JP2011068933A - Aluminum alloy clad material for heat exchanger - Google Patents

Aluminum alloy clad material for heat exchanger Download PDF

Info

Publication number
JP2011068933A
JP2011068933A JP2009219775A JP2009219775A JP2011068933A JP 2011068933 A JP2011068933 A JP 2011068933A JP 2009219775 A JP2009219775 A JP 2009219775A JP 2009219775 A JP2009219775 A JP 2009219775A JP 2011068933 A JP2011068933 A JP 2011068933A
Authority
JP
Japan
Prior art keywords
mass
core material
brazing
aluminum alloy
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009219775A
Other languages
Japanese (ja)
Inventor
Seiji Yoshida
誠司 吉田
Shinji Sakashita
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009219775A priority Critical patent/JP2011068933A/en
Publication of JP2011068933A publication Critical patent/JP2011068933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy clad material for heat exchanger which has high strength after brazing, and has excellent pitting corrosion resistance and brazability. <P>SOLUTION: The aluminum alloy clad material 1a for heat exchanger comprises: a core material 2; a sacrificial material 3 formed at one face side of the core material 2; and a brazing filler metal 4 made of an Al-Si based alloy which is formed on the other face side of the core material 2. The sacrificial material 3 comprises, by mass, 0.001 to 0.01% Ca and 2.0 to 10.0% Zn, and the balance Al with inevitable impurities, and the core material 2 comprises, by mass, 0.1 to 1.5% Si, 0.3 to 2.0% Mn, 0.1 to 1.0% Cu and 0.02 to 0.30% Ti, and the balance Al with inevitable impurities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車、各種産業機器等の熱交換器に使用されるアルミニウム合金クラッド材に関する。   The present invention relates to an aluminum alloy clad material used for heat exchangers of automobiles and various industrial equipment.

一般に、自動車用熱交換器に使用されるアルミニウム合金クラッド材には、芯材の片面および両面にろう材、犠牲材(芯材に対する犠牲防食材)を配したものが使用されている。現在、かかる熱交換器用アルミニウム合金クラッド材には、自動車の軽量化のため、高強度や高耐食性を持ちながらも、全板厚が0.3mm以下程度となるような薄肉化が求められている。   In general, an aluminum alloy clad material used for a heat exchanger for automobiles is one in which a brazing material and a sacrificial material (sacrificial anticorrosive material for the core material) are arranged on one and both sides of the core material. Currently, such aluminum alloy clad materials for heat exchangers are required to be thin so that the total plate thickness is about 0.3 mm or less while having high strength and high corrosion resistance in order to reduce the weight of automobiles. .

熱交換器用アルミニウム合金クラッド材におけるろう材は、熱交換器を製作するとき、クラッド材でチューブを製造する場合のろう付け接合のために、芯材にクラッドされるものである。また、犠牲材は、例えば、クラッド材で構成されたチューブの内部を流れる流体と接して犠牲陽極材として作用し、芯材の孔食や隙間腐食の発生を防止するものである。   The brazing material in the aluminum alloy clad material for heat exchanger is clad on the core material for brazing and joining in the case of producing a tube with the clad material when the heat exchanger is manufactured. In addition, the sacrificial material, for example, acts as a sacrificial anode material in contact with a fluid flowing inside a tube made of a clad material, and prevents pitting corrosion and crevice corrosion of the core material.

例えば、特許文献1には、犠牲材(犠牲陽極材)中のZn、Mn量をZn:1.0〜6.0質量%,Mn:0.2〜2.0質量%と規定し、犠牲材中のAl−Mn系金属間化合物の粒径や分布を制御することで、犠牲材の腐食電流値を低減して耐食性を高めた熱交換器用アルミニウム合金クラッド材(特許文献1では複合材)が開示されている。   For example, in Patent Document 1, the amounts of Zn and Mn in a sacrificial material (sacrificial anode material) are defined as Zn: 1.0 to 6.0% by mass, Mn: 0.2 to 2.0% by mass. Aluminum alloy clad material for heat exchangers with reduced corrosion current value of sacrificial material and improved corrosion resistance by controlling the particle size and distribution of Al-Mn intermetallic compound in the material (composite material in Patent Document 1) Is disclosed.

特開平11−61306号公報JP-A-11-61306

しかしながら、自動車用熱交換器においては、自動車の軽量化、小型化およびコストダウンのために、更なる軽量化が求められており、熱交換器用アルミニウム合金クラッド材においても軽量化、つまり薄肉化の要請がますます強まっている。そして、従来の熱交換器用アルミニウム合金クラッド材においては耐食性の改善が行われているものの、薄肉化により、今までに発生しなかった熱交換器として使用が不可能になってしまう孔あき(チューブ内面から外面に貫通する孔)が発生してしまうことがある。このように、熱交換器用アルミニウム合金クラッド材には、薄肉化対応のために、更なる高い耐食性が要望されている。また、熱交換器用アルミニウム合金クラッド材には、その加工のために優れたろう付け性等も合わせて要望されている。   However, in heat exchangers for automobiles, further weight reduction is required in order to reduce the weight, size and cost of automobiles, and aluminum alloy clad materials for heat exchangers are also reduced in weight, that is, thinner. Requests are getting stronger. Although the conventional aluminum alloy clad material for heat exchangers has improved corrosion resistance, it is not possible to use it as a heat exchanger that has not occurred so far due to thinning (tubes) (A hole penetrating from the inner surface to the outer surface) may occur. Thus, the aluminum alloy clad material for heat exchangers is required to have higher corrosion resistance in order to reduce the thickness. In addition, aluminum alloy clad materials for heat exchangers are also required to have excellent brazing properties for processing.

一般的に、熱交換器用アルミニウム合金クラッド材においては、その高強度化を目的とし、アルミニウム合金にMn、Fe、Si、Cuなどの合金元素が添加される。そして、このような熱交換器用アルミニウム合金クラッド材では、例えば、特許文献1のように、Al−Mn系の金属間化合物の制御のみでは、薄肉化により十分な耐食性を確保できない。特に、孔状の腐食(孔食)が形成されるような使用状況、たとえば、自動車のラジエータチューブなどに使用される際には、比較的短期間に孔あきが発生してしまう恐れがある。また、介在物の制御等が必要になり、生産も困難になってくる。   Generally, in an aluminum alloy clad material for a heat exchanger, alloy elements such as Mn, Fe, Si, and Cu are added to an aluminum alloy for the purpose of increasing the strength. In such an aluminum alloy clad material for a heat exchanger, for example, as in Patent Document 1, sufficient corrosion resistance cannot be ensured by thinning only by controlling an Al—Mn intermetallic compound. In particular, when used in a situation where pitting corrosion (pitting corrosion) is formed, for example, in a radiator tube of an automobile, there is a possibility that perforation may occur in a relatively short time. In addition, it becomes necessary to control the inclusions and the production becomes difficult.

そこで、本発明は、前記した問題に鑑みてなされたもので、その目的はろう付け後強度が高く、耐孔食性およびろう付け性に優れた熱交換器用アルミニウム合金クラッド材を提供することにある。   Accordingly, the present invention has been made in view of the above-described problems, and an object thereof is to provide an aluminum alloy clad material for a heat exchanger that has high strength after brazing and is excellent in pitting corrosion resistance and brazing property. .

前記課題を解決するための手段として、本発明に係る熱交換器用アルミニウム合金クラッド材(以下、適宜、「クラッド材」という)は、芯材と、前記芯材の一面側に形成された犠牲材と、前記芯材の他面側に形成されたAl−Si系合金からなるろう材とを備えた熱交換器用アルミニウム合金クラッド材であって、前記犠牲材が、Ca:0.001〜0.01質量%、Zn:2.0〜10.0質量%を含有し、残部がAlおよび不可避的不純物からなり、前記芯材が、Si:0.1〜1.5質量%、Mn:0.3〜2.0質量%、Cu:0.1〜1.0質量%、Ti:0.02〜0.30質量%を含有し、残部がAlおよび不可避的不純物からなることを特徴とする。   As means for solving the above problems, an aluminum alloy clad material for a heat exchanger according to the present invention (hereinafter referred to as “clad material” as appropriate) includes a core material and a sacrificial material formed on one surface side of the core material. And an aluminum alloy clad material for a heat exchanger comprising an Al—Si alloy brazing material formed on the other surface side of the core material, wherein the sacrificial material is Ca: 0.001 to. 01% by mass, Zn: 2.0-10.0% by mass, the balance is made of Al and inevitable impurities, and the core material is Si: 0.1-1.5% by mass, Mn: 0.00. It contains 3 to 2.0 mass%, Cu: 0.1 to 1.0 mass%, Ti: 0.02 to 0.30 mass%, and the balance is made of Al and inevitable impurities.

このような構成によれば、犠牲材がCa、Znを所定量含有し、芯材がSi、Mn、Cu、Tiを所定量含有することで、熱交換器用アルミニウム合金クラッド材の耐孔食性、ろう付け性が向上すると共に、ろう付け後強度が高くなる。   According to such a configuration, the sacrificial material contains a predetermined amount of Ca and Zn, and the core material contains a predetermined amount of Si, Mn, Cu, and Ti, so that the pitting corrosion resistance of the aluminum alloy clad material for heat exchangers, The brazing performance is improved and the strength after brazing is increased.

本発明に係る熱交換器用アルミニウム合金クラッド材は、前記犠牲材がさらに、Mn:0.3〜2.0質量%およびSi:0.1〜1.0質量%の少なくとも1種を含有することを特徴とする。
このような構成によれば、犠牲材がさらにMnおよびSiの少なくとも1種を所定量含有することで、犠牲材の強度が向上すると共に、耐孔食性が維持される。
In the aluminum alloy clad material for a heat exchanger according to the present invention, the sacrificial material further contains at least one of Mn: 0.3 to 2.0% by mass and Si: 0.1 to 1.0% by mass. It is characterized by.
According to such a configuration, the sacrificial material further contains a predetermined amount of at least one of Mn and Si, whereby the strength of the sacrificial material is improved and pitting corrosion resistance is maintained.

本発明に係る熱交換器用アルミニウム合金クラッド材は、前記犠牲材がさらに、Cr:0.01〜0.3質量%含有することを特徴とする。
このような構成によれば、犠牲材がさらにCrを所定量含有することで、犠牲材の耐孔食性が向上する。
The aluminum alloy clad material for a heat exchanger according to the present invention is characterized in that the sacrificial material further contains Cr: 0.01 to 0.3% by mass.
According to such a configuration, the sacrificial material further contains a predetermined amount of Cr, thereby improving the pitting corrosion resistance of the sacrificial material.

本発明に係る熱交換器用アルミニウム合金クラッド材は、前記芯材がさらに、Mg:0.05〜0.7質量%含有することを特徴とする。
このような構成によれば、芯材がさらにMgを所定量含有することで、MgSi化合物が形成され、芯材の強度が向上すると共に、ろう付け性が維持される。
The aluminum alloy clad material for a heat exchanger according to the present invention is characterized in that the core material further contains Mg: 0.05 to 0.7 mass%.
According to such a configuration, when the core material further contains a predetermined amount of Mg, an Mg 2 Si compound is formed, the strength of the core material is improved, and brazing properties are maintained.

本発明に係る熱交換器用アルミニウム合金クラッド材は、前記芯材と前記ろう材との間に、Mgを含有しないアルミニウム合金からなる中間材を設けたことを特徴とする。
このような構成によれば、芯材とろう材との間に中間材を設けたことで、芯材にMgが含有される場合には、Mgがろう材に熱拡散するのが抑制されるため、ろう付け性が維持される。
The aluminum alloy clad material for a heat exchanger according to the present invention is characterized in that an intermediate material made of an aluminum alloy not containing Mg is provided between the core material and the brazing material.
According to such a configuration, by providing the intermediate material between the core material and the brazing material, when Mg is contained in the core material, heat diffusion of Mg into the brazing material is suppressed. Therefore, brazability is maintained.

本発明に係る熱交換器用アルミニウム合金クラッド材によれば、ろう付け後強度が高くなり、耐孔食性およびろう付け性を向上させることができる。   According to the aluminum alloy clad material for a heat exchanger according to the present invention, the strength after brazing is increased, and the pitting corrosion resistance and the brazing property can be improved.

(a)、(b)は、本発明に係る熱交換器用アルミニウム合金クラッド材の構成を示す断面図である。(A), (b) is sectional drawing which shows the structure of the aluminum alloy clad material for heat exchangers which concerns on this invention.

本発明に係る熱交換器用アルミニウム合金クラッド材(以下、適宜、クラッド材という)の実施形態について、図面を参照して説明する。
図1(a)に示すように、クラッド材1aは、芯材2の一面側に犠牲材3を、芯材2の他面側にろう材4をクラッドして3層構造体としたものを基本構成とする。また、このクラッド材は、芯材の一面側の最表面に犠牲材3、他面側の最表面にろう材4が形成されていればよく、図1(b)に示すように、芯材2の一面側に犠牲材3と、芯材2の他面側に中間材5、ろう材4を形成した4層のクラッド材1bでもよい。さらに、図示しないが、犠牲材3、ろう材4、中間材5の層数を増やした5層以上のクラッド材でもよい。
An embodiment of an aluminum alloy clad material for a heat exchanger according to the present invention (hereinafter referred to as a clad material as appropriate) will be described with reference to the drawings.
As shown in FIG. 1A, a clad material 1a is a three-layer structure in which a sacrificial material 3 is clad on one surface side of a core material 2 and a brazing material 4 is clad on the other surface side of the core material 2. Basic configuration. The clad material only needs to have the sacrificial material 3 formed on the outermost surface on one side of the core material and the brazing material 4 formed on the outermost surface on the other surface side. As shown in FIG. A four-layer clad material 1b in which a sacrificial material 3 is formed on one surface side 2 and an intermediate material 5 and a brazing material 4 are formed on the other surface side of the core material 2 may be used. Further, although not shown, a clad material having five or more layers in which the number of layers of the sacrificial material 3, the brazing material 4, and the intermediate material 5 is increased may be used.

以下に、クラッド材1a、1bを構成する芯材2、犠牲材3、ろう材4および中間材5における合金成分の意義およびその数値限定理由について説明する。   Below, the significance of the alloy components in the core material 2, the sacrificial material 3, the brazing material 4 and the intermediate material 5 constituting the clad materials 1a and 1b and the reason for limiting the numerical values will be described.

《芯材》
芯材2は、Si:0.1〜1.5質量%、Mn:0.3〜2.0質量%、Cu:0.1〜1.0質量%、Ti:0.02〜0.30質量%を含有し、残部がAlおよび不可避的不純物からなる。
《Core material》
Core material 2 is Si: 0.1-1.5 mass%, Mn: 0.3-2.0 mass%, Cu: 0.1-1.0 mass%, Ti: 0.02-0.30 It contains mass%, and the balance consists of Al and inevitable impurities.

<Si:0.1〜1.5質量%>
Siは、芯材2の強度を向上させる効果がある。そして、芯材2がMgを含有する場合には、MgSiを形成し、強度をさらに向上させる効果がある。しかし、Siの含有量が0.1質量%未満では強度が向上せず、ろう付け後強度が不十分となる。一方、1.5質量%を超えて含有すると融点の低下を招き、ろう付け時に芯材2が溶融してしまう。従って、Siの含有量は0.1〜1.5質量%とする。なお、好ましくは0.5〜1.2質量%である。
<Si: 0.1 to 1.5% by mass>
Si has an effect of improving the strength of the core material 2. When the core material 2 contains Mg forms a Mg 2 Si, the effect of further improving the strength. However, when the Si content is less than 0.1% by mass, the strength is not improved, and the strength after brazing becomes insufficient. On the other hand, when it contains exceeding 1.5 mass%, the melting | fusing point will fall, and the core material 2 will fuse | melt at the time of brazing. Therefore, the Si content is 0.1 to 1.5 mass%. In addition, Preferably it is 0.5-1.2 mass%.

<Mn:0.3〜2.0質量%>
Mnは、芯材2の強度を向上させる効果がある。Mnは芯材2の中に固溶し、芯材2の強度を向上させる。しかし、Mnの含有量が0.3質量%未満では強度が向上せず、ろう付け後強度が不十分となる。一方、2.0質量%を超えて含有すると粗大な析出物を形成し加工性が低下し割れが発生するだけでなく、孔食が芯材2に達した際にはカソードサイトとして振る舞い、孔食(腐食)を促進してしまう。従って、Mnの含有量は0.3〜2.0質量%とする。なお、好ましくは0.5〜1.2質量%である。
<Mn: 0.3 to 2.0% by mass>
Mn has the effect of improving the strength of the core material 2. Mn dissolves in the core material 2 and improves the strength of the core material 2. However, if the Mn content is less than 0.3% by mass, the strength is not improved, and the strength after brazing becomes insufficient. On the other hand, if the content exceeds 2.0% by mass, coarse precipitates are formed, the workability is reduced and cracks are generated, and when pitting corrosion reaches the core material 2, it acts as a cathode site, It promotes food (corrosion). Therefore, the Mn content is set to 0.3 to 2.0 mass%. In addition, Preferably it is 0.5-1.2 mass%.

<Cu:0.1〜1.0質量%>
Cuは、芯材2の強度を向上させる効果がある。しかし、Cuの含有量が0.1質量%未満では犠牲材3に対する芯材2の電位差が十分に確保されず、孔食が芯材2に達すると孔食(腐食)が進展してしまう。一方、1.0質量%を超えて含有すると融点の低下を招き、ろう付け時に芯材2は溶融してしまう。従って、Cuの含有量は0.1〜1.0質量%とする。なお、好ましくは0.6〜1.0質量%である。
<Cu: 0.1 to 1.0% by mass>
Cu has the effect of improving the strength of the core material 2. However, when the Cu content is less than 0.1% by mass, the potential difference of the core material 2 with respect to the sacrificial material 3 is not sufficiently ensured, and when pitting corrosion reaches the core material 2, pitting corrosion (corrosion) develops. On the other hand, when it contains exceeding 1.0 mass%, the melting | fusing point will fall, and the core material 2 will fuse | melt at the time of brazing. Therefore, the Cu content is set to 0.1 to 1.0% by mass. In addition, Preferably it is 0.6-1.0 mass%.

<Ti:0.02〜0.30質量%>
Tiは、芯材2に層状に分布し、腐食形態を層状化するため耐食性を向上させる効果がある。しかし、Tiの含有量が0.02質量%未満では腐食形態が層状化する効果が発揮されない。一方、0.30質量%を超えて含有するとAl−Ti系の粗大な金属間化合物を生じて成形・加工時の割れの原因となる。従って、Tiの含有量は0.02〜0.30質量%とする。なお、好ましくは0.02〜0.20質量%である。
<Ti: 0.02-0.30 mass%>
Ti is distributed in a layered manner in the core material 2 and has an effect of improving the corrosion resistance because the corrosion form is layered. However, when the Ti content is less than 0.02% by mass, the effect of stratifying the corrosion form is not exhibited. On the other hand, if the content exceeds 0.30% by mass, a coarse Al-Ti intermetallic compound is produced, which causes cracks during molding and processing. Therefore, the Ti content is 0.02 to 0.30 mass%. In addition, Preferably it is 0.02-0.20 mass%.

<残部:Alおよび不可避的不純物>
芯材2は、残部がAlおよび不可避的不純物からなる。なお、不可避的不純物として、例えば、Zr、B、Feがあげられる。これら不可避的不純物は合計で0.5質量%まで含有していても、本発明の効果を妨げることはない。したがって、不可避的不純物の含有量の合計は0.5質量%まで許される。
<Balance: Al and inevitable impurities>
The remainder of the core material 2 is made of Al and inevitable impurities. Inevitable impurities include, for example, Zr, B, and Fe. Even if these inevitable impurities are contained up to 0.5% by mass in total, the effect of the present invention is not disturbed. Therefore, the total content of inevitable impurities is allowed up to 0.5% by mass.

芯材2は、前記組成に加えて、強度向上のために、Mg:0.05〜0.7質量%をさらに含有することが好ましい。   In addition to the above composition, the core material 2 preferably further contains Mg: 0.05 to 0.7% by mass in order to improve the strength.

<Mg:0.05〜0.7質量%>
Mgは、MgSiを形成し芯材2の強度を向上させる効果がある。しかし、Mgの含有量が0.05質量%未満では強度が向上せず、ろう付け後強度が不十分となる。一方、0.7質量%を超えて含有すると、一般的なフラックスを用いるろう付け(ノコロック法)時にフラックスの成分とMgが反応し、ろう付け性が低下しやすい。従って、Mgの含有量は0.05〜0.7質量%が好ましい。なお、より好ましくは0.1〜0.5質量%である。
<Mg: 0.05 to 0.7% by mass>
Mg has the effect of forming Mg 2 Si and improving the strength of the core material 2. However, when the Mg content is less than 0.05% by mass, the strength is not improved, and the strength after brazing becomes insufficient. On the other hand, if the content exceeds 0.7% by mass, the flux component and Mg react with each other during brazing using a general flux (Nocolok method), and the brazing property tends to be lowered. Therefore, the content of Mg is preferably 0.05 to 0.7% by mass. In addition, More preferably, it is 0.1-0.5 mass%.

《犠牲材》
犠牲材3は、Ca:0.001〜0.01質量%、Zn:2.0〜10.0質量%を含有し、残部がAlおよび不可避的不純物からなる。
《Sacrificial material》
The sacrificial material 3 contains Ca: 0.001 to 0.01% by mass, Zn: 2.0 to 10.0% by mass, and the balance is made of Al and inevitable impurities.

<Ca:0.001〜0.01質量%>
Caは、犠牲材3において発生する孔食起点のpH低下を抑制し、孔食進展を抑制させる効果がある。しかし、Caの含有量が0.001質量%未満では十分な耐孔食性は発現されない。一方、Caの含有量が0.01質量%を超えると圧延の際に割れが生じてしまう。従って、Caの含有量は0.001〜0.01質量%とする。なお、好ましくは0.005〜0.01質量%である。
<Ca: 0.001 to 0.01% by mass>
Ca has an effect of suppressing the pH reduction of the pitting corrosion starting point generated in the sacrificial material 3 and suppressing the progress of pitting corrosion. However, when the Ca content is less than 0.001% by mass, sufficient pitting corrosion resistance is not exhibited. On the other hand, if the Ca content exceeds 0.01% by mass, cracking occurs during rolling. Therefore, the Ca content is set to 0.001 to 0.01% by mass. In addition, Preferably it is 0.005-0.01 mass%.

<Zn:2.0〜10.0質量%>
Znは、犠牲陽極材である犠牲材3の電位を卑にし、芯材2に対する犠牲陽極効果を向上させ、芯材2に孔食が発生するのを抑制する効果がある。しかし、Znの含有量が2.0質量%未満では十分な犠牲陽極効果が得られず、粒界腐食も発生していき、耐孔食性(耐腐食性)が低下してしまう。一方、Znの含有量が10.0質量%を超えて含有するとクラッド圧延時に割れが発生するだけでなく、自己腐食性が増大する。従って、Znの含有量は2.0〜10.0質量%とする。なお、好ましくは4.0〜9.0質量%である。
<Zn: 2.0 to 10.0% by mass>
Zn has an effect of lowering the potential of the sacrificial material 3 which is a sacrificial anode material, improving the sacrificial anode effect on the core material 2, and suppressing the occurrence of pitting corrosion on the core material 2. However, if the Zn content is less than 2.0% by mass, sufficient sacrificial anode effect cannot be obtained, intergranular corrosion also occurs, and pitting corrosion resistance (corrosion resistance) decreases. On the other hand, if the Zn content exceeds 10.0% by mass, not only cracking occurs during clad rolling, but also self-corrosion properties increase. Therefore, the Zn content is set to 2.0 to 10.0% by mass. In addition, Preferably it is 4.0-9.0 mass%.

<残部:Alおよび不可避的不純物>
犠牲材3は、残部がAlおよび不可避的不純物からなる。なお、不可避的不純物として、たとえば、Ti、Zr、B、Feがあげられる。これら不可避的不純物は合計で0.5質量%まで含有していても、本発明の効果を妨げることはない。したがって、不可避的不純物の含有量の合計は0.5質量%まで許される。
<Balance: Al and inevitable impurities>
The remaining part of the sacrificial material 3 is made of Al and inevitable impurities. Inevitable impurities include, for example, Ti, Zr, B, and Fe. Even if these inevitable impurities are contained up to 0.5% by mass in total, the effect of the present invention is not disturbed. Therefore, the total content of inevitable impurities is allowed up to 0.5% by mass.

犠牲材3は、前記組成に加えて、Mn:0.3〜2.0質量%およびSi:0.1〜1.0質量%の少なくとも1種をさらに含有してもよい。   The sacrificial material 3 may further contain at least one of Mn: 0.3 to 2.0 mass% and Si: 0.1 to 1.0 mass% in addition to the above composition.

<Mn:0.3〜2.0質量%>
Mnは、犠牲材3の強度を向上させる効果がある。Mnは犠牲材3の中に固溶し、犠牲材3の強度を向上させる。しかし、Mnの含有量が0.3質量%未満では強度が向上せず割れが発生しやすい。一方、2.0質量%を超えて含有すると粗大な析出物を形成し、犠牲材3の中でカソードサイトとして振る舞い、孔食(腐食)を促進しやすい。従って、Mnの含有量は0.3〜2.0質量%が好ましい。なお、より好ましくは0.5〜1.2質量%である。
<Mn: 0.3 to 2.0% by mass>
Mn has the effect of improving the strength of the sacrificial material 3. Mn dissolves in the sacrificial material 3 and improves the strength of the sacrificial material 3. However, if the Mn content is less than 0.3% by mass, the strength is not improved and cracking is likely to occur. On the other hand, when the content exceeds 2.0% by mass, coarse precipitates are formed, behave as cathode sites in the sacrificial material 3, and facilitate pitting corrosion (corrosion). Therefore, the content of Mn is preferably 0.3 to 2.0% by mass. In addition, More preferably, it is 0.5-1.2 mass%.

<Si:0.1〜1.0質量%>
Siは、犠牲材3の強度を向上させる効果がある。しかし、Siの含有量が0.1質量%未満では強度が向上せず割れが発生しやすい。一方、Siの含有量が多いほうが犠牲材3の強度を向上させるが、Siの含有量が1.0質量%を超えて含有すると粗大な析出物を形成し、粒界腐食感受性が増大しやすい。従って、Siの含有量は0.1〜1.0質量%が好ましい。なお、より好ましくは0.1〜0.7質量%である。
<Si: 0.1 to 1.0% by mass>
Si has the effect of improving the strength of the sacrificial material 3. However, if the Si content is less than 0.1% by mass, the strength is not improved and cracking is likely to occur. On the other hand, when the Si content is higher, the strength of the sacrificial material 3 is improved. However, if the Si content exceeds 1.0% by mass, coarse precipitates are formed and the intergranular corrosion sensitivity is likely to increase. . Therefore, the content of Si is preferably 0.1 to 1.0% by mass. In addition, More preferably, it is 0.1-0.7 mass%.

犠牲材3は、前記組成に加えて、Cr:0.01〜0.3質量%をさらに含有してもよい。   In addition to the said composition, the sacrificial material 3 may further contain Cr: 0.01-0.3 mass%.

<Cr:0.01〜0.3質量%>
Crは、犠牲材3においてAlとの微細な析出物を形成し、微細なカソードサイトとして振舞う。Cr添加により微細分散した孔食起点のカソードサイトを増やし、深さ方向への腐食進展を抑制させる。しかし、Crの含有量が0.01質量%未満ではカソードサイトの分散が十分でなく、効果が発現しにくい。一方、Crの含有量が0.3質量%を超えて含有すると粗大な析出物を形成し、カソードサイトの分散が十分でなく、かえって耐孔食性を低下させやすい。従って、Crの含有量は0.01〜0.3質量%が好ましい。なお、より好ましくは0.05〜0.2質量%である。
<Cr: 0.01 to 0.3% by mass>
Cr forms fine precipitates with Al in the sacrificial material 3 and behaves as fine cathode sites. Increases the number of cathodic sites of pitting corrosion points finely dispersed by adding Cr and suppresses the progress of corrosion in the depth direction. However, when the Cr content is less than 0.01% by mass, the dispersion of the cathode sites is not sufficient, and the effect is hardly exhibited. On the other hand, when the Cr content exceeds 0.3% by mass, coarse precipitates are formed, and the cathode sites are not sufficiently dispersed, and the pitting corrosion resistance is liable to be lowered. Therefore, the Cr content is preferably 0.01 to 0.3% by mass. In addition, More preferably, it is 0.05-0.2 mass%.

《ろう材》
ろう材4は、Al−Si系合金からなり、Al−Si系合金としては、一般的なJIS合金、例えば4343合金、4045合金等が挙げられる。ここで、Al−Si系合金とは、Siの他に、Znを含有した合金も含むものである。すなわち、Al−Si系合金としては、Al−Si系合金、またはAl−Si−Zn系合金が挙げられる。また、Si、Znの他、例えば、Fe、Cu、Mn、Mg等を含有してもよい。
《Brazing material》
The brazing material 4 is made of an Al—Si based alloy, and examples of the Al—Si based alloy include general JIS alloys such as 4343 alloy and 4045 alloy. Here, the Al—Si based alloy includes an alloy containing Zn in addition to Si. That is, examples of the Al—Si based alloy include an Al—Si based alloy and an Al—Si—Zn based alloy. In addition to Si and Zn, for example, Fe, Cu, Mn, Mg, and the like may be contained.

Al−Si系合金は、不可避的不純物として、例えば、Ti、Zr、B、Feが含有されている。このような不可避的不純物を、例えば、Tiを0.05質量%以下、Zrを0.2質量%以下、Bを0.1質量%以下、Feを0.2質量%以下(いずれも0質量%を含まない)等の範囲で含有していても、本発明の効果を妨げるものではない。したがって、このような不可避的不純物の含有は許容される。なお、ろう材4において、このような不可避的不純物の含有量が合計で0.4質量%まで許容できる。   The Al—Si based alloy contains, for example, Ti, Zr, B, and Fe as inevitable impurities. Such inevitable impurities are, for example, Ti 0.05 mass% or less, Zr 0.2 mass% or less, B 0.1 mass% or less, Fe 0.2 mass% or less (both 0 mass) %) Does not hinder the effects of the present invention. Therefore, the inclusion of such inevitable impurities is allowed. In addition, in the brazing material 4, the content of such inevitable impurities can be tolerated up to 0.4% by mass.

図1(b)に示すように、本発明に係るクラッド材1bは、前記芯材2、犠牲材3およびろう材4を備え、芯材2とろう材4の間には、Mgを含有しないアルミニウム合金からなる中間材5を設けることが好ましい。このような中間材5を芯材2とろう材4との間に設けることにより、芯材2がMgを含有する場合には、芯材2に含有されるMgがろう材4に熱拡散するのを防ぐ効果があり、ろう付け性の低下を防ぐことができる。   As shown in FIG. 1B, the clad material 1b according to the present invention includes the core material 2, the sacrificial material 3 and the brazing material 4, and does not contain Mg between the core material 2 and the brazing material 4. It is preferable to provide an intermediate material 5 made of an aluminum alloy. By providing such an intermediate material 5 between the core material 2 and the brazing material 4, when the core material 2 contains Mg, the Mg contained in the core material 2 thermally diffuses into the brazing material 4. It has the effect of preventing the deterioration of brazing.

《中間材》
中間材5は、Mgを含有しないアルミニウム合金からなり、純AlやJIS規定の3000系合金(例えば、3003合金)等が好ましい。また、強度向上およびろう材4の電位差確保のために、Mgを含有しないアルミニウム合金に必要に応じてSi、Mn、Cu、Ti等を添加することができる。その組成例としては、Al−1質量%Si−1質量%Cu−1.6質量%Mnなどが挙げられる。こうような中間材5によって、芯材2のMgのろう材4への熱拡散を防止することができる。また、添加元素により、ろう材4よりも電位を貴に保つことができ、芯材2の孔食(腐食)を防止することができる。
《Intermediate material》
The intermediate material 5 is made of an aluminum alloy that does not contain Mg, and is preferably pure Al or a JIS-defined 3000 series alloy (for example, 3003 alloy). Moreover, Si, Mn, Cu, Ti, etc. can be added to the aluminum alloy which does not contain Mg as needed in order to improve the strength and secure the potential difference of the brazing material 4. Examples of the composition include Al-1 mass% Si-1 mass% Cu-1.6 mass% Mn. Such an intermediate material 5 can prevent thermal diffusion of the core material 2 to the brazing material 4 of Mg. Further, the additive element can keep the potential more noble than the brazing material 4 and can prevent pitting corrosion (corrosion) of the core material 2.

Mgを含有しないアルミニウム合金は、不可避的不純物として、例えば、Zr、B、Feが含有されている。このような不可避的不純物を、例えば、Zrを0.2質量%以下、Bを0.1質量%以下、Feを0.2質量%以下(いずれも0質量%を含まない)等の範囲で含有していても、本発明の効果を妨げるものではない。したがって、このような不可避的不純物の含有は許容される。なお、中間材5において、このような不可避的不純物の含有量が合計で0.4質量%まで許容できる。   An aluminum alloy not containing Mg contains, for example, Zr, B, and Fe as inevitable impurities. Such inevitable impurities are, for example, in the range of Zr of 0.2% by mass or less, B of 0.1% by mass or less, Fe of 0.2% by mass or less (all not including 0% by mass), etc. Even if it contains, the effect of this invention is not disturbed. Therefore, the inclusion of such inevitable impurities is allowed. In addition, in the intermediate material 5, content of such inevitable impurities can be tolerated up to 0.4% by mass.

本発明に係るクラッド材1a(1b)は、例えば、以下のような製造方法により製造できる。
まず、芯材用アルミニウム合金、犠牲材用アルミニウム合金およびろう材用アルミニウム合金を連続鋳造により溶解、造塊、鋳造して鋳塊を製造し、必要に応じて面削および均質化熱処理をおこなって、芯材用鋳塊、犠牲材用鋳塊およびろう材用鋳塊を製造する。各々の鋳塊は、それぞれ所望の厚さに熱間圧延して、または、それぞれ所望の厚さに機械的にスライスして、芯材用部材、犠牲材用部材およびろう材用部材とする。中間材を設ける場合には、前記と同様に中間材用部材を製造する。
The clad material 1a (1b) according to the present invention can be manufactured, for example, by the following manufacturing method.
First, an aluminum alloy for the core material, an aluminum alloy for the sacrificial material, and an aluminum alloy for the brazing material are melted, ingot, and cast by continuous casting to produce an ingot, and face grinding and homogenization heat treatment are performed as necessary. The core ingot, the sacrificial ingot and the brazing ingot are produced. Each ingot is hot-rolled to a desired thickness or mechanically sliced to a desired thickness to form a core member, a sacrificial member, and a brazing member. When providing the intermediate material, the intermediate material member is manufactured in the same manner as described above.

次に、芯材用部材の一面側に犠牲材用部材、その他面側にろう材用部材(必要に応じて、中間材用部材)を重ね合わせ、この重ね合わせたものに熱処理(再加熱)を行い、熱間圧延により圧着する。その後、冷間圧延、中間焼鈍を行い、さらに冷間圧延を行う。なお、その後、仕上げ焼鈍をしても構わない。   Next, a sacrificial material member is superposed on one surface side of the core member, and a brazing material member (intermediate material member if necessary) is superposed on the other surface side, and heat treatment (reheating) is performed on the superposed material. And crimping by hot rolling. Thereafter, cold rolling and intermediate annealing are performed, and further cold rolling is performed. After that, finish annealing may be performed.

なお、クラッド材1a(1b)を製造するにあたり、前記工程に悪影響を与えない範囲においては、各工程の間や前後に、たとえば、ゆがみ矯正処理等のほかの工程を含めても構わない。   In manufacturing the clad material 1a (1b), other processes such as a distortion correction process may be included before and after each process as long as the process is not adversely affected.

次に、熱交換器用アルミニウム合金クラッド材について、本発明の要件をみたす実施例と、満たさない比較例とを比較して具体的に説明する。   Next, an aluminum alloy clad material for a heat exchanger will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirement.

《供試材の製造》
表1のような化学組成を有する犠牲材用のアルミニウム合金を連続鋳造により、溶解、造塊し、700〜760℃の鋳造温度にて鋳造して鋳塊を製造したあと、550℃(6時間以下)で均質化処理を行った後、400℃以上で熱間圧延して犠牲材用部材を製造した。
<Manufacture of test materials>
An aluminum alloy for a sacrificial material having a chemical composition as shown in Table 1 was melted and formed by continuous casting, and cast at a casting temperature of 700 to 760 ° C. to produce an ingot, and then 550 ° C. (6 hours) The material for sacrificial material was manufactured by hot rolling at 400 ° C. or higher.

また、表2のような化学組成を有する芯材用のアルミニウム合金を連続鋳造により、溶解、造塊し、700℃の鋳造温度にて鋳造して鋳塊を製造したあと、530℃(6時間以下)で均質化処理を行った後、熱間圧延して芯材用部材を製造した。   Further, an aluminum alloy for a core material having a chemical composition as shown in Table 2 was melted and formed by continuous casting, and cast at a casting temperature of 700 ° C. to produce an ingot, and then 530 ° C. (6 hours) In the following, a homogenization treatment was performed, followed by hot rolling to produce a core member.

さらに、表4のような化学組成を有する中間材用のアルミニウム合金を、芯材用部材と同様にして中間材用部材を製造した。   Further, an intermediate material member having the chemical composition shown in Table 4 was produced in the same manner as the core material member.

そして、Al−11質量%Si合金のろう材用アルミニウム合金を、一般的な条件の下で鋳造し、均質化処理したあと、熱間圧延することにより、ろう材用部材を製造した。   And the aluminum alloy for brazing | wax materials of Al-11 mass% Si alloy was cast on general conditions, and after homogenizing, the member for brazing | wax materials was manufactured by hot-rolling.

製造した芯材用部材の一面側に犠牲材用部材を重ね、その他面側にろう材用部材を重ねて、400〜550℃にて熱間圧延、その後冷間圧延、中間焼鈍を行い、さらに冷間圧延して、表3に示すNo.1〜24のクラッド材を製造した。なお、クラッド材の板厚は0.25mm、犠牲材の板厚は0.03mm、芯材の板厚0.19mmとした。   A sacrificial material member is stacked on one surface side of the manufactured core material member, a brazing material member is stacked on the other surface side, hot rolling is performed at 400 to 550 ° C., and then cold rolling and intermediate annealing are performed. Cold-rolled, No. shown in Table 3 1 to 24 clad materials were produced. The clad material thickness was 0.25 mm, the sacrificial material thickness was 0.03 mm, and the core material thickness was 0.19 mm.

同様に、芯材用部材の一面側に犠牲材用部材を重ね、その他面側にろう材用部材および中間材用部材を重ねて、400〜550℃にて熱間圧延、その後冷間圧延して表5に示すNo.25〜30の中間材を含むクラッド材を製造した。なお、クラッド材の板厚は0.30mm、犠牲材の板厚は0.03mm、芯材の板厚は0.19mm、中間材の板厚は0.05mmとした。   Similarly, a sacrificial material member is stacked on one surface side of the core material member, a brazing material member and an intermediate material member are stacked on the other surface side, hot rolled at 400 to 550 ° C., and then cold rolled. No. shown in Table 5 A clad material containing 25-30 intermediate materials was produced. The clad material thickness was 0.30 mm, the sacrificial material thickness was 0.03 mm, the core material thickness was 0.19 mm, and the intermediate material thickness was 0.05 mm.

このようにして製造したクラッド材について、以下のような手順でろう付け後の引張り強さ(ろう付け後強度)、ろう付け性および耐孔食性の評価を行った。
〈ろう付け後の引張り強さ〉
ろう付け後の引張り強さは、引張り試験により破断する強さによって評価した。N雰囲気中に600℃×3分の条件にて加熱後(ろう付け後)、圧延方向に平行な方向に試験片を切り出し、引張り試験を行った。ろう付け後の引っ張り強さが160MPa未満を不良(××)、160MPa以上180MPa未満をやや不良(×)、180MPa以上を良好(○)と評価した。その結果を表3および表5に示す。
The clad material thus produced was evaluated for tensile strength after brazing (strength after brazing), brazing property and pitting corrosion resistance by the following procedure.
<Tensile strength after brazing>
The tensile strength after brazing was evaluated based on the strength to break by a tensile test. After heating at 600 ° C. for 3 minutes in an N 2 atmosphere (after brazing), a test piece was cut out in a direction parallel to the rolling direction, and a tensile test was performed. The tensile strength after brazing was evaluated as poor (XX) when the tensile strength was less than 160 MPa, slightly poor (X) when 160 MPa or more and less than 180 MPa, and good (◯) when 180 MPa or more. The results are shown in Table 3 and Table 5.

〈ろう付け性〉
ろう付け性の評価は、すきま充填試験法(アルミニウムブレージングハンドブック(平成4年1月発行)、軽金属構造溶接協会、133頁に記載の「すきま充填試験法」参照)にて、すきま充填長さを計測し、ろう付け性として評価した。上板にクラッド材、下板にアルミ材(3003合金、板厚は1.0mm)を用い、1.0mmφのスペーサを用いた。フッ化物系フラックスを上板クラッド材のろう材面に5g/m塗布し、窒素雰囲気下で600℃×5分保持のろう付試験を行った。すきま充填長さが20mm以下を不良(×)、20mm超えるものを良好(○)として評価した。その結果を表3および表5に示す。
<Brassability>
Brazeability is evaluated by the clearance filling test method (see Aluminum Brazing Handbook (published in January 1992), Light Metal Structural Welding Association, “Clearance Filling Test Method” on page 133). Measured and evaluated as brazeability. A clad material was used for the upper plate, an aluminum material (3003 alloy, plate thickness was 1.0 mm) for the lower plate, and a 1.0 mmφ spacer was used. Fluoride-based flux was applied to the brazing filler metal surface of the upper clad material at a rate of 5 g / m 2 and a brazing test was held at 600 ° C. for 5 minutes in a nitrogen atmosphere. A clearance filling length of 20 mm or less was evaluated as defective (×), and a clearance filling length exceeding 20 mm was evaluated as good (◯). The results are shown in Table 3 and Table 5.

〈耐孔食性〉
耐孔食性の評価は、最大孔食深さを測定することにより行った。最大孔食深さは、以下のようにして測定した。クラッド材を縦幅50mmおよび横幅50mmの寸法で切り出し、冷却水模擬液としてのOY水(Cl:195質量ppm、SO 2−:60質量ppm、Cu2+:1質量ppm、Fe3+:30質量ppm、pH:3.0)に浸漬し、88℃で8時間保持(室温から88℃への加熱時間を含む)した後、室温で16時間保持(88℃から室温への自然冷却時間を含む)するサイクルの浸漬試験を1ヶ月間行い、試験後の犠牲材側の腐食深さ(最大孔食深さ)を測定した。
<Pitting corrosion resistance>
Evaluation of pitting corrosion resistance was performed by measuring the maximum pitting corrosion depth. The maximum pitting depth was measured as follows. The clad material was cut out with dimensions of 50 mm in length and 50 mm in width, and OY water (Cl : 195 mass ppm, SO 4 2− : 60 mass ppm, Cu 2+ : 1 mass ppm, Fe 3+ : 30 as a cooling water simulation liquid). Immersion in mass ppm, pH: 3.0) and hold at 88 ° C for 8 hours (including heating time from room temperature to 88 ° C), then hold at room temperature for 16 hours (natural cooling time from 88 ° C to room temperature) The immersion test of the cycle to be included was performed for one month, and the corrosion depth (maximum pitting corrosion depth) on the sacrificial material side after the test was measured.

最大孔食深さの測定は、前記浸漬試験後のサンプルの表面に生じた腐食生成物を除去した後、各クラッド材に生じた孔食深さを焦点深度法で50点/枚測定し、測定した50点のうち、最も深い孔食を最大孔食深さとした。最大孔食深さが、40μm以下の場合には耐孔食性が良好、40μmを超える場合には耐孔食性が不良と評価した。その結果を表3および表5に示す。   The maximum pitting depth is measured by removing the corrosion products generated on the surface of the sample after the immersion test, and then measuring the pitting depth generated in each clad material at 50 points / sheet by the focal depth method. Of the 50 points measured, the deepest pitting corrosion was taken as the maximum pitting corrosion depth. When the maximum pitting corrosion depth was 40 μm or less, pitting corrosion resistance was good, and when it exceeded 40 μm, pitting corrosion resistance was evaluated as poor. The results are shown in Table 3 and Table 5.

Figure 2011068933
Figure 2011068933

Figure 2011068933
Figure 2011068933

Figure 2011068933
Figure 2011068933

Figure 2011068933
Figure 2011068933

Figure 2011068933
Figure 2011068933

表3に示すように、実施例(No.1〜16)は、本発明の要件を満たしているため、ろう付け後強度が高くなり、ろう付け性および耐孔食性が優れていた。   As shown in Table 3, since Examples (Nos. 1 to 16) satisfy the requirements of the present invention, the strength after brazing was high, and the brazing property and pitting corrosion resistance were excellent.

一方、比較例(No.17)は、犠牲材中のMnが少ないため割れが発生し、そして、芯材中のSi、MnおよびMgが少ないため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のCaおよびZnが少なく、Crが多いため、孔食が進展し耐孔食性が劣っていた。   On the other hand, in Comparative Example (No. 17), cracks occurred because there was little Mn in the sacrificial material, and because there were few Si, Mn, and Mg in the core material, the strength after brazing was low, and fracture occurred at less than 160 MPa. did. Moreover, since there was much Cu in a core material, the core material melted and could not be brazed. Furthermore, pitting corrosion progressed and pitting corrosion resistance was inferior because Ca and Zn in the sacrificial material were small and Cr was large.

比較例(No.18)は、犠牲材中のMnが少ないため割れが発生し、そして、芯材中のMnおよびTiが多く、Mgが少ないため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のCaおよびZnが少なく、Crが多い、そして、芯材中のMnも多いため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 18), cracks occurred because there was little Mn in the sacrificial material, and there was much Mn and Ti in the core material, and there was little Mg, so the strength after brazing was low, and fracture occurred at less than 160 MPa. did. Moreover, since there was much Cu in a core material, the core material melted and could not be brazed. Furthermore, pitting corrosion progressed and pitting corrosion resistance was inferior because Ca and Zn in the sacrificial material were low, Cr was high, and Mn was high in the core material.

比較例(No.19)は、犠牲材中のCaが多く、Siが少ないため割れが発生し、そして、芯材中にMgを含まず、Mnも少ないため、ろう付け後強度が低く、160MPa以上180MPa未満で破断した。また、芯材中のSiが多いため、ろう付け性が劣っていた。さらに、犠牲材中にZnを含まず、Mnが多い、そして、芯材中のCuおよびTiが少ないため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 19), cracks occur because there is a lot of Ca in the sacrificial material and a small amount of Si, and since the core material does not contain Mg and has little Mn, the strength after brazing is low, and 160 MPa. The fracture occurred at less than 180 MPa. Moreover, since there was much Si in a core material, brazability was inferior. Furthermore, since the sacrificial material does not contain Zn, the amount of Mn is large, and the amount of Cu and Ti in the core material is small, the pitting corrosion progresses and the pitting corrosion resistance is poor.

比較例(No.20)は、犠牲材中のCaが多く、Siが少ないため割れが発生し、そして、芯材中のMnが多いため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuおよびMgが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中にZnを含まず、Mnも多い、そして、芯材中のMnが多いため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 20), cracks occurred because there was a lot of Ca in the sacrificial material and a small amount of Si, and because there was a lot of Mn in the core material, the strength after brazing was low, and fracture occurred at less than 160 MPa. Moreover, since there was much Cu and Mg in a core material, the core material melt | dissolved and it could not be brazed. Furthermore, since the sacrificial material does not contain Zn, the amount of Mn is large, and the amount of Mn in the core material is large, pitting corrosion progresses and pitting corrosion resistance is poor.

比較例(No.21)は、犠牲材中のMnが少ないため割れが発生し、そして、芯材中にMgを含まず、Mnも少ないため、ろう付け後強度が低く、160MPa以上180MPa未満で破断した。また、芯材中のSiが多いため、ろう付け性が劣っていた。さらに、犠牲材中のZnが少なく、SiおよびCrが多い、そして、芯材中のCuおよびTiが少ないため、孔食が進展し耐孔食性が劣っていた。   In Comparative Example (No. 21), cracks occur because there is little Mn in the sacrificial material, and since the core material does not contain Mg and there is also little Mn, the strength after brazing is low, 160 MPa or more and less than 180 MPa. It broke. Moreover, since there was much Si in a core material, brazability was inferior. Furthermore, pitting corrosion progressed and pitting corrosion resistance was inferior because Zn in the sacrificial material was small, Si and Cr were large, and Cu and Ti in the core material were small.

比較例(No.22)は、犠牲材中のMnが少ないため割れが発生し、そして、芯材中のMnおよびTiが多く、Mgが少ないため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のZnが少なく、SiおよびCrが多い、そして、芯材中のMnが多いため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 22), cracks occurred because there was little Mn in the sacrificial material, and there was much Mn and Ti in the core material, and there was little Mg, so the strength after brazing was low, and fracture occurred at less than 160 MPa. did. Moreover, since there was much Cu in a core material, the core material melted and could not be brazed. Furthermore, since the Zn in the sacrificial material is small, the amount of Si and Cr is large, and the amount of Mn in the core material is large, pitting corrosion progresses and pitting corrosion resistance is inferior.

比較例(No.23)は、犠牲材中のCaおよびZnが多いため割れが発生し、そして、芯材中のSi、MnおよびMgが少ないため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のZnおよびSiが多く、Crが少ないため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 23), cracks occurred due to the large amount of Ca and Zn in the sacrificial material, and the strength after brazing was low due to the small amount of Si, Mn, and Mg in the core material. did. Moreover, since there was much Cu in a core material, the core material melted and could not be brazed. Furthermore, since there were many Zn and Si in a sacrificial material, and there were few Cr, pitting corrosion progressed and pitting corrosion resistance was inferior.

比較例(No.24)は、犠牲材中のCaおよびZnが多いため割れが発生し、そして、芯材中のMnが多いため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuおよびMgが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のZnおよびSiが多く、Crが少ない、そして、芯材中のMnが多いため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 24), cracks occurred due to the large amount of Ca and Zn in the sacrificial material, and the strength after brazing was low because of the large amount of Mn in the core material, and fractured at less than 160 MPa. Moreover, since there was much Cu and Mg in a core material, the core material melt | dissolved and it could not be brazed. Furthermore, since there were a lot of Zn and Si in the sacrificial material, a small amount of Cr, and a large amount of Mn in the core material, pitting corrosion progressed and pitting corrosion resistance was poor.

表5に示すように、実施例(No.25〜28)は、本発明の要件を満たしているため、ろう付け後強度が高くなり、ろう付け性および耐孔食性が優れていた。   As shown in Table 5, since the examples (Nos. 25 to 28) satisfy the requirements of the present invention, the strength after brazing was high, and the brazing property and pitting corrosion resistance were excellent.

一方、比較例(No.29)は、犠牲材中のMnが少ないため割れが発生し、そして、芯材中のSi、MnおよびMgが少ないため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のCaおよびZnが少なく、Crが多いため、孔食が進展し耐孔食性が劣っていた。   On the other hand, in Comparative Example (No. 29), cracks occurred because there was little Mn in the sacrificial material, and because there were few Si, Mn and Mg in the core material, the strength after brazing was low, and fracture occurred at less than 160 MPa. did. Moreover, since there was much Cu in a core material, the core material melted and could not be brazed. Furthermore, pitting corrosion progressed and pitting corrosion resistance was inferior because Ca and Zn in the sacrificial material were small and Cr was large.

比較例(No.30)は、犠牲材中のCaおよびZnが多いため割れが発生し、そして、芯材中のSi、MnおよびMgが少ないため、ろう付け後強度が低く、160MPa未満で破断した。また、芯材中のCuが多いため、芯材が溶融しろう付けできなかった。さらに、犠牲材中のZnおよびSiが多く、Crが少ないため、孔食が進展し耐孔食性が劣っていた。   In the comparative example (No. 30), cracks occurred due to the large amount of Ca and Zn in the sacrificial material, and the strength after brazing was low due to the small amount of Si, Mn and Mg in the core material, and fractured at less than 160 MPa. did. Moreover, since there was much Cu in a core material, the core material melted and could not be brazed. Furthermore, since there were many Zn and Si in a sacrificial material, and there were few Cr, pitting corrosion progressed and pitting corrosion resistance was inferior.

1a、1b クラッド材
2 芯材
3 犠牲材
4 ろう材
5 中間材
1a, 1b Clad material 2 Core material 3 Sacrificial material 4 Brazing material 5 Intermediate material

Claims (5)

芯材と、前記芯材の一面側に形成された犠牲材と、前記芯材の他面側に形成されたAl−Si系合金からなるろう材とを備えた熱交換器用アルミニウム合金クラッド材であって、
前記犠牲材が、Ca:0.001〜0.01質量%、Zn:2.0〜10.0質量%を含有し、残部がAlおよび不可避的不純物からなり、
前記芯材が、Si:0.1〜1.5質量%、Mn:0.3〜2.0質量%、Cu:0.1〜1.0質量%、Ti:0.02〜0.30質量%を含有し、残部がAlおよび不可避的不純物からなることを特徴とする熱交換器用アルミニウム合金クラッド材。
An aluminum alloy clad material for a heat exchanger, comprising: a core material; a sacrificial material formed on one surface side of the core material; and a brazing material made of an Al-Si alloy formed on the other surface side of the core material. There,
The sacrificial material contains Ca: 0.001 to 0.01% by mass, Zn: 2.0 to 10.0% by mass, and the balance is made of Al and inevitable impurities.
The core material is Si: 0.1 to 1.5 mass%, Mn: 0.3 to 2.0 mass%, Cu: 0.1 to 1.0 mass%, Ti: 0.02 to 0.30. An aluminum alloy clad material for a heat exchanger, comprising: mass%, the balance being made of Al and inevitable impurities.
前記犠牲材がさらに、Mn:0.3〜2.0質量%およびSi:0.1〜1.0質量%の少なくとも1種を含有することを特徴とする請求項1に記載の熱交換器用アルミニウム合金クラッド材。   2. The heat exchanger according to claim 1, wherein the sacrificial material further contains at least one of Mn: 0.3 to 2.0 mass% and Si: 0.1 to 1.0 mass%. Aluminum alloy clad material. 前記犠牲材がさらに、Cr:0.01〜0.3質量%含有することを特徴とする請求項1または請求項2に記載の熱交換器用アルミニウム合金クラッド材。   The said sacrificial material contains Cr: 0.01-0.3 mass% further, The aluminum alloy clad material for heat exchangers of Claim 1 or Claim 2 characterized by the above-mentioned. 前記芯材がさらに、Mg:0.05〜0.7質量%含有することを特徴とする請求項1ないし請求項3のいずれか一項に記載の熱交換器用アルミニウム合金クラッド材。   The aluminum alloy clad material for a heat exchanger according to any one of claims 1 to 3, wherein the core material further contains Mg: 0.05 to 0.7 mass%. 前記芯材と前記ろう材との間に、Mgを含有しないアルミニウム合金からなる中間材を設けたことを特徴とする請求項1ないし請求項4のいずれか一項に記載の熱交換器用アルミニウム合金クラッド材。   The aluminum alloy for a heat exchanger according to any one of claims 1 to 4, wherein an intermediate material made of an aluminum alloy not containing Mg is provided between the core material and the brazing material. Clad material.
JP2009219775A 2009-09-24 2009-09-24 Aluminum alloy clad material for heat exchanger Pending JP2011068933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219775A JP2011068933A (en) 2009-09-24 2009-09-24 Aluminum alloy clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219775A JP2011068933A (en) 2009-09-24 2009-09-24 Aluminum alloy clad material for heat exchanger

Publications (1)

Publication Number Publication Date
JP2011068933A true JP2011068933A (en) 2011-04-07

Family

ID=44014469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219775A Pending JP2011068933A (en) 2009-09-24 2009-09-24 Aluminum alloy clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP2011068933A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014076949A1 (en) * 2012-11-14 2017-01-05 パナソニック株式会社 Al alloy pipe joined body and heat exchanger using the same
CN107406922A (en) * 2015-03-17 2017-11-28 株式会社神户制钢所 Aluminum alloy brazing sheet
JP2017538869A (en) * 2014-10-13 2017-12-28 アーコニック インコーポレイテッドArconic Inc. Brazing sheet
US10286496B2 (en) 2014-03-28 2019-05-14 Kobe Steel, Ltd. Brazing sheet formed of aluminum alloy
US10293428B2 (en) 2013-06-26 2019-05-21 Arconic Inc. Resistance welding fastener, apparatus and methods
WO2021157500A1 (en) * 2020-02-04 2021-08-12 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP2021123793A (en) * 2020-02-04 2021-08-30 株式会社神戸製鋼所 Aluminum alloy brazing sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100115A (en) * 1977-02-14 1978-09-01 Nippon Boshoku Kogyo Kk Aluminum alloy for galvanic anode
JPS5641347A (en) * 1979-09-13 1981-04-18 Furukawa Alum Co Ltd Aluminum alloy clad for vacuum brazing
JPH08143997A (en) * 1994-11-22 1996-06-04 Furukawa Electric Co Ltd:The Aluminum alloy fin material for low temperature brazing and brazing sheet, and production of heat exchanger made of aluminum alloy, and heat exchanger made of aluminum alloy
JPH1161307A (en) * 1997-08-14 1999-03-05 Sumikou Boshoku Kk Aluminum alloy for galvanic anode
JPH1180871A (en) * 1997-09-08 1999-03-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance
JP2000202680A (en) * 1999-01-11 2000-07-25 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP2002206129A (en) * 2000-12-28 2002-07-26 Shinko Alcoa Yuso Kizai Kk Highly corrosion resistant brazing sheet
JP2009155709A (en) * 2007-12-27 2009-07-16 Kobe Steel Ltd Aluminum alloy cladding material for heat exchanger, and its manufacturing method
JP2009161827A (en) * 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd Brazing sheet for tube material of heat exchanger, and method for producing heat exchanger using the same
JP2009191351A (en) * 2008-02-18 2009-08-27 Kobe Steel Ltd Aluminum alloy-clad material for heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100115A (en) * 1977-02-14 1978-09-01 Nippon Boshoku Kogyo Kk Aluminum alloy for galvanic anode
JPS5641347A (en) * 1979-09-13 1981-04-18 Furukawa Alum Co Ltd Aluminum alloy clad for vacuum brazing
JPH08143997A (en) * 1994-11-22 1996-06-04 Furukawa Electric Co Ltd:The Aluminum alloy fin material for low temperature brazing and brazing sheet, and production of heat exchanger made of aluminum alloy, and heat exchanger made of aluminum alloy
JPH1161307A (en) * 1997-08-14 1999-03-05 Sumikou Boshoku Kk Aluminum alloy for galvanic anode
JPH1180871A (en) * 1997-09-08 1999-03-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance
JP2000202680A (en) * 1999-01-11 2000-07-25 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP2002206129A (en) * 2000-12-28 2002-07-26 Shinko Alcoa Yuso Kizai Kk Highly corrosion resistant brazing sheet
JP2009155709A (en) * 2007-12-27 2009-07-16 Kobe Steel Ltd Aluminum alloy cladding material for heat exchanger, and its manufacturing method
JP2009161827A (en) * 2008-01-09 2009-07-23 Sumitomo Light Metal Ind Ltd Brazing sheet for tube material of heat exchanger, and method for producing heat exchanger using the same
JP2009191351A (en) * 2008-02-18 2009-08-27 Kobe Steel Ltd Aluminum alloy-clad material for heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014076949A1 (en) * 2012-11-14 2017-01-05 パナソニック株式会社 Al alloy pipe joined body and heat exchanger using the same
US10293428B2 (en) 2013-06-26 2019-05-21 Arconic Inc. Resistance welding fastener, apparatus and methods
US10286496B2 (en) 2014-03-28 2019-05-14 Kobe Steel, Ltd. Brazing sheet formed of aluminum alloy
JP2017538869A (en) * 2014-10-13 2017-12-28 アーコニック インコーポレイテッドArconic Inc. Brazing sheet
CN107406922A (en) * 2015-03-17 2017-11-28 株式会社神户制钢所 Aluminum alloy brazing sheet
WO2021157500A1 (en) * 2020-02-04 2021-08-12 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP2021123793A (en) * 2020-02-04 2021-08-30 株式会社神戸製鋼所 Aluminum alloy brazing sheet
CN115038805A (en) * 2020-02-04 2022-09-09 株式会社神户制钢所 Aluminum alloy brazing sheet
JP7328194B2 (en) 2020-02-04 2023-08-16 株式会社神戸製鋼所 aluminum alloy brazing sheet
US11969830B2 (en) 2020-02-04 2024-04-30 Kobe Steel, Ltd. Aluminum alloy brazing sheet

Similar Documents

Publication Publication Date Title
JP5466409B2 (en) Aluminum alloy clad material for heat exchanger
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP2009155709A (en) Aluminum alloy cladding material for heat exchanger, and its manufacturing method
JP2008246525A (en) Brazing sheet made of aluminum alloy and its manufacturing method
JP6228500B2 (en) Aluminum alloy brazing sheet
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
JP6286335B2 (en) Aluminum alloy brazing sheet
JP2008240084A (en) Aluminum alloy-clad material for heat exchanger and brazing sheet
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
KR102580546B1 (en) Aluminum alloy brazed sheet for heat exchanger
JP2010168613A (en) Single-layer brazing sheet for heat exchanger, and heat exchanger using the same
JP2005232506A (en) Aluminum alloy clad material for heat exchanger
WO2017169633A1 (en) Aluminum alloy brazing sheet
KR102586594B1 (en) Aluminum alloy brazed sheet for heat exchanger
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2016003356A (en) Heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2020070498A (en) Aluminum alloy brazing sheet and production method thereof
JPWO2020085488A1 (en) Aluminum alloy brazing sheet and its manufacturing method
JP2005298913A (en) Brazing sheet and heat exchanger
JP5650305B2 (en) Aluminum alloy clad material for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617