発明では、前述のごとく犠牲材からのSi拡散により犠牲材/芯材界面から芯材へかけて同界面同部をピークとした強度の勾配が形成される。そのため芯材中では強度の勾配が無くなるとともに芯材全体としての強度が向上する結果、成形性が良好となり、高強度化することができる。 Also, in the case of a tube material in which Mg is added to the core material, Si diffuses from the brazing material combined on one side of the core material to the core material to form an Mg 2 Si compound, thereby improving the strength. A gradient having an intensity peak is formed on the brazing filler metal side. When combined with an Al—Zn-based sacrificial material, only the strength of the core material near the interface between the brazing material and the core material is increased, so that the strength balance of the core material may be poor and the moldability may be adversely affected. . However, in the present invention, as described above, due to Si diffusion from the sacrificial material, a strength gradient is formed with a peak at the same part of the interface from the sacrificial material / core material interface to the core material. Therefore, the strength gradient in the core material is eliminated and the strength of the entire core material is improved. As a result, the moldability is improved and the strength can be increased.

以下に、本発明で芯材の片面に設ける犠牲材として好適な組成例を示す。
すなわち、Si:0.2〜1.6%、Mn:0.2〜1.0%、Mg:0.05%以下、Zn:2.5〜5.0%、Ti:0.05〜0.3%を含有し、所望によりZr:0.05〜0.3%、Cr:0.05〜0.3%の1種または2種を含有し、残部がAlと不可避不純物からなるアルミニウム合金を例示する。
Below, the composition example suitable as a sacrificial material provided in the single side | surface of a core material by this invention is shown.
That is, Si: 0.2-1.6%, Mn: 0.2-1.0%, Mg: 0.05% or less, Zn: 2.5-5.0%, Ti: 0.05-0 .3%, optionally containing one or two of Zr: 0.05 to 0.3%, Cr: 0.05 to 0.3%, the balance being Al and inevitable impurities Is illustrated.

以上説明したように、本発明によれば、質量%で、Mgを0.1〜0.3%、Siを0.6〜1.5%、Cuを0.7〜2.5%、Mnを0.05〜0.5%含有し、所望により0.05〜0.5%のZnを含有し、さらに所望により0.05〜0.3%のZr、0.05〜0.3%のTiの内の1種または2種を含有し、残部がAlおよび不可避不純物よりなり、さらに前記Si、Mn、Feの組成比が質量%で12Si−(4Mn+3Fe)=6〜15なる条件を満たす芯材の片面に、犠牲材がクラッドされ、さらに前記芯材の他の片面に、Al−Si系ろう材がクラッドされているので、従来発明品と比較し、1.さらなる高強度化が図れる、2.製造が容易、3.ろう付性の向上が図れる、4.成形性が良好であるといった高価値を付与することが可能となり、より一層の高特性を有する熱交換器用チューブとすることができる。   As described above, according to the present invention, by mass, Mg is 0.1 to 0.3%, Si is 0.6 to 1.5%, Cu is 0.7 to 2.5%, Mn 0.05-0.5%, optionally 0.05-0.5% Zn, and optionally 0.05-0.3% Zr, 0.05-0.3% 1 or 2 of Ti, the balance is made of Al and inevitable impurities, and the composition ratio of Si, Mn, and Fe is 12%-(4Mn + 3Fe) = 6 to 15 in terms of mass%. A sacrificial material is clad on one side of the core material, and an Al-Si brazing material is clad on the other side surface of the core material. 1. Further increase in strength can be achieved. 2. easy to manufacture; 3. Improve brazability. A high value such as good moldability can be imparted, and a tube for a heat exchanger having even higher characteristics can be obtained.

本発明のアルミニウム合金クラッド材は、芯材、犠牲陽極材およびろう材を構成するアルミニウム合金を、通常は、半連続鋳造により造塊し、均質化処理した後、それぞれ所定厚さまで熱間圧延する。なお、連続鋳造圧延によってそれぞれの板材を得ることも可能である。上記芯材、犠牲陽極材としては、前記した組成に調製したアルミニウム合金が用いられる。また、ろう材の組成も本発明としては特定のものに限定をされるものではないが、一般にろう材として用いられているAl−Si系合金を用いることができる。   In the aluminum alloy clad material of the present invention, the aluminum alloy constituting the core material, the sacrificial anode material and the brazing material is usually ingoted by semi-continuous casting, homogenized, and then hot-rolled to a predetermined thickness. . Each plate material can be obtained by continuous casting and rolling. As the core material and sacrificial anode material, an aluminum alloy having the above-described composition is used. Also, the composition of the brazing material is not limited to a specific one in the present invention, but an Al—Si based alloy generally used as a brazing material can be used.

これらの材料は、その後、芯材、犠牲陽極材およびろう材の各材料を組み合わせ、熱間圧延によりクラッド材とし、最終的に所定厚さまで冷間圧延する工程を経て作製される。
クラッド材の製造工程においてMgSi化合物やAl−Mn−Si系化合物が生成するが、この析出物のサイズや分布は主に製造時の熱処理条件によって決まるため、所望の物性を得るための晶析出状態とするには下記の製造方法が好適である。
These materials are manufactured through a process of combining the core material, the sacrificial anode material, and the brazing material, forming a clad material by hot rolling, and finally cold rolling to a predetermined thickness.
Mg 2 Si compounds and Al—Mn—Si compounds are produced in the production process of the clad material, but the size and distribution of these precipitates are mainly determined by the heat treatment conditions during production, so that crystals for obtaining desired physical properties are obtained. The following production method is suitable for the precipitation state.

芯材の前記均質化処理は350〜550℃、さらに好ましくは400〜500℃の温度で、2時間以上保持することが望ましい。   The homogenization treatment of the core material is desirably held at a temperature of 350 to 550 ° C, more preferably 400 to 500 ° C for 2 hours or more.

また、ろう付熱処理時にも析出物の分布状態は変化するが、ろう付熱処理(590〜600℃に昇温後、100℃/分以下の冷却速度で冷却)を行えば、ろう付の冷却時やその後、熱交換器として使用される間に時効硬化が起こり、強度を高めることができる。好適には、室温から最高到達温度までの平均昇温速度を80℃/分以上とすることが望ましい。   Also, the distribution of precipitates changes during brazing heat treatment, but if brazing heat treatment (heated to 590 to 600 ° C. and then cooled at a cooling rate of 100 ° C./min or less) is performed, during brazing cooling And after that, age hardening occurs during use as a heat exchanger, and the strength can be increased. Preferably, the average rate of temperature rise from room temperature to the highest temperature is 80 ° C./min or higher.

上記で得られたクラッド材1は、図1(a)に示すように、芯材2の片面にアルミニウム合金ろう材3がクラッドされ、芯材2の他面に犠牲陽極材4がクラッドされている。このアルミニウム合金クラッド材1は、犠牲陽極材4が管内面となるように曲げ成形されて管状にされる(造管される)。図1に示す形態では、図1(b)に示すように内面中央部にそれぞれアルミニウム合金クラッド材1の両端側を密着させるようにして、内柱部1aを形成し、その両側に冷媒経路5、5を確保する。また、管の外面側に位置するアルミニウム合金ろう材3には、図示しないフィンなどを密着させて、ろう付け加熱を行う。なお、ろう付けにおける加熱条件や雰囲気、フラックスの種別などについては本発明としては特に限定をされるものではない。該ろう付けに際し、犠牲陽極材4は、ろうとの良好な濡れ性を示し、管内面とアルミニウム合金クラッド材1の端部とが、フィレット6、6の形成によって良好に接合される。   The clad material 1 obtained above has an aluminum alloy brazing material 3 clad on one surface of the core material 2 and a sacrificial anode material 4 clad on the other surface of the core material 2 as shown in FIG. Yes. This aluminum alloy clad material 1 is bent and formed into a tubular shape (made into a tube) so that the sacrificial anode material 4 becomes the inner surface of the tube. In the form shown in FIG. 1, as shown in FIG. 1 (b), both end sides of the aluminum alloy clad material 1 are in close contact with the center portion of the inner surface to form the inner pillar portion 1 a, and the refrigerant path 5 is formed on both sides thereof. 5 is secured. Further, the aluminum alloy brazing material 3 located on the outer surface side of the pipe is brought into close contact with a fin or the like (not shown) to perform brazing heating. The heating conditions, atmosphere, and flux type in brazing are not particularly limited as the present invention. At the time of brazing, the sacrificial anode material 4 exhibits good wettability with the brazing, and the inner surface of the tube and the end of the aluminum alloy clad material 1 are well bonded by the formation of the fillets 6 and 6.

表1に示す化学成分(残部Alおよび不可避不純物)を有する芯材用アルミニウム合金と、表2に示す化学成分(残部Alおよび不可避不純物)を有する犠牲材用アルミニウム合金(JIS7072合金相当)と、ろう材用合金(JIS4045合金相当:Al− 10.5%Si、残部Alおよび不可避不純物)とをそれぞれ半連続鋳造により鋳造した。なお、ろう材には、JIS4343合金やMg、Cu、Li等を含有するAl−Si合金を用いることもできる。   An aluminum alloy for a core material having the chemical components (remaining Al and inevitable impurities) shown in Table 1, and an aluminum alloy for a sacrificial material (corresponding to JIS7072 alloy) having the chemical components (remaining Al and inevitable impurities) shown in Table 2; Alloys for materials (equivalent to JIS 4045 alloy: Al-10.5% Si, the balance Al and inevitable impurities) were each cast by semi-continuous casting. As the brazing material, a JIS 4343 alloy or an Al—Si alloy containing Mg, Cu, Li or the like can be used.

上記芯材用アルミニウム合金を用いて、均質化処理、熱間圧延、冷間圧延、中間焼鈍を行い、最終冷間圧延により厚さ0.20mmのH14調質の芯材試験用板材を得た。
また、均質化処理された前記芯材用合金の鋳塊の片面に、均質化処理された犠牲材用合金鋳塊を、さらに片面にろう材用合金鋳塊を表3のように組み合わせて熱間圧延し、クラッド材とした。さらに冷間圧延、中間焼鈍を行い、最終冷間圧延により厚さ0.20mmのH14調質のクラッド材を作製した。クラッド材の厚さ構成は、犠牲材:芯材:ろう材=20:65:15とした。
Using the above-mentioned aluminum alloy for core material, homogenization treatment, hot rolling, cold rolling, and intermediate annealing were performed, and an H14 tempered core material testing plate material having a thickness of 0.20 mm was obtained by final cold rolling. .
Further, as shown in Table 3, the homogenized alloy ingot for sacrificial material is combined on one side of the ingot for core material and the alloy ingot for brazing material is combined on one side as shown in Table 3. Hot rolled to obtain a clad material. Further, cold rolling and intermediate annealing were performed, and an H14 tempered clad material having a thickness of 0.20 mm was produced by final cold rolling. The thickness configuration of the clad material was sacrificial material: core material: brazing material = 20: 65: 15.

Figure 2009149936
Figure 2009149936

Figure 2009149936
Figure 2009149936

(芯材の評価項目)
[ろう付後強度]
作製した前記芯材試験用板材を高純度窒素ガス雰囲気中で平均昇温速度100℃/分で加熱し、595℃到達後に300℃まで平均降温速度100℃/分で冷却、その後ファン空冷により室温まで下げる、ろう付相当熱処理を施したのち、80℃で15日間の時効処理を施した。その後、圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施し、引張強さを測定した。その測定結果を表1に示した。該強度については、230MPa以上を◎、220〜230MPaを○、180〜220MPaを△、180MPa以下を×と評価し、該評価を合わせて表1に示した。
(Evaluation items for core material)
[Strength after brazing]
The prepared core material test plate is heated in a high-purity nitrogen gas atmosphere at an average temperature increase rate of 100 ° C./min. After reaching 595 ° C., it is cooled to 300 ° C. at an average temperature decrease rate of 100 ° C./min. After performing heat treatment equivalent to brazing, aging treatment was carried out at 80 ° C. for 15 days. Then, the sample was cut out in parallel with the rolling direction, the JIS13B test piece was produced, the tensile test was implemented, and the tensile strength was measured. The measurement results are shown in Table 1. With respect to the strength, 230 MPa or more was evaluated as 220, 220 to 230 MPa as ◯, 180 to 220 MPa as Δ, and 180 MPa or less as ×, and the evaluations are shown in Table 1.

[成形性]
ろう付前素材をB型チューブの内柱部加工を想定した90°曲げ加工を行い、成形後の形状、および同部のスプリングバック量を測定した。
測定の結果、形状良好でスプリングバック量小のものを○、形状良好でスプリングバック量中のものを△、形状不良か、スプリングバック量大のものを×と評価し、該評価を表1に示した
上記成形性の評価では、ろう付前強度が高く、Mgが上限を超えた場合またはFe量が多い場合、△または×となった。
[Formability]
The material before brazing was subjected to 90 ° bending processing assuming the inner column portion processing of the B-type tube, and the shape after molding and the amount of spring back at the same portion were measured.
As a result of the measurement, a shape having a good shape and a small springback amount was evaluated as ◯, a shape having a good shape and being in the springback amount was evaluated as △, and a shape having a poor shape or a large amount of springback was evaluated as ×. In the above-described evaluation of formability, the strength before brazing was high, and when Mg exceeded the upper limit or when the amount of Fe was large, Δ or ×.

[耐食性]
ろう付相当熱処理を実施したサンプルから30mm×80mmの腐食試験片を切り出し、ASTM規格に準拠したSWAATを2日実施した。その後、腐食部の断面観察を実施し、粒界腐食の有無を観察した。
観察の結果、粒界腐食感受性なしのものを○、若干の感受性ありのものを△、感受性が高いものを×と評価し、該評価を表1に示した。
[Corrosion resistance]
A 30 mm × 80 mm corrosion test piece was cut out from the sample subjected to the brazing equivalent heat treatment, and SWAAT based on the ASTM standard was performed for 2 days. Then, the cross-section observation of the corrosion part was implemented and the presence or absence of intergranular corrosion was observed.
As a result of the observation, those having no intergranular corrosion sensitivity were evaluated as ◯, those having slight sensitivity as Δ, and those having high sensitivity as ×, and the evaluation is shown in Table 1.

[融点]
芯材試験用板材について、DTA(示差熱分析:Differential Thermal Analysis)により固相線温度を測定した。なお昇温速度は5℃/minとした。その測定結果を表1に示した。また、ろう付時最高到達温度を585〜595℃と想定し、上記固相線温度に基づいてろう付時における芯材の溶融の有無を評価した。該評価では、融点が595℃以上を○、同じく590〜595℃を△、590℃以下を×とし、該評価を表1に合わせて示した。
[Melting point]
About the board | plate material for a core material test, solidus line temperature was measured by DTA (Differential Thermal Analysis). The temperature rising rate was 5 ° C./min. The measurement results are shown in Table 1. In addition, assuming that the maximum reached temperature during brazing was 585 to 595 ° C., the presence or absence of melting of the core material during brazing was evaluated based on the solidus temperature. In this evaluation, the melting point of 595 ° C. or higher was evaluated as “◯”, 590-595 ° C. as Δ, and 590 ° C. or lower as “X”.

[製造性]
鋳造、熱間圧延、冷間圧延の各工程において、不具合の有無を評価した。
(鋳造:鋳造割れ、巨大晶出物の有無、熱間圧延:割れ、剥離、サイドクラック、冷間圧延:サイドクラック)
上記では、鋳造割れなしで、巨大金属間化合物の生成がないものを○、軽微な鋳造割れか、若干の巨大金属間化合物の生成があるものを△、重度の鋳造割れありか、多量の金属間化合物の生成があるものを×と評価し、該評価を表1に示した。
[Manufacturability]
In each process of casting, hot rolling, and cold rolling, the presence or absence of defects was evaluated.
(Casting: casting cracks, presence or absence of giant crystals, hot rolling: cracking, peeling, side cracks, cold rolling: side cracks)
In the above, no casting crack and no formation of giant intermetallic compound ○, minor casting crack or slight production of giant intermetallic compound △, severe casting crack, or large amount of metal Those having intermetallic compound formation were evaluated as x, and the evaluation is shown in Table 1.

A〜Jに示した芯材試験用板材は本発明の芯材組成を満たすものであり、いずれの特性も良好であり、総合評価として○、または◎とした。C〜Jの芯材試験用板材では、12Si−(4Mn+3Fe)が9〜15であるため、特に強度が優れたものになった。
Kの芯材試験用板材は、Si、Cuが本発明の上限を超えたため、融点が低下するとともに、製造性に難があった。総合評価は×とした。
Lの芯材試験用板材は、Mgが本発明の上限を超えたため、ろう付性が低下した。総合評価は△とした。
Mの芯材試験用板材は、Siが本発明の下限未満のため、強度が不足した。総合評価は△とした。
Nの芯材試験用板材は、12Si−(4Mn+3Fe)が本発明の上限を超えたため、耐食性が低下した。総合評価は△とした。
Oの芯材試験用板材は、12Si−(4Mn+3Fe)が本発明の下限未満のため強度が不足した。総合評価は△とした。
The core material test plate materials shown in A to J satisfy the core material composition of the present invention, all the properties are good, and are evaluated as ◯ or ◎ for comprehensive evaluation. In the C-J core material test plate, 12Si- (4Mn + 3Fe) was 9-15, so that the strength was particularly excellent.
In the K core material test plate, since Si and Cu exceeded the upper limit of the present invention, the melting point was lowered and the productivity was difficult. The overall evaluation was x.
Since the core material test plate of L exceeded the upper limit of the present invention, the brazing property decreased. The overall evaluation is △.
The M core material test plate was insufficient in strength because Si was less than the lower limit of the present invention. The overall evaluation is △.
Since the core material test plate of N had 12Si- (4Mn + 3Fe) exceeding the upper limit of the present invention, the corrosion resistance was lowered. The overall evaluation is △.
The O core material test plate had insufficient strength because 12Si- (4Mn + 3Fe) was less than the lower limit of the present invention. The overall evaluation is △.

(クラッド材の評価項目)
[強度]
前記により作製したクラッド材を高純度窒素ガス雰囲気中で平均昇温速度100℃/分で加熱し、595℃到達後に300℃まで平均降温速度100℃/分で冷却、その後ファン空冷により室温まで下げる、ろう付相当熱処理を施した後、80℃×15日の時効処理を施した。その後、圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施し、引張強さを測定した。その結果を表3に示した。該強度については、230MPa以上を◎、210〜230MPaを○、200〜210MPaを△:、200MPa以下を×と評価し、合わせて該評価を表3に示した。
(Evaluation items for clad materials)
[Strength]
The clad material produced as described above is heated at an average temperature increase rate of 100 ° C./min in a high-purity nitrogen gas atmosphere. After reaching 595 ° C., the clad material is cooled to 300 ° C. at an average temperature decrease rate of 100 ° C./min. After heat treatment corresponding to brazing, an aging treatment was performed at 80 ° C. for 15 days. Then, the sample was cut out in parallel with the rolling direction, the JIS13B test piece was produced, the tensile test was implemented, and the tensile strength was measured. The results are shown in Table 3. With respect to the strength, 230 MPa or more was evaluated as ◎, 210-230 MPa as ◯, 200-210 MPa as Δ :, and 200 MPa or less as ×, and the evaluation is shown in Table 3.

[ろう付性]
図2に示すようにクラッド材を座板、および垂直材として、座板にしたクラッド材の犠牲材側が垂直材と接触するようにして逆T字試験を行い、接合部の断面観察を実施した。なおフラックスは座板にのみ約4g/m塗布してろう付した。該ろう付けにおいて、健全に接合されたものを○、接合できるが空隙あるものを△、接合不可のものを×と評価し、該評価を表3に示した。
[Brassability]
As shown in FIG. 2, a clad material was used as a seat plate and a vertical material, and a reverse T-shaped test was performed so that the sacrificial material side of the clad material used as the seat plate was in contact with the vertical material, and a cross-section of the joint was observed. . The flux was brazed by applying about 4 g / m 2 only to the seat plate. In this brazing, the soundly joined ones were evaluated as “◯”, those that could be joined but having voids were evaluated as “Δ”, and those that could not be joined were evaluated as “X”.

[成形性]
上記クラッド材を犠牲材が内側となるようにして、B型チューブの内柱部加工を想定した90°曲げ加工し、成形後の形状、および同部のスプリングバック量を測定した。
測定の結果、形状良好でスプリングバック量小のものを○、形状良好でスプリングバック量中のものを△、形状不良か、スプリングバック量大のものを×と評価し、該評価を表3に示した。
[Formability]
The clad material was bent at 90 ° assuming that the sacrificial material was inside, and the inner column portion of the B-type tube was processed, and the shape after molding and the amount of spring back at the same portion were measured.
As a result of the measurement, a shape having a good shape and a small amount of springback was evaluated as ◯, a shape having a good shape and being in the amount of springback was evaluated as △, and a shape having a poor shape or a large amount of springback was evaluated as ×. Indicated.

[耐食性]
ろう付熱処理後の上記クラッド材のサンプルから30×40mmのサンプルを切り出し、犠牲材側について、Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8hr→室温×16hrのサイクルで浸漬試験を8週間実施し、最大腐食部の断面観察を実施した。その結果、腐食が犠牲材層内で停止したものを○、犠牲材層以上〜腐食深さが板厚の半分のものを△、腐食深さが板厚の半分以上のものを×と評価し、該評価を表3に示した。
[Corrosion resistance]
A 30 × 40 mm sample was cut out from the clad material sample after brazing heat treatment, and the sacrificial material side was in an aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm. The immersion test was conducted for 8 weeks in a cycle of 80 ° C. × 8 hr → room temperature × 16 hr, and the cross section of the maximum corrosion portion was observed. As a result, the case where corrosion stopped in the sacrificial material layer was evaluated as ○, the sacrificial material layer or more to the corrosion depth of half the plate thickness was evaluated as △, and the corrosion depth was evaluated as half the plate thickness as ×. The evaluation is shown in Table 3.

上記各評価の結果、クラッド材に関する試料No.8では犠牲材がNo.cであるため、試料No.1よりも強度が増大していた(強度○→◎)。試料No.9では犠牲材がNo.cであるため、試料No.2よりも強度が増大していた(強度○→◎)。
犠牲材は表2に示すように、Al−Zn系、Al−Zn−Mn−Fe系、およびAl−Zn−Si−(Mn、Fe)系の3種類とした。本発明芯材はいずれの犠牲材と組み合わせても良好な特性が得られるが、Al−Zn−Si−(Mn、Fe)系のと組み合わせた場合、さらなる強度向上が望めた。
As a result of each of the above evaluations, the sample no. In No. 8, the sacrificial material was No. c, sample no. The strength was higher than 1 (strength ○ → ◎). Sample No. In No. 9, the sacrificial material was No. c, sample no. The strength was higher than 2 (strength ○ → ◎).
As shown in Table 2, three types of sacrificial materials were used: Al—Zn, Al—Zn—Mn—Fe, and Al—Zn—Si— (Mn, Fe). The core material of the present invention can provide good characteristics when combined with any sacrificial material, but when combined with an Al-Zn-Si- (Mn, Fe) -based material, further improvement in strength can be expected.

Figure 2009149936
Figure 2009149936

本発明の一実施形態のアルミニウム合金クラッド材を用いた管の製造フローを示す図である。It is a figure which shows the manufacture flow of the pipe | tube using the aluminum alloy clad material of one Embodiment of this invention. 同じく、実施例におけるクラッド材のろう付け性の試験方法を説明する図である。Similarly, it is a figure explaining the test method of the brazing property of the clad material in an Example.

符号の説明Explanation of symbols

1 アルミニウム合金クラッド材
2 芯材
3 アルミニウム合金ろう材
4 犠牲陽極材
DESCRIPTION OF SYMBOLS 1 Aluminum alloy clad material 2 Core material 3 Aluminum alloy brazing material 4 Sacrificial anode material

Claims (4)

質量%で、Mgを0.1〜0.3%、Siを0.6〜1.5%、Cuを0.7〜2.5%、Mnを0.05〜0.5%含有し、残部がAlおよび不可避不純物よりなり、さらに前記Si、Mn、Feの組成比が質量%で12Si−(4Mn+3Fe)=6〜15なる条件を満たす芯材の片面に、犠牲材がクラッドされ、さらに前記芯材の他の片面に、Al−Si系ろう材がクラッドされていることを特徴とする強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材。   In mass%, Mg is 0.1 to 0.3%, Si is 0.6 to 1.5%, Cu is 0.7 to 2.5%, Mn is 0.05 to 0.5%, The balance is made of Al and inevitable impurities, and the sacrificial material is clad on one side of the core material satisfying the condition that the composition ratio of Si, Mn, Fe is 12 Si- (4Mn + 3Fe) = 6-15 in terms of mass%, An aluminum alloy clad material for heat exchangers for brazing pipes, which is excellent in strength and brazing properties, characterized in that an Al-Si brazing material is clad on the other surface of the core material. 前記芯材に、さらに質量%で0.05〜0.5%のZnを含有することを特徴とする、請求項1記載の強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材。   The aluminum alloy clad for heat exchangers for brazing pipes according to claim 1, wherein said core material further contains 0.05 to 0.5% Zn by mass%. Wood. 前記芯材に、さらに質量%で0.05〜0.3%のZr、0.05〜0.3%のTiの内の1種または2種を含有することを特徴とする、請求項1または2に記載の強度、ろう付性に優れたろう付け造管用熱交換器用アルミニウム合金クラッド材。   The core material further comprises one or two of 0.05 to 0.3% Zr and 0.05 to 0.3% Ti in mass%. Or the aluminum alloy clad material for heat exchangers for brazing pipe making excellent in the strength and brazing property described in 2. 請求項1〜3のいずれかに記載のアルミニウム合金クラッド材の端部が内側に曲げ込まれて、該端部が該アルミニウム合金クラッド材の内面側にろう付けされて管形状とされていることを特徴とする熱交換器用アルミニウム合金チューブ。   The end portion of the aluminum alloy clad material according to any one of claims 1 to 3 is bent inward, and the end portion is brazed to the inner surface side of the aluminum alloy clad material to form a tube shape. An aluminum alloy tube for heat exchangers.
JP2007328197A 2007-12-20 2007-12-20 Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger Pending JP2009149936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328197A JP2009149936A (en) 2007-12-20 2007-12-20 Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328197A JP2009149936A (en) 2007-12-20 2007-12-20 Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger

Publications (1)

Publication Number Publication Date
JP2009149936A true JP2009149936A (en) 2009-07-09

Family

ID=40919395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328197A Pending JP2009149936A (en) 2007-12-20 2007-12-20 Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger

Country Status (1)

Country Link
JP (1) JP2009149936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177655A (en) * 2012-02-28 2013-09-09 Mitsubishi Alum Co Ltd Aluminum alloy tube material for heat exchanger
CN104334755A (en) * 2012-05-28 2015-02-04 杰富意钢铁株式会社 Device for removing and method for removing powder adhering to raw material for manufactured steel
CN106715734A (en) * 2014-09-30 2017-05-24 株式会社神户制钢所 Aluminum alloy brazing sheet
US20200033073A1 (en) * 2018-07-25 2020-01-30 Mahle International Gmbh Heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790452A (en) * 1993-09-06 1995-04-04 Furukawa Electric Co Ltd:The Production of aluminum alloy for heat exchanger, aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH0790445A (en) * 1993-08-03 1995-04-04 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet for heat exchanger and manufacture of aluminum alloy-made heat exchanger
JPH0797651A (en) * 1993-08-10 1995-04-11 Furukawa Electric Co Ltd:The Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH07179971A (en) * 1993-12-22 1995-07-18 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet bar for resistance welding
JP2005307251A (en) * 2004-04-20 2005-11-04 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automobile heat exchanger
JP2006037136A (en) * 2004-07-23 2006-02-09 Denso Corp Highly corrosion resistant aluminum clad material for heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790445A (en) * 1993-08-03 1995-04-04 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet for heat exchanger and manufacture of aluminum alloy-made heat exchanger
JPH0797651A (en) * 1993-08-10 1995-04-11 Furukawa Electric Co Ltd:The Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH0790452A (en) * 1993-09-06 1995-04-04 Furukawa Electric Co Ltd:The Production of aluminum alloy for heat exchanger, aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH07179971A (en) * 1993-12-22 1995-07-18 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet bar for resistance welding
JP2005307251A (en) * 2004-04-20 2005-11-04 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for automobile heat exchanger
JP2006037136A (en) * 2004-07-23 2006-02-09 Denso Corp Highly corrosion resistant aluminum clad material for heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177655A (en) * 2012-02-28 2013-09-09 Mitsubishi Alum Co Ltd Aluminum alloy tube material for heat exchanger
CN104334755A (en) * 2012-05-28 2015-02-04 杰富意钢铁株式会社 Device for removing and method for removing powder adhering to raw material for manufactured steel
CN106715734A (en) * 2014-09-30 2017-05-24 株式会社神户制钢所 Aluminum alloy brazing sheet
CN106715734B (en) * 2014-09-30 2018-12-07 株式会社神户制钢所 Aluminum alloy brazing sheet
US20200033073A1 (en) * 2018-07-25 2020-01-30 Mahle International Gmbh Heat exchanger

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6492017B2 (en) Aluminum alloy material and manufacturing method thereof, and aluminum alloy clad material and manufacturing method thereof
US20190323788A1 (en) Method for producing aluminum alloy clad material
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6106748B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP5188115B2 (en) High strength aluminum alloy brazing sheet
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6047304B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2005232506A (en) Aluminum alloy clad material for heat exchanger
JP4993439B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP6934368B2 (en) Brazing sheet for heat exchanger fins and its manufacturing method
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP5396042B2 (en) Aluminum alloy brazing sheet with excellent brazeability
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP6351205B2 (en) High corrosion resistance aluminum alloy brazing sheet
JP2011012327A (en) Brazing sheet having excellent brazability, and method for producing the brazing sheet
JP2009155679A (en) Aluminum alloy cladding material
JP2008308724A (en) Method for producing aluminum alloy brazing filler metal and aluminum alloy brazing sheet
JP2017172025A (en) Aluminum alloy clad material for heat exchanger
JP5306836B2 (en) Aluminum alloy brazing sheet with excellent strength and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121219

Free format text: JAPANESE INTERMEDIATE CODE: A02