JPH03146632A - Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture - Google Patents

Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture

Info

Publication number
JPH03146632A
JPH03146632A JP28009889A JP28009889A JPH03146632A JP H03146632 A JPH03146632 A JP H03146632A JP 28009889 A JP28009889 A JP 28009889A JP 28009889 A JP28009889 A JP 28009889A JP H03146632 A JPH03146632 A JP H03146632A
Authority
JP
Japan
Prior art keywords
strength
roundness
alloy
aluminum alloy
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28009889A
Other languages
Japanese (ja)
Inventor
Takashi Inaba
隆 稲葉
Tsuneji Mori
森 常治
Hideyoshi Usui
碓井 栄喜
Toru Takahashi
徹 高橋
Hiroshi Kobayashi
浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28009889A priority Critical patent/JPH03146632A/en
Publication of JPH03146632A publication Critical patent/JPH03146632A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the Al alloy hard sheet having high strength and high formability and suitable for cons for food and drink by subjecting an ingot of an Al alloy having a specified compsn. to homogenizing heat treatment, thereafter subjecting it to hot rolling and executing cold rolling including process annealing to work the alloy into the shape of a thin sheet. CONSTITUTION:An ingot of an Al alloy contg., by weight, 0.5 to 1.2% Fe, 0.5 to 1.0% Mn and 0.5 to 1.0% Mg [where Mg=(1.0 to 1.5)Mn] and contg. one or >=2 kinds among 0.1 to 0.7% Si, 0.05 to 0.5% Cu and 0.05 to 1.0% Zn is heated in the temp. range of 500 to 600 deg.C for >=1hr and is subjected to homogenizing heat treatment. Next, the ingot is subjected to coarse hot rolling and finish hot rolling, and the finish hot rolling is finished at >=280 deg.C finishing temp. into a sheet material having 1.5 to 2.5mm thickness. The sheet material is successively subjected to process annealing under the conditions of >=100 deg.C/min heating-cooling rate and 400 to 600 deg.C arrival temp. and is thereafter subjected to cold rolling at 70 to 90% draft, by which the Al alloy thin sheet for a can material for drink or the like having <=1.5kgf/mm<2> anisotropy in strength, excellent in out of roundness in a drawn cup and having about 0.35mm thickness can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアルミニウム合金硬質板に係り、更に詳しくは
、飲料用缶胴の絞りカップ後の外径変化が少なく、その
後のDI加工時に再絞りガイドに搬入し易い、絞りカッ
プの真円度に優れたアルミニウム合金硬質板及びその製
造法に関するものである。 (従来の技術) 従来より、ビール及び炭酸飲料用等の飲料缶体や食缶缶
体用には、材料としてAl−Mn−Mg系の3004合
金硬質板が用いられている。しかし、近年の缶軽量化に
おいて高強度、高成形性化の要望が強くなってきている
。 そのため、本発明者らは、先に析出硬化型の高強度缶体
用アルミ材料を開発した(特公昭61−7465号ばか
)。そして、この素材の高強度化は主として缶底部の薄
肉化に寄与している。しかしながら、更に缶の軽量化を
考えた場合、缶体全体の薄肉化が必要となってくる。し
たがって、今後、更に缶体の軽量化を図るためには缶壁
の薄肉化ができる材料が必要となり、このような要望が
強くなってきている。 一方、缶体用材料の製造法に関しては、先に述べた30
04合金の鋳塊に均質化熱処理、熱間圧延、冷間圧延及
び中間焼鈍を組み合せて行われるものであるが、特に最
近では、素材の高強度化と共に生産性の向上を目的とし
て連続焼鈍炉(CAL:コイルを巻きほどきながら急速
加熱冷却する短時間焼鈍)が用いられ始めており、例え
ば、特公昭61−7465号、同62−37705号。 同62−6740号、同62−13421号等が提案さ
れている。 (発明が解決しようとする課題) 先にも述べたように、缶体の軽量化には缶体全体の薄肉
化が必要であり、従来技術では缶底部のみの薄肉化が図
れる素材の高強度化が進められてきた。しかし、素材の
高強度化は缶壁部の高強度化にもつながり、充填時に必
要な缶の軸方向座屈強度に対してはプラスに働くが、残
念ながら、ネック及びフランジ加工に対してはマイナス
要因となり、必然的に缶壁、特にネック、フランジ部の
缶壁の薄肉化を困難にさせるという問題がある。 本発明者らは、この問題を解決し、缶壁の薄肉化の要望
に応えるため、缶壁強度が比較的低いアルミ材料並びに
その製造法を開発し、先に提案した(特願平1−939
37号)。 しかしながら、本発明者らが更に検討してきた結果5材
料特性上では優れることを確認したが、搬送上のトラブ
ル原因となる現象が認められた。 すなわち、絞りカップ成形後にDI加工を施す訳である
が、絞りカップが変形している場合にはDI加工時にジ
ャム発生を招く恐れがあることである。 本発明は、上記問題点を解決し、しかも缶全体の薄肉化
を可能とする高強度・高成形性のアルミニウム合金硬質
板とその製造法を提供することを目的とするものである
。 (課題を解決するための手段) 前記課題に鑑みて、本発明者らは、絞りカップ変形と材
料特性の関係を詳細に調査した。その結果、絞りカップ
変形は成形後のスプリングバックにより発生すること、
及びそれが強度異方性(平行、45°、直角の引張り強
度の差)に主として起因していること、更には強度異方
性は結晶粒の形状により生じることを知見した。そして
、その対策について鋭意研究を重ねた結果、成分組成及
び製造条件の適正化を図ることにより、解決するに至っ
た。 すなわち、絞りカップの変形は成形後に生じ、圧延方向
に対して直角方向に径が大きくなり、圧延方向に小さく
なる。これは、直角方向の強度が平行方向の強度に比べ
高いため、直角方向は第2図の如く外に広がり、逆に平
行方向は狭くなるためである。したがって、素材の強度
異方性がないことが重要であるが、本材料は圧延硬質材
であるため、必然的に強度異方性を生じ、そのため、で
きるかぎり小さくすることが重要となる。 そのためには、主として以下の2点を満足する方策が必
要であることが判明した。 (1)最終冷間圧延率は小さいほど良い。 (2)結晶粒は小さいほどよい。 このうち、(1)につ1〜では、要求特性(強度、成形
性)を満足しつつ効果的な強度上昇により最終冷間圧延
率を低下させ得る適正な成分調整とて造条件の調整が必
要である。また(2)についても中間焼鈍時に微細結晶
粒となる適正な成分調整と製造条件の調整が必要である
。これらの点と、更にその他の特性(晶出物分布、絞り
耳率)にも充分に配慮して、ここに本発明をなしたもの
である。 すなわち1本発明は、Fe:0.5〜1.2%。 Mn:0.5〜1.0%、Mg:0.5〜1.0%、但
し、MnとMgがMg= (1、0〜1 、5 )Mn
の関係を満足するように含有し、更にSi:0.1〜0
.7%、Cu:0.05〜0.5%及びZn:0.05
〜l、0%のうちの1種又は2種以上を含有し、残部が
Alと不可避的不純物からなるアルミ合金硬質板におい
て、強度異方性が1 、5 kgf / n+m2以内
であることを特徴とする絞りカップの真円度に優れたア
ルミニウム合金硬質板を要旨とするものである。 また、その製造法に係る本発明は、上記化学成分を有す
るAl合金鋳塊に500〜600°Cの温度の均質化熱
処理を施した後、熱間圧延を終了板厚1.5〜2.5m
m、終了温度280℃以上で行い、その後直ちに、或い
は放冷後加熱冷却速度100℃/ll1in以上、到達
温度400〜600℃の条件で中間焼鈍を施した後、圧
延率70〜90%の最終圧延を施すことにより、強度異
方性が1 、5 kgf/rnm2以内であるアルミニ
ウム硬質板を得ることを特徴とする絞りカップ真円度に
優れたアルミニウム合金硬質板の製造法を要旨とするも
のである。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における化学成分の限定理由は次のとおり
である。 Fe: Feは結晶粒微細化に最も大きな効果を有する他、Mn
との関係でAl−Fe−Mn系品出物の適正生成による
しごき加工性向上、缶壁強度の軟化に効果のある元素で
ある。しかし、Q、5%未満ではこれらに対する効果が
小さく、また、1.0%を超える場合には巨大品出物を
形成し、加工不具合を招くので好ましくない。したがっ
て、Fe量は0.5〜1.0%の範囲とする。 Mn: Mnは強度異方性を高める元素であるが、一方で強度の
向上、Al−Fe−Mn系品出物の適正生成によるしご
き加工性の向上、缶壁強度の軟化に効果のある元素でも
ある。したがって、0.5%未満では上記の効果が小さ
い。また1、0%を超える場合には強度異方性が高くな
る他、強度が高すぎることによる成形性の低下、更にF
e量との関係からAl−Fe−Mn系の巨大晶出物形成
による加工不具合を招くので好ましくない。したがって
、Mn量は0.5〜1.0%の範囲とする。 Mg: Mgは強度向上に効果のある元素であり、特にCuとの
組合せによりベーキング時にAl−Cu−Mg系析出物
による析出硬化を示し、缶底部の高強度化に有効である
。しかし、0.5%未満ではその効果は小さく、また1
、0%を超える場合には強度異方性が高くなる傾向にあ
り、カップの変形を招く。したがって、Mg量は0.5
〜1.0%の範囲とする。 但し、MnとMgはいずれも強度向上に効果があるもの
の、効果的な強度向上にはAn−Cu−Mg系析出物に
よる析出硬化を活用する必要がある。 この場合、Mg量がMn量よりも少ないと(Mg<Mn
)、効果的な強度向上が期待できず、冷間圧延率アップ
によりカップの変形が大きくなる。またMg量がMn量
の1.5倍よりも多いと(Mg) 1.5Mn)、要求
される強度にもよるが、M n 減少によるDI加工性
の低下を招く。したがって、MnとMgは、Mg”(1
,0〜1.5)Mnの関係を満足するように含有させる
。 Si: SiはAl−Fe−Mn系の晶出物に相変態を生じさせ
、いわゆるA Q −Fe−Mn −Si系のα相を形
成させる元素であり、α相は硬度が高く、特にしごき加
工性の向上に効果がある。゛しかじ、0゜1%未満では
その効果は小さく、また0、7%を超える場合には圧延
時に耳割れを生じ、製造上に問題を招く。したがって、
−3i量は0.1〜0.7%の範囲とする。 Cu: CuはMgと同様の効果を示す元素であり、Al−Cu
−Mg系析出物による析出効果を示し、缶底部の強度向
上に有効である。しかし、0.05%未満ではその効果
は小さく、また0、5%を超える場合には強度が高すぎ
ることによる成形性低下を招く。したがって、Cu量は
0.05〜0.5%の範囲とする。 zn: Znは絞り及びしごき加工性並びにその後のフランジ成
形性の向上に効果のある元素である。 しかし、0.05%未満ではその効果が小さく、また1
、0%を超える場合には特に問題はないが、耐食性が低
下する傾向となり、またコスト的に不利である。したが
って、Zniは0.05〜160%の範囲とする。 但し、上記Si、Cu及びZnについては、これらのう
ち、少なくとも1種又は2種以上を含有させれば足りる
。 なお、不純物としては、本発明の効果を損なわない限度
で許容でき5例えば、Cr<0.3%。 Ti<0.2%、B<0.05%、Zr<0.1%であ
る。 次に本発明の製造法について説明する。 上記化学成分を有するアルミニウム合金は、常法により
溶解、鋳造し、得られた鋳塊は熱間圧延前に均質化熱処
理が施される。この熱処理はその後の熱間圧延性の向上
のほか、先に述べたα相形成による成形性向上並びに深
絞り加工時に形成される耳率抑制に効果がある。しかし
、500℃未満ではいずれの効果も/lXさく、また6
00℃を超える場合にはバーニング等による板表面の性
能低下を招く。したがって、均質化熱処理は500〜6
00℃の温度で行う。なお、保持時間は加熱温度により
異なるが、概ねlhr以上が望ましく1例えば、550
℃未満ではlhr以上であるが、550℃以上では保持
時間はなくてもよい。また、この均質化熱処理は2度行
ってもよい。 引き続き行なわれる熱間圧延は、粗圧延(厚さ10+u
+以上)と仕上圧延とに分かれるものの、連続工程であ
る。粗圧延は均質化熱処理後行なわれるが、開始温度は
450℃以上が好ましい。更に粗圧延後、仕上圧延にて
コイル状に巻き上げるが。 その際、終了時の板厚と温度が重要である。これらは製
品板での適正強度1強度異方性、DI加工後のベーキン
グによる軟化並びに深絞り加工時の耳率抑制に影響を及
ぼす。すなわち、終了板厚が1.51未満では強度異方
性低下及び耳率抑制には効果があるが1強度及びDI加
工後のベーキングによる軟化が不足する。また、2.5
mmを超える場合には強度異方性が大きく、また強度が
高すぎることによる成形性低下と耳率アップによる加工
不具合を招く。したがって、終了板厚は1.5〜2.5
11Imの範囲とする。また、終了温度は、特に深絞り
耳に大きく影響し、280℃未満では大巾な耳率アップ
を招くので、終了温度は280℃以上とする。 その後、中間焼鈍を含む冷間圧延が行われる。 中間焼鈍は製品板(缶底部に相当)での結晶粒微細化及
び高強度化に重要な工程であり、絞りカップの変形を小
さくすること及び製缶工程中のベーキングにおいて析出
硬化するMg及びCuを充分に固溶させることを目的と
する熱処理である。加熱冷却速度が100℃/win未
満では結晶粒・微細化が難しく、また冷却途中に析出を
生じて固溶量が減少するので好ましくない。また、加熱
と冷却は同一ライン内にあり、生産性の点からライン速
度は速いほどよい。したがって、加熱冷却速度は100
℃/In1n以上とする。また、加熱温度は再結晶と同
時にMg及びCuの溶体化に重要な条件であるが、40
0℃未満ではいずれにも不充分であり、600℃を超え
る場合にはバーニングの問題を招くので好ましくない。 更に保持時間は温度により異なり、高温(例えば、50
0℃以上)の場合には保持なしでも充分に満足されるが
、低温(例えば、400℃)の場合には10m1n程度
必要である。したがって、到達温度は400〜600℃
の範囲とし、概ね10Ilin以内の保持を行なう。な
お、生産上、好ましい温度範囲は450〜550℃であ
る。勿論、中間焼鈍は連続焼鈍炉(CAL)を使用する
のが好ましいことは云うまでもない。 更に、中間焼鈍後に行う最終工程の冷間圧延は、製品板
での強度向上及びDI加工後のベーキングによる軟化に
効果がある。しかし、冷間圧延率が70%未満ではその
効果がホさいことから、冷間圧延率は70%以上が必要
である。一方、圧延率が90%を超えると、強度異方性
が大きくなり。 カップの真円度を低下させる他1強度が高くなることか
ら、成形性の低下を招く。したがって、最終冷間圧延は
圧延率70〜90%で行う。 なお、冷間圧延後、必要に応じて、缶底成形性の向上の
ために仕上げ焼鈍(100〜200°C×lhr以上)
を施す場合もある。 (実施例) 次に本発明の実施例を示す。 災寒皿上 Al−Mn−Mg系合金において、Fe: 0.4−2
.0%、Mn: 0.4−1.2%、Mg:0.4〜1
゜2%の範囲で変えた10種類の成分組成のAl合金鋳
塊に580℃X4hrの均質化熱処理を施した後、50
mm厚から2ml11厚まで熱間圧延(終了fjL度2
90〜300℃)を施した。その後、520 ℃X5s
の急速加熱冷却焼鈍(500℃/mjn)を施し、製品
厚0.35mmまで冷間圧延した。 これらの供試材について、圧延方向に対してそれぞれ平
行、45°直角に引張り試験片を切り出し、機械的性質
を求めると共に、86φ×40hの絞りカップ(45t
onクランクプレス使用、ブランク径140φ)を製作
し、カップ上部(上端より5m+w下程度)の真円度を
測定した。 その結果を第1図に示すように、(直角−平行)の引張
り強度差△σ8(上−i)と真円度とは、正の相関が認
められ、ΔσB(土−i)が小さい程、真円度は小さく
なり、良好となることが明らかとなった。 なお、図中、A材は代表的な3004合金(Fe:0.
4%、Mn:1.05%、Mg:1.1%)であり、最
も真円度に優れるB材はFe: 2.0%のAl金合金
ある。しかし、Fe、:、2.0%のAl金合金B材)
は成形性(絞り性、張出性)に劣り、他の供試材も、強
度不足或いは成形性不足の点で実用化には無理であった
。但し、本テストより、真円度(本試験条件)を2mm
以下とするためには、△σ8(上−i)が1 、5 k
gf / mm”であることが判った。 災見桝又 第1表に示す化学成分を有するAl合金鋳塊に580℃
X6hrの均質化熱処理を施した後、熱間圧延(終了温
度290〜305℃)にて2.0mm厚とし、500℃
XlOsの急速加熱冷却焼鈍(500℃/5in)を施
した。その後、0.35mm厚まで冷延して製品板とし
た。 得られた製品について機械的性質(圧延まま、ベーキン
グ後)及びカップの真円度を調べた結果を第2表に示す
。なお、カップ真円度は実施例1の場合と同様の要領で
測定した。 第2表より明らかなように1本発明材のNα3、Nα4
.Na5は△σB(土−i)が小さく、カップ真円度に
優れ、且つ本用途の缶胴材(耐圧強度の観点からベーキ
ング耐力≧28 kgf / mm”が必要)としての
強度も有している。 一方、従来材No1と、(M g/ M n) > 1
 、5の比較材Nn 2はともに△σ8(土−//)が
大きく、カップ真円度に劣る。 更に、比較材Na 6は(Mg/Mn)<1.0であり
。 効果的なベークハードが得られず、強度不足である。ま
た、比較材Nα7はFeが多い(金居間化合物大)ため
に絞り及びしごき加工性に劣り1本用途に適していない
(Industrial Application Field) The present invention relates to an aluminum alloy hard plate, and more specifically, the present invention relates to an aluminum alloy hard plate, and more specifically, it has a shape that reduces the outer diameter change after the drawing cup of a beverage can body, and that is easy to carry into the re-drawing guide during subsequent DI processing. The present invention relates to an aluminum alloy hard plate with excellent cup roundness and a method for manufacturing the same. (Prior Art) Al-Mn-Mg based 3004 alloy hard plates have been used as a material for beverage can bodies such as beer and carbonated beverages and food can bodies. However, in recent years, in order to reduce the weight of cans, there has been an increasing demand for high strength and high formability. Therefore, the present inventors have previously developed a precipitation hardening type high-strength aluminum material for can bodies (Japanese Patent Publication No. 7465/1983). The increased strength of this material primarily contributes to the thinning of the bottom of the can. However, when considering further weight reduction of the can, it becomes necessary to reduce the thickness of the entire can body. Therefore, in order to further reduce the weight of can bodies in the future, materials that can make can walls thinner will be needed, and such demands are becoming stronger. On the other hand, regarding the manufacturing method of can material, there are 30
04 alloy ingots are subjected to a combination of homogenization heat treatment, hot rolling, cold rolling, and intermediate annealing, but recently, continuous annealing furnaces have been used to increase the strength of the material and improve productivity. (CAL: short-time annealing in which the coil is rapidly heated and cooled while unwinding) is beginning to be used, for example, Japanese Patent Publications No. 61-7465 and No. 62-37705. No. 62-6740, No. 62-13421, etc. have been proposed. (Problem to be solved by the invention) As mentioned earlier, to reduce the weight of the can body, it is necessary to reduce the thickness of the entire can body, and with the conventional technology, it is possible to reduce the thickness of only the bottom of the can by using a high-strength material. has been progressing. However, increasing the strength of the material also leads to increasing the strength of the can wall, which has a positive effect on the axial buckling strength of the can required during filling, but unfortunately, it has a negative effect on neck and flange processing. This becomes a negative factor and inevitably makes it difficult to reduce the thickness of the can wall, particularly at the neck and flange portions. In order to solve this problem and meet the demand for thinner can walls, the present inventors developed an aluminum material with relatively low can wall strength and a method for manufacturing the same, and previously proposed it (Patent Application No. 939
No. 37). However, as a result of further studies conducted by the present inventors, although it was confirmed that the material properties of the material were excellent, a phenomenon that caused transportation troubles was observed. That is, the DI process is performed after the drawing cup is formed, but if the drawing cup is deformed, there is a risk of jamming occurring during the DI process. An object of the present invention is to solve the above-mentioned problems and provide a hard aluminum alloy plate with high strength and high formability, which makes it possible to reduce the thickness of the entire can, and a method for manufacturing the same. (Means for Solving the Problems) In view of the above problems, the present inventors investigated in detail the relationship between drawing cup deformation and material properties. As a result, it was found that drawing cup deformation occurs due to springback after forming.
It was also found that this is mainly caused by strength anisotropy (difference in tensile strength in parallel, 45°, and perpendicular directions), and that strength anisotropy is caused by the shape of crystal grains. As a result of extensive research into countermeasures, we were able to solve the problem by optimizing the component composition and manufacturing conditions. That is, deformation of the draw cup occurs after forming, and the diameter increases in the direction perpendicular to the rolling direction and decreases in the rolling direction. This is because the strength in the perpendicular direction is higher than the strength in the parallel direction, so the perpendicular direction expands outward as shown in FIG. 2, and conversely, the parallel direction becomes narrower. Therefore, it is important that the material has no strength anisotropy, but since this material is a rolled hard material, strength anisotropy inevitably occurs, and therefore it is important to minimize the strength anisotropy. For this purpose, it has been found that a measure that mainly satisfies the following two points is required. (1) The smaller the final cold rolling rate, the better. (2) The smaller the crystal grains, the better. Among these, in (1), it is necessary to adjust the forming conditions by appropriately adjusting the ingredients to reduce the final cold rolling rate by effectively increasing the strength while satisfying the required properties (strength, formability). is necessary. Regarding (2) as well, it is necessary to properly adjust the components and manufacturing conditions to form fine crystal grains during intermediate annealing. The present invention has been developed by fully considering these points and other characteristics (crystallized material distribution, selvage ratio). That is, in the present invention, Fe: 0.5 to 1.2%. Mn: 0.5 to 1.0%, Mg: 0.5 to 1.0%, provided that Mn and Mg are Mg = (1, 0 to 1, 5) Mn
Si: 0.1 to 0.
.. 7%, Cu: 0.05-0.5% and Zn: 0.05
An aluminum alloy hard plate containing one or more of the following: ~l, 0%, with the balance consisting of Al and inevitable impurities, characterized by having a strength anisotropy within 1.5 kgf/n+m2 The gist of this invention is to provide a hard aluminum alloy plate with excellent roundness for drawing cups. In addition, the present invention relating to the manufacturing method includes subjecting an Al alloy ingot having the above chemical composition to homogenization heat treatment at a temperature of 500 to 600°C, and then hot rolling to a plate thickness of 1.5 to 2.5°C. 5m
m, carried out at a finishing temperature of 280°C or higher, and then immediately or after cooling, intermediate annealing is performed at a heating and cooling rate of 100°C/ll1in or higher and a final temperature of 400 to 600°C, followed by a final rolling reduction of 70 to 90%. The gist is a method for producing an aluminum alloy hard plate with excellent draw cup roundness, which is characterized by obtaining an aluminum hard plate with strength anisotropy within 1.5 kgf/rnm2 by rolling. It is. The present invention will be explained in more detail below. (Function) First, the reasons for limiting the chemical components in the present invention are as follows. Fe: Fe has the greatest effect on grain refinement, and Mn
In relation to this, it is an element that is effective in improving ironing workability and softening the can wall strength by properly forming Al-Fe-Mn based products. However, when Q is less than 5%, the effect on these is small, and when it exceeds 1.0%, it is not preferable because it forms giant pieces and causes processing defects. Therefore, the amount of Fe is set in the range of 0.5 to 1.0%. Mn: Mn is an element that increases strength anisotropy, but it is also an element that is effective in improving strength, improving ironing workability by properly forming Al-Fe-Mn products, and softening can wall strength. There is also. Therefore, if it is less than 0.5%, the above effect will be small. Moreover, if it exceeds 1.0%, strength anisotropy will increase, and formability will decrease due to the strength being too high.
This is not preferable because it causes processing defects due to the formation of Al-Fe-Mn-based giant crystallized substances in relation to the amount of e. Therefore, the amount of Mn is set in the range of 0.5 to 1.0%. Mg: Mg is an element that is effective in improving strength, and in particular, when combined with Cu, it exhibits precipitation hardening due to Al-Cu-Mg based precipitates during baking, and is effective in increasing the strength of the can bottom. However, the effect is small below 0.5%, and
, if it exceeds 0%, the strength anisotropy tends to increase, leading to deformation of the cup. Therefore, the amount of Mg is 0.5
-1.0% range. However, although both Mn and Mg are effective in improving strength, it is necessary to utilize precipitation hardening by An-Cu-Mg-based precipitates to effectively improve strength. In this case, if the Mg amount is less than the Mn amount (Mg<Mn
), no effective strength improvement can be expected, and the deformation of the cup increases as the cold rolling rate increases. Furthermore, if the Mg amount is more than 1.5 times the Mn amount (Mg) 1.5Mn), the DI workability will decrease due to a decrease in Mn, although it depends on the required strength. Therefore, Mn and Mg are Mg”(1
, 0 to 1.5) Mn is contained so as to satisfy the relationship. Si: Si is an element that causes phase transformation in the Al-Fe-Mn system crystallized product to form the so-called α phase of the AQ-Fe-Mn-Si system.The α phase has high hardness and is particularly difficult to iron. Effective in improving workability. However, if it is less than 0.1%, the effect will be small, and if it exceeds 0.7%, edge cracking will occur during rolling, causing problems in manufacturing. therefore,
The amount of -3i is in the range of 0.1 to 0.7%. Cu: Cu is an element that exhibits the same effect as Mg, and Al-Cu
- It exhibits a precipitation effect due to Mg-based precipitates and is effective in improving the strength of the can bottom. However, if it is less than 0.05%, the effect will be small, and if it exceeds 0.5%, the strength will be too high, leading to a decrease in moldability. Therefore, the amount of Cu is set in the range of 0.05 to 0.5%. Zn: Zn is an element that is effective in improving drawing and ironing workability and subsequent flange formability. However, if it is less than 0.05%, the effect is small;
If it exceeds 0%, there is no particular problem, but corrosion resistance tends to decrease and it is disadvantageous in terms of cost. Therefore, Zni is in the range of 0.05 to 160%. However, regarding the above-mentioned Si, Cu, and Zn, it is sufficient if at least one or two or more of them are contained. Note that impurities are permissible as long as they do not impair the effects of the present invention5, for example, Cr<0.3%. Ti<0.2%, B<0.05%, and Zr<0.1%. Next, the manufacturing method of the present invention will be explained. An aluminum alloy having the above chemical components is melted and cast by a conventional method, and the resulting ingot is subjected to homogenization heat treatment before hot rolling. This heat treatment is effective in improving the subsequent hot rolling properties, as well as improving formability through the formation of the α phase mentioned above and suppressing the selvage rate formed during deep drawing. However, below 500℃, neither effect decreases by /lX, and 6
If the temperature exceeds 00°C, the performance of the plate surface will deteriorate due to burning or the like. Therefore, the homogenization heat treatment is 500-6
It is carried out at a temperature of 00°C. Note that the holding time varies depending on the heating temperature, but is preferably approximately 1 hr or more, for example, 550 hr or more.
If the temperature is less than 550°C, the holding time is 1hr or more, but if the temperature is 550°C or more, there may be no holding time. Further, this homogenization heat treatment may be performed twice. The subsequent hot rolling is rough rolling (thickness 10+u
It is a continuous process, although it is divided into (+ or above) and finish rolling. Rough rolling is performed after homogenization heat treatment, and the starting temperature is preferably 450°C or higher. After further rough rolling, it is finished rolled into a coil. In this case, the plate thickness and temperature at the end are important. These influence the appropriate strength 1 strength anisotropy of the product board, softening due to baking after DI processing, and suppression of selvage during deep drawing. That is, if the final plate thickness is less than 1.51, it is effective in reducing the strength anisotropy and suppressing the selvedge ratio, but the 1 strength and the softening due to baking after DI processing are insufficient. Also, 2.5
If it exceeds mm, the strength anisotropy will be large, and the strength will be too high, leading to a decrease in formability and an increase in the selvage rate, resulting in processing defects. Therefore, the final plate thickness is 1.5 to 2.5
The range is 11 Im. Further, the finishing temperature has a great effect on the deep-drawn selvage in particular, and if it is less than 280°C, the selvage rate will increase significantly, so the finishing temperature is set to be 280°C or higher. After that, cold rolling including intermediate annealing is performed. Intermediate annealing is an important process for refining grains and increasing strength in the product plate (corresponding to the bottom of the can). The purpose of this heat treatment is to sufficiently dissolve the If the heating and cooling rate is less than 100° C./win, it is difficult to refine the crystal grains and precipitation occurs during cooling, which reduces the amount of solid solution, which is not preferable. In addition, heating and cooling are performed in the same line, and from the viewpoint of productivity, the faster the line speed, the better. Therefore, the heating and cooling rate is 100
℃/In1n or more. In addition, the heating temperature is an important condition for solutionizing Mg and Cu at the same time as recrystallization.
If it is less than 0°C, it is insufficient in either case, and if it exceeds 600°C, it may cause a burning problem, which is not preferable. Furthermore, the holding time varies depending on the temperature, and at high temperatures (e.g. 50
If the temperature is 0°C or higher, the temperature is sufficiently satisfied without holding, but if the temperature is low (for example, 400°C), about 10 m1n is required. Therefore, the temperature reached is 400-600℃
It is maintained within approximately 10 Ilin. In addition, in terms of production, the preferred temperature range is 450 to 550°C. Needless to say, it is preferable to use a continuous annealing furnace (CAL) for intermediate annealing. Furthermore, cold rolling, which is the final step performed after intermediate annealing, is effective in improving the strength of the product sheet and softening it by baking after DI processing. However, if the cold rolling rate is less than 70%, the effect is poor, so the cold rolling rate must be 70% or more. On the other hand, when the rolling reduction exceeds 90%, the strength anisotropy increases. In addition to reducing the roundness of the cup, it also increases the strength, leading to a decrease in moldability. Therefore, the final cold rolling is performed at a rolling reduction of 70 to 90%. After cold rolling, if necessary, finish annealing (100 to 200°C x lhr or more) is performed to improve can bottom formability.
may be applied. (Example) Next, an example of the present invention will be shown. In the Al-Mn-Mg alloy on the cold plate, Fe: 0.4-2
.. 0%, Mn: 0.4-1.2%, Mg: 0.4-1
After applying homogenization heat treatment at 580°C for 4 hours to Al alloy ingots with 10 different compositions varying within a range of 2%,
Hot rolling from mm thickness to 2ml11 thickness (finished fjL degree 2
90-300°C). After that, 520℃×5s
It was subjected to rapid heating and cooling annealing (500° C./mjn) and cold rolled to a product thickness of 0.35 mm. For these test materials, tensile test pieces were cut parallel to the rolling direction and at a right angle of 45° to determine the mechanical properties.
A blank diameter of 140φ was produced using an on-crank press, and the roundness of the upper part of the cup (approximately 5 m+w below the upper end) was measured. As the results are shown in Figure 1, there is a positive correlation between the (perpendicular to parallel) tensile strength difference △σ8 (top-i) and roundness, and the smaller ΔσB (earth-i) is, the more It became clear that the roundness became smaller and better. In the figure, material A is a typical 3004 alloy (Fe: 0.
4%, Mn: 1.05%, Mg: 1.1%), and the B material with the best roundness is an Al-gold alloy with Fe: 2.0%. However, Fe, :, 2.0% Al gold alloy B material)
was inferior in formability (drawability, stretchability), and other test materials were also unsuitable for practical use due to insufficient strength or formability. However, from this test, the roundness (this test condition) was set to 2mm.
In order to have the following, △σ8 (upper - i) is 1, 5 k
gf/mm”. The aluminum alloy ingot having the chemical composition shown in Table 1 was heated to 580°C.
After homogenization heat treatment for
Rapid heating and cooling annealing (500° C./5 inches) of XlOs was performed. Thereafter, it was cold rolled to a thickness of 0.35 mm to obtain a product sheet. Table 2 shows the results of examining the mechanical properties (as rolled, after baking) and roundness of the cup for the obtained product. Note that the cup roundness was measured in the same manner as in Example 1. As is clear from Table 2, Nα3 and Nα4 of the present invention material
.. Na5 has a small ΔσB (Sat-i), excellent cup roundness, and has the strength as a can body material for this purpose (baking yield strength ≥ 28 kgf / mm" is required from the viewpoint of pressure resistance). On the other hand, with conventional material No. 1, (M g / M n) > 1
, 5 and 5 have a large Δσ8 (earth −//) and are inferior in cup roundness. Furthermore, the comparison material Na 6 has (Mg/Mn)<1.0. Effective bake hardness cannot be obtained and the strength is insufficient. In addition, the comparative material Nα7 has a large amount of Fe (as large as a metal compound), so it has poor drawing and ironing workability and is not suitable for single-piece use.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、アルミニウム硬
質板においてFe、Mn、Mgの各量をMnとMgが特
定の関係式を満足するように成分調整し、更には製造条
件を適正に規制するので、缶の成形時にトラブルがなく
、且つ缶全体の薄肉化が可能である。
(Effects of the Invention) As detailed above, according to the present invention, the amounts of Fe, Mn, and Mg in the aluminum hard plate are adjusted so that Mn and Mg satisfy a specific relational expression, and Since the manufacturing conditions are properly regulated, there is no trouble when forming the can, and the can can be made thinner overall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は真円度と(直角−平行)の引張り強度差Δσ8
(土−i)との関係を示す図、 第2図は絞りカップの変形状態を示す説明図である。 特許出頭人  株式会社神戸製鋼所
Figure 1 shows the difference in tensile strength between roundness and (perpendicular to parallel) Δσ8
Figure 2 is an explanatory diagram showing the deformed state of the drawing cup. Patent applicant: Kobe Steel, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Fe:0.5〜1.2
%、Mn:0.5〜1.0%、Mg:0.5〜1.0%
、但し、MnとMgがMg=(1.0〜1.5)Mnの
関係を満足するように含有し、更にSi:0.1〜0.
7%、Cu:0.05〜0.5%及びZn:0.05〜
1.0%のうちの1種又は2種以上を含有し、残部がA
lと不可避的不純物からなるアルミ合金硬質板において
、強度異方性が1.5kgf/mm^2以内であること
を特徴とする絞りカップの真円度に優れたアルミニウム
合金硬質板。
(1) In weight% (the same applies hereinafter), Fe: 0.5 to 1.2
%, Mn: 0.5-1.0%, Mg: 0.5-1.0%
However, Mn and Mg are contained so as to satisfy the relationship of Mg=(1.0-1.5)Mn, and Si: 0.1-0.
7%, Cu: 0.05~0.5% and Zn: 0.05~
Contains one or more of 1.0% and the remainder is A.
An aluminum alloy hard plate having an excellent roundness of a drawing cup, characterized in that the strength anisotropy is within 1.5 kgf/mm^2 in the aluminum alloy hard plate consisting of l and inevitable impurities.
(2)請求項1に記載の化学成分を有するAl合金鋳塊
に500〜600℃の温度の均質化熱処理を施した後、
熱間圧延を終了板厚1.5〜2.5mm、終了温度28
0℃以上で行い、その後直ちに、或いは放冷後加熱冷却
速度100℃/min以上、到達温度400〜600℃
の条件で中間焼鈍を施した後、圧延率70〜90%の最
終圧延を施すことにより、強度異方性が1.5kgf/
mm^2以内であるアルミニウム硬質板を得ることを特
徴とする絞りカップ真円度に優れたアルミニウム合金硬
質板の製造法。
(2) After subjecting an Al alloy ingot having the chemical composition according to claim 1 to homogenization heat treatment at a temperature of 500 to 600°C,
Finished hot rolling, plate thickness 1.5-2.5mm, finishing temperature 28
Perform at 0°C or higher, then immediately or after cooling, heating and cooling rate 100°C/min or higher, reaching temperature 400-600°C
After performing intermediate annealing under the conditions of
A method for producing an aluminum alloy hard plate with excellent drawing cup roundness, characterized by obtaining an aluminum hard plate with a roundness of within mm^2.
JP28009889A 1989-10-28 1989-10-28 Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture Pending JPH03146632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28009889A JPH03146632A (en) 1989-10-28 1989-10-28 Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28009889A JPH03146632A (en) 1989-10-28 1989-10-28 Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture

Publications (1)

Publication Number Publication Date
JPH03146632A true JPH03146632A (en) 1991-06-21

Family

ID=17620292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28009889A Pending JPH03146632A (en) 1989-10-28 1989-10-28 Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture

Country Status (1)

Country Link
JP (1) JPH03146632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020645A1 (en) * 2015-07-31 2017-02-09 广东欧珀移动通信有限公司 Electronic device, die-casting aluminium alloy, and preparation method for die-casting aluminium alloy
WO2023204255A1 (en) * 2022-04-22 2023-10-26 株式会社Uacj Cold-rolled aluminum alloy sheet, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157249A (en) * 1983-02-25 1984-09-06 Kobe Steel Ltd Aluminum alloy flat bar for forming and its production
JPS63149349A (en) * 1986-12-12 1988-06-22 Furukawa Alum Co Ltd Aluminum alloy sheet for wrapping and its manufacture
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157249A (en) * 1983-02-25 1984-09-06 Kobe Steel Ltd Aluminum alloy flat bar for forming and its production
JPS63149349A (en) * 1986-12-12 1988-06-22 Furukawa Alum Co Ltd Aluminum alloy sheet for wrapping and its manufacture
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020645A1 (en) * 2015-07-31 2017-02-09 广东欧珀移动通信有限公司 Electronic device, die-casting aluminium alloy, and preparation method for die-casting aluminium alloy
WO2023204255A1 (en) * 2022-04-22 2023-10-26 株式会社Uacj Cold-rolled aluminum alloy sheet, and method for producing same

Similar Documents

Publication Publication Date Title
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JPH01123054A (en) Hard-baked-type high-strength can material and its production
JPH03146632A (en) Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture
JPS63149349A (en) Aluminum alloy sheet for wrapping and its manufacture
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JPH06248332A (en) Production of steel sheet for vessel
JP3850542B2 (en) Aluminum alloy plate excellent in curling property and winding property and method for producing the same
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JPH02270930A (en) Aluminum alloy hard sheet having excellent formability and its manufacture
JP2895510B2 (en) Manufacturing method of aluminum alloy material for forming
JPH04214845A (en) Manufacture of aluminum alloy sheet excellent in formability
JPH04147936A (en) High strength aluminum alloy sheet for drawing and its manufacture
JPH07310152A (en) Production of high formability can body
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP3600021B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPH01198454A (en) Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JPH0651901B2 (en) Method for producing aluminum alloy for drawing having high strength and low directionality
JPS6310219B2 (en)
JPH0293049A (en) Production of aluminum alloy sheet
JPH04272151A (en) Aluminum alloy hard sheet and its manufacture