JPH02270930A - Aluminum alloy hard sheet having excellent formability and its manufacture - Google Patents

Aluminum alloy hard sheet having excellent formability and its manufacture

Info

Publication number
JPH02270930A
JPH02270930A JP9393789A JP9393789A JPH02270930A JP H02270930 A JPH02270930 A JP H02270930A JP 9393789 A JP9393789 A JP 9393789A JP 9393789 A JP9393789 A JP 9393789A JP H02270930 A JPH02270930 A JP H02270930A
Authority
JP
Japan
Prior art keywords
strength
alloy
aluminum alloy
temperature
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9393789A
Other languages
Japanese (ja)
Inventor
Takashi Inaba
隆 稲葉
Tsuneji Mori
森 常治
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9393789A priority Critical patent/JPH02270930A/en
Publication of JPH02270930A publication Critical patent/JPH02270930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high strength, high formability Al alloy hard sheet capable of thinning an entire can even if the componential range of Fe and Mn is widen by specifying the compsn. of an Al alloy, particularly the amounts of Fe and Mn having high influence and its manufacturing conditions. CONSTITUTION:An Al alloy ingot contg., by weight, 0.5 to 1.0% Mn, 0.5 to 1.2% Fe and 0.5 to 2.0% Mg so that Mn and Fe satisfy (Fe+1.07XMn)<1.81, furthermore contg. one or more kinds among 0.1 to 0.7% Si, 0.05 to 0.5% Cu and 0.05 to 1.0% Zn and the balance Al is used. The ingot is subjected to homogenizing heat treatment at 500 to 600 deg.C, is thereafter hot-rolled at 1.5 to 2.5mm end sheet thickness at >=280 deg.C end temp. After that, the alloy is subjected to process annealing under the conditions of >=100 deg.C/min heating-cooling rate and 400 to 600 deg.C arrival temp. and is subjected to final cold rolling at >=80% rolling reduction.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアルミニウム合金硬質板に係り、更に詳しくは
1例えば飲料用缶胴材において、特に全装・印刷(ベー
キング)後の成形(ネック・フランジ)性に優れるアル
ミニウム合金硬質板並びにその製造法に関するものであ
る。 (従来の技術) 従来より、ビール及び炭酸飲料用等の飲料缶体や食缶缶
体用には、材料としてAl−Mn−Mg系の3004合
金硬質板が用いられている。しかし、近年の缶軽量化に
おいて高強度、高成形性化の要望が強くなってきている
。 そのため、本発明者らは、先に析出硬化型の高強度缶体
用アルミ材料を開発した(特公昭61−7465号ほか
)、そして、この素材の高強度化は主として缶底部の薄
肉化に寄与している。しかしながら、更に缶の軽量化を
考えた場合、缶体全体の薄肉化が必要となってくる。し
たがって、今後、更に缶体の軽量化を図るためには缶壁
の薄肉化ができる材料が必要となり、このような要望が
強くなってきている。 一方、缶体用材料の製造法に関しては、先に述べた30
04合金の鋳塊に均質化熱処理、熱間圧延、冷間圧延及
び中間焼鈍を組み合せて行われるものであるが、特に最
近では、素材の高強度化と共に生産性の向上を目的とし
て連続焼鈍炉(CAL;コイルを巻きほどきながら急速
加熱冷却する短時間焼鈍)が用いられ始めており、例え
ば、特公昭61−7465号、同62−37705号、
同62−6740号、同62−13421号等が提案さ
れている。 ところで、3004合金は、JIS規格において第1表
に示す成分範囲のものとして制定されており、実用され
ている成分範囲は下段に示すとおりである。 第1表     (讐t%) (第1表続き) 3004合金は比較的強度が高く、かつ缶体の成形法で
あるDI(絞り、しごき)加工性に優れることから、従
来から多用されており、特に3004合金のポイントは
、しごき加工性に優れるAl−Mn−Fe系の晶出物が
適正に分布していることにあり、そのために実用上はF
e及びMnを狭い範囲で規制し、Il造されているのが
現状である。 (発明が解決しようとする課題) 先にも述べたように、缶体の軽量化には缶体全体の薄肉
化が必要であり、従来技術では缶底部のみの薄肉化が図
れる素材の高強度化が進められてきた6しかし、素材の
高強度化は缶壁部の高強度化にもつながり、充填時に必
要な缶の軸方向座屈強度に対してはプラスに働くが、残
念ながら、ネック及びフランジ加工に対してはマイナス
要因となり、必然的に缶壁、特にネック、フランジ部の
缶壁の薄肉化を困難にさせるという問題がある。 更に缶壁の薄肉化を困難にしている理由の1つに、前述
の如<Al−Fa−Mn系の晶出物を適正に分布させる
必要があることにあり、Fa及びMnについてはJIS
規格及び先行特許の成分範囲では広いものの、他成分(
Mg、Cu等〕との関係による強度、成形性及び巨大晶
出物の形成の観点から。 実用面では狭い一@囲にコントロールせざるを得ないと
いう制約があった。 本発明は、上記従来技術の欠点を解消し、Fe及びMn
の成分範囲を広くしても、缶体全体の薄肉化を可能とす
る高強度高成形性のアルミニウム合金硬質板及びその製
造法を提供することを目的とするものである。 <m題を解決するための手段) 前記課題に鑑みて、本発明者らは、缶体の強度及び晶出
物分布に対する成分組成並びに製造条件の及ぼす影響に
関して詳細に調査した。その結果。 いずれに対してもFe及びMnの影響が大きく、成分組
成及び製造条件の適正化により前記課題を解決するに至
った。 すなわち、缶壁の強度低下に対しては、Al−Fe−M
n系の晶出物を比較的大きく、かつ多量に分散させるよ
うに成分調整することにより、ベーキング後の軟化(缶
壁強度低下)を大きくできる。 しかし、巨大品出物を抑制するためにはFeとMnの量
を適正にコントロールする必要がある。更に缶底部の高
強度化(素材の高強度化)に対しては、製造条件(特に
熱間圧延、冷間圧延、中間焼鈍)を適正にすることによ
り満足できることを見い出し、ここに本発明をなしたも
のである。 すなわち、本発明は、Mn:0.5〜1.0%、Fe:
0.5〜1.2%及びMg:0.5〜2.0%を、Mn
とFeがFe+1.O7XMn<1.81%の関係を満
足するように含有し、更にSi:0.1〜0.7%、C
u:0.05〜0.5%及びZn:0,05〜1゜0%
のうちの1種又は2種以上を含有し、残部がA、 Qと
不可避的不純物からなることを特徴とする成形性に優れ
たアルミニウム合金硬質板を要旨とするものである。 また、か\るアルミニウム合金硬質板の製造法は、上記
化学成分を有するAf1合金鋳塊に500〜600℃の
温度の均質化熱処理を施した後、熱間圧延を終了板厚1
.5〜2 、5 mm、終了温度280℃以上で行い、
その後、中間焼鈍を加熱冷却速度100℃/+++in
以上、到達温度400〜6oO℃の条件で施し、圧延率
80%以上の最終冷間圧延を施すことを特徴とするもの
である。 以下に本発明を更に詳細に説明する。 (作用) まず1本発明における化学成分の限定理由は次のとおり
である。 Mn: Mnは強度の向上、Al−Fe−Mn系品出物の適正生
成によるしごき加工性の向上1缶壁強度の軟化に効果の
ある元素である。しかし、0.5%未満ではいずれの効
果も小さく、また1−0O%を超える場合には強度が高
すぎることによる成形性の低下、更にFe量との関係か
らAl2−Fe−Mn系の巨大晶出物形成による加工不
具合を招くので好ましくない。したがって、Mn量は0
.5〜1゜0%の範囲とする。 Fe: FeはMnとの関係でAl−Fe−Mn系品出物の適正
生成によるしごき加工性向上、缶壁強度の軟化に効果の
ある元素である。しかし、0.5%未満では缶壁強度の
軟化に対する効果が小さく、また、1.2%を超える場
合には巨大品出物を形成し、加工不具合を招くので好ま
しくない。したがって、Fe量は0.5〜1.2%の範
囲とする。 但し、MnとFeは巨大晶出物の生成に大きく関与する
元素であり、本発明者らの詳細な研究により、Fe+1
.O7XMnの値が1.81%を超える場合に巨大晶出
物が形成され、加工不具合を招くことが明らかとなった
。したがって、Mn及びFeは、上記範囲において、F
e+1.O7XMn<1゜81%を満足する必要がある
。この範囲は第1図に示すように、JIS規制範囲と相
違すると共にその実用範囲よりも極めて広い範囲である
。 なお、好ましい範囲としては、Mn:0.6〜0゜8%
、Fa:0.6〜0.95%で、かつ、Fe+1゜O7
XMn<1.7%である。 Mg: Mgは強度向上に効果のある元素であり、特にCuとの
組合せによりベーキング時にAl2−Cu −Mg系析
出物による析出硬化を示し、缶底部の高強度化に有効で
ある。しかし、0.5%未満ではその効果は小さく、ま
た2、0%を超える場合には強度が高くなりすぎて、成
形性の低下を招く。 したがって、Mg量は0.5〜2.0%の範囲とする。 Si: SiはAl−Fe−Mn系の晶出物に相変態を生じさせ
、いわゆるA Q −Fe−Mn −Si系のα相を形
成させる元素であり、α相は硬度が高く、特にしごき加
工性の向上に効果がある。しかし、0゜1%未満ではそ
の効果は小さく、また0、7%を超える場合には圧延時
に耳割れを生じ、製造上に問題を招く。したがって、S
i量は0.1〜0.7%の範囲とする。 Cu: CuはMgと同様の効果を示す元素であり、Al−Cu
−M’g系析出物による析出効果を示し、缶底部の強度
向上に有効である。しかし、0.05%未満ではその効
果は小さく、また0、5%を超える場合には強度が高す
ぎることによる成形性低下を招く。したがって、Cu量
は0.1〜0.7%の範囲とする。 Zn: Znは絞り及びしごき加工性並びにその後のフランジ成
形性の向上に効果のある元素である。 しかし、0.05%未満ではその効果が小さく、また1
、0%を超える場合には特に問題はないが、耐食性が低
下する傾向となり、またコスト的に不利である。したが
って、Zn量は0.05〜1.0%の範囲とする。 但し、上記Si、Cu及びZnについては、これらのう
ち、少なくとも1種又は2種以上を含有させれば足りる
。 なお、不純物としては、本発明の効果を損なわない限度
で許容でき、例えば、Cr(0,3%、Ti<0.2%
、B<0.05%、Zr<0.1%である。 次に本発明の製造法について説明する。 上記化学成分を有するアルミニウム合金は、常法により
溶解、U造し、得られた鋳塊は熱間圧延前に均質化熱処
理が施される。この熱処理はその後の熱間圧延性の向上
のほか、先に述べたα相形成による成形性向上並びに深
絞り加工時に形成される耳率抑制に効果がある。しかし
、500℃未満ではいずれの効果も小さく、また600
℃を超える場合にはバーニング等による板表面の性能低
下を招く。したがって、均質化熱処理は500〜600
”Cの温度で行う。なお、保持時間は加熱温度により異
なるが、概ねlhr以上が望ましく1例えば、550℃
未満□ではlhr以上であるが、550℃以上では保持
時間はなくてもよい。また、この均質化熱処理は2度行
ってもよい。 引き続き行なわれる熱間圧延は、粗圧延(厚さ10mm
以上)と仕上圧延とに分かれるものの、連続工程である
。粗圧延は均質化熱処理後行なわれるが、開始温度は4
50℃以上が好ましい。更に粗圧延後、仕上圧延にてコ
イル状に巻き上げるが、その際、終了時の板厚と温度が
重要である。これらは製品板での適正強度、DI加工後
のベーキングによる軟化並びに深絞り加工時の耳率抑制
に影響を及ぼす。すなわち、終了板厚が1.5mm未満
では耳率抑制には効果があるが1強度及びDI加工後の
ベーキングによる軟化が不足する。また、2.5+wm
を超える場合には強度が高すぎることによる成形性低下
と耳率アップによる加工不具合を招く。したがって、終
了板厚は1.5〜2.5IIIImの範囲とする。また
、終了温度は、特に深絞り耳に大きく影響し、280℃
未満では大巾な耳率アップを招くので、終了温度は28
0’C以上とする。 その後、中間焼鈍を含む冷間圧延が行われる。 中間焼鈍は製品板(缶底部に相当)での高強度化に重要
な工程であり、製缶工程中のベーキングにおいて析出硬
化するMg及びCuを充分に固溶させることを目的とす
る熱処理である。冷却速度が100℃/min未満では
冷却途中に析出を生じて固溶量が減少するので好ましく
なく、また、加熱と冷却は同一ライン内にあり、生産性
の点からライン速度は速いほどよい。したがって、加熱
冷却速度は100℃/win以上とする。また、加熱温
度は再結晶と同時にMg及びCuの溶体化に重要な条件
であるが、400℃未満ではいずれにも不充分であり、
60e−’Cを超える場合にはバーニングの問題を招く
ので好ましくない。更に保持時間は温度により異なり、
高温(例えば、500℃以上)の場合には保持なしでも
充分に満足されるが、低温(例えば、400℃)の場合
にはlO+in程度必要である。したがって、到達温度
は400〜600℃の範囲とし、概ね10m1n以内の
保持を行なう。 なお、生産上、好ましい温度範囲は450〜550℃で
ある。勿論、中間焼鈍は連続焼鈍炉(GAL)を使用す
るのが好ましいことは云うまでもない。 更に、中間焼鈍後に行う最終工程の冷間圧延は、製品板
での強度向上及びDI加工後のベーキングによる軟化に
効果がある。しかし、冷間圧延率が80%未満ではその
効果が小さいことから、冷間圧延率は80%以上が必要
である。 なお、冷間圧延後、必要に応じて、缶底成形性の向上の
ために仕上げ焼鈍(100〜200’Cx1hr以上)
を施す場合もある。 (実施例) 次に本発明の実施例を示す6 災灸旌工 Si:0.15%、Cu:0.15%、Mg:1.2Q
%及びZn:0.10%を含む組成においてMn及びF
eiを変化させたアルミニウム合金について。 654℃における巨大晶呂物(初晶)の生成状況をi察
した。 その結果は、第2図に示すように、Al−Mn−Fe系
の巨大晶呂物は、Fe+1.07XM、nの値が1.8
1未満では生成せず、加工不具合の発生を防止できるこ
とがわかる。 叉庭災又 第2表に示す化学成分を有するアルミニウム合金につい
て、580℃X4hrの均質化熱処理を施した後、熱間
圧延(終了温度300℃)により2゜0011111厚
の熱延板を得た。その後、中間焼鈍どして、加熱冷却速
度300℃/minで、到達温度5oO°(:X10S
の加熱を行い、続いて0.30mm厚まで冷間圧延した
。 得られた製品について、圧延上り強度及びベーキング(
2oO℃X 20m1n)後強度を調査すると共に、耳
率の測定、成形性(エリクセン値、限界絞り比)を評価
した。これらの材料特性を第3表に示す。 なお、耳率の測定、エリクセン値(Er値)及び限界絞
り比(L D R)の調査にはエリクセン社製試験機を
使用し、耳率は33φポンチ、ブランク径55φ(絞り
率40%)にて求め、Er値はエリクセン試験A法によ
り求めた。また、LDRは33φポンチを用い、ブラン
ク径を変化させ、絞り加工できる限界を求めた。次式は
LDRを求める式である。 LDR=((ブランク径)=(ポンチ径))÷(ポンチ
径)X100(%) また、成形性については、更に350cc缶体を製造す
る設備により、限界しごき率(L I R)、DI缶で
のベーキング前後の軟化量及びネック成形成功率を求め
た。 ここで、製缶する設備としては、絞り加工は45Ton
クランクプレス(ブランク径140φ、ポンチ径87φ
)にて行い、続いてDI実機(能力10Ton)にて3
50ccDI缶(66mmφX125mm)+)とした
。なお、限界しごき率(L I R)は、しごきダイス
の内径を変化させ、しごきダイス通過前後の肉厚変化量
((tl−t。)÷toxlOO%。ここで、し。二通
過前肉厚、シュ2通過後肉厚)にて限界を求めた。更に
ベーキング前後の軟化量は缶上端から円周方向に055
号試験片を採取し、引張強さの強度差で評価した。また
、ネック成形成功率は45Tonクランクプレスを用い
て3段ネック加工ができる比率とした。 第3表より以下の如く考察される。 本発明材であるNα2〜Nn 4は、適正な強度及び晶
出物分布により、No、 ]の従来高強度材に比べて成
形性が全般的に優れ、特にネック部の軟化が大きいこと
によりネック成功率が高くなっている。 一方、比較例Na 5〜NQ 9のうち、NQ 5とN
o 6はネック部の軟化量は大きいものの、巨大品出物
が形成されるFe、Mn量を含有(NQ5はFe+1.
07XMn=2.16%、Na 6はFe+ 1.07
 XMn=2.03%)するため、LDR及びLII又
の低下が認められるほか、DI缶には一部ピンホールが
観格された。またNo、 8及びNu 9はCu及びM
gm増大によるための成形性低下のほか、ネック部の軟
化量不足によるネック成功率の低下が認められた。 夫】111 実施例2におけるNα3の化学成分C本発明範囲)を有
するアルミニウム合金の鋳塊に第4表に示す製造条件で
熱間圧延、中間焼鈍、冷間圧延を行うと共に、実施例2
の場合と同じ評価要領にて材料特性を調べたどころ、第
5表に示す結果を得た。 第5表より以下の如く考察される。 本発明材であるA及びB工程材は、高強度(ベーキング
後耐力)、低耳率、高成形性を有している。高強度であ
ることは耐圧強度が僅れているため、薄肉化に有利であ
ることを示している。 これに対し、C工程材は均質化熱処理温度が低いため、
高耳率、低LIRである。D工程材も熱延板厚が厚いこ
とから、C工程材と同じ挙動を示している。また、E工
程材は熱延終了温度が低いことから、高耳率を招いてい
る。更にF〜■工程材は、Cu及びMgの固溶不足或い
は冷間圧延量不足によりベーキング後耐力が低く、素材
の薄肉化に対して不適当である。特に、■工程材は従来
のバッチ焼鈍を採用した例であり、ベーキング後耐力が
低い。これは本発明範囲の化学成分を有するAI2合金
に対しても製造条件のうち熱処理条件が適切でないため
に生じている。
(Industrial Application Field) The present invention relates to an aluminum alloy hard plate, and more specifically, 1. For example, in beverage can body materials, an aluminum alloy that has excellent formability (neck and flange), especially after full packaging and printing (baking). This article relates to hard plates and their manufacturing methods. (Prior Art) Al-Mn-Mg based 3004 alloy hard plates have been used as a material for beverage can bodies such as beer and carbonated beverages and food can bodies. However, in recent years, in order to reduce the weight of cans, there has been an increasing demand for high strength and high formability. Therefore, the present inventors have previously developed a precipitation-hardening type high-strength aluminum material for can bodies (Japanese Patent Publication No. 7465/1983, etc.), and the enhancement of the strength of this material was mainly achieved by thinning the can bottom. Contributing. However, when considering further weight reduction of the can, it becomes necessary to reduce the thickness of the entire can body. Therefore, in order to further reduce the weight of can bodies in the future, materials that can make can walls thinner will be needed, and such demands are becoming stronger. On the other hand, regarding the manufacturing method of can material, there are 30
04 alloy ingots are subjected to a combination of homogenization heat treatment, hot rolling, cold rolling, and intermediate annealing, but recently, continuous annealing furnaces have been used to increase the strength of the material and improve productivity. (CAL; short-time annealing in which the coil is rapidly heated and cooled while unwinding) has begun to be used, for example, Japanese Patent Publications No. 61-7465, No. 62-37705,
No. 62-6740, No. 62-13421, etc. have been proposed. By the way, 3004 alloy is established as having a component range shown in Table 1 in the JIS standard, and the component range in practical use is as shown in the lower row. Table 1 (%) (Continued from Table 1) 3004 alloy has been widely used since it has relatively high strength and is excellent in DI (drawing and ironing) processability, which is the method used to form can bodies. In particular, the key point of the 3004 alloy is that Al-Mn-Fe crystals, which have excellent ironing workability, are appropriately distributed.
At present, e and Mn are regulated within a narrow range, and Il is produced. (Problem to be solved by the invention) As mentioned earlier, to reduce the weight of the can body, it is necessary to reduce the thickness of the entire can body, and with the conventional technology, it is possible to reduce the thickness of only the bottom of the can by using a high-strength material. 6 However, increasing the strength of the material also leads to increasing the strength of the can wall, which has a positive effect on the axial buckling strength of the can required during filling. This is a negative factor for flange processing, and inevitably makes it difficult to reduce the thickness of the can wall, particularly at the neck and flange portions. Furthermore, one of the reasons why it is difficult to reduce the thickness of the can wall is that it is necessary to properly distribute the Al-Fa-Mn system crystallized substances as mentioned above, and for Fa and Mn, JIS
Although the range of ingredients in the standards and prior patents is wide, other ingredients (
Mg, Cu, etc.] from the viewpoint of strength, formability, and formation of giant crystallized substances. In practical terms, there was a constraint that it had to be controlled within a small area. The present invention eliminates the drawbacks of the above-mentioned prior art and provides Fe and Mn
The object of the present invention is to provide a high-strength, high-formability aluminum alloy hard plate that makes it possible to reduce the thickness of the entire can body even if the range of components is widened, and a method for manufacturing the same. <Means for Solving Problem M) In view of the above-mentioned problems, the present inventors conducted a detailed investigation on the effects of component composition and manufacturing conditions on the strength and crystallized material distribution of the can body. the result. In both cases, Fe and Mn have a large influence, and the above problems have been solved by optimizing the component composition and manufacturing conditions. In other words, for reducing the strength of the can wall, Al-Fe-M
By adjusting the components so that the n-type crystallized substances are relatively large and dispersed in a large amount, softening after baking (reduction in can wall strength) can be increased. However, in order to suppress the production of large products, it is necessary to appropriately control the amounts of Fe and Mn. Furthermore, we have found that increasing the strength of the can bottom (increasing the strength of the material) can be achieved by optimizing the manufacturing conditions (especially hot rolling, cold rolling, intermediate annealing), and hereby we have developed the present invention. This is what was done. That is, in the present invention, Mn: 0.5 to 1.0%, Fe:
0.5-1.2% and Mg: 0.5-2.0%, Mn
and Fe is Fe+1. Contains so as to satisfy the relationship O7XMn<1.81%, and further contains Si: 0.1 to 0.7%, C
u: 0.05~0.5% and Zn: 0.05~1°0%
The object of the present invention is to provide an aluminum alloy hard plate with excellent formability, which is characterized by containing one or more of the above, with the remainder consisting of A, Q and unavoidable impurities. In addition, the method for manufacturing such aluminum alloy hard plates involves subjecting Af1 alloy ingots having the above chemical components to homogenization heat treatment at a temperature of 500 to 600°C, then hot rolling, and plate thickness 1.
.. 5-2, 5 mm, done at a finishing temperature of 280°C or higher,
After that, intermediate annealing is performed at a heating and cooling rate of 100℃/+++in
The above is characterized in that the final cold rolling is carried out at a final temperature of 400 to 6 oO<0>C and a rolling reduction of 80% or more. The present invention will be explained in more detail below. (Function) First, the reasons for limiting the chemical components in the present invention are as follows. Mn: Mn is an element that is effective in improving strength, improving ironing workability by properly forming Al-Fe-Mn products, and softening can wall strength. However, if it is less than 0.5%, both effects are small, and if it exceeds 1-00%, the strength is too high, resulting in a decrease in formability, and furthermore, due to the relationship with the Fe content, the Al2-Fe-Mn-based giant This is not preferable because it causes processing defects due to the formation of crystallized substances. Therefore, the amount of Mn is 0
.. The range is 5 to 1.0%. Fe: In relation to Mn, Fe is an element that is effective in improving ironing workability and softening the can wall strength by properly forming Al-Fe-Mn products. However, if it is less than 0.5%, the effect on softening the can wall strength is small, and if it exceeds 1.2%, it is not preferable because it forms giant pieces and causes processing defects. Therefore, the amount of Fe is set in the range of 0.5 to 1.2%. However, Mn and Fe are elements that greatly participate in the formation of giant crystallized substances, and detailed research by the present inventors revealed that Fe+1
.. It has become clear that when the value of O7XMn exceeds 1.81%, giant crystallized substances are formed, leading to processing defects. Therefore, in the above range, Mn and Fe are F
e+1. It is necessary to satisfy O7XMn<1°81%. As shown in FIG. 1, this range is different from the JIS regulation range and is much wider than its practical range. In addition, as a preferable range, Mn: 0.6 to 0°8%
, Fa: 0.6 to 0.95%, and Fe+1°O7
XMn<1.7%. Mg: Mg is an element effective in improving strength, and in particular, when combined with Cu, it exhibits precipitation hardening due to Al2-Cu-Mg-based precipitates during baking, and is effective in increasing the strength of the can bottom. However, if it is less than 0.5%, the effect is small, and if it exceeds 2.0%, the strength becomes too high, leading to a decrease in moldability. Therefore, the Mg amount is in the range of 0.5 to 2.0%. Si: Si is an element that causes phase transformation in the Al-Fe-Mn system crystallized product to form the so-called α phase of the AQ-Fe-Mn-Si system.The α phase has high hardness and is particularly difficult to iron. Effective in improving workability. However, if it is less than 0.1%, the effect is small, and if it exceeds 0.7%, edge cracking will occur during rolling, causing problems in manufacturing. Therefore, S
The amount of i is in the range of 0.1 to 0.7%. Cu: Cu is an element that exhibits the same effect as Mg, and Al-Cu
- It exhibits a precipitation effect due to M'g-based precipitates and is effective in improving the strength of the can bottom. However, if it is less than 0.05%, the effect will be small, and if it exceeds 0.5%, the strength will be too high, leading to a decrease in moldability. Therefore, the amount of Cu is in the range of 0.1 to 0.7%. Zn: Zn is an element that is effective in improving drawing and ironing workability and subsequent flange formability. However, if it is less than 0.05%, the effect is small;
If it exceeds 0%, there is no particular problem, but corrosion resistance tends to decrease and it is disadvantageous in terms of cost. Therefore, the amount of Zn is set in the range of 0.05 to 1.0%. However, regarding the above-mentioned Si, Cu, and Zn, it is sufficient if at least one or two or more of them are contained. Note that impurities are permissible as long as they do not impair the effects of the present invention, such as Cr (0.3%, Ti<0.2%).
, B<0.05%, and Zr<0.1%. Next, the manufacturing method of the present invention will be explained. The aluminum alloy having the above chemical components is melted and U-shaped by a conventional method, and the obtained ingot is subjected to homogenization heat treatment before hot rolling. This heat treatment is effective in improving the subsequent hot rolling properties, as well as improving formability through the formation of the α phase mentioned above and suppressing the selvage rate formed during deep drawing. However, below 500°C, both effects are small, and below 600°C,
If the temperature exceeds ℃, the performance of the plate surface will deteriorate due to burning, etc. Therefore, the homogenization heat treatment is 500-600
The holding time will vary depending on the heating temperature, but it is preferably approximately 1hr or more.For example, 550℃
If the temperature is less than □, the holding time is 1hr or more, but if the temperature is 550°C or higher, there may be no holding time. Further, this homogenization heat treatment may be performed twice. The subsequent hot rolling is rough rolling (thickness 10 mm).
Although it is divided into (above) and finish rolling, it is a continuous process. Rough rolling is carried out after homogenization heat treatment, and the starting temperature is 4
The temperature is preferably 50°C or higher. After rough rolling, the material is finished rolled into a coil, and the thickness and temperature at the end of the process are important. These influences the appropriate strength of the product board, softening due to baking after DI processing, and suppression of selvage during deep drawing. That is, if the final plate thickness is less than 1.5 mm, it is effective in suppressing the selvage rate, but the strength and softening due to baking after DI processing are insufficient. Also, 2.5+wm
If it exceeds the above, the strength will be too high, leading to a decrease in formability and an increase in selvage, leading to processing defects. Therefore, the final plate thickness is in the range of 1.5 to 2.5IIIm. In addition, the finishing temperature has a great influence especially on deep-drawn selvedges, and is 280℃.
If it is less than 28, it will cause a large increase in the ear rate, so the end temperature is 28.
Must be 0'C or higher. After that, cold rolling including intermediate annealing is performed. Intermediate annealing is an important process for increasing the strength of the product plate (corresponding to the can bottom), and is a heat treatment aimed at sufficiently dissolving Mg and Cu, which are precipitation hardened during baking during the can manufacturing process. . A cooling rate of less than 100° C./min is not preferable because precipitation occurs during cooling and the amount of solid solution decreases. Also, since heating and cooling are performed in the same line, the faster the line speed, the better from the viewpoint of productivity. Therefore, the heating and cooling rate is set to 100° C./win or more. In addition, heating temperature is an important condition for recrystallization and solutionization of Mg and Cu, but temperatures below 400°C are insufficient for both.
If it exceeds 60e-'C, it is not preferable because it causes a burning problem. Furthermore, the holding time varies depending on the temperature.
At high temperatures (for example, 500°C or higher), it is sufficient without holding, but at low temperatures (for example, 400°C), approximately 1O+in is required. Therefore, the ultimate temperature is set in the range of 400 to 600°C, and maintained within approximately 10 m1n. In addition, in terms of production, the preferred temperature range is 450 to 550°C. Needless to say, it is preferable to use a continuous annealing furnace (GAL) for intermediate annealing. Furthermore, cold rolling, which is the final step performed after intermediate annealing, is effective in improving the strength of the product sheet and softening it by baking after DI processing. However, if the cold rolling rate is less than 80%, the effect is small, so the cold rolling rate must be 80% or more. After cold rolling, if necessary, finish annealing (100 to 200'C x 1 hr or more) is performed to improve can bottom formability.
may be applied. (Example) Next, an example of the present invention will be shown 6.
% and Zn: In a composition containing 0.10%, Mn and F
About aluminum alloys with different ei. The formation status of giant crystals (primary crystals) at 654°C was observed. As a result, as shown in Fig. 2, the Al-Mn-Fe system giant crystal has Fe+1.07XM and n value of 1.8.
It can be seen that if it is less than 1, no generation occurs, and the occurrence of processing defects can be prevented. An aluminum alloy having the chemical composition shown in Table 2 was subjected to homogenization heat treatment at 580°C for 4 hours, and then hot rolled (finishing temperature 300°C) to obtain a hot rolled plate with a thickness of 2°0011111. . After that, intermediate annealing is carried out at a heating and cooling rate of 300°C/min to reach a temperature of 5oO° (:X10S
This was followed by cold rolling to a thickness of 0.30 mm. The resulting product was tested for rolling strength and baking (
After examining the strength (200° C. These material properties are shown in Table 3. In addition, to measure the selvage ratio and investigate the Erichsen value (Er value) and limit drawing ratio (LDR), an Erichsen testing machine was used. The Er value was determined by Erichsen test A method. In addition, for LDR, a 33φ punch was used and the blank diameter was varied to find the limit that could be drawn. The following formula is a formula for calculating LDR. LDR = ((Blank diameter) = (Punch diameter)) ÷ (Punch diameter) The softening amount and neck forming success rate before and after baking were determined. Here, the equipment for making cans is 45Ton drawing process.
Crank press (blank diameter 140φ, punch diameter 87φ
), then 3 on the actual DI machine (capacity 10Ton)
It was made into a 50cc DI can (66mmφX125mm)+). In addition, the limit ironing rate (L I R) is calculated by changing the inner diameter of the ironing die and calculating the amount of change in wall thickness before and after passing through the ironing die ((tl-t.) ÷ toxlOO%. Here, the wall thickness before the second pass , wall thickness after passing Sh2). Furthermore, the amount of softening before and after baking is 055 in the circumferential direction from the top of the can.
No. 1 test pieces were taken and evaluated based on the difference in tensile strength. In addition, the success rate of neck forming was determined as the ratio at which three-stage neck forming could be performed using a 45 ton crank press. The following considerations can be made from Table 3. Due to the appropriate strength and crystallized material distribution, the materials of the present invention, Nα2 to Nn4, have overall superior formability compared to the conventional high-strength materials No. The success rate is high. On the other hand, among the comparative examples Na 5 to NQ 9, NQ 5 and N
o 6 has a large softening amount at the neck part, but contains Fe and Mn amounts that form giant products (NQ5 has Fe+1.
07XMn=2.16%, Na6 is Fe+ 1.07
XMn=2.03%), a decrease in LDR and LII was observed, and some pinholes were observed in the DI can. Also, No. 8 and Nu 9 are Cu and M
In addition to a decrease in formability due to the increase in gm, a decrease in neck success rate was observed due to insufficient softening of the neck portion. 111 An ingot of an aluminum alloy having a chemical composition of Nα3 (C range of the present invention) in Example 2 was subjected to hot rolling, intermediate annealing, and cold rolling under the manufacturing conditions shown in Table 4.
The material properties were investigated using the same evaluation procedure as in the case of , and the results shown in Table 5 were obtained. The following considerations can be made from Table 5. The A and B process materials, which are the materials of the present invention, have high strength (yield strength after baking), low edge ratio, and high formability. The high strength means that the pressure resistance is low, which means that it is advantageous for thinning. On the other hand, since the homogenization heat treatment temperature of C process material is low,
High ear rate and low LIR. The D process material also exhibits the same behavior as the C process material because the hot rolled plate thickness is thick. In addition, the E-process material has a low end temperature of hot rolling, leading to a high selvage rate. Further, the materials processed in steps F to (1) have low yield strength after baking due to insufficient solid solution of Cu and Mg or insufficient amount of cold rolling, and are unsuitable for thinning of the material. In particular, the process material (2) is an example in which conventional batch annealing was used, and the yield strength after baking is low. This occurs because the heat treatment conditions among the manufacturing conditions are not appropriate even for the AI2 alloy having chemical components within the range of the present invention.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、化学成分のうち
特にMn及びFe量を適正に規制することにより、缶底
部強度が高く、かつネック部の軟化量が大きくなるため
にネック成形性の向上が得られ、缶体全体の薄肉化が可
能である。
(Effects of the Invention) As detailed above, according to the present invention, by appropriately regulating the amounts of Mn and Fe among chemical components, the strength of the can bottom can be increased and the amount of softening of the neck can be increased. Therefore, neck formability is improved, and the entire can body can be made thinner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMnとFe量についてJIS制定範囲とその実
用範囲並びに本発明範囲を示す図、第2図はAl−Mn
−Fe系巨大品物発生に及ぼすMnとFe量の関係を示
す図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第1図 MTl(%)
Figure 1 shows the JIS established range, its practical range, and the scope of the present invention for Mn and Fe contents, and Figure 2 shows the Al-Mn
FIG. 3 is a diagram showing the relationship between Mn and Fe amounts on the generation of large -Fe-based products. Patent applicant Hisashi Nakamura, Patent attorney representing Kobe Steel, Ltd. Figure 1 MTl (%)

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Mn:0.5〜1.0
%、Fe:0.5〜1.2%及びMg:0.5〜2.0
%を、MnとFeがFe+1.07×Mn<1.81%
の関係を満足するように含有し、更にSi:0.1〜0
.7%、Cu:0.05〜0.5%及びZn:0.05
〜1.0%のうちの1種又は2種以上を含有し、残部が
Alと不可避的不純物からなることを特徴とする成形性
に優れたアルミニウム合金硬質板。
(1) In weight% (the same applies hereinafter), Mn: 0.5 to 1.0
%, Fe: 0.5-1.2% and Mg: 0.5-2.0
%, Mn and Fe are Fe+1.07×Mn<1.81%
Si: 0.1 to 0.
.. 7%, Cu: 0.05-0.5% and Zn: 0.05
An aluminum alloy hard plate with excellent formability, characterized in that it contains one or more of the following: ~1.0%, with the remainder consisting of Al and unavoidable impurities.
(2)Mn:0.5〜1.0%、Fe:0.5〜1.2
%及びMg:0.5〜2.0%を、MnとFeがFe+
1.07×Mn<1.81%の関係を満足するように含
有し、更にSi:0.1〜0.7%、Cu:0.05〜
0.5%及びZn:0.05〜1.0%のうちの1種又
は2種以上を含有し、残部がAlと不可避的不純物から
なるAl合金鋳塊に500〜600℃の温度の均質化熱
処理を施した後、熱間圧延を終了板厚1.5〜2.5m
m、終了温度280℃以上で行い、その後、中間焼鈍を
加熱冷却速度100℃/min以上、到達温度400〜
600℃の条件で施し、圧延率80%以上の最終冷間圧
延を施すことを特徴とする成形性に優れたアルミニウム
合金硬質板の製造法。
(2) Mn: 0.5-1.0%, Fe: 0.5-1.2
% and Mg: 0.5 to 2.0%, Mn and Fe are Fe +
Contains so as to satisfy the relationship of 1.07×Mn<1.81%, and further contains Si: 0.1 to 0.7%, Cu: 0.05 to
0.5% and Zn: 0.05 to 1.0%, and the remainder is Al and inevitable impurities. After heat treatment, hot rolling is completed to a plate thickness of 1.5 to 2.5 m.
m, performed at a finishing temperature of 280°C or higher, and then intermediate annealing at a heating and cooling rate of 100°C/min or higher and a final temperature of 400°C or higher.
A method for producing an aluminum alloy hard plate with excellent formability, characterized by performing final cold rolling at a temperature of 600°C and a rolling reduction of 80% or more.
JP9393789A 1989-04-13 1989-04-13 Aluminum alloy hard sheet having excellent formability and its manufacture Pending JPH02270930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9393789A JPH02270930A (en) 1989-04-13 1989-04-13 Aluminum alloy hard sheet having excellent formability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9393789A JPH02270930A (en) 1989-04-13 1989-04-13 Aluminum alloy hard sheet having excellent formability and its manufacture

Publications (1)

Publication Number Publication Date
JPH02270930A true JPH02270930A (en) 1990-11-06

Family

ID=14096348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9393789A Pending JPH02270930A (en) 1989-04-13 1989-04-13 Aluminum alloy hard sheet having excellent formability and its manufacture

Country Status (1)

Country Link
JP (1) JPH02270930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272151A (en) * 1991-02-26 1992-09-28 Kobe Steel Ltd Aluminum alloy hard sheet and its manufacture
JPH05263175A (en) * 1992-03-13 1993-10-12 Sky Alum Co Ltd Aluminum alloy sheet for stay-on tab

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548328A (en) * 1977-06-17 1979-01-22 Hydor Ab Oy Combination of working machine and car
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding
JPS61235532A (en) * 1985-04-08 1986-10-20 Sukai Alum Kk Rolled sheet of aluminum alloy for high-strength molding and processing and its production
JPS63149349A (en) * 1986-12-12 1988-06-22 Furukawa Alum Co Ltd Aluminum alloy sheet for wrapping and its manufacture
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JPS6487752A (en) * 1987-09-30 1989-03-31 Furukawa Aluminium Manufacture of aluminum alloy material for forming

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548328A (en) * 1977-06-17 1979-01-22 Hydor Ab Oy Combination of working machine and car
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding
JPS61235532A (en) * 1985-04-08 1986-10-20 Sukai Alum Kk Rolled sheet of aluminum alloy for high-strength molding and processing and its production
JPS63149349A (en) * 1986-12-12 1988-06-22 Furukawa Alum Co Ltd Aluminum alloy sheet for wrapping and its manufacture
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JPS6487752A (en) * 1987-09-30 1989-03-31 Furukawa Aluminium Manufacture of aluminum alloy material for forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272151A (en) * 1991-02-26 1992-09-28 Kobe Steel Ltd Aluminum alloy hard sheet and its manufacture
JPH05263175A (en) * 1992-03-13 1993-10-12 Sky Alum Co Ltd Aluminum alloy sheet for stay-on tab

Similar Documents

Publication Publication Date Title
US4605448A (en) Aluminum alloy forming sheet and method for producing the same
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JPH02270930A (en) Aluminum alloy hard sheet having excellent formability and its manufacture
JPH01123054A (en) Hard-baked-type high-strength can material and its production
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JPS6254183B2 (en)
JPH032343A (en) Aluminum alloy for heat-exchanger fin
JP3422852B2 (en) Manufacturing method of steel sheet for cans
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
JPH0346541B2 (en)
JP7235634B2 (en) Aluminum alloy plate for can body
JPH03146632A (en) Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture
JPH04214845A (en) Manufacture of aluminum alloy sheet excellent in formability
JPH11229066A (en) Aluminum alloy sheet excellent in curling property and tightenability and its production
JPS6121296B2 (en)
JPH028353A (en) Manufacture of aluminum alloy for forming excellent in baking strength
JPH0651901B2 (en) Method for producing aluminum alloy for drawing having high strength and low directionality
JPH0390549A (en) Production of hard aluminum alloy sheet excellent in formability
JPH0422981B2 (en)
JPH04272151A (en) Aluminum alloy hard sheet and its manufacture
JPH0565583A (en) Can barrel material for lightweight can excellent in bake hardenavbility and formability and its production
JPS6310219B2 (en)
JPH09118928A (en) Manufacture of steel sheet for welded can excellent in workability of flange and formability of neck