JP5180565B2 - Aluminum alloy brazing sheet for heat exchanger - Google Patents

Aluminum alloy brazing sheet for heat exchanger Download PDF

Info

Publication number
JP5180565B2
JP5180565B2 JP2007307291A JP2007307291A JP5180565B2 JP 5180565 B2 JP5180565 B2 JP 5180565B2 JP 2007307291 A JP2007307291 A JP 2007307291A JP 2007307291 A JP2007307291 A JP 2007307291A JP 5180565 B2 JP5180565 B2 JP 5180565B2
Authority
JP
Japan
Prior art keywords
brazing
mass
layer
sacrificial anode
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307291A
Other languages
Japanese (ja)
Other versions
JP2009127121A (en
Inventor
克浩 松門
招弘 鶴野
良則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007307291A priority Critical patent/JP5180565B2/en
Publication of JP2009127121A publication Critical patent/JP2009127121A/en
Application granted granted Critical
Publication of JP5180565B2 publication Critical patent/JP5180565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、自動車用の熱交換器等に使用されるブレージングシート、特にろう付け後強度および耐食性に優れた熱交換器用アルミニウム合金ブレージングシートに関する。   The present invention relates to a brazing sheet used for a heat exchanger for automobiles, and more particularly to an aluminum alloy brazing sheet for a heat exchanger excellent in strength and corrosion resistance after brazing.

自動車に搭載されるコンデンサ、エバポレータ等の熱交換器は、アルミニウム合金からなるクラッド材またはブレージングシートを成形、組み立て、ろう付けされることにより形成される。近年、このアルミニウム合金ブレージングシートは、熱交換器の軽量化のために、例えばチューブ材用においては従来の板厚0.3〜0.5mmから板厚0.2mm以下へ薄肉化が進められており、それに伴って、より高強度化および高耐食性化が求められている。   A heat exchanger such as a condenser or an evaporator mounted on an automobile is formed by molding, assembling, and brazing a clad material or brazing sheet made of an aluminum alloy. In recent years, this aluminum alloy brazing sheet has been reduced in thickness from a conventional plate thickness of 0.3 to 0.5 mm to a plate thickness of 0.2 mm or less, for example, for tube materials in order to reduce the weight of a heat exchanger. Accordingly, there is a demand for higher strength and higher corrosion resistance.

耐食性に優れた熱交換器用アルミニウム合金ブレージングシートに関する従来技術として、例えば、特許文献1には、Al−Mn−Cu合金からなる心材の一方の面にAl−Zn合金からなる犠牲陽極材を、他方の面にAl−Si合金からなるろう材を積層させ、Al−Zn合金の犠牲防食作用によって耐食性を向上させたものが開示されている。
特開2005−232506号公報(請求項1)
For example, Patent Document 1 discloses a conventional sacrificial anode material made of an Al-Zn alloy on one surface of a core material made of an Al-Mn-Cu alloy, and a conventional technique relating to an aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance. A brazing material made of an Al—Si alloy is laminated on the surface, and the corrosion resistance is improved by the sacrificial anticorrosive action of the Al—Zn alloy.
Japanese Patent Laying-Open No. 2005-232506 (Claim 1)

前記従来技術は、Al−Mn−Cu合金を心材として、腐食環境側にAl−Zn合金からなる犠牲陽極層が配されるように成形されることにより、犠牲防食作用を付与するものである。異なる組成の合金を重ねてクラッドすると、ブレージングシートの製造工程中における熱処理(熱延、軟化焼鈍)およびろう付け処理により含有元素(Cu,Zn)が拡散する。すなわち、犠牲陽極層のZnは心材へ、心材のCuは犠牲陽極層およびろう材層へ拡散するので、図3(a)に示すように、ブレージングシートの板厚方向において、Znは腐食環境側から一方向に減少または一定となり、Cuは心材板厚中心近傍を頂点として両方向にそれぞれ減少または一定となるような濃度分布を形成する。また、ろう材層は、ろう付け処理により流動してほとんどブレージングシート表面に残存しない。Cuはアルミニウム合金の電位を貴に、Znはアルミニウム合金の電位を卑にするので、このブレージングシートにおける電位勾配は、図3(b)に示すように、心材板厚中心近傍が最も貴な状態となる。この構造では犠牲陽極層側からの腐食(孔食)が心材板厚中心部に進展した場合、心材板厚中心部以深の電位が心材板厚中心部より卑になるため、腐食が急速に進展すると考えられる。そのため、このブレージングシートが薄肉化および激しい腐食環境に曝された場合には早期貫通孔形成に至る怖れがある。   The prior art provides a sacrificial anticorrosive action by forming a sacrificial anode layer made of an Al—Zn alloy on the corrosive environment side with an Al—Mn—Cu alloy as a core material. When alloys with different compositions are clad and clad, the contained elements (Cu, Zn) diffuse by heat treatment (hot rolling, soft annealing) and brazing treatment during the manufacturing process of the brazing sheet. That is, Zn in the sacrificial anode layer diffuses into the core material, and Cu in the core material diffuses into the sacrificial anode layer and the brazing material layer. Therefore, in the thickness direction of the brazing sheet, as shown in FIG. The Cu has a concentration distribution that decreases or becomes constant in one direction, and Cu decreases or becomes constant in both directions with the vicinity of the center of the core plate thickness being the apex. Further, the brazing material layer flows by the brazing process and hardly remains on the surface of the brazing sheet. Since Cu makes the potential of the aluminum alloy noble and Zn makes the potential of the aluminum alloy base, the potential gradient in this brazing sheet is the most noble in the vicinity of the center of the core plate thickness as shown in FIG. It becomes. In this structure, when corrosion (pitting corrosion) from the sacrificial anode layer side progresses to the center of the core plate thickness, the potential deeper than the center of the core plate thickness becomes lower than the center of the core plate thickness. It is thought that. For this reason, when this brazing sheet is exposed to a thin wall and a severe corrosive environment, there is a fear of early through-hole formation.

本発明は、前記問題点に鑑みてなされたものであり、薄肉化した場合にも、高耐食性、高強度を維持する熱交換器用アルミニウム合金ブレージングシートを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an aluminum alloy brazing sheet for a heat exchanger that maintains high corrosion resistance and high strength even when it is thinned.

前記課題を解決するために、本発明者らは、腐食環境である熱交換器外部側となる層を、従来技術と同様に電位を心材より卑にして心材に対する犠牲陽極層とし、一方、冷媒に接する熱交換器内部側となる層は逆に、電位を心材より貴にして、心材板厚中心部以深においても犠牲防食効果を備えることとした。その結果、各層を形成する材料であるアルミニウム合金中のCuおよびZnの濃度分布を制御することにより、外部側から内部側に向かって電位が貴になるように電位勾配を付与する方法を発明するに至った(図1参照)。   In order to solve the above-mentioned problems, the present inventors set the layer on the outside of the heat exchanger, which is a corrosive environment, as a sacrificial anode layer with respect to the core material by making the potential lower than the core material, as in the prior art, On the contrary, the layer on the inner side of the heat exchanger in contact with is made to have a sacrificial anticorrosive effect even deeper than the center of the core plate thickness by making the potential nobler than the core material. As a result, a method of inventing a method of applying a potential gradient so that the potential becomes noble from the outside to the inside by controlling the concentration distribution of Cu and Zn in the aluminum alloy that is a material forming each layer. (See FIG. 1).

すなわち、請求項1に係る熱交換器用アルミニウム合金ブレージングシートは、心材と、この心材の一面側に配置される犠牲陽極層と、前記心材の他面側に配置されてAl−Si系合金からなるろう材層とを備えた熱交換器用アルミニウム合金ブレージングシートであって、前記心材は、Si:0.3〜1.5質量%、Mn:0.5〜1.8質量%、Mg:0.05〜0.5質量%、Ti:0.05〜0.35質量%を含有し、残部がAlおよび不可避的不純物からなり、前記犠牲陽極層は、0.03〜1.5質量%、Mn:1.8質量%以下、Zn:2.5〜7.0質量%を含有し、残部がAlおよび不可避的不純物からなり、前記ろう材層は、Si:7.0〜13.0質量%、Cu:3.0質量%以下かつ前記心材のCu濃度以上を含有し、残部がAlおよび不可避的不純物からなることを特徴とする。 That is, the aluminum alloy brazing sheet for a heat exchanger according to claim 1 is made of a core material, a sacrificial anode layer disposed on one surface side of the core material, and an Al—Si based alloy disposed on the other surface side of the core material. An aluminum alloy brazing sheet for a heat exchanger provided with a brazing filler metal layer, wherein the core material includes Si: 0.3 to 1.5 mass%, Mn: 0.5 to 1.8 mass%, Mg: 0.00. Containing 0.5 to 0.5% by mass, Ti: 0.05 to 0.35% by mass, the balance being made of Al and inevitable impurities, the sacrificial anode layer being 0.03 to 1.5% by mass, Mn : 1.8% by mass or less, Zn: 2.5 to 7.0% by mass, the balance is made of Al and inevitable impurities, and the brazing filler metal layer is Si: 7.0 to 13.0% by mass. , Cu: 3.0 wt% or less and containing more Cu concentration of the core Characterized in that the balance of Al and unavoidable impurities.

このように、心材を、大気に曝される外部側に犠牲陽極層で、冷媒に接する内部側にろう材層で挟んだ3層の積層構造にし、各層を形成する材料であるアルミニウム合金中のCuおよびZnの濃度分布を制御したことにより、外部側から内部側に向かって電位が貴になるように電位勾配を付与することができる。その結果、従来技術に比較して、心材板厚中心部以深に孔食が達した場合でも犠牲防食効果を維持でき、長寿命化を図ることが可能である。   In this way, the core material has a three-layered structure in which the core material is sandwiched between the sacrificial anode layer on the outer side exposed to the atmosphere and the brazing material layer on the inner side in contact with the refrigerant, and in the aluminum alloy that is a material forming each layer By controlling the concentration distribution of Cu and Zn, a potential gradient can be applied so that the potential becomes noble from the outside to the inside. As a result, the sacrificial anticorrosion effect can be maintained even when pitting corrosion reaches deeper than the central part of the core plate thickness, and the life can be extended as compared with the prior art.

さらに、請求項2に係る熱交換器用アルミニウム合金ブレージングシートは、請求項1に記載の熱交換器用アルミニウム合金ブレージングシートにおいて、前記心材が、さらに、1.0質量%以下かつ前記ろう材層のCu含有量以下のCuを含有することを特徴とする。   Furthermore, the aluminum alloy brazing sheet for heat exchangers according to claim 2 is the aluminum alloy brazing sheet for heat exchangers according to claim 1, wherein the core material is further 1.0% by mass or less and Cu in the brazing material layer. It contains Cu below the content.

このように、心材がCuを規定量含有することにより、熱交換器用アルミニウム合金ブレージングシートの強度および耐食性をさらに向上させることができる。   Thus, when the core material contains a specified amount of Cu, the strength and corrosion resistance of the aluminum alloy brazing sheet for heat exchanger can be further improved.

さらに、請求項3に係る熱交換器用アルミニウム合金ブレージングシートは、請求項1または請求項2に記載の熱交換器用アルミニウム合金ブレージングシートの犠牲陽極層側の表面に、さらにろう材からなる層を備えることを特徴とする。   Furthermore, the aluminum alloy brazing sheet for heat exchangers according to claim 3 further includes a layer made of a brazing material on the surface of the aluminum alloy brazing sheet for heat exchangers according to claim 1 or 2 on the sacrificial anode layer side. It is characterized by that.

このように、外部側にもろう材層を備えたことにより、ベアフィン材のようにろう材層を備えていない板材とのろう付け接合が可能である。   As described above, since the brazing material layer is also provided on the outer side, it is possible to braze and join with a plate material that does not include the brazing material layer, such as a bare fin material.

請求項1に係る熱交換器用アルミニウム合金ブレージングシートによれば、薄肉化しても、高耐食性、高強度を長期に亘って維持することができる。特に、コンデンサ、エバポレータ等大気側からの腐食防止が重要である場合に有効である。   According to the aluminum alloy brazing sheet for a heat exchanger according to claim 1, high corrosion resistance and high strength can be maintained for a long time even if the thickness is reduced. This is particularly effective when it is important to prevent corrosion from the atmosphere, such as capacitors and evaporators.

請求項2に係る熱交換器用アルミニウム合金ブレージングシートによれば、薄肉化しても、高耐食性、高強度をさらに長期に亘って維持することができる。   According to the aluminum alloy brazing sheet for a heat exchanger according to claim 2, high corrosion resistance and high strength can be maintained for a long period of time even when the thickness is reduced.

請求項3に係る熱交換器用アルミニウム合金ブレージングシートによれば、薄肉化しても、高耐食性、高強度を長期に亘って維持することができ、さらに、ろう材層のない分だけ薄肉化された板材とろう付け接合することにより、より軽量化された熱交換器を形成することができる。   According to the aluminum alloy brazing sheet for a heat exchanger according to claim 3, high corrosion resistance and high strength can be maintained over a long period of time even when the thickness is reduced, and further, the thickness is reduced to the extent that there is no brazing filler metal layer. By brazing and joining the plate material, a heat exchanger with a lighter weight can be formed.

以下、本発明に係る熱交換器用アルミニウム合金ブレージングシートを実現するための最良の形態について説明する。
図1は、本発明に係る熱交換器用アルミニウム合金ブレージングシートにおけるCu,Znの濃度分布および電位勾配を示す図であり、(a)はCu,Znの濃度分布図、(b)は電位勾配図である。
Hereinafter, the best mode for realizing the aluminum alloy brazing sheet for a heat exchanger according to the present invention will be described.
FIG. 1 is a diagram showing Cu and Zn concentration distribution and potential gradient in an aluminum alloy brazing sheet for a heat exchanger according to the present invention, wherein (a) is a Cu and Zn concentration distribution diagram, and (b) is a potential gradient diagram. It is.

本発明に係る熱交換器用アルミニウム合金ブレージングシートにおいては、アルミニウム合金からなる心材の一方の面に犠牲陽極層がクラッドされ、他方の面にろう材層がクラッドされている。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートで熱交換器を作製する際は、ろう材層が熱交換器内部側(冷媒通路側)、犠牲陽極層が熱交換器外部側(大気側)となる。
すなわち、図1(a)、(b)に示すように、本発明に係る熱交換器用アルミニウム合金ブレージングシートは、その板厚方向(横軸)に、外部側から、犠牲陽極層、心材、ろう材層(ろう付け処理後流出)の順に積層された3層構造となる。そして、各層におけるCuおよびZnの濃度分布を、図1(a)に示すように、Cuは内部側から一方向に減少または一定となり、Znは外部側から一方向に減少または一定となるように制御したことで、図1(b)に示すように外部側から内部側に向かって電位が常に貴となる。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートを適用する熱交換器は非腐食性の冷媒を使用するため、内部側からの腐食はほとんど発生しない。
In the aluminum alloy brazing sheet for a heat exchanger according to the present invention, a sacrificial anode layer is clad on one surface of a core material made of an aluminum alloy, and a brazing material layer is clad on the other surface. When producing a heat exchanger using the aluminum alloy brazing sheet for a heat exchanger according to the present invention, the brazing material layer is on the heat exchanger inner side (refrigerant passage side), and the sacrificial anode layer is on the heat exchanger outer side (atmosphere side). )
That is, as shown in FIGS. 1 (a) and 1 (b), the aluminum alloy brazing sheet for a heat exchanger according to the present invention has a sacrificial anode layer, a core material, and a brazing material from the outside in the thickness direction (horizontal axis) A three-layer structure is formed in the order of the material layers (outflow after brazing treatment). As shown in FIG. 1A, the Cu and Zn concentration distribution in each layer is such that Cu decreases or becomes constant in one direction from the inner side, and Zn decreases or becomes constant in one direction from the outer side. By controlling, as shown in FIG. 1B, the potential is always noble from the outside to the inside. In addition, since the heat exchanger to which the aluminum alloy brazing sheet for heat exchangers according to the present invention is applied uses a non-corrosive refrigerant, corrosion from the inner side hardly occurs.

以下に、本発明に係る熱交換器用アルミニウム合金ブレージングシートを構成する各要素について説明する。   Below, each element which comprises the aluminum alloy brazing sheet for heat exchangers which concerns on this invention is demonstrated.

〔心材〕
心材は、Si:0.3〜1.5質量%、Mn:0.5〜1.8質量%、Mg:0.05〜0.5質量%、Ti:0.05〜0.35質量%を含有し、残部がAlおよび不可避的不純物からなる。また、心材は、さらに、1.0質量%以下かつろう材層のCu濃度以下のCuを含有してもよい。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートにおける心材の厚さは特に限定されないが、好ましくは0.05〜0.4mmである。
[Heart material]
The core material is Si: 0.3 to 1.5 mass%, Mn: 0.5 to 1.8 mass%, Mg: 0.05 to 0.5 mass%, Ti: 0.05 to 0.35 mass% And the balance consists of Al and inevitable impurities. Further, the core material may further contain Cu of 1.0% by mass or less and Cu concentration of the brazing material layer or less. In addition, although the thickness of the core material in the aluminum alloy brazing sheet for heat exchangers according to the present invention is not particularly limited, it is preferably 0.05 to 0.4 mm.

(心材Si:0.3〜1.5質量%)
Siはろう付け後強度を向上させる効果があり、特にMg,Mnと共存させた場合、Mg−Si系金属間化合物、Al−Mn−Si系金属間化合物の形成により、さらにろう付け後強度を高めることができる。0.3質量%未満では効果が小さい。一方、1.5質量%を超えると心材の融点低下および低融点相増加により、心材の溶融が生じる。したがって、心材におけるSiの含有量は、0.3〜1.5質量%とする。
(Core material Si: 0.3 to 1.5 mass%)
Si has the effect of improving the strength after brazing, and particularly when coexisting with Mg and Mn, the strength after brazing is further increased by the formation of Mg-Si intermetallic compounds and Al-Mn-Si intermetallic compounds. Can be increased. If it is less than 0.3% by mass, the effect is small. On the other hand, when the content exceeds 1.5 mass%, the core material is melted due to a decrease in melting point of the core material and an increase in the low melting point phase. Therefore, the Si content in the core material is set to 0.3 to 1.5 mass%.

(心材Mn:0.5〜1.8質量%)
Mnはろう付け後強度を向上させる効果があり、含有量増加によりろう付け後強度を高めることができる。また、電位を貴にする働きがあるため、耐食性を向上させる。0.5質量%未満ではこれらの効果が小さい。一方、1.8質量%を超えると粗大な金属間化合物が形成され、成形性の低下、耐食性低下を起こしやすい。したがって、心材におけるMnの含有量は、0.5〜1.8質量%とする。
(Core material Mn: 0.5 to 1.8% by mass)
Mn has an effect of improving the strength after brazing, and the strength after brazing can be increased by increasing the content. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. If it is less than 0.5% by mass, these effects are small. On the other hand, if it exceeds 1.8% by mass, a coarse intermetallic compound is formed, which tends to cause a decrease in formability and corrosion resistance. Therefore, the Mn content in the core is 0.5 to 1.8% by mass.

(心材Mg:0.05〜0.5質量%)
Mgはろう付け後強度を向上させる効果があり、0.05質量%未満では効果が小さい。しかし一方で、Mgはフラックスろう付け性を低下させる作用があるため、0.5質量%を超えると、ろう付けの際、ろう材層、および犠牲陽極層側のろう材までMgが拡散し、ろう付け性が著しく低下する。したがって、心材におけるMgの含有量は、0.05〜0.5質量%とする。
(Core material Mg: 0.05 to 0.5 mass%)
Mg has the effect of improving the strength after brazing, and the effect is small at less than 0.05% by mass. However, on the other hand, Mg has the effect of lowering the flux brazing property, so when it exceeds 0.5 mass%, Mg diffuses to the brazing material layer and the brazing material on the sacrificial anode layer side during brazing, Brazing performance is significantly reduced. Therefore, the content of Mg in the core material is 0.05 to 0.5% by mass.

(心材Ti:0.05〜0.35質量%)
Tiはアルミニウム合金中でTi−Al系化合物を形成して層状に分散する。Ti−Al系化合物は電位が貴であるため、腐食形態が層状化し、深さ方向への腐食(孔食)に進展し難くなる効果がある。0.05質量%未満では腐食形態の層状化効果が小さく、0.35質量%を超えると粗大な金属間化合物形成により、成形性および耐食性が低下する。したがって、心材におけるTiの含有量は、0.05〜0.35質量%とする。
(Core material Ti: 0.05 to 0.35 mass%)
Ti forms a Ti—Al compound in an aluminum alloy and is dispersed in a layered manner. Since the potential of the Ti—Al compound is noble, the corrosion form is layered, and there is an effect that it is difficult to progress to corrosion (pitting corrosion) in the depth direction. If it is less than 0.05% by mass, the layering effect of the corrosion form is small, and if it exceeds 0.35% by mass, formability and corrosion resistance are reduced due to the formation of coarse intermetallic compounds. Therefore, the Ti content in the core material is 0.05 to 0.35 mass%.

(心材Cu:1.0質量%以下かつろう材層のCu濃度以下)
Cuはろう付け後強度を向上させる効果がある。また、電位を貴にする働きがあるため、耐食性を向上させる。一方、1.0質量%を超えると、融点の低下に伴ってバーニングが発生する可能性がある。また、ろう材層のCu濃度を超えると、心材のろう材層側(内部側)に対して板厚中心近傍の電位が貴になるため、心材板厚中心部より内部側で孔食進展が促進される。したがって、心材におけるCuの含有量は、1.0質量%以下であり、かつろう材層のCu濃度以下である。なお、心材においては、積層されたろう材層からCuが拡散してくるので、心材としてCuは必須ではないが、0.05質量%未満では、ろう付け後強度および耐食性を向上させる効果が小さい。また、ろう材層のCu濃度との差が0.1質量%未満では耐食性を向上させる効果が小さい。したがって、心材における好ましいCuの含有量は、0.05〜1.0質量%かつろう材層のCu濃度以下で、より好ましくは、さらにろう材層のCu濃度−0.1質量%以下である。
(Core material Cu: 1.0% by mass or less and Cu concentration of brazing filler metal layer or less)
Cu has the effect of improving strength after brazing. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. On the other hand, if it exceeds 1.0% by mass, burning may occur as the melting point decreases. Also, if the Cu concentration of the brazing material layer is exceeded, the potential near the center of the plate thickness becomes noble with respect to the brazing material layer side (inside) of the core material. Promoted. Therefore, the content of Cu in the core material is 1.0% by mass or less and is equal to or less than the Cu concentration of the brazing material layer. In the core material, since Cu diffuses from the laminated brazing material layer, Cu is not essential as the core material, but if it is less than 0.05% by mass, the effect of improving the strength and corrosion resistance after brazing is small. Moreover, if the difference with Cu density | concentration of a brazing material layer is less than 0.1 mass%, the effect which improves corrosion resistance is small. Therefore, the preferable Cu content in the core material is 0.05 to 1.0% by mass and less than or equal to the Cu concentration of the brazing material layer, and more preferably, the Cu concentration of the brazing material layer is −0.1% by mass or less. .

前記以外に、心材の電位貴化および強度向上のため、Cr,Ni,Zr等をそれぞれ0.3質量%以下添加してもよい。また、電位勾配調整用として、Zn:1.0質量%以下を添加してもよい。ろう付け時のZn拡散で、心材において犠牲陽極層側がろう材層側より電位が卑となることにより、犠牲陽極材となる領域が拡張され、防食効果を一層長く維持する効果がある。なお、不可避的不純物として、Fe,Sn,P,Be,B等をそれぞれ0.3質量%以下含有してもよい。   In addition to the above, 0.3% by mass or less of Cr, Ni, Zr, etc. may be added for the purpose of increasing the potential of the core material and improving the strength. Moreover, you may add Zn: 1.0 mass% or less for electric potential gradient adjustment. As a result of Zn diffusion during brazing, the sacrificial anode layer side of the core material has a lower potential than the brazing material layer side, so that the region serving as the sacrificial anode material is expanded, and the anticorrosion effect is maintained longer. In addition, as an inevitable impurity, Fe, Sn, P, Be, B or the like may be contained in an amount of 0.3% by mass or less.

〔犠牲陽極層〕
犠牲陽極層は、Si:0.03〜1.5質量%、Mn:1.8質量%以下、Zn:2.5〜7.0質量%を含有し、残部がAlおよび不可避的不純物からなる。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートにおける犠牲陽極層の厚さは特に限定されないが、好ましくは0.01〜0.1mmである。
[Sacrificial anode layer]
The sacrificial anode layer contains Si: 0.03 to 1.5% by mass, Mn: 1.8% by mass or less, Zn: 2.5 to 7.0% by mass, and the balance is made of Al and inevitable impurities. . In addition, although the thickness of the sacrificial anode layer in the aluminum alloy brazing sheet for heat exchangers according to the present invention is not particularly limited, it is preferably 0.01 to 0.1 mm.

(犠牲陽極層Si:0.03〜1.5質量%)
Siはろう付け後強度を向上させる効果があり、特にMg,Mnと共存させた場合、Mg−Si系金属間化合物、Al−Mn−Si系金属間化合物の形成により、さらにろう付け後強度を高めることができる。0.03質量%未満では効果が小さい。一方、1.5質量%を超えると、犠牲陽極層の融点低下と低融点相増加により犠牲陽極層の溶融が生じる。したがって、犠牲陽極層におけるSiの含有量は、0.03〜1.5質量%とし、好ましくは0.03〜1.2質量%である。
(Sacrificial anode layer Si: 0.03-1.5 mass%)
Si has the effect of improving the strength after brazing, and particularly when coexisting with Mg and Mn, the strength after brazing is further increased by the formation of Mg-Si intermetallic compounds and Al-Mn-Si intermetallic compounds. Can be increased. If it is less than 0.03% by mass, the effect is small. On the other hand, if it exceeds 1.5% by mass, the sacrificial anode layer is melted due to a decrease in the melting point of the sacrificial anode layer and an increase in the low melting point phase. Therefore, the content of Si in the sacrificial anode layer is 0.03 to 1.5% by mass, preferably 0.03 to 1.2% by mass.

(犠牲陽極層Mn:1.8質量%以下)
Mnはろう付け後強度を向上させる効果があり、含有量増加によりろう付け後強度を高めることができる。また、電位を貴にする働きがあるため、耐食性を向上させる。一方、1.8質量%を超えると粗大な金属間化合物が形成され、成形性の低下、耐食性低下を起こしやすい。したがって、犠牲陽極層におけるMnの含有量は、1.8質量%以下とする。また、0.03質量%未満では効果が小さい。したがって、犠牲陽極層における好ましいMnの含有量は、0.03〜1.8質量%である。
(Sacrificial anode layer Mn: 1.8% by mass or less)
Mn has an effect of improving the strength after brazing, and the strength after brazing can be increased by increasing the content. Moreover, since it has the function of making the potential noble, the corrosion resistance is improved. On the other hand, if it exceeds 1.8% by mass, a coarse intermetallic compound is formed, which tends to cause a decrease in formability and corrosion resistance. Therefore, the content of Mn in the sacrificial anode layer is 1.8% by mass or less. Moreover, an effect is small if it is less than 0.03 mass%. Therefore, the preferable Mn content in the sacrificial anode layer is 0.03 to 1.8% by mass.

(犠牲陽極層Zn:2.5〜7.0質量%)
Znは電位を卑にする働きがあり、2.5質量%未満では、犠牲陽極として作用させるためには不十分である。一方、7.0質量%を超えると、ブレージングシート単板の耐食性は良好であるが、ろう付け接合部に形成されるフィレット(ろう付け部)中のZn濃度が増加するためにフィレットの優先腐食が起こる怖れがある。また圧延割れが発生するため生産性が低下する。したがって、犠牲陽極層におけるZnの含有量は、2.5〜7.0質量%とする。
(Sacrificial anode layer Zn: 2.5-7.0 mass%)
Zn has a function of lowering the potential, and if it is less than 2.5% by mass, it is insufficient to act as a sacrificial anode. On the other hand, if it exceeds 7.0% by mass, the corrosion resistance of the brazing sheet single plate is good, but the Zn concentration in the fillet (brazing part) formed at the brazed joint increases, so the preferential corrosion of the fillet. There is a fear of happening. Moreover, since rolling cracks are generated, productivity is lowered. Therefore, the Zn content in the sacrificial anode layer is set to 2.5 to 7.0% by mass.

前記以外に、ろう付けへの悪影響が低いものとして、例えば犠牲陽極層の電位卑化およびろう付け後強度向上のために、Feを0.5質量%以下、Inを0.05質量%以下、犠牲陽極層の電位卑化および腐食形態の層状化のためにSnを0.05質量%以下添加してもよい。   In addition to the above, as having a low adverse effect on brazing, for example, to reduce the potential of the sacrificial anode layer and improve the strength after brazing, Fe is 0.5 mass% or less, In is 0.05 mass% or less, In order to reduce the potential of the sacrificial anode layer and to layer the corrosion form, 0.05% by mass or less of Sn may be added.

また、不可避的不純物として、Mgを0.1質量%以下含有してもよい。本発明ではノコロックろう付け法によるろう付け性重視のため、犠牲陽極層には積極的にMgを添加しない。Mgはフラックスろう付け性を低下させる作用があり、0.1質量%を超えると、ろう付け性が著しく低下する。したがって、犠牲陽極層における不可避的不純物としてのMgは、0.1質量%以下に制限する。なお、犠牲陽極層においてSiと化合するMgは主に心材から拡散するものである。   Moreover, you may contain 0.1 mass% or less of Mg as an unavoidable impurity. In the present invention, Mg is not positively added to the sacrificial anode layer in order to emphasize brazing by the Nocolok brazing method. Mg has the effect of lowering the brazeability of the flux, and if it exceeds 0.1% by mass, the brazeability is significantly lowered. Therefore, Mg as an inevitable impurity in the sacrificial anode layer is limited to 0.1% by mass or less. Note that Mg combined with Si in the sacrificial anode layer is mainly diffused from the core material.

〔ろう材層〕
ろう材層は、アルミニウム合金のろう付けにおいて通常用いられるAl−Si系合金に、3.0質量%以下かつ心材のCu濃度以上のCuを添加したものとする。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートにおけるろう材層の厚さは特に限定されないが、好ましくは0.01〜0.1mmである。
[Brazing material layer]
The brazing material layer is obtained by adding Cu of 3.0% by mass or less and Cu concentration or more of the core material to an Al—Si based alloy usually used in brazing an aluminum alloy. In addition, the thickness of the brazing filler metal layer in the aluminum alloy brazing sheet for heat exchanger according to the present invention is not particularly limited, but is preferably 0.01 to 0.1 mm.

(ろう材層Si:7.0〜13.0質量%)
Siは、アルミニウム合金ろう材の融点低下および流動性を高める作用がある。Si含有量が7.0質量%未満では、ろう付け時にろうの量が不足してろう付け性が低下する。一方、13.0質量%を超えると成形性が低下する。したがって、ろう材層におけるSiの含有量は、7.0〜13.0質量%である。
(Braze material layer Si: 7.0 to 13.0% by mass)
Si has an effect of lowering the melting point and improving fluidity of the aluminum alloy brazing material. When the Si content is less than 7.0% by mass, the brazing amount is insufficient at the time of brazing, and the brazing property is lowered. On the other hand, if it exceeds 13.0% by mass, the formability deteriorates. Therefore, the content of Si in the brazing material layer is 7.0 to 13.0% by mass.

(ろう材層Cu:3.0質量%以下かつ心材のCu濃度以上)
Cuは、ブレージングシートの製造工程中における熱延、軟化焼鈍、およびろう付け処理により心材へ拡散することで、心材内に外部側から内部側に向かって貴化する電位勾配を形成し、外部側からの耐食性を向上させる。心材のCu濃度未満であると、心材の内部側に対して板厚中心近傍の電位が貴になるため、心材板厚中心部より内部側で孔食進展が促進される。一方、3.0質量%を超えると、フィレット形成時にフィレットとその周辺との電位差が大きくなって、フィレット周辺に優先腐食が発生する可能性がある。したがって、ろう材層におけるCuの含有量は、3.0質量%以下かつ心材のCu濃度以上とする。また、Cuの含有量が、0.1質量%未満あるいは心材のCu濃度との差が0.1質量%未満では効果が小さい。したがって、ろう材層における好ましいCuの含有量は、0.1〜3.0質量%かつ心材のCu濃度以上で、より好ましくは、さらに心材のCu濃度+0.1質量%以上である。
(Braze material layer Cu: 3.0% by mass or less and Cu concentration of core material or more)
Cu diffuses to the core material by hot rolling, softening annealing, and brazing during the manufacturing process of the brazing sheet, thereby forming a potential gradient that becomes noble from the outer side to the inner side in the core material. Improves corrosion resistance from If it is less than the Cu concentration of the core material, the potential near the center of the plate thickness becomes noble with respect to the inner side of the core material. On the other hand, if it exceeds 3.0% by mass, the potential difference between the fillet and its surroundings becomes large during fillet formation, and preferential corrosion may occur around the fillet. Therefore, the content of Cu in the brazing filler metal layer is set to 3.0% by mass or less and equal to or higher than the Cu concentration of the core material. The effect is small when the Cu content is less than 0.1% by mass or the difference from the Cu concentration of the core is less than 0.1% by mass. Therefore, the preferable Cu content in the brazing filler metal layer is 0.1 to 3.0% by mass and not less than the Cu concentration of the core material, more preferably not less than the Cu concentration of the core material + 0.1% by mass or more.

前記以外に、心材のろう材層側(内部側)における電位貴化のため、Cr,Ni,Zr等をそれぞれ0.3質量%以下添加してもよい。また、ろう材層がフィレットを形成した時の電位調整(卑化)用として電位勾配を崩さない(心材において、板厚中心部の電位がろう材層側の電位より貴とならない)範囲で、Zn:1.0質量%以下を添加してもよい。フィレットにZnが含有することにより、フィレットとその周辺との電位差を小さくし、優先腐食を防止することができる。   In addition to the above, in order to make the potential noble on the brazing filler metal layer side (inside side) of the core material, 0.3% by mass or less of Cr, Ni, Zr or the like may be added. In addition, in the range where the potential gradient is not broken for potential adjustment (basement) when the brazing material layer forms a fillet (in the core material, the potential at the center of the plate thickness is not nobler than the potential on the brazing material layer side), Zn: You may add 1.0 mass% or less. By containing Zn in the fillet, the potential difference between the fillet and its periphery can be reduced, and preferential corrosion can be prevented.

また、本発明の熱交換器用アルミニウム合金ブレージングシートにおいては、その用途に応じて、犠牲陽極層側の表面に、さらに、ろう材からなる層(犠牲陽極層側ろう材層)を積層してもよい。   Moreover, in the aluminum alloy brazing sheet for a heat exchanger of the present invention, a layer made of a brazing material (sacrificial anode layer side brazing material layer) may be further laminated on the surface on the sacrificial anode layer side according to the application. Good.

〔犠牲陽極層側ろう材層〕
犠牲陽極層側のろう材層は、本発明においては特にその組成を限定するものではないが、例えばAl−Si系合金である4000系合金が挙げられる。また、ろう材への拡散による犠牲陽極層のZn減少を抑制するため、4000系合金にZnを添加した合金が挙げられる。犠牲陽極層側ろう材層における好ましいZnの含有量は、1.0〜3.0質量%である。なお、本発明に係る熱交換器用アルミニウム合金ブレージングシートにおける犠牲陽極層側のろう材層の厚さは特に限定されるものではなく、ろう付け処理に対応するものとするが、好ましくは0.01mm以上である。
[Sacrificial anode layer side brazing material layer]
In the present invention, the composition of the brazing filler metal layer on the sacrificial anode layer side is not particularly limited, and examples thereof include a 4000 series alloy which is an Al-Si series alloy. Moreover, in order to suppress Zn decrease of the sacrificial anode layer due to diffusion into the brazing material, an alloy obtained by adding Zn to a 4000 series alloy can be used. The preferable Zn content in the sacrificial anode layer side brazing filler metal layer is 1.0 to 3.0% by mass. The thickness of the brazing material layer on the sacrificial anode layer side in the aluminum alloy brazing sheet for heat exchanger according to the present invention is not particularly limited, and corresponds to brazing treatment, but is preferably 0.01 mm. That's it.

本発明に係る熱交換器用アルミニウム合金ブレージングシートは、公知のクラッド材の製造方法により製造される。以下にその一例を説明する。   The aluminum alloy brazing sheet for a heat exchanger according to the present invention is produced by a known clad material production method. One example will be described below.

まず、心材用アルミニウム合金、犠牲陽極層用アルミニウム合金、ろう材層用アルミニウム合金、そして必要に応じて犠牲陽極層側ろう材層用アルミニウム合金を、連続鋳造にて溶解、鋳造し、必要に応じて面削、均質化熱処理して、心材用鋳塊、犠牲陽極層用鋳塊、ろう材層用鋳塊、および犠牲陽極層側ろう材層用鋳塊を得る。犠牲陽極層用鋳塊、ろう材層用鋳塊、および犠牲陽極層側ろう材層用鋳塊は、熱間圧延または切断によってそれぞれ所定厚さにして、犠牲陽極材、ろう材、および犠牲陽極層側ろう材を得る。   First, an aluminum alloy for the core material, an aluminum alloy for the sacrificial anode layer, an aluminum alloy for the brazing material layer, and if necessary, an aluminum alloy for the brazing material side brazing material layer are melted and cast by continuous casting. The core material ingot, the sacrificial anode layer ingot, the brazing material layer ingot, and the sacrificial anode layer side brazing material ingot are obtained by chamfering and homogenizing heat treatment. The ingot for the sacrificial anode layer, the ingot for the brazing material layer, and the ingot for the brazing material side brazing material layer are each made to have a predetermined thickness by hot rolling or cutting, and the sacrificial anode material, the brazing material, and the sacrificial anode A layer-side brazing material is obtained.

次に、心材用鋳塊を、ろう材と犠牲陽極材とで挟み、さらに必要に応じて犠牲陽極層側ろう材をその外側に配置して、所定のクラッド率になるように重ね合わせ、400℃以上の温度で加熱した後、熱間圧延により圧着し、板材とする。その後、冷間圧延、中間焼鈍、冷間圧延を行うことにより所定の板厚とする。なお、圧着後、冷間圧延前に、合金中の元素分布を調整する目的で、熱処理を実施しても良い。また、中間焼鈍は350〜450℃で3時間以上実施するのが望ましく、最終の冷間加工率は30〜60%となるようにすることが好ましい。また、最終の板厚とした後、成型加工性を考慮して仕上げ焼鈍を実施してもよい。仕上げ焼鈍により、材料が軟化し、伸びが向上するため加工性が確保できる。   Next, the core material ingot is sandwiched between the brazing material and the sacrificial anode material, and further, the sacrificial anode layer side brazing material is disposed on the outer side as necessary, and superposed so as to have a predetermined cladding ratio. After heating at a temperature of ℃ or higher, it is crimped by hot rolling to obtain a plate material. Thereafter, cold rolling, intermediate annealing, and cold rolling are performed to obtain a predetermined plate thickness. In addition, you may implement heat processing for the purpose of adjusting the element distribution in an alloy after cold bonding and before cold rolling. The intermediate annealing is desirably performed at 350 to 450 ° C. for 3 hours or more, and the final cold working rate is preferably 30 to 60%. In addition, after the final thickness is obtained, finish annealing may be performed in consideration of molding processability. Finish annealing can soften the material and improve the elongation, thereby ensuring workability.

以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   Although the best mode for carrying out the present invention has been described above, an example in which the effect of the present invention has been confirmed will be specifically described below in comparison with a comparative example that does not satisfy the requirements of the present invention. . In addition, this invention is not limited to this Example.

(供試材作製)
表1、表2、表3に示す組成を有する心材(C1〜C19)、犠牲陽極材(S1〜S13)、ろう材(F1〜F12)を作製し、表4に示す組合せで重ね合わせ、熱間圧延にて犠牲陽極層の厚さを板厚全体の10%で、ろう材層の厚さを板厚全体の10%でクラッドし、冷間圧延にて板厚0.3mmとした。その後、400℃で5時間の中間焼鈍を行い、さらに冷間圧延を行うことで、板厚0.2mmとし、最後に仕上げ焼鈍を300℃で3時間行って、表4に示す3層材を作製した。
(Sample preparation)
A core material (C1 to C19), a sacrificial anode material (S1 to S13), and a brazing material (F1 to F12) having the compositions shown in Table 1, Table 2, and Table 3 were produced, and the combinations shown in Table 4 were superposed. The thickness of the sacrificial anode layer was clad with 10% of the entire plate thickness by cold rolling and the thickness of the brazing material layer was 10% of the total plate thickness, and the plate thickness was 0.3 mm by cold rolling. Thereafter, intermediate annealing is performed at 400 ° C. for 5 hours, and further cold rolling is performed to obtain a sheet thickness of 0.2 mm. Finally, finish annealing is performed at 300 ° C. for 3 hours, and the three-layer materials shown in Table 4 are obtained. Produced.

同様に、表3に示す組成を有する犠牲陽極層側ろう材(F12,F13)を作製して、表5に示す組合せの、板厚全体の10%の厚さの犠牲陽極層側ろう材層、板厚全体の15%の厚さの犠牲陽極層、心材、板厚全体の10%の厚さのろう材層の順に重ね合わせてクラッドし、冷間圧延にて板厚0.3mmとした。その後、400℃で5時間の中間焼鈍を行い、さらに冷間圧延を行うことで、板厚0.2mmとし、最後に仕上げ焼鈍を300℃で3時間行って、表5に示す4層材を作製した。   Similarly, a sacrificial anode layer side brazing material (F12, F13) having the composition shown in Table 3 was manufactured, and the sacrificial anode layer side brazing material layer having a thickness of 10% of the total thickness of the combinations shown in Table 5 Then, the sacrificial anode layer having a thickness of 15% of the entire plate thickness, the core material, and the brazing material layer having a thickness of 10% of the entire plate thickness are laminated and clad, and the plate thickness is set to 0.3 mm by cold rolling. . Thereafter, intermediate annealing is performed at 400 ° C. for 5 hours, and further cold rolling is performed to obtain a sheet thickness of 0.2 mm. Finally, finish annealing is performed at 300 ° C. for 3 hours, and the four-layer materials shown in Table 5 are obtained. Produced.

作製した3層材および4層材を、その表面に市販の非腐食性のフラックス5g/mを塗布し、治具に吊り下げて、酸素濃度が200ppm以下の雰囲気において595℃で2分間保持することにより、ろう付け加熱を行い、ろう付け熱処理材を作製した。その後、ろう付け熱処理材を切り出して、所定の形状、サイズの試験材を作製し、ろう付け後強度測定および腐食試験を行った。
また、図2に示すように、波形に加工した板厚0.1mmのろう材付きフィン材を、前記の非腐食性のフラックスを塗布して、3層材(ブレージングシート)の犠牲陽極層側の面に取り付け、前記と同様の条件でろう付け加熱を行ってろう付け接合した。一方、4層材(ブレージングシート)は、犠牲陽極層側ろう材層の面に前記の非腐食性のフラックスを塗布して、板厚0.1mmのフィン材(ベアフィン材)を取り付け、3層材と同様にろう付け接合した。これらのフィン付き試験材で腐食試験を行った。ベアフィン材は、Zn:2質量%を含有するアルミニウム合金からなり、ろう材付きフィン材は、前記ベアフィン材の両面に、Si:10質量%を含有するアルミニウム合金からなるろう材を、それぞれ板厚全体の10%で積層したクラッド材とした。
なお、表4および表5において、成形性、融点等の問題から、板形状に作製できなかったものについては、結果欄に「−」で示した。
Apply the commercially available non-corrosive flux of 5 g / m 2 to the surface of the prepared three-layer material and four-layer material, hang it on a jig, and hold at 595 ° C. for 2 minutes in an atmosphere with an oxygen concentration of 200 ppm or less. As a result, brazing heating was performed to produce a brazing heat treatment material. Then, the brazing heat treatment material was cut out to prepare a test material having a predetermined shape and size, and a strength measurement and a corrosion test were performed after brazing.
In addition, as shown in FIG. 2, a non-corrosive flux is applied to a 0.1 mm thick brazing material with a brazing material processed into a corrugated shape, and the sacrificial anode layer side of the three-layer material (brazing sheet) And brazing and joining by brazing and heating under the same conditions as described above. On the other hand, a four-layer material (brazing sheet) is formed by applying the non-corrosive flux to the surface of the sacrificial anode layer side brazing material layer and attaching a fin material (bare fin material) having a thickness of 0.1 mm. Brazing and joining was performed in the same manner as the material. Corrosion tests were conducted on these finned test materials. The bare fin material is made of an aluminum alloy containing Zn: 2% by mass, and the fin material with a brazing material is made of a brazing material made of an aluminum alloy containing Si: 10% by mass on both sides of the bare fin material. The clad material was laminated at 10% of the total.
In Tables 4 and 5, those that could not be produced in a plate shape due to problems such as moldability and melting point are indicated by “-” in the result column.

(ろう付け後強度測定)
ろう付け後強度の測定は、ろう付け熱処理材からJIS5号試験材を切り出して引張試験を行い、引張強度を測定することにより行った。測定結果を表4および表5に示す。ろう付け後強度の合格基準は、引張強度が180MPa以上とした。
(Measure strength after brazing)
The strength after brazing was measured by cutting out a JIS No. 5 test material from the brazed heat-treated material, performing a tensile test, and measuring the tensile strength. The measurement results are shown in Tables 4 and 5. The acceptance criteria for the strength after brazing was that the tensile strength was 180 MPa or more.

(腐食試験)
腐食試験は、ろう付け熱処理材から60mm×50mmの試験材を切り出し、犠牲陽極層(4層材は犠牲陽極層側ろう材層)側が試験面となるように、ろう材層側の面および端面をシールテープによりシールして、CASS試験(JIS Z 2371)を1000時間実施した。試験後、最大腐食深さを測定し、最小残存板厚(=試験前の板厚−最大腐食深さ)を算出した。結果を表4および表5に示す。
一方、ブレージングシートが熱交換器として使用される際の耐食性を評価するため、フィン付き試験材について、ろう付け熱処理材と同様に、犠牲陽極層(4層材は犠牲陽極層側ろう材層)側すなわちフィン材を接合した面が試験面となるように、ろう材層側の面および端面をシールして、CASS試験を実施した。試験後、フィン材との接合部(フィレットおよびその周辺)に腐食の発生がないか目視にて確認した。腐食が発生した試験材については、表4および表5に備考欄を設けてその旨を示す。
耐食性の合格基準は、ろう付け熱処理材の最小残存板厚が80μm(板厚0.2mmの約40%)を超えること、かつ、フィン付き試験材のフィン材との接合部に腐食がないこととした。
(Corrosion test)
In the corrosion test, a 60 mm × 50 mm test material is cut out from the brazing heat treatment material, and the brazing material layer side surface and end surface so that the sacrificial anode layer (4 layer material is the sacrificial anode layer side brazing material layer) side becomes the test surface. Was sealed with a sealing tape, and a CASS test (JIS Z 2371) was conducted for 1000 hours. After the test, the maximum corrosion depth was measured, and the minimum remaining plate thickness (= plate thickness before test−maximum corrosion depth) was calculated. The results are shown in Table 4 and Table 5.
On the other hand, in order to evaluate the corrosion resistance when the brazing sheet is used as a heat exchanger, the sacrificial anode layer (four-layer material is the sacrificial anode layer side brazing material layer) is used for the test material with fins in the same manner as the brazing heat treatment material. The CASS test was conducted by sealing the brazing material layer side surface and the end surface so that the side, that is, the surface to which the fin material was joined became the test surface. After the test, it was visually confirmed whether or not corrosion occurred at the joint (fillet and its surroundings) with the fin material. About the test material which corrosion generate | occur | produced, the remarks column is provided in Table 4 and Table 5, and it shows that.
The acceptance criteria for corrosion resistance are that the minimum remaining thickness of the brazed heat-treated material exceeds 80 μm (about 40% of the 0.2 mm thickness), and that there is no corrosion at the joint of the finned test material with the fin material It was.

Figure 0005180565
Figure 0005180565

Figure 0005180565
Figure 0005180565

Figure 0005180565
Figure 0005180565

Figure 0005180565
Figure 0005180565

Figure 0005180565
Figure 0005180565

(心材組成による評価)
実施例1〜3は、心材におけるSi含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例25は心材のSi含有量が不足しているため、ろう付け後強度が十分に得られなかった。一方、比較例26は心材のSi含有量が過剰なため、ろう付け時に心材が溶融して良好な試験材が得られなかった。
(Evaluation by core material composition)
In Examples 1 to 3, since the Si content in the core material is within the scope of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 25, since the Si content of the core material was insufficient, the strength after brazing was not sufficiently obtained. On the other hand, in Comparative Example 26, since the Si content of the core material was excessive, the core material melted during brazing and a good test material was not obtained.

実施例1,4,5は、心材におけるMn含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例27は心材のMn含有量が不足しているため、ろう付け後強度が十分に得られなかった。一方、比較例28は心材のMn含有量が過剰なため、粗大なMn化合物の形成により成形性が低下して良好な試験材が得られなかった。   Examples 1, 4, and 5 have sufficiently high strength after brazing because the Mn content in the core material is within the scope of the present invention. On the other hand, in Comparative Example 27, the strength after brazing was not sufficiently obtained because the Mn content of the core material was insufficient. On the other hand, in Comparative Example 28, since the Mn content of the core material was excessive, the moldability decreased due to the formation of a coarse Mn compound, and a good test material was not obtained.

実施例1,6,7は、心材におけるMg含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例29は心材のMg含有量が不足しているため、ろう付け後強度が十分に得られなかった。一方、比較例30は心材のMg含有量が過剰なため、ろう付け性が低下してフィン材とのろう付け接合が不十分となって、熱交換器用アルミニウム合金ブレージングシートとして不適合であった。   Examples 1, 6, and 7 have sufficiently high strength after brazing because the Mg content in the core material is within the scope of the present invention. On the other hand, in Comparative Example 29, the Mg content of the core material was insufficient, so that the strength after brazing was not sufficiently obtained. On the other hand, Comparative Example 30 was not suitable as an aluminum alloy brazing sheet for a heat exchanger because the Mg content of the core material was excessive, so that the brazing property was lowered and the brazing joint with the fin material was insufficient.

実施例1,8は、心材におけるTi含有量が本発明の範囲内であるので、耐食性が十分に高い。これに対して、比較例32は心材のTi含有量が不足しているので、腐食形態の層状効果が不十分で、孔食が進展した。一方、比較例33は心材のTi含有量が過剰なため、粗大なTi化合物の形成により成形性が低下して良好な試験材が得られなかった。   Examples 1 and 8 have sufficiently high corrosion resistance because the Ti content in the core material is within the range of the present invention. On the other hand, in Comparative Example 32, since the Ti content of the core material was insufficient, the layered effect of the corrosion form was insufficient and pitting corrosion progressed. On the other hand, in Comparative Example 33, since the Ti content of the core material was excessive, the formability decreased due to the formation of a coarse Ti compound, and a good test material was not obtained.

(犠牲陽極層組成による評価)
実施例1,9,10は、犠牲陽極層におけるSi含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例34は犠牲陽極層のSi含有量が不足しているため、ろう付け後強度が十分に得られなかった。一方、比較例35は犠牲陽極層のSi含有量が過剰なため、ろう付け時に犠牲陽極層が溶融して良好な試験材が得られなかった。
(Evaluation by sacrificial anode layer composition)
In Examples 1, 9, and 10, since the Si content in the sacrificial anode layer is within the scope of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 34, the sacrificial anode layer lacks the Si content, so that the strength after brazing was not sufficiently obtained. On the other hand, in Comparative Example 35, since the Si content of the sacrificial anode layer was excessive, the sacrificial anode layer melted during brazing, and a good test material was not obtained.

実施例1,11〜13は、犠牲陽極層におけるMn含有量が本発明の範囲内であるので、ろう付け後強度が十分に高い。これに対して、比較例36は犠牲陽極層のMn含有量が過剰なため、粗大なMn化合物の形成により成形性が低下して良好な試験材が得られなかった。   In Examples 1 and 11 to 13, since the Mn content in the sacrificial anode layer is within the range of the present invention, the strength after brazing is sufficiently high. On the other hand, in Comparative Example 36, since the Mn content of the sacrificial anode layer was excessive, the formability was lowered due to the formation of a coarse Mn compound, and a good test material was not obtained.

実施例1,14,15は、犠牲陽極層におけるZn含有量が本発明の範囲内であるので、犠牲防食効果が十分に高い。これに対して、比較例37は犠牲陽極層のZn含有量が不足しているため、犠牲防食効果が十分でなく、耐食性が低下した。一方、比較例38は犠牲陽極層のZn含有量が過剰なため、単板の耐食性は高いが、フィレットでZn濃度が増加して優先腐食が発生した。   Examples 1, 14, and 15 have a sufficiently high sacrificial anticorrosion effect because the Zn content in the sacrificial anode layer is within the scope of the present invention. On the other hand, since the Zn content of the sacrificial anode layer was insufficient in Comparative Example 37, the sacrificial anticorrosive effect was not sufficient, and the corrosion resistance was lowered. On the other hand, in Comparative Example 38, the corrosion resistance of the single plate was high because the Zn content in the sacrificial anode layer was excessive, but preferential corrosion occurred due to the Zn concentration increasing in the fillet.

(ろう材層組成による評価)
実施例1,16,17は、ろう材層におけるSi含有量が本発明の範囲内であるので、十分なろう付け性が確保できている。これに対して、比較例39はろう材層のSi含有量が不足しているため、ろうの流動量が不足してろう付け性が低下し、フィン材とのろう付け接合が不十分であった。一方、比較例40はろう材層のSi含有量が過剰なため、ろう材の成形性が低下して圧延割れが生じ、試験材が得られなかった。
(Evaluation by brazing material layer composition)
In Examples 1, 16, and 17, since the Si content in the brazing material layer is within the scope of the present invention, sufficient brazing properties can be secured. On the other hand, in Comparative Example 39, the brazing material layer lacks the Si content, so the brazing flow rate is insufficient and the brazing performance is lowered, and the brazing joint with the fin material is insufficient. It was. On the other hand, in Comparative Example 40, since the Si content of the brazing filler metal layer was excessive, the moldability of the brazing filler metal was deteriorated to cause rolling cracks, and no test material was obtained.

(心材およびろう材層のCu含有量による評価)
実施例1,18〜23は、心材およびろう材層のそれぞれにおけるCu含有量が本発明の範囲内であるので、ろう付け後強度および耐食性が十分に高い。これに対して、比較例31は心材のCu含有量が過剰なため、バーニングを発生して良好な試験材が得られなかった。また、比較例42はろう材層のCu含有量が過剰なため、フィン付き試験材のフィレットとその周辺との電位差が大きくなって、試験材およびフィン材のフィレット周辺部で優先腐食が発生した。一方、比較例41は、心材およびろう材層の両層がCu無添加であるため、電位勾配が不十分で、耐食性が低下した。また、比較例43は、心材のCu含有量がろう材層のCu含有量を超えるため、試験材の板厚中心近傍すなわち心材の板厚中心部で電位勾配が貴となり(図3(b)参照)、心材板厚中心部以深での犠牲防食効果が得られず、腐食試験において試験材に穴が開いた(最小残存板厚0μm)。
(Evaluation by Cu content of core material and brazing material layer)
In Examples 1 and 18 to 23, the Cu content in each of the core material and the brazing material layer is within the range of the present invention, so that the strength and corrosion resistance after brazing are sufficiently high. On the other hand, in Comparative Example 31, since the Cu content of the core material was excessive, burning occurred and a good test material could not be obtained. In Comparative Example 42, since the Cu content of the brazing material layer was excessive, the potential difference between the fillet of the test material with fins and the periphery thereof was large, and preferential corrosion occurred in the periphery of the fillet of the test material and the fin material. . On the other hand, in Comparative Example 41, since both the core material and the brazing material layer were free of Cu, the potential gradient was insufficient and the corrosion resistance was reduced. In Comparative Example 43, since the Cu content of the core material exceeds the Cu content of the brazing material layer, the potential gradient becomes noble near the center of the thickness of the test material, that is, in the center of the thickness of the core material (FIG. 3B). The sacrificial anticorrosive effect deeper than the center of the core plate thickness was not obtained, and a hole was formed in the test material in the corrosion test (minimum remaining plate thickness 0 μm).

(4層材の評価)
実施例44,45は、それぞれ組成が本発明の範囲内である犠牲陽極層/心材/ろう材層の犠牲陽極層側の面にさらにろう材を積層したものであるので、ろう付け後強度および耐食性が十分に高い。特に、実施例45は、犠牲陽極層側ろう材層にZnを添加したため、このろう材層へ犠牲陽極層のZnが拡散して減少することが抑制されるので、犠牲陽極層の犠牲防食効果が大きい。
(Evaluation of 4-layer material)
In Examples 44 and 45, since the brazing material was further laminated on the surface of the sacrificial anode layer / core material / brazing material layer side of the sacrificial anode layer whose composition was within the scope of the present invention, the strength after brazing and Corrosion resistance is high enough. In particular, in Example 45, Zn was added to the sacrificial anode layer-side brazing filler metal layer, so that the diffusion of the Zn in the sacrificial anode layer to the brazing filler metal layer and the reduction thereof were suppressed. Is big.

本発明に係る熱交換器用アルミニウム合金ブレージングシートにおけるCu,Znの濃度分布および電位勾配を示す図であり、(a)はCu,Znの濃度分布図、(b)は電位勾配図である。It is a figure which shows Cu, Zn density | concentration distribution and electric potential gradient in the aluminum alloy brazing sheet for heat exchangers which concerns on this invention, (a) is a Cu, Zn density | concentration distribution figure, (b) is an electric potential gradient figure. ブレージングシートにフィン材を接合したフィン付き試験材の模式図である。It is a schematic diagram of the test material with a fin which joined the fin material to the brazing sheet. 従来の熱交換器用アルミニウム合金ブレージングシートにおけるCu,Znの濃度分布および電位勾配を示す図であり、(a)はCu,Znの濃度分布図、(b)は電位勾配図である。It is a figure which shows the density | concentration distribution and potential gradient of Cu and Zn in the conventional aluminum alloy brazing sheet for heat exchangers, (a) is a density distribution figure of Cu and Zn, (b) is a potential gradient figure.

Claims (3)

心材と、この心材の一面側に配置される犠牲陽極層と、前記心材の他面側に配置されてAl−Si系合金からなるろう材層とを備えた熱交換器用アルミニウム合金ブレージングシートであって、
前記心材は、Si:0.3〜1.5質量%、Mn:0.5〜1.8質量%、Mg:0.05〜0.5質量%、Ti:0.05〜0.35質量%を含有し、残部がAlおよび不可避的不純物からなり、
前記犠牲陽極層は、Si:0.03〜1.5質量%、Mn:1.8質量%以下、Zn:2.5〜7.0質量%を含有し、残部がAlおよび不可避的不純物からなり、
前記ろう材層は、Si:7.0〜13.0質量%、Cu:3.0質量%以下かつ前記心材のCu濃度以上を含有し、残部がAlおよび不可避的不純物からなることを特徴とする熱交換器用アルミニウム合金ブレージングシート。
An aluminum alloy brazing sheet for a heat exchanger, comprising: a core material; a sacrificial anode layer disposed on one surface side of the core material; and a brazing material layer made of an Al—Si based alloy disposed on the other surface side of the core material. And
The core is composed of Si: 0.3 to 1.5% by mass, Mn: 0.5 to 1.8% by mass, Mg: 0.05 to 0.5% by mass, Ti: 0.05 to 0.35% by mass. %, The balance consisting of Al and inevitable impurities,
The sacrificial anode layer contains Si: 0.03 to 1.5% by mass, Mn: 1.8% by mass or less, Zn: 2.5 to 7.0% by mass, and the balance is made of Al and inevitable impurities. Become
The brazing filler metal layer contains Si: 7.0 to 13.0% by mass, Cu: 3.0% by mass or less and Cu concentration or more of the core material, and the balance is made of Al and inevitable impurities. Aluminum alloy brazing sheet for heat exchanger.
前記心材が、さらに、1.0質量%以下かつ前記ろう材層のCu含有量以下のCuを含有することを特徴とする請求項1に記載の熱交換器用アルミニウム合金ブレージングシート。   The aluminum alloy brazing sheet for a heat exchanger according to claim 1, wherein the core material further contains Cu of 1.0 mass% or less and Cu content or less of the brazing material layer. 請求項1または請求項2に記載の熱交換器用アルミニウム合金ブレージングシートの犠牲陽極層側の表面に、さらにろう材からなる層を備えることを特徴とする熱交換器用アルミニウム合金ブレージングシート。
An aluminum alloy brazing sheet for a heat exchanger, further comprising a layer made of a brazing material on the surface of the sacrificial anode layer side of the aluminum alloy brazing sheet for a heat exchanger according to claim 1 or 2.
JP2007307291A 2007-11-28 2007-11-28 Aluminum alloy brazing sheet for heat exchanger Expired - Fee Related JP5180565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307291A JP5180565B2 (en) 2007-11-28 2007-11-28 Aluminum alloy brazing sheet for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307291A JP5180565B2 (en) 2007-11-28 2007-11-28 Aluminum alloy brazing sheet for heat exchanger

Publications (2)

Publication Number Publication Date
JP2009127121A JP2009127121A (en) 2009-06-11
JP5180565B2 true JP5180565B2 (en) 2013-04-10

Family

ID=40818353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307291A Expired - Fee Related JP5180565B2 (en) 2007-11-28 2007-11-28 Aluminum alloy brazing sheet for heat exchanger

Country Status (1)

Country Link
JP (1) JP5180565B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336967B2 (en) * 2009-07-28 2013-11-06 株式会社神戸製鋼所 Aluminum alloy clad material
CN101713039B (en) * 2009-09-29 2011-08-24 金龙精密铜管集团股份有限公司 Novel aluminum alloy and products thereof
JP6236290B2 (en) 2012-11-13 2017-11-22 株式会社デンソー Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP6132330B2 (en) 2013-01-23 2017-05-24 株式会社Uacj Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP5552181B2 (en) * 2013-05-20 2014-07-16 株式会社神戸製鋼所 Aluminum alloy clad material
JP2016176112A (en) * 2015-03-20 2016-10-06 株式会社神戸製鋼所 Aluminum alloy brazing sheet
CN110978665B (en) * 2019-11-26 2022-01-28 上海华峰铝业股份有限公司 Low-melting-point brazing layer anti-cracking multilayer aluminum alloy and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294377A (en) * 2001-03-29 2002-10-09 Kobe Steel Ltd Aluminum alloy composite material for brazing
JP4030006B2 (en) * 2002-07-05 2008-01-09 住友軽金属工業株式会社 Aluminum alloy clad material and manufacturing method thereof
JP2007247021A (en) * 2006-03-17 2007-09-27 Shinko Alcoa Yuso Kizai Kk Brazing sheet made of aluminum alloy for heat exchanger

Also Published As

Publication number Publication date
JP2009127121A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4477668B2 (en) Aluminum alloy brazing sheet
JP5054404B2 (en) Aluminum alloy clad material and brazing sheet for heat exchanger
JP6243837B2 (en) Aluminum alloy brazing sheet for heat exchanger, brazing body made of aluminum alloy for heat exchanger and method for producing the same
JP6236290B2 (en) Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
EP3222738B1 (en) Aluminum alloy cladding material for heat exchanger
JP5180565B2 (en) Aluminum alloy brazing sheet for heat exchanger
WO2014115651A1 (en) Aluminum alloy cladding material and heat exchanger incorporating tube obtained by molding said cladding material
JP2006131923A (en) Aluminum alloy clad material for heat exchanger superior in brazing property, corrosion resistance and hot rollability, and method for manufacturing heat exchanger by using the aluminum alloy clad material through brazing
JP2016069696A (en) Aluminum alloy brazing sheet
JP5498213B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP6474589B2 (en) Aluminum alloy clad material for heat exchanger
JP5632175B2 (en) Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties
JP5190079B2 (en) Aluminum alloy brazing sheet manufacturing method, aluminum alloy brazing sheet brazing method, heat exchanger manufacturing method, heat exchanger
JP5190078B2 (en) Brazing sheet for aluminum alloy brazing sheet and design method thereof
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2001170793A (en) High-strength aluminum alloy clad metal for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP6178483B1 (en) Aluminum alloy brazing sheet
JP6159843B1 (en) Aluminum alloy brazing sheet
JP5498214B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP2011036914A (en) Aluminum alloy brazing sheet
JP5400721B2 (en) Aluminum alloy brazing sheet
JP2001170794A (en) High-strength aluminum alloy clad material for heat exchanger excellent in tube manufacturing property and corrosion resistance
JP2008189998A (en) Brazing sheet made of aluminum alloy for heat exchanger
JP2007247021A (en) Brazing sheet made of aluminum alloy for heat exchanger
JP6159841B1 (en) Aluminum alloy brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees