JP5552181B2 - Aluminum alloy clad material - Google Patents

Aluminum alloy clad material Download PDF

Info

Publication number
JP5552181B2
JP5552181B2 JP2013105788A JP2013105788A JP5552181B2 JP 5552181 B2 JP5552181 B2 JP 5552181B2 JP 2013105788 A JP2013105788 A JP 2013105788A JP 2013105788 A JP2013105788 A JP 2013105788A JP 5552181 B2 JP5552181 B2 JP 5552181B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
sacrificial anode
corrosion
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013105788A
Other languages
Japanese (ja)
Other versions
JP2013209752A (en
Inventor
明彦 巽
真司 阪下
誠司 吉田
申平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013105788A priority Critical patent/JP5552181B2/en
Publication of JP2013209752A publication Critical patent/JP2013209752A/en
Application granted granted Critical
Publication of JP5552181B2 publication Critical patent/JP5552181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、自動車用の熱交換器等に使用されるブレージングシートとするアルミニウム合金クラッド材に関する。   The present invention relates to an aluminum alloy clad material used as a brazing sheet used in a heat exchanger or the like for automobiles.

自動車に搭載されるラジエータ、コンデンサー、エバポレーター等の熱交換器は、軽量で熱伝導性に優れるアルミニウム合金の板材を成形、組み立て、ろう付けして製造されることが多い。このようなアルミニウム合金板は、例えばラジエータ等のチューブとした場合、外面は大気に曝され、内面は冷却水等の冷媒に曝される。これらの腐食環境に曝されると、局所的に腐食(孔食)が進行して、貫通孔形成に至る虞がある。チューブ外面の防食対策としては、チューブを形成するアルミニウム合金よりも電位の卑なAl−Zn合金等で形成したフィン材を接触させる、いわゆる陰極防食法(電気防食法)が一般的であり、効果的であることが知られている。チューブ内面の防食対策としても陰極防食法が適用される場合が多く、具体的には、基材(心材)のアルミニウム合金に対して電位の卑なAl−Zn系合金を犠牲陽極材として内面側に積層したクラッド材でチューブを形成することが一般的である。また、外面側にはフィン材等とのろう付けのため、Al−Si系合金からなるろう材がクラッドされた3層以上のクラッド材(ブレージングシート)とされることも多い。一方、機器の軽量化の観点から、クラッド材の板厚は0.3mm以下程度に薄肉化が要求されている。   Heat exchangers such as radiators, condensers, and evaporators mounted on automobiles are often manufactured by molding, assembling, and brazing aluminum alloy plates that are lightweight and have excellent thermal conductivity. When such an aluminum alloy plate is a tube such as a radiator, for example, the outer surface is exposed to the atmosphere, and the inner surface is exposed to a coolant such as cooling water. When exposed to these corrosive environments, corrosion (pitting corrosion) proceeds locally, which may lead to formation of through holes. As an anti-corrosion measure on the outer surface of the tube, the so-called cathodic anti-corrosion method (cathodic anti-corrosion method), in which a fin material made of an Al-Zn alloy having a lower potential than the aluminum alloy forming the tube is brought into contact, is effective. Is known to be. In many cases, the cathodic protection method is also applied as an anticorrosion measure for the inner surface of the tube. Specifically, the inner surface side is made of an Al-Zn alloy having a potential lower than that of the aluminum alloy of the base material (core material) as a sacrificial anode material. It is common to form a tube with a clad material laminated on. Further, in order to braze with a fin material or the like on the outer surface side, a clad material (brazing sheet) having three or more layers clad with a brazing material made of an Al-Si alloy is often used. On the other hand, from the viewpoint of reducing the weight of the device, the thickness of the clad material is required to be about 0.3 mm or less.

このような薄肉材としても熱交換器に必要な強度および耐食性を備える熱交換器用アルミニウム合金材として、前記アルミニウム合金クラッド材(ブレージングシート)について、例えば以下に示すような対策を施したものが開示されている。特許文献1には、耐食性を高めるため、Zn:1.0〜6.0質量%にMnをさらに添加したアルミニウム合金として、Al−Mn系金属間化合物の粒径や分布を制御されることでその腐食電流値を低減させた犠牲陽極材が、ろう材と共にアルミニウム合金心材にクラッドされた3層材が開示されている。なお、金属間化合物の粒径や分布は、前記犠牲陽極材とするアルミニウム合金の鋳塊の均質化処理やクラッド圧延における温度を調整することで制御されている。また、特許文献2には、所定量のMn,Mgを添加した心材の一方の面に、Mnを添加したアルミニウム合金からなる中間材を介してろう材を、他方の面にZn:0.5〜10質量%にMnをさらに添加したアルミニウム合金からなる犠牲陽極材を、それぞれクラッドされた4層材が開示されている。心材だけでなく犠牲陽極材にもMnを添加することで強度を向上させ、また、犠牲陽極材に分散させたAl−Mn系金属間化合物がそれぞれ孔食の起点となることで局所的に孔食が発生することを防止している。また、特許文献3には、犠牲陽極材をZn:0.2〜8.0質量%にさらにSc、およびMn,Fe,Si,Cu,Mg,Zrの1種以上を添加したアルミニウム合金とすることで、強度および耐エロージョン性を向上させた3層材が開示されている。   As such an aluminum alloy material for a heat exchanger having the strength and corrosion resistance required for a heat exchanger as a thin-walled material, the aluminum alloy clad material (brazing sheet), for example, having the following measures is disclosed. Has been. In Patent Document 1, in order to improve corrosion resistance, the particle size and distribution of the Al—Mn intermetallic compound are controlled as an aluminum alloy in which Mn is further added to Zn: 1.0 to 6.0 mass%. A three-layer material in which a sacrificial anode material having a reduced corrosion current value is clad on an aluminum alloy core material together with a brazing material is disclosed. The particle size and distribution of the intermetallic compound are controlled by adjusting the temperature in the homogenization treatment or clad rolling of the aluminum alloy ingot used as the sacrificial anode material. In Patent Document 2, a brazing material is provided on one surface of a core material added with a predetermined amount of Mn and Mg via an intermediate material made of an aluminum alloy added with Mn, and Zn: 0.5 is provided on the other surface. There is disclosed a four-layer material in which a sacrificial anode material made of an aluminum alloy in which Mn is further added to 10 mass% is clad. The strength is improved by adding Mn not only to the core material but also to the sacrificial anode material, and the Al-Mn intermetallic compound dispersed in the sacrificial anode material serves as a starting point for pitting corrosion locally. Prevents the occurrence of food. Further, in Patent Document 3, the sacrificial anode material is an aluminum alloy in which Zn is added to 0.2 to 8.0 mass% and at least one of Sc and Mn, Fe, Si, Cu, Mg, and Zr is added. Thus, a three-layer material with improved strength and erosion resistance is disclosed.

特開平11−61306号公報JP-A-11-61306 特開2006−131923公報JP 2006-131923 A 特開2006−176852公報JP 2006-176852 A

ここで、薄肉化されたクラッド材においては、強度を確保する上で心材の薄肉化には限界があるため、犠牲陽極材も薄肉化する必要がある。クラッド材は、前記したように、表面(犠牲陽極材)と内部(心材)との電位差によって表面全体(全面)を優先的に溶解させることで局部腐食を抑制するため、犠牲陽極材が薄肉化されると、その損耗が早くなって防食効果の寿命が短くなる。前記従来技術に記載されたクラッド材は、孔食すなわち局所的な腐食に対する耐食性については対応しているが、全面における腐食について対応するものではなく、薄肉化された場合は早期に犠牲陽極材が損耗する虞がある。   Here, in the thinned clad material, since there is a limit to the thinning of the core material in order to ensure the strength, the sacrificial anode material also needs to be thinned. As described above, the clad material is preferentially dissolved over the entire surface (entire surface) by the potential difference between the surface (sacrificial anode material) and the interior (core material), so the sacrificial anode material is thinned. If it is done, the wear is accelerated and the life of the anticorrosion effect is shortened. The clad material described in the prior art corresponds to the corrosion resistance against pitting corrosion, that is, local corrosion, but does not correspond to the corrosion on the entire surface. There is a risk of wear.

本発明は、前記問題点に鑑みてなされたものであり、薄肉化した場合にも、高耐食性を長期に維持できる熱交換器用アルミニウム合金クラッド材を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an aluminum alloy clad material for a heat exchanger that can maintain high corrosion resistance for a long time even when it is thinned.

前記課題を解決するために、本発明者らは、孔食を防止するために、薄肉化した犠牲陽極材としても心材との電位差を十分なものとなるように、Zn濃度を従来の犠牲陽極材よりも高く設定した。その一方で、前記電位差による全面の腐食を抑制するための方法を検討した結果、犠牲陽極材にさらにSi,Mnを添加することでアルミニウム合金が自己防食を起こして全面腐食が抑制されることを見出した。   In order to solve the above-described problems, the present inventors have set the Zn concentration to a conventional sacrificial anode so that the potential difference from the core material is sufficient even as a sacrificial anode material that is thinned to prevent pitting corrosion. Set higher than wood. On the other hand, as a result of investigating a method for suppressing the overall corrosion due to the potential difference, the addition of Si and Mn to the sacrificial anode material indicates that the aluminum alloy causes self-corrosion and the overall corrosion is suppressed. I found it.

すなわち、本発明に係るアルミニウム合金クラッド材は、心材と、この心材の一面側にクラッドされた犠牲陽極材と、前記心材の他面側にクラッドされたAl−Si系合金からなるろう材からなり、前記心材は、Mn:0.3〜2.0質量%、Si:0.15〜1.6質量%、Cu:0.1〜1.0質量%、Mg:0.1〜1.0質量%を含有し、さらにTi:0.01〜0.5質量%、Zr:0.01〜0.5質量%の1種以上を含有し、残部がAlおよび不可避的不純物からなり、前記犠牲陽極材は、Zn:9.0〜12.0質量%、Mn:0.3〜1.8質量%、Si:0.3〜1.2質量%を含有し、残部がAlおよび不可避的不純物からなり、厚さが10〜30μmであることを特徴とする。 That is, the aluminum alloy clad material according to the present invention comprises a core material, a sacrificial anode material clad on one surface side of the core material, and a brazing material made of an Al—Si alloy clad on the other surface side of the core material. The core material contains Mn: 0.3 to 2.0 mass%, Si: 0.15 to 1.6 mass%, Cu: 0.1 to 1.0 mass%, Mg: 0.1 to 1.0 mass%. Containing 1% by mass of Ti: 0.01 to 0.5% by mass, Zr: 0.01 to 0.5% by mass, and the balance is made of Al and inevitable impurities. The anode material contains Zn: 9.0 to 12.0% by mass, Mn: 0.3 to 1.8% by mass, Si: 0.3 to 1.2% by mass, the balance being Al and inevitable impurities And has a thickness of 10 to 30 μm.

このように、犠牲陽極材は、Zn濃度を高くすることで薄肉化しても心材との電位差により孔食を防止でき、さらにSi,Mnを合わせて添加することで、強度を向上させると同時に犠牲陽極材に自己防食を生じさせて全面腐食を抑制できる。一方、心材にもSi,Mnを添加することで強度を向上させ、Cu,Mgを添加することでさらに強度を向上させると同時に、電位を貴にするCuにより犠牲陽極材との電位差を適正なものとし、腐食生成物が保護皮膜を形成するMgにより、心材が腐食環境に曝されても孔食を防止する。   In this way, the sacrificial anode material can prevent pitting corrosion due to the potential difference from the core material even if it is thinned by increasing the Zn concentration. Further, by adding Si and Mn together, the strength is improved and the sacrificial material is sacrificed. Self-corrosion can be caused in the anode material to suppress overall corrosion. On the other hand, the strength is improved by adding Si and Mn to the core material, and the strength is further improved by adding Cu and Mg. At the same time, the potential difference between the sacrificial anode material and the sacrificial anode material is appropriately adjusted by Cu. It is assumed that pitting corrosion is prevented even when the core material is exposed to a corrosive environment by Mg whose corrosion product forms a protective film.

本発明に係るアルミニウム合金クラッド材は、前記犠牲陽極材が、Ti:0.01〜0.5質量%、Zr:0.01〜0.5質量%、Nb:0.01〜0.5質量%の1種以上をさらに含有してもよい。これらの元素を添加することによって、アルミニウム合金クラッド材の局部の耐食性および全面の耐食性をさらに向上させることができる。 Aluminum alloy clad material according to the present invention, the previous SL sacrificial anode material, Ti: 0.01 to 0.5 mass%, Zr: 0.01 to 0.5 wt%, Nb: 0.01 to 0.5 You may further contain 1 type or more of the mass%. By adding these elements, the local corrosion resistance and the overall corrosion resistance of the aluminum alloy clad material can be further improved.

本発明に係るアルミニウム合金クラッド材によれば、犠牲陽極材が薄肉化しても、全面腐食と局部腐食の両方を抑制できるため、アルミニウム合金クラッド材も薄肉化できて、熱交換器の軽量化および長寿命化に有効である。   According to the aluminum alloy clad material according to the present invention, even if the sacrificial anode material is thinned, both the general corrosion and the local corrosion can be suppressed, so the aluminum alloy clad material can also be thinned, and the heat exchanger can be reduced in weight and Effective for extending the service life.

以下、本発明に係るアルミニウム合金クラッド材を実現するための実施形態について説明する。
本発明に係るアルミニウム合金クラッド材は、アルミニウム合金からなる心材の一方の面に犠牲陽極材がクラッドされ、他方の面にろう材がクラッドされた3層材である。アルミニウム合金クラッド材の厚さは特に限定されないが、好ましくは0.1〜0.3mmである。
Hereinafter, an embodiment for realizing an aluminum alloy clad material according to the present invention will be described.
The aluminum alloy clad material according to the present invention is a three-layer material in which a sacrificial anode material is clad on one surface of a core material made of an aluminum alloy and a brazing material is clad on the other surface. The thickness of the aluminum alloy clad material is not particularly limited, but is preferably 0.1 to 0.3 mm.

〔心材〕
本発明に係るアルミニウム合金クラッド材の心材は、Mn:0.3〜2.0質量%、Si:0.15〜1.6質量%、Cu:0.1〜1.0質量%、Mg:0.1〜1.0質量%を含有し、さらに、Ti:0.01〜0.5質量%、Zr:0.01〜0.5質量%の1種以上を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成される。
[Heart material]
The core material of the aluminum alloy clad material according to the present invention includes Mn: 0.3 to 2.0 mass%, Si: 0.15 to 1.6 mass%, Cu: 0.1 to 1.0 mass%, Mg: 0.1 to 1.0% by mass, further containing at least one of Ti: 0.01 to 0.5% by mass, Zr: 0.01 to 0.5% by mass, the balance being Al and It is made of an aluminum alloy composed of inevitable impurities.

(心材Mn:0.3〜2.0質量%)
MnはSiと同様にアルミニウム合金の強度を向上させる効果があり、特に後記のSiと共存することでAl−Mn−Si系金属間化合物を形成して、これによりさらに強度を高めることができる。アルミニウム合金クラッド材の強度を十分なものとするため、心材におけるMn含有量は0.3質量%以上とし、0.35質量%以上が好ましく、0.4質量%以上がさらに好ましい。一方、Mnが過剰に添加されると粗大な晶出物が析出して、アルミニウム合金クラッド材の加工性が低下する。したがって、心材におけるMn含有量は2.0質量%以下とし、1.9質量%以下が好ましく、1.8質量%以下がさらに好ましい。
(Core material Mn: 0.3 to 2.0 mass%)
Mn has the effect of improving the strength of the aluminum alloy in the same manner as Si, and in particular, by coexisting with Si described later, an Al—Mn—Si intermetallic compound can be formed, thereby further increasing the strength. In order to make the strength of the aluminum alloy clad material sufficient, the Mn content in the core material is 0.3% by mass or more, preferably 0.35% by mass or more, and more preferably 0.4% by mass or more. On the other hand, when Mn is added excessively, coarse crystallized substances are precipitated, and the workability of the aluminum alloy clad material is lowered. Therefore, the Mn content in the core is 2.0% by mass or less, preferably 1.9% by mass or less, and more preferably 1.8% by mass or less.

(心材Si:0.15〜1.6質量%)
SiはMnと同様にアルミニウム合金の強度を向上させる効果があり、特にMnと共存することでAl−Mn−Si系金属間化合物を形成して、これによりさらに強度を高めることができる。アルミニウム合金クラッド材の強度を十分なものとするため、心材におけるSi含有量は0.15質量%以上とし、0.25質量%以上が好ましく、0.3質量%以上がさらに好ましい。一方、Siはアルミニウム合金の融点を降下させるため、過剰に添加されるとろう付け時に心材の溶融が生じる。したがって、心材におけるSi含有量は1.6質量%以下とし、1.55質量%以下が好ましく、1.5質量%以下がさらに好ましい。
(Core material Si: 0.15 to 1.6% by mass)
Si has the effect of improving the strength of the aluminum alloy in the same way as Mn. In particular, it can coexist with Mn to form an Al—Mn—Si intermetallic compound, thereby further increasing the strength. In order to make the strength of the aluminum alloy clad material sufficient, the Si content in the core material is 0.15% by mass or more, preferably 0.25% by mass or more, and more preferably 0.3% by mass or more. On the other hand, since Si lowers the melting point of the aluminum alloy, if it is added excessively, the core material melts during brazing. Accordingly, the Si content in the core material is 1.6% by mass or less, preferably 1.55% by mass or less, and more preferably 1.5% by mass or less.

(心材Cu:0.1〜1.0質量%)
Cuはアルミニウム合金の強度を向上させる効果があり、また、アルミニウム合金の電位を貴にする作用があるため、犠牲陽極材に対する電位を貴にして犠牲陽極材の犠牲防食効果を高める。これらの効果を十分なものとするため、心材におけるCu含有量は0.1質量%以上とし、0.15質量%以上が好ましく、0.2質量%以上がさらに好ましい。一方、Cuが過剰に添加されると、粒界にCu化合物が多く析出して粒界腐食を生じ易くなり、また、犠牲陽極材との電位差が過大となって全面腐食が促進される虞がある。したがって、心材におけるCu含有量は1.0質量%以下とし、0.95質量%以下が好ましく、0.9質量%以下がさらに好ましい。
(Core material Cu: 0.1 to 1.0% by mass)
Cu has the effect of improving the strength of the aluminum alloy, and has the effect of making the potential of the aluminum alloy noble, so the potential for the sacrificial anode material is made noble and the sacrificial anticorrosive effect of the sacrificial anode material is enhanced. In order to make these effects sufficient, the Cu content in the core material is 0.1% by mass or more, preferably 0.15% by mass or more, and more preferably 0.2% by mass or more. On the other hand, if Cu is added excessively, a large amount of Cu compound is precipitated at the grain boundary, and intergranular corrosion is likely to occur, and the potential difference with the sacrificial anode material is excessive, which may promote overall corrosion. is there. Therefore, the Cu content in the core is 1.0% by mass or less, preferably 0.95% by mass or less, and more preferably 0.9% by mass or less.

(心材Mg:0.1〜1.0質量%)
Mgはアルミニウム合金の電位を卑にする作用があるが、Siと共存することでMg2Si等の化合物を析出させて、アルミニウム合金の強度をさらに高めることができる。また、Mgは、当該アルミニウム合金が腐食環境に曝されると腐食生成物として塩化マグネシウム(MgCl2)を生成し、この塩化マグネシウムがアルミニウム合金の表面の酸化皮膜を腐食環境から遮断する保護皮膜として作用する。本発明に係るアルミニウム合金クラッド材においては、クラッドやろう付けの際に心材からMgが犠牲陽極材に拡散してその表面(腐食環境側表面)で保護皮膜を形成するため、耐局部腐食性向上に有効である。これらの効果を得るために、心材におけるMgの含有量は0.1質量%以上が好ましく、0.12質量%以上がより好ましく、0.14質量%以上がさらに好ましい。しかし、前記したようにMgはアルミニウム合金の電位を卑にする作用があるため、過剰に添加されると犠牲陽極材との電位差が不十分となって犠牲防食効果が低下する。さらにMgはろう付け性を低下させる作用があるため、過剰に添加されると、ろう付け時にろう材までMgが拡散してろう付け性が低下する。したがって、心材におけるMgの含有量は1.0質量%以下とし、0.95質量%以下が好ましく、0.9質量%以下がさらに好ましい。
(Core material Mg: 0.1 to 1.0% by mass)
Mg has the effect of lowering the potential of the aluminum alloy, but by coexisting with Si, a compound such as Mg 2 Si can be precipitated to further increase the strength of the aluminum alloy. Mg also forms magnesium chloride (MgCl 2 ) as a corrosion product when the aluminum alloy is exposed to a corrosive environment, and the magnesium chloride serves as a protective film that shields the oxide film on the surface of the aluminum alloy from the corrosive environment. Works. In the aluminum alloy clad material according to the present invention, Mg diffuses from the core material to the sacrificial anode material during clad or brazing and forms a protective film on the surface (corrosive environment side surface), thereby improving local corrosion resistance. It is effective for. In order to obtain these effects, the content of Mg in the core material is preferably 0.1% by mass or more, more preferably 0.12% by mass or more, and further preferably 0.14% by mass or more. However, as described above, Mg has the effect of lowering the potential of the aluminum alloy. Therefore, if added excessively, the potential difference from the sacrificial anode material becomes insufficient and the sacrificial anticorrosive effect is lowered. Further, since Mg has an action of reducing brazing properties, when excessively added, Mg diffuses to the brazing material at the time of brazing and lowers brazing properties. Therefore, the content of Mg in the core material is 1.0% by mass or less, preferably 0.95% by mass or less, and more preferably 0.9% by mass or less.

(心材Ti,Zr:各0.01〜0.5質量%)
Ti,Zrは、いずれもアルミニウム合金の腐食環境側表面に堆積した腐食生成物を微細化して、当該腐食生成物による保護性を高めて耐局部腐食性および耐全面腐食性を向上する効果を有する。本発明に係るアルミニウム合金クラッド材においては、腐食が心材に到達した場合にこれらの元素が前記作用を発現する。この効果を得るために、心材におけるTi,Zrの各含有量は0.01質量%以上が好ましい。一方、Ti,Zrはアルミニウム合金の加工性を低下させるため、心材におけるTi,Zrの各含有量は0.5質量%以下とする。
(Core materials Ti, Zr : 0.01 to 0.5 mass% each)
Ti, Z r are all also corrosion products deposited on the corrosive environment side surface of the aluminum alloy is miniaturized, the effect of improving the local corrosion resistance and general corrosion resistance by increasing the protection due to the corrosion product Have. In the aluminum alloy clad material according to the present invention, when the corrosion reaches the core material, these elements exhibit the above action. To obtain this effect, Ti in the core material, the content of Z r is preferably at least 0.01 mass%. On the other hand, Ti, Z r is to reduce the processability of the aluminum alloy, Ti in the core material, the content of each Z r than 0.5 mass%.

なお、心材における不可避的不純物として、Fe:0.2質量%以下、Cr:0.1質量%以下、およびB:0.1質量%以下を含有してもよい。   In addition, as an inevitable impurity in a core material, you may contain Fe: 0.2 mass% or less, Cr: 0.1 mass% or less, and B: 0.1 mass% or less.

〔犠牲陽極材〕
(犠牲陽極材厚さ:10〜30μm)
本発明に係るアルミニウム合金クラッド材の犠牲陽極材は、当該アルミニウム合金クラッド材において厚さが10〜30μmとする。犠牲陽極材の厚さが10μm未満では、犠牲陽極材に含有されるZnの絶対量が不足するため、心材に対して電位が十分に卑とならずに犠牲防食効果が低下する。また、アルミニウム合金クラッド材の犠牲陽極材側の面をろう付けする場合には、心材から拡散するMgが犠牲陽極材側表面に到達してろう付け性が低下する。一方、犠牲陽極材は30μmを超えて厚くしても、犠牲防食効果の向上は飽和する上、アルミニウム合金クラッド材の板厚が厚くなる、あるいは心材の絶対厚さが薄くなってアルミニウム合金クラッド材の強度が低下する。
[Sacrificial anode material]
(Sacrificial anode material thickness: 10-30 μm)
The sacrificial anode material of the aluminum alloy clad material according to the present invention has a thickness of 10 to 30 μm in the aluminum alloy clad material. When the thickness of the sacrificial anode material is less than 10 μm, since the absolute amount of Zn contained in the sacrificial anode material is insufficient, the sacrificial anticorrosion effect is lowered without the potential being sufficiently low with respect to the core material. Further, when brazing the surface on the sacrificial anode material side of the aluminum alloy clad material, Mg diffused from the core material reaches the surface on the sacrificial anode material side and brazing performance is lowered. On the other hand, even if the sacrificial anode material is thicker than 30 μm, the improvement of the sacrificial anticorrosion effect is saturated, and the thickness of the aluminum alloy clad material is increased, or the absolute thickness of the core material is decreased and the aluminum alloy clad material is reduced. The strength of is reduced.

本発明に係るアルミニウム合金クラッド材の犠牲陽極材は、Zn:9.0〜12.0質量%、Mn:0.3〜1.8質量%、Si:0.3〜1.2質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成される。 The sacrificial anode material of the aluminum alloy clad material according to the present invention includes: Zn: 9.0 to 12.0 mass%, Mn: 0.3 to 1.8 mass%, Si: 0.3 to 1.2 mass% It is made of an aluminum alloy containing Al and inevitable impurities.

(犠牲陽極材Zn:9.0〜12.0質量%)
Znはアルミニウム合金の電位を卑にする作用があり、心材との電位差を十分なものとして、犠牲防食効果を付与する。この効果を十分なものとするため、犠牲陽極材におけるZn含有量は9.0質量%以上とする。一方、Znが過剰に添加されると、犠牲陽極材自体の耐食性が劣化して腐食速度が速くなるため犠牲防食効果の持続期間が短くなる。したがって、犠牲陽極材におけるZn含有量は12.0質量%以下とし、11.5質量%以下が好ましく、11.0質量%以下がさらに好ましい。
(Sacrificial anode material Zn: 9.0 to 12.0 mass%)
Zn has an effect of lowering the potential of the aluminum alloy, and provides a sacrificial anticorrosive effect with a sufficient potential difference from the core material. To this effect a sufficient, Zn content in the sacrificial anode material is set to 9.0 mass% or more. On the other hand, if Zn is added excessively, the corrosion resistance of the sacrificial anode material itself deteriorates and the corrosion rate increases, so the duration of the sacrificial anticorrosive effect is shortened. Therefore, the Zn content in the sacrificial anode material is 12.0% by mass or less, preferably 11.5% by mass or less, and more preferably 11.0% by mass or less.

(犠牲陽極材Mn:0.3〜1.8質量%、Si:0.3〜1.2質量%)
Mn,Siは、それぞれアルミニウム合金の強度を向上させる効果があり、特に両者が共存することでAl−Mn−Si系金属間化合物を形成して、さらに強度を高めることができる。また、Mn,Siは、それぞれ水(冷却水、結露水等)に溶出すると、不溶性の皮膜を形成して自己防食効果を生じ、特にMn,Siの両者および溶出を促進するZnが共存すると、自己防食効果が相乗的に向上して犠牲陽極材の全面腐食を抑制する。これらの効果を十分なものとするため、犠牲陽極材において、Mn,Siの各含有量は0.3質量%以上とし、0.32質量%以上が好ましく、0.34質量%以上がさらに好ましい。
(Sacrificial anode material Mn: 0.3 to 1.8% by mass, Si: 0.3 to 1.2% by mass)
Mn and Si each have an effect of improving the strength of the aluminum alloy. Particularly, when both coexist, an Al—Mn—Si intermetallic compound can be formed to further increase the strength. In addition, when Mn and Si are eluted in water (cooling water, dew condensation water, etc.), an insoluble film is formed to produce a self-corrosion preventing effect. In particular, when both Mn and Si and Zn that promotes elution coexist, The self-corrosion effect is synergistically improved to suppress the overall corrosion of the sacrificial anode material. In order to make these effects sufficient, in the sacrificial anode material, each content of Mn and Si is 0.3% by mass or more, preferably 0.32% by mass or more, and more preferably 0.34% by mass or more. .

一方、Mnは過剰に添加されると、粗大な晶出物が析出して、アルミニウム合金クラッド材の加工性が低下し、またこの晶出物がカソードサイトとして作用して腐食を促進させるため耐孔食性が低下する虞がある。したがって、犠牲陽極材におけるMn含有量は1.8質量%以下とし、1.75質量%以下が好ましく、1.7質量%以下がさらに好ましい。また、Siは過剰に添加されると、アルミニウム合金の粒界腐食感受性が増大して耐孔食性および自己防食効果が低下し、また融点を降下させるため、ろう付け時に犠牲陽極材の溶融が生じる。特に本発明に係るアルミニウム合金クラッド材の犠牲陽極材は高濃度のZnにより融点がある程度降下しているため、犠牲陽極材におけるSi含有量は1.2質量%以下とし、1.0質量%以下が好ましく、0.9質量%以下がさらに好ましい。   On the other hand, when Mn is added excessively, coarse crystallized substances are precipitated, the workability of the aluminum alloy clad material is deteriorated, and the crystallized substances act as cathode sites to promote corrosion, thereby being resistant to corrosion. There is a possibility that the pitting corrosion property is lowered. Therefore, the Mn content in the sacrificial anode material is 1.8% by mass or less, preferably 1.75% by mass or less, and more preferably 1.7% by mass or less. Moreover, when Si is added excessively, the intergranular corrosion sensitivity of the aluminum alloy increases, the pitting corrosion resistance and the self-corrosion prevention effect decrease, and the melting point is lowered, so that the sacrificial anode material melts during brazing. . In particular, since the melting point of the sacrificial anode material of the aluminum alloy clad material according to the present invention is lowered to some extent due to high concentration of Zn, the Si content in the sacrificial anode material is 1.2 mass% or less and 1.0 mass% or less. Is preferably 0.9% by mass or less.

本発明に係るアルミニウム合金クラッド材の犠牲陽極材は、さらに、Ti:0.01〜0.5質量%、Zr:0.01〜0.5質量%、およびNb:0.01〜0.5質量%の1種以上を含有してもよい。   The sacrificial anode material of the aluminum alloy clad material according to the present invention further includes Ti: 0.01 to 0.5% by mass, Zr: 0.01 to 0.5% by mass, and Nb: 0.01 to 0.5. You may contain 1 or more types of the mass%.

(犠牲陽極材Ti,Zr,Nb:各0.01〜0.5質量%)
Ti,Zr,Nbは、いずれもアルミニウム合金クラッド材の表面すなわち犠牲陽極材の表面に堆積したアルミニウム合金の腐食生成物を微細化して、当該腐食生成物による保護性を高めて耐局部腐食性および耐全面腐食性を向上する効果を有する。この効果を得るために、犠牲陽極材におけるTi,Zr,Nbの各含有量は0.01質量%以上が好ましい。一方、Ti,Zr,Nbはアルミニウム合金の加工性を低下させるため、犠牲陽極材におけるTi,Zr,Nbの各含有量は0.5質量%以下とする。
(Sacrificial anode materials Ti, Zr, Nb: 0.01 to 0.5 mass% each)
Ti, Zr, and Nb all refine the corrosion product of the aluminum alloy deposited on the surface of the aluminum alloy clad material, that is, the surface of the sacrificial anode material, thereby improving the protection by the corrosion product and improving the local corrosion resistance and Has the effect of improving the overall corrosion resistance. In order to obtain this effect, the content of Ti, Zr, and Nb in the sacrificial anode material is preferably 0.01% by mass or more. On the other hand, since Ti, Zr, and Nb deteriorate the workability of the aluminum alloy, the contents of Ti, Zr, and Nb in the sacrificial anode material are set to 0.5 mass% or less.

犠牲陽極材における不可避的不純物として、Mg,Cuを各0.1質量%以下含有してもよい。Mgはろう付け性を低下させる作用があるため、0.1質量%を超えて含有すると、アルミニウム合金クラッド材の犠牲陽極材側の面をろう付けする場合に、ろう付け性が低下する虞がある。Cuはアルミニウム合金の電位を貴にする作用があり、0.1質量%を超えて含有すると、心材との電位差が不十分となって犠牲防食効果が不足する虞がある。   As inevitable impurities in the sacrificial anode material, each of Mg and Cu may be contained in an amount of 0.1% by mass or less. Since Mg has the effect of reducing brazing properties, if it exceeds 0.1% by mass, brazing properties may decrease when brazing the surface of the aluminum alloy clad material on the sacrificial anode material side. is there. Cu has the effect of making the potential of the aluminum alloy noble, and if it exceeds 0.1% by mass, the potential difference from the core material is insufficient and the sacrificial anticorrosive effect may be insufficient.

〔ろう材〕
本発明に係るアルミニウム合金クラッド材のろう材は、当該アルミニウム合金クラッド材においてその厚さは特に限定されないが、良好なろう付け性を得るために10〜40μmとすることが好ましい。また、本発明に係るアルミニウム合金クラッド材のろう材は、アルミニウム合金材のろう付けにおいて通常用いられる6〜15質量%程度のSiを含有するAl−Si系合金、例えばJIS4343,4045相当のAl−Si合金等が適用できる。また、Si以外にZnを添加して、ろう材側にも犠牲防食効果を付与してもよい。さらにCu,Mn,Mg等を含有してもよい。ただし、Mgについては、0.1質量%を超えるとろう付け性が低下する虞があるため、Mg:0.1質量%以下であれば含有してもよい。
[Brazing material]
The thickness of the aluminum alloy clad brazing material according to the present invention is not particularly limited in the aluminum alloy clad material, but is preferably 10 to 40 μm in order to obtain good brazing properties. Moreover, the brazing material of the aluminum alloy clad material according to the present invention is an Al—Si alloy containing about 6 to 15% by mass of Si, which is usually used in brazing of an aluminum alloy material, for example, Al—corresponding to JIS 4343 and 4045. Si alloy or the like can be applied. Further, Zn may be added in addition to Si to impart a sacrificial anticorrosive effect to the brazing material side. Further, Cu, Mn, Mg and the like may be contained. However, about Mg, since brazing property may fall when it exceeds 0.1 mass%, you may contain Mg: 0.1 mass% or less.

ろう材における不可避的不純物として、例えば、Ti:0.05質量%以下、Zr:0.2質量%以下、B:0.1質量%以下、Fe:0.2質量%以下等を含有していても、本発明の効果を妨げるものではない。なお、ろう材において、このような不可避的不純物の含有量が合計で0.4質量%まで許容できる。   Inevitable impurities in the brazing filler metal include, for example, Ti: 0.05% by mass or less, Zr: 0.2% by mass or less, B: 0.1% by mass or less, Fe: 0.2% by mass or less, and the like. However, the effect of the present invention is not disturbed. In the brazing material, the total content of such inevitable impurities can be tolerated up to 0.4% by mass.

〔アルミニウム合金クラッド材の製造方法〕
本発明に係るアルミニウム合金クラッド材の製造方法は特に限定されず、例えば公知のクラッド材の製造方法により製造される。以下にその一例を説明する。
まず、心材、犠牲陽極材、ろう材のそれぞれの成分組成のアルミニウム合金を、溶解、鋳造し、さらに必要に応じて面削(鋳塊の表面平滑化処理)、均質化処理して、それぞれの鋳塊を得る。均質化処理は、例えば、450〜550℃×6時間以下の熱処理およびその後の冷却速度を0.5〜2℃/分の条件で行う。
[Production method of aluminum alloy clad material]
The method for producing the aluminum alloy clad material according to the present invention is not particularly limited, and for example, it is produced by a known method for producing a clad material. One example will be described below.
First, aluminum alloys of each component composition of the core material, the sacrificial anode material, and the brazing material are melted and cast, and further subjected to face milling (ingot surface smoothing treatment) and homogenization treatment as necessary. Get an ingot. The homogenization treatment is performed, for example, at a temperature of 450 to 550 ° C. × 6 hours or less and a subsequent cooling rate of 0.5 to 2 ° C./min.

次に、それぞれの鋳塊を熱間圧延により、所定のクラッド率になるようにそれぞれ所定厚さの板材とする。次に、心材用の板材を、犠牲陽極材用の板材とろう材用の板材で挟んで重ね合わせ、この重ね合わせ材に熱処理(再加熱)を行った後、熱間圧延により圧着して一体の板材とし、さらに所定の最終板厚となるまで冷間圧延を行い、アルミニウム合金クラッド材とする(クラッド圧延)。前記冷間圧延において、必要に応じて中間焼鈍(連続焼鈍)を行ってもよい。また、最終板厚とした後に仕上げ焼鈍を実施してもよい。   Next, each ingot is formed into a plate material having a predetermined thickness by hot rolling so as to have a predetermined cladding rate. Next, the core material plate is sandwiched between the sacrificial anode material plate and the brazing material plate, and heat-treated (reheated) on the overlap material, followed by pressure bonding by hot rolling. Then, cold rolling is performed until a predetermined final plate thickness is obtained, thereby obtaining an aluminum alloy clad material (clad rolling). In the cold rolling, intermediate annealing (continuous annealing) may be performed as necessary. Moreover, you may implement finish annealing after setting it as final board thickness.

本発明に係るアルミニウム合金クラッド材を熱交換器に利用する場合は、例えば、その犠牲陽極材が腐食環境側となるように成形し、必要に応じてフィン材等の他の部材と組み合わせてろう付け加熱する。この場合、特に自動車のラジエータとして、犠牲陽極材を内面にしてチューブ材に使用することが好ましく、内面の冷却水に対する耐食性を向上させることができる。   When the aluminum alloy clad material according to the present invention is used for a heat exchanger, for example, the sacrificial anode material is formed so as to be on the corrosive environment side, and combined with other members such as a fin material as necessary. Add heat. In this case, it is preferable to use the sacrificial anode material as an inner surface for a tube material, particularly as an automobile radiator, and the corrosion resistance of the inner surface to cooling water can be improved.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

(供試材作製:供試材No.1〜23)
表1に示す組成を有する心材用アルミニウム合金(合金No.C1)を溶解し、鋳造温度700℃にて鋳造して鋳塊を製造した後、均質化処理として、530℃で6時間の熱処理後、冷却速度0.5℃/分で冷却し、熱間圧延して心材用の板材を作製した。また、表2に示す組成を有する犠牲陽極材用アルミニウム合金(合金No.S1〜S22)を溶解し、鋳造温度700〜760℃にて鋳造して鋳塊を製造した後、均質化処理として、450〜550℃で6時間の熱処理後、冷却速度0.5℃/分で冷却し、熱間圧延して犠牲陽極材用の板材を作製した。また、Si:11質量%を含有するAl−Si合金のろう材用アルミニウム合金を溶解し、通常行われる条件として、鋳造温度700℃にて鋳造して鋳塊を製造した後、均質化処理として500℃で3時間の熱処理の後、熱間圧延してろう材用の板材を作製した。
(Specimen preparation: specimen Nos. 1 to 23)
An aluminum alloy for the core material (alloy No. C1) having the composition shown in Table 1 was melted and cast at a casting temperature of 700 ° C. to produce an ingot, followed by heat treatment at 530 ° C. for 6 hours as a homogenization treatment Then, it was cooled at a cooling rate of 0.5 ° C./min, and hot-rolled to produce a core material. Moreover, after melt | dissolving the aluminum alloy (alloy No.S1-S22) for sacrificial anode materials which has a composition shown in Table 2, and casting at a casting temperature of 700-760 degreeC, and manufacturing an ingot, as a homogenization process, After heat treatment at 450 to 550 ° C. for 6 hours, the plate was cooled at a cooling rate of 0.5 ° C./min and hot-rolled to produce a plate material for a sacrificial anode material. In addition, after melting an aluminum alloy for brazing filler metal of Al-Si alloy containing Si: 11% by mass and casting it at a casting temperature of 700 ° C to produce an ingot, as a homogenization treatment After heat treatment at 500 ° C. for 3 hours, hot rolling was performed to produce a brazing material.

心材用の板材を、犠牲陽極材用、ろう材用のそれぞれの板材で挟んで重ね合わせて、400〜550℃で熱間圧延を行い、その後、冷間圧延を行い、表2に示す供試材No.1〜23のアルミニウム合金クラッド材の供試材とした。なお、心材の板厚は0.180mm、ろう材の板厚は20μm、犠牲陽極材の板厚は、表2に示すように供試材No.16は7μm、それ以外の供試材は20μmとした。   The core material is sandwiched between the sacrificial anode material and the brazing material, and then hot rolled at 400 to 550 ° C., followed by cold rolling. Material No. It was set as the test material of 1-23 aluminum alloy clad materials. The thickness of the core material is 0.180 mm, the thickness of the brazing material is 20 μm, and the thickness of the sacrificial anode material is as shown in Table 2. 16 was 7 μm, and other specimens were 20 μm.

(供試材作製:供試材No.24〜38)
表3および表4に示す組成を有する心材用アルミニウム合金(合金No.C2〜C16)にて合金No.C1と同様にして心材用の板材を作製した。また、供試材No.4,17〜23と同様に、合金No.S4,S16〜S22の犠牲陽極材用の板材、ならびにAl−11質量%Si合金のろう材用の板材を作製した。
(Specimen preparation: specimen Nos. 24-38)
In the aluminum alloys for core materials (alloys Nos. C2 to C16) having the compositions shown in Tables 3 and 4, Alloy Nos. A core material was produced in the same manner as C1. In addition, specimen No. Similar to alloy Nos. 4, 17 to 23, alloy no. A plate material for a sacrificial anode material of S4, S16 to S22 and a plate material for a brazing material of an Al-11 mass% Si alloy were prepared.

合金No.C2〜C9の心材用の板材は、表3に示すように、供試材No.1と同様にして、合金No.S4の犠牲陽極材用の板材とろう材用の板材とで挟んで重ね合わせて、供試材No.24〜31のアルミニウム合金クラッド材の供試材とした。合金No.C10〜C16の心材用の板材は、供試材No.17〜23と同様にして、合金No.S16〜S22の犠牲陽極材用の板材とろう材用の板材とで表4に示す組合せで挟んで重ね合わせて、供試材No.32〜38のアルミニウム合金クラッド材の供試材とした。なお、心材の板厚は0.180mm、ろう材および犠牲陽極材の板厚は各20μmとした。   Alloy No. As shown in Table 3, the plate materials for the core material of C2 to C9 are sample Nos. In the same manner as in No. 1, alloy no. The sample material No. S4 was sandwiched between the sacrificial anode plate and the brazing plate of S4. Samples of 24-31 aluminum alloy clad materials were used. Alloy No. The plate material for the core material of C10 to C16 is the test material No. In the same manner as in Nos. 17-23, Alloy No. A sample material No. S16 to S22 are sandwiched and overlapped with a combination shown in Table 4 between a plate material for a sacrificial anode material and a plate material for a brazing material. Samples of 32-38 aluminum alloy clad materials were used. The thickness of the core material was 0.180 mm, and the thicknesses of the brazing material and the sacrificial anode material were 20 μm each.

得られた供試材No.1〜38に、ろう付け加熱に相当する600℃で5分間の加熱処理を施した。加熱後の供試材について、以下の腐食試験を行った。   The obtained test material No. 1 to 38 were subjected to heat treatment at 600 ° C. corresponding to brazing heating for 5 minutes. The following corrosion tests were performed on the specimens after heating.

(腐食試験)
ラジエータ内面環境での腐食特性を評価するため、腐食試験として、前記加熱後の供試材(試験片)を冷却水を模擬した試験溶液に浸漬して、1ヶ月間温度サイクルを与えた。加熱後の供試材を80mm×70mmの試験片に切り出し、アセトンで洗浄した後、犠牲陽極材側の表面の中央の70mm×60mmを試験面として、試験面以外の表面、すなわち犠牲陽極材側の表面における端から5mmの領域、ならびにろう材側の表面および端面をシリコンシーラントで被覆した。なお、試験片は供試材の仕様毎に5枚作製した。試験溶液としては、OY水(Cl-:195質量ppm、SO4 2-:60質量ppm、Cu2+:1質量ppm、Fe3+:30質量ppm、pH:3.0)を使用した。温度サイクルは、試験溶液を、室温から1時間で88℃まで加熱し、この88℃で7時間保持した後、室温まで1時間で冷却し、この室温にて15時間保持する1日1サイクルとした。
(Corrosion test)
In order to evaluate the corrosion characteristics in the radiator inner surface environment, as a corrosion test, the heated test material (test piece) was immersed in a test solution simulating cooling water and given a temperature cycle for one month. The test material after heating was cut into a test piece of 80 mm × 70 mm, washed with acetone, and then the surface other than the test surface, that is, the sacrificial anode material side, with the center 70 mm × 60 mm of the surface on the sacrificial anode material side as the test surface An area of 5 mm from the end of the surface of the surface and the surface and end face on the brazing filler metal side were covered with a silicon sealant. Five test pieces were prepared for each specification of the test material. As the test solution, OY water (Cl : 195 mass ppm, SO 4 2− : 60 mass ppm, Cu 2+ : 1 mass ppm, Fe 3+ : 30 mass ppm, pH: 3.0) was used. The temperature cycle consists of one cycle per day where the test solution is heated from room temperature to 88 ° C. in 1 hour, held at 88 ° C. for 7 hours, cooled to room temperature in 1 hour, and held at this room temperature for 15 hours. did.

腐食試験後、試験片を硝酸に浸漬して表面の腐食生成物を除去し、最大腐食深さおよび板厚減少量を測定した。最大腐食深さは、光学顕微鏡を用いて焦点深度法により試験面(犠牲陽極材側の表面)の腐食深さを測定し、試験面における最も深い腐食深さの、さらに5枚の試験片の最大値とした。また、板厚減少量は、腐食試験後の試験片の断面埋め込み試料を作製し、試験片の孔食の発生していない部分の残存板厚を10点測定して試験前の板厚との差分より板厚減少量を求め、各試験片の10点の平均値を求め、さらに5枚の試験片の平均値とした。   After the corrosion test, the test piece was immersed in nitric acid to remove surface corrosion products, and the maximum corrosion depth and the thickness reduction amount were measured. The maximum corrosion depth is determined by measuring the corrosion depth of the test surface (the surface on the side of the sacrificial anode material) using a depth of focus method using an optical microscope. Maximum value. Also, the thickness reduction amount is the same as the plate thickness before the test by preparing a cross-sectional embedded sample of the test piece after the corrosion test and measuring the remaining plate thickness of the part of the test piece where pitting corrosion has not occurred. The thickness reduction amount was obtained from the difference, the average value of 10 points of each test piece was obtained, and the average value of 5 test pieces was further obtained.

特許文献1〜3の犠牲陽極材と同程度のZn:4.5質量%を含有するアルミニウム合金(合金No.S1)を犠牲陽極材とした比較例(従来例)の供試材No.1を基準とし、その最大腐食深さおよび板厚減少量をそれぞれ100として換算した値を、局部腐食深さDLCおよび全面腐食量DGNとした。局部腐食深さDLCは耐孔食性の、全面腐食量DGNは耐全面腐食性(自己防食性)の、それぞれ評価指標である。耐食性の合格基準は、局部腐食深さDLCが50以下、かつ全面腐食量DGNが60以下であることとする。また、局部腐食深さDLCについて、20以下を「◎◎」、20を超え40以下を「◎」、40を超え50以下を「○」、50を超え60以下を「△」、60を超え80以下を「×」、80を超えるものを「××」で、全面腐食量DGNについて、40以下を「◎◎」、40を超え50以下を「◎」、50を超え60以下を「○」、60を超え80以下を「△」、80を超え100以下を「×」、100を超えるものを「××」で、表2〜4に示す。なお、表3には、表2に示した供試材No.4について、心材用アルミニウム合金(合金No.C1)の組成および耐食性の評価も示した。 Sample No. of Comparative Example (conventional example) in which an aluminum alloy (alloy No. S1) containing Zn: 4.5% by mass of the same degree as the sacrificial anode material of Patent Documents 1 to 3 was used. The values obtained by converting the maximum corrosion depth and the plate thickness reduction amount to 100 with reference to 1 were defined as the local corrosion depth DLC and the overall corrosion amount DGN . Local corrosion depth D LC is the pitting corrosion resistance, corrosion amount D GN is general corrosion resistance of the (self-corrosion resistance), are each evaluation index. The acceptance criteria for corrosion resistance are that the local corrosion depth DLC is 50 or less and the overall corrosion amount DGN is 60 or less. Further, the local corrosion depth D LC, the 20 following "◎◎", a more than 20 40 or less "◎", "○" and 40 beyond 50 or less, 60 than 50 or less "△", 60 "×" 80 less than, those of more than 80 "××", the corrosion amount D GN, "◎◎" 40 or less, 50 or less than 40 "◎", 60 than 50 or less Tables 2 to 4 show “◯”, “60” exceeding 60 and “Δ”, “80” exceeding 100 and “×” indicating 100 and “XX” indicating those exceeding 100. Table 3 shows the specimen Nos. Shown in Table 2. For 4, the composition of the aluminum alloy for core material (alloy No. C1) and the evaluation of corrosion resistance are also shown.

Figure 0005552181
Figure 0005552181

Figure 0005552181
Figure 0005552181

Figure 0005552181
Figure 0005552181

Figure 0005552181
Figure 0005552181

(犠牲陽極材による評価)
表2に示すように、供試材No.2は、従来例である供試材No.1に対してZnの含有量のみを増加させたため、心材との電位差拡大により、耐孔食性はある程度向上したが、自己防食性は劣化した。これに対して、供試材No.3〜5,8,9,12〜14は、犠牲陽極材のアルミニウム合金にZnに加えて本発明の範囲のMn,Siを共に含有している参考例であるため、耐孔食性および自己防食性の両方が向上した。ただし、供試材No.16は、供試材No.4と同じ組成の犠牲陽極材を備えてもその厚さが不足しているため、Znの絶対量が不足して犠牲防食効果が十分に得られなかった。また、供試材No.6はZn含有量が過剰であるため、電位差が過大となって全面腐食を生じた。供試材No.7,11は、Mn,Siの一方の含有量が不足しているため、自己防食性を生じるに至らず、供試材No.2と同程度の腐食を生じた。また、供試材No.10はMn含有量が過剰であるため、析出した粗大な晶出物により耐食性が低下した。また、供試材No.15はSi含有量が過剰であるため、粒界腐食感受性が増大して耐食性が低下した。
(Evaluation with sacrificial anode material)
As shown in Table 2, the test material No. No. 2 is a sample No. which is a conventional example. Since only the Zn content was increased with respect to 1, the pitting corrosion resistance was improved to some extent by increasing the potential difference from the core material, but the self-corrosion resistance was deteriorated. On the other hand, the test material No. 3-5, 8, 9, 12-14 are reference examples containing both Mn and Si within the scope of the present invention in addition to Zn in the aluminum alloy of the sacrificial anode material, so pitting corrosion resistance and self-corrosion prevention Both sex improved. However, the test material No. 16 is a specimen No. Even if a sacrificial anode material having the same composition as that of No. 4 was provided, the thickness thereof was insufficient, so that the absolute amount of Zn was insufficient and the sacrificial anticorrosive effect could not be sufficiently obtained. In addition, specimen No. Since the Zn content of 6 was excessive, the potential difference was excessive and the entire surface was corroded. Specimen No. Nos. 7 and 11 do not lead to self-corrosion resistance because one of the contents of Mn and Si is insufficient. Corrosion comparable to 2 occurred. In addition, specimen No. Since No. 10 had an excessive Mn content, the corrosion resistance deteriorated due to the coarse crystallized matter precipitated. In addition, specimen No. Since No. 15 had an excessive Si content, the intergranular corrosion sensitivity increased and the corrosion resistance decreased.

(心材による評価)
表3に示すように、供試材No.4は、本発明の心材のアルミニウム合金を適用した参考例であり、前記したように本発明のZn,Mn,Siを含有する犠牲陽極材と組み合わせることにより良好な耐食性を示した。これに対して、供試材No.24,26は、Mn,Siの含有量がそれぞれ不足したことで、犠牲陽極材のMn,Siが心材に拡散して減少、不足したため、耐食性が不十分となった。一方、供試材No.25はMn含有量が過剰であるため、Mnが犠牲陽極材に拡散して、粗大な晶出物を析出させて耐食性が低下した。また、供試材No.27はSi含有量が過剰であるため、Siが犠牲陽極材に拡散して、粒界腐食感受性を増大させて耐食性が低下した。また、供試材No.28はCu含有量が不足している(含有しない)ため、犠牲陽極材との電位差が小さく耐孔食性が不十分であった。一方、供試材No.29はCu含有量が過剰であるため、粒界腐食により腐食深さが増大し、また電位差が過大となって全面腐食を生じた。また、供試材No.30はMg含有量が不足している(含有しない)ため、犠牲陽極材に拡散したMgが不足して、耐孔食性が不十分であった。一方、供試材No.31はMg含有量が過剰であるため、犠牲陽極材との電位差が小さく耐孔食性が不十分であった。
(Evaluation with heartwood)
As shown in Table 3, the test material No. Reference numeral 4 is a reference example to which the aluminum alloy of the core material of the present invention was applied, and showed good corrosion resistance when combined with the sacrificial anode material containing Zn, Mn, Si of the present invention as described above. On the other hand, the test material No. In Nos. 24 and 26, the Mn and Si contents were insufficient, and the sacrificial anode material Mn and Si diffused into the core material, resulting in a decrease or insufficiency, resulting in insufficient corrosion resistance. On the other hand, the test material No. In No. 25, since the Mn content was excessive, Mn diffused into the sacrificial anode material, and a coarse crystallized product was precipitated, resulting in a decrease in corrosion resistance. In addition, specimen No. In No. 27, since the Si content was excessive, Si diffused into the sacrificial anode material, increasing the intergranular corrosion sensitivity and lowering the corrosion resistance. In addition, specimen No. No. 28 was insufficient (not contained) in Cu content, so that the potential difference from the sacrificial anode material was small and pitting corrosion resistance was insufficient. On the other hand, the test material No. In No. 29, since the Cu content was excessive, the corrosion depth increased due to intergranular corrosion, and the potential difference was excessive, resulting in overall corrosion. In addition, specimen No. No. 30 was insufficient (not contained) in Mg content, so Mg diffused in the sacrificial anode material was insufficient and pitting corrosion resistance was insufficient. On the other hand, the test material No. No. 31 had an excessive Mg content, so the potential difference from the sacrificial anode material was small and pitting corrosion resistance was insufficient.

(Ti,Zr,Nbの添加による評価)
表2に示すように、供試材No.17〜23は、本発明の犠牲陽極材用アルミニウム合金に、さらにTi,Zr,Nbの1種以上を添加した参考例であり、これらの元素の作用により耐局部腐食性および耐全面腐食性がさらに向上した。さらに供試材No.32〜38は、表4に示すように、犠牲陽極材に加えて心材用アルミニウム合金にもTi,Zr,Nbの1種以上を添加した実施例および参考例であり、さらに防食効果が向上した。
(Evaluation by adding Ti, Zr, Nb)
As shown in Table 2, the test material No. Reference numerals 17 to 23 are reference examples in which one or more of Ti, Zr, and Nb are further added to the aluminum alloy for sacrificial anode material of the present invention, and local corrosion resistance and overall corrosion resistance are achieved by the action of these elements. Further improved. Furthermore, sample No. As shown in Table 4, 32 to 38 are examples and reference examples in which at least one of Ti, Zr, and Nb was added to the aluminum alloy for the core material in addition to the sacrificial anode material, and the anticorrosion effect was further improved. .

Claims (2)

心材と、この心材の一面側にクラッドされた犠牲陽極材と、前記心材の他面側にクラッドされたAl−Si系合金からなるろう材と、からなるアルミニウム合金クラッド材であって、
前記心材は、Mn:0.3〜2.0質量%、Si:0.15〜1.6質量%、Cu:0.1〜1.0質量%、Mg:0.1〜1.0質量%を含有し、さらに、Ti:0.01〜0.5質量%、Zr:0.01〜0.5質量%の1種以上を含有し、残部がAlおよび不可避的不純物からなり、
前記犠牲陽極材は、Zn:9.0〜12.0質量%、Mn:0.3〜1.8質量%、Si:0.3〜1.2質量%を含有し、残部がAlおよび不可避的不純物からなり、厚さが10〜30μmであることを特徴とするアルミニウム合金クラッド材。
An aluminum alloy clad material comprising: a core material; a sacrificial anode material clad on one surface side of the core material; and a brazing material made of an Al-Si alloy clad on the other surface side of the core material,
The core material is Mn: 0.3-2.0 mass%, Si: 0.15-1.6 mass%, Cu: 0.1-1.0 mass%, Mg: 0.1-1.0 mass% Further containing Ti: 0.01 to 0.5% by mass, Zr: 0.01 to 0.5% by mass, and the balance is made of Al and inevitable impurities,
The sacrificial anode material contains Zn: 9.0 to 12.0 mass%, Mn: 0.3 to 1.8 mass%, Si: 0.3 to 1.2 mass%, the balance being Al and inevitable An aluminum alloy clad material comprising an impurity and having a thickness of 10 to 30 μm.
前記犠牲陽極材は、さらに、Ti:0.01〜0.5質量%、Zr:0.01〜0.5質量%、Nb:0.01〜0.5質量%の1種以上を含有することを特徴とする請求項1に記載のアルミニウム合金クラッド材。 The sacrificial anode material further contains at least one of Ti: 0.01 to 0.5 mass%, Zr: 0.01 to 0.5 mass%, and Nb: 0.01 to 0.5 mass%. The aluminum alloy clad material according to claim 1 .
JP2013105788A 2013-05-20 2013-05-20 Aluminum alloy clad material Expired - Fee Related JP5552181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105788A JP5552181B2 (en) 2013-05-20 2013-05-20 Aluminum alloy clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105788A JP5552181B2 (en) 2013-05-20 2013-05-20 Aluminum alloy clad material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009175748A Division JP5336967B2 (en) 2009-07-28 2009-07-28 Aluminum alloy clad material

Publications (2)

Publication Number Publication Date
JP2013209752A JP2013209752A (en) 2013-10-10
JP5552181B2 true JP5552181B2 (en) 2014-07-16

Family

ID=49527836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105788A Expired - Fee Related JP5552181B2 (en) 2013-05-20 2013-05-20 Aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP5552181B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642179B2 (en) * 2016-03-25 2020-02-05 三菱自動車工業株式会社 Internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068981B2 (en) * 2006-11-17 2012-11-07 古河スカイ株式会社 Aluminum alloy clad material
JP5057439B2 (en) * 2007-04-13 2012-10-24 住友軽金属工業株式会社 Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
JP5180565B2 (en) * 2007-11-28 2013-04-10 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger

Also Published As

Publication number Publication date
JP2013209752A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5336967B2 (en) Aluminum alloy clad material
JP5576666B2 (en) Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor
US11408690B2 (en) Method for producing aluminum alloy clad material
JP5276476B2 (en) Aluminum alloy clad material
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
EP3424615B1 (en) Brazing sheet core alloy for heat exchanger
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP2014098185A (en) Aluminum alloy brazing sheet and manufacturing method thereof
JP2017145463A (en) Aluminum alloy brazing sheet and manufacturing method, automotive heat exchanger using the brazing sheet
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP5578702B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
WO2019044545A1 (en) Brazing sheet for heat exchanger fin and manufacturing method thereof
JP6351205B2 (en) High corrosion resistance aluminum alloy brazing sheet
JP5552181B2 (en) Aluminum alloy clad material
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP7265506B2 (en) Aluminum alloy clad material, member for heat exchanger, and method for manufacturing heat exchanger
JP6091806B2 (en) Aluminum alloy brazing sheet for ERW welded tube
JP5809720B2 (en) Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor
JPS6311598B2 (en)
JPH09176768A (en) Aluminum alloy clad material for heat exchanger excellent in alkaline corrosion resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140523

R150 Certificate of patent or registration of utility model

Ref document number: 5552181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees