JPS6121296B2 - - Google Patents

Info

Publication number
JPS6121296B2
JPS6121296B2 JP55046410A JP4641080A JPS6121296B2 JP S6121296 B2 JPS6121296 B2 JP S6121296B2 JP 55046410 A JP55046410 A JP 55046410A JP 4641080 A JP4641080 A JP 4641080A JP S6121296 B2 JPS6121296 B2 JP S6121296B2
Authority
JP
Japan
Prior art keywords
alloy
aluminum
ironing
iron
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55046410A
Other languages
Japanese (ja)
Other versions
JPS56142844A (en
Inventor
Kozo Arai
Yoshitatsu Ootsuka
Eizo Isoyama
Kyohei Taguchi
Yoshifumi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP4641080A priority Critical patent/JPS56142844A/en
Publication of JPS56142844A publication Critical patent/JPS56142844A/en
Publication of JPS6121296B2 publication Critical patent/JPS6121296B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は成形性および耐食性に優れた薄板用
アルミニウム合金に関する。 従来、たとえば、フイン・チユーブ型熱交換器
用フイン、王冠、アルミ罐、箔容器などは、
A1100系合金のO材もしくはH22材等の軟質材か
らなる厚さ約0.1〜0.25mm度の薄板を素材とし、
これに絞り加工等の種々の加工を施すことにより
つくられている。ところで、最近、アルミニウム
地金の高騰あるいは省エネルギーの観点からコス
トを下げるために、素材として用いるアルミニウ
ム合金板の薄肉化の要求が高まつてきた。しかし
ながら、従来のものより薄いアルミニウム合金板
に絞り加工を施すと割れ等の欠陥が生じることが
ある。そこで、絞り加工に代えてしごき加工を用
いる方法が考えられたが、A1100合金の軟質材か
らなり、かつ従来のものより薄い薄板材にしごき
加工を施しても割れ等の欠陥が生じる。これは、
A1100合金の成形性が悪く、A1100合金の強度を
大きくすると伸びが極端に小さくなるからであ
る。 このことを、フイン・チユーブ型熱交換器用フ
インを例にあげて説明する。フイン1には、第1
図に示すように、熱交換器を挿通するためにあけ
られた孔2の周縁に、フイン1と熱交換管の密着
性を高めるためにカラー3が形成され、カラー3
の先端にフレア4が形成されている。このような
フイン1は、A1100合金のO材もしくはH22材等
の軟質材(引張強さ9〜14Kg/mm2、伸び約10%以
上)からなる厚さ約0.12〜0.22mm程度の薄板材
に、第2図に示すように、1回以上の絞り加工工
程(張出し工程)、孔打抜き工程、孔拡げ工程、
フレア加工工程を含むいわゆるバー・オーク方式
による加工を施すことによつてつくられている。
ところで、コストを下げるためにあるいは熱交換
器の小形化のために素材を薄肉化する必要がある
が、上記バー・オーク方式では従来のものより薄
い素材に加工を施した場合、割れ等の欠陥を生じ
ることがある。そこで、第3図に示すように、つ
ば出し工程後にしごき加工工程を行う方式が考え
られたが、この方式によつても、A1100合金の軟
質材からなり、従来のものより薄い素材では、割
れ等の欠陥が生じる。これは、A1100合金の軟質
材が、伸びは大きいが、強度が不充分で成形性が
悪いからである。すなわち、割れ等を生じさせな
いためには、引張強さが約15Kg/mm2以上、伸びが
約5%以上あることが必要であるが、A1100合金
に調質を施しても、引張強さを15Kg/mm2以上にす
ると、伸びが5%未満になり、伸びを5%以上に
すると引張強さが15Kg/mm2未満になる。 この発明は上記実情に鑑みてなされたものであ
つた、引張強さおよび伸びがともに所要の値を満
足して成形性に優れるとともに耐食性に優れた薄
板用アルミニウム合金を提供することを目的とす
る。この明細書において「薄板」という語には箔
も含むものとする。 この発明による成形性および耐食性に優れた薄
板用アルミニウム合金は、マグネシウム0.5wt%
を越えかつ1.0wt%以下およびマグネシウムを
0.05〜1.0wt%含み、さらに鉄とケイ素とを、鉄
0.05〜0.6wt%、ケイ素0.05〜0.6wt%の範囲内で
かつこれらの含有量の比(〔Fe〕/〔Si〕)(但し
〔Fe〕 および〔Si〕はそれぞれ鉄およびケイ素の含有量
(wt%)を表わす)が0.5〜1.5となるように含
み、残部アルミニウムおよび不可避不純物からな
ることを特徴とするものである。 上記において、マグネシウムおよびマンガンの
両者をアルミニウムに含有せしめることにより、
薄板用アルミニウム合金の強度および伸びを大き
くさせるとともに耐食性を向上させる性質を有す
る。とくに、薄板用アルミニウム合金をフイン・
チユーブ型熱交換器用フインをつくるための素材
に用いる場合におけるマンガンの添加は、加工前
に施す均質化処理、予備加熱、熱間圧延、焼鈍等
の熱処理時に、マンガンが微細に析出することに
よりしごき加工性を著しく向上させ、しごき加工
工程の高速化を可能にする。さらに、マグネシウ
ムがマンガンと共存していると、マンガンの熱処
理時における微細析出が一層促進されてしごき加
工性は一層向上する。マンガンの含有量が0.05wt
%未満であると上記効果は得られない。さらに、
マンガンの含有量が1.0wt%を越えると鋳造時に
粗大晶出物が多く生成して成形性を害し、とくに
フイン・チユーブ型熱交換器用フインの素材に用
いて、これに加工を施す場合には、粗大晶出物の
界面が割れの起点になり、フレアに割れを生じさ
せる原因となる。また、マグネシウムの含有量が
0.5wt%以下であると上記効果が少なく、1.0wt%
を越えると加工硬化が大きくなりすぎて加工時に
割れが生じる。したがつて、マグネシウムの含有
量は0.5wt%を越えかつ1.0wt%以下の範囲、マン
ガンの含有量は0.05〜1.0wt%の範囲でそれぞれ
選ぶべきである。鉄はこれをアルミニウム中に含
有せしめることにより、薄板用アルミニウム合金
の結晶粒を微細化させて、強度および伸びを向上
させる性質を有する。とくに、熱交換器用フイン
の素材に用いてつば出し成形後しごき加工を施す
さいの材料にちぎれを防止する効果を有する。と
ころが、その含有量が0.05wt%未満では上記効果
を得られず、0.6wt%を越えると耐食性が低下す
るので、鉄の含有量は0.05〜0.6wt%の範囲内で
選ぶべきである。ケイ素はこれをアルミニウムに
含有せしめることにより、合金の延性を向上させ
る性質を有し、とくに、この合金を、熱交換器用
フインをつくるための素材に用いると、しごき加
工時の割れの発生を防止することができる。ま
た、ケイ素は上記マンガンの微細析出を促進し、
しごき加工性を向上させる性質も有する。ところ
が、その含有量が0.05wt%未満であると上記効果
は得られず、0.6wt%を越えると耐食性が低下す
るので、ケイ素の含有量は0.05〜0.6wt%の範囲
内で選ぶべきである。まらに、鉄とケイ素との含
有量の比(〔Fe〕/〔Si〕)が0.5〜1.5の範囲内、
好まし くは0.8〜1.2の範囲内になるようにすると、アル
ミニウム合金の成形性を向上させることができ
る。そして、この合金をフイン・チユーブ型熱交
換器用フインをつくるための素材に用いると、カ
ラー高さの方向性をなくし、しごき加工時および
フレア加工時の割れの発生を防止することができ
る。ところが、上記範囲外ではこの効果は得られ
ない。 また、この発明の合金には、その特性を変えな
い範囲で製造上不可避の不純物を含んでいてもよ
いが、とくに銅の場合は、その含有量が0.15wt%
を越えると耐食性が低下するので、不純物中銅の
含有量は0.15wt%以下にすることが好ましい。ま
た、不純物中チタンおよびホウ素は鋳造組織を微
細にする効果があるので含んでいる方が好ましい
が、チタンの含有量が0.19wt%、ホウ素の含有量
が0.15%を越えるとこの発明の合金の特性を変え
ることになるので、それぞれの含有量は上記値未
満であることが好ましい。 つぎにこの発明の実施例を対照例とともに示
す。 実施例 1 表1に示す6種類のアルミニウム合金の鋳塊
を、500℃の熱間圧延で厚さ4mmとした後、冷間
圧延で厚さ0.1mmとした。ついで、最終焼鈍にて
表1に示すような引張特性をもつように調質焼鈍
を行なつた。そして、これらの材料を穴径10mm、
フインカラー高さ1.6mmのしごきダイスを用いて
しごき加工を行い、成形性を調べた。その結果を
表1にまとめて示す。
The present invention relates to an aluminum alloy for thin plates having excellent formability and corrosion resistance. Conventionally, for example, fins, crowns, aluminum cans, foil containers, etc. for fin/tube heat exchangers were
The material is a thin plate approximately 0.1 to 0.25 mm thick made of soft material such as A1100 series alloy O material or H 22 material.
It is made by subjecting it to various processing such as drawing. Incidentally, recently, there has been an increasing demand for thinner aluminum alloy plates used as materials in order to reduce costs due to the soaring price of aluminum ingots or from the viewpoint of energy conservation. However, when an aluminum alloy plate that is thinner than the conventional one is drawn, defects such as cracks may occur. Therefore, a method of using ironing instead of drawing was considered, but defects such as cracks occur even when ironing is applied to a thin sheet material made of soft A1100 alloy and thinner than conventional ones. this is,
This is because the formability of A1100 alloy is poor, and when the strength of A1100 alloy is increased, its elongation becomes extremely small. This will be explained using fins for a fin/tube type heat exchanger as an example. Finn 1 has the first
As shown in the figure, a collar 3 is formed on the periphery of a hole 2 made for inserting the heat exchanger in order to improve the adhesion between the fin 1 and the heat exchange tube.
A flare 4 is formed at the tip. Such a fin 1 is a thin plate material with a thickness of about 0.12 to 0.22 mm made of a soft material (tensile strength of 9 to 14 Kg/mm 2 and elongation of about 10% or more) such as A1100 alloy O material or H 22 material. As shown in Fig. 2, one or more drawing process (expansion process), hole punching process, hole expanding process,
It is made using the so-called bur oak method, which includes a flaring process.
By the way, in order to reduce costs or make the heat exchanger more compact, it is necessary to make the material thinner, but with the bur oak method mentioned above, if the material is thinner than the conventional method, it may cause defects such as cracks. may occur. Therefore, as shown in Figure 3, a method was considered in which an ironing process is performed after the flange process, but even with this method, the material made of soft material A1100 alloy and thinner than conventional ones would not crack. Such defects may occur. This is because the soft material of A1100 alloy has high elongation, but insufficient strength and poor formability. In other words, in order to prevent cracks, etc., the tensile strength must be approximately 15 kg/mm 2 or more and the elongation must be approximately 5% or more, but even if A1100 alloy is tempered, the tensile strength will not increase. If the elongation is 15 Kg/mm 2 or more, the elongation will be less than 5%, and if the elongation is 5% or more, the tensile strength will be less than 15 Kg/mm 2 . The present invention was made in view of the above circumstances, and an object of the present invention is to provide an aluminum alloy for thin plates that satisfies required values for both tensile strength and elongation, has excellent formability, and has excellent corrosion resistance. . In this specification, the term "sheet" includes foil. The aluminum alloy for thin plates with excellent formability and corrosion resistance according to this invention has 0.5wt% magnesium.
more than 1.0wt% and magnesium
Contains 0.05-1.0wt%, and further contains iron and silicon.
Within the range of 0.05 to 0.6 wt% and 0.05 to 0.6 wt% of silicon, and the ratio of these contents ([Fe]/[Si]) (however, [Fe] and [Si] are the iron and silicon contents ( wt%) is 0.5 to 1.5, with the remainder consisting of aluminum and inevitable impurities. In the above, by incorporating both magnesium and manganese into aluminum,
It has the property of increasing the strength and elongation of aluminum alloys for thin plates and improving corrosion resistance. In particular, aluminum alloys for thin plates are
Manganese is added to materials for making fins for tube-type heat exchangers because manganese precipitates finely during heat treatments such as homogenization, preheating, hot rolling, and annealing before processing. It significantly improves workability and enables faster ironing processes. Furthermore, when magnesium coexists with manganese, fine precipitation of manganese during heat treatment is further promoted, and ironing workability is further improved. Manganese content is 0.05wt
If it is less than %, the above effect cannot be obtained. moreover,
If the manganese content exceeds 1.0wt%, a large amount of coarse crystallized substances will be generated during casting, impairing formability, especially when used as a material for fins for fin-tube heat exchangers and processed. , the interface between coarse crystallized substances becomes the starting point of cracks, causing cracks to occur in the flare. In addition, the content of magnesium
If it is less than 0.5wt%, the above effect will be small, and 1.0wt%
If it exceeds this, work hardening becomes too large and cracks occur during processing. Therefore, the magnesium content should be selected in a range of more than 0.5 wt% and 1.0 wt% or less, and the manganese content should be selected in a range of 0.05 to 1.0 wt%. Iron has the property of making the crystal grains of the aluminum alloy for thin sheets finer and improving its strength and elongation by incorporating it into aluminum. In particular, it has the effect of preventing the material from tearing when it is used as a material for heat exchanger fins and subjected to ironing after flange molding. However, if the iron content is less than 0.05 wt%, the above effects cannot be obtained, and if it exceeds 0.6 wt%, the corrosion resistance decreases, so the iron content should be selected within the range of 0.05 to 0.6 wt%. When silicon is included in aluminum, it has the property of improving the ductility of the alloy. In particular, when this alloy is used as a material for making heat exchanger fins, it prevents cracking during ironing. can do. In addition, silicon promotes the fine precipitation of manganese,
It also has the property of improving ironing workability. However, if the silicon content is less than 0.05 wt%, the above effects cannot be obtained, and if it exceeds 0.6 wt%, corrosion resistance will decrease, so the silicon content should be selected within the range of 0.05 to 0.6 wt%. . In general, the ratio of iron to silicon content ([Fe]/[Si]) is within the range of 0.5 to 1.5,
Preferably, when it is within the range of 0.8 to 1.2, the formability of the aluminum alloy can be improved. When this alloy is used as a material for making fins for fin-tube heat exchangers, it is possible to eliminate the directionality of the collar height and prevent the occurrence of cracks during ironing and flaring. However, this effect cannot be obtained outside the above range. Furthermore, the alloy of the present invention may contain impurities that are unavoidable during manufacturing as long as they do not change its properties, but especially in the case of copper, the content is 0.15wt%.
If the content exceeds 0.15% by weight, the corrosion resistance decreases, so it is preferable that the content of copper among impurities is 0.15wt% or less. Furthermore, it is preferable to include titanium and boron among the impurities because they have the effect of making the casting structure finer, but if the titanium content exceeds 0.19wt% and the boron content exceeds 0.15%, the alloy of this invention The content of each component is preferably less than the above value because the properties will change. Next, examples of the present invention will be shown together with comparative examples. Example 1 Ingots of six types of aluminum alloys shown in Table 1 were hot rolled at 500°C to a thickness of 4 mm, and then cold rolled to a thickness of 0.1 mm. Then, temper annealing was performed to obtain the tensile properties shown in Table 1 in the final annealing. Then, these materials are made into a hole with a diameter of 10 mm.
Ironing was performed using an ironing die with a fin collar height of 1.6 mm, and the formability was examined. The results are summarized in Table 1.

【表】 上記表1から明らかなように、この発明のアル
ミニウム合金は、引張強さと伸びがともに大きく
成形性に優れており、しごき加工を施しても割れ
は発生しなかつた。とくに、No.4の場合は高速で
しごき加工を行つても割れは発生しなかつた。こ
れに対して従来合金は、引張強さを大きくすると
伸びが小さくなり、伸びを大きくすると引張強さ
が小さくなつて、しごき加工を施した時に割れが
発生した。 実施例 2 表1に示す6種類の合金中、No.2、No.4および
No.6の合金を鋳塊した後、上記実施例1の場合と
同様にして厚さ0.1mmの薄板にした。ついで、水
道水浸漬、塩水噴霧、海水浸漬および大気曝露し
た場合の耐食性を調べた。その結果を表2に示
す。
[Table] As is clear from Table 1 above, the aluminum alloy of the present invention has both high tensile strength and elongation and excellent formability, and no cracking occurred even when ironing was performed. In particular, in the case of No. 4, no cracking occurred even when ironing was performed at high speed. In contrast, with conventional alloys, when the tensile strength is increased, the elongation decreases, and when the elongation is increased, the tensile strength decreases, and cracks occur when ironing is applied. Example 2 Among the six types of alloys shown in Table 1, No. 2, No. 4 and
After alloy No. 6 was cast into an ingot, it was made into a thin plate with a thickness of 0.1 mm in the same manner as in Example 1 above. Next, the corrosion resistance was examined when immersed in tap water, salt water spray, sea water, and exposed to the atmosphere. The results are shown in Table 2.

【表】【table】

【表】 上記表2から明らかなように、この発明のアル
ミニウム合金は従来の合金よりも耐食性において
優れている。
[Table] As is clear from Table 2 above, the aluminum alloy of the present invention is superior in corrosion resistance to conventional alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフイン・チユーブ型熱交換器用フイン
の断面図、第2図および第3図はフインの加工方
法を示し、第2図はバー・オーク方式の工程を示
す断面図、第3図はつば出し成形後しごき加工を
行う方式の工程を示す断面図である。
Figure 1 is a cross-sectional view of a fin for a fin-tube heat exchanger, Figures 2 and 3 show the fin processing method, Figure 2 is a cross-sectional view showing the process of the bur oak method, and Figure 3 is a cross-sectional view of the fin for a fin-tube heat exchanger. It is a sectional view showing a process of a method of performing ironing after flange forming.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウムを0.5wt%を越えかつ、1.0wt%
以下およびマンガンを0.05〜1.0wt%含み、さら
に鉄とケイ素とを、鉄0.05〜0.6wt%、ケイ素
0.05〜0.6wt%の範囲内でかつこれらの含有量の
比([Fe]/[Si])(但し[Fe]および[Si]は
それぞれ鉄およびケイ素の含有量(wt%)を表
わす)が0.5〜1.5となるように含み、残部アルミ
ニウムおよび不可避不純物からなる、成形性およ
び耐食性に優れた薄板用アルミニウム合金。
1 Magnesium exceeding 0.5wt% and 1.0wt%
Contains 0.05 to 1.0 wt% of iron and manganese, and further contains iron and silicon, 0.05 to 0.6 wt% of iron, silicon
within the range of 0.05 to 0.6 wt% and the ratio of these contents ([Fe]/[Si]) (where [Fe] and [Si] represent the iron and silicon contents (wt%), respectively) An aluminum alloy for thin plates with excellent formability and corrosion resistance, which contains aluminum with a carbon content of 0.5 to 1.5, and the balance is aluminum and unavoidable impurities.
JP4641080A 1980-04-09 1980-04-09 Aluminum alloy for plate excellent in formability and corrosion resistance Granted JPS56142844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4641080A JPS56142844A (en) 1980-04-09 1980-04-09 Aluminum alloy for plate excellent in formability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4641080A JPS56142844A (en) 1980-04-09 1980-04-09 Aluminum alloy for plate excellent in formability and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS56142844A JPS56142844A (en) 1981-11-07
JPS6121296B2 true JPS6121296B2 (en) 1986-05-26

Family

ID=12746374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4641080A Granted JPS56142844A (en) 1980-04-09 1980-04-09 Aluminum alloy for plate excellent in formability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPS56142844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326090U (en) * 1986-07-31 1988-02-20
JPH0363480B2 (en) * 1984-08-27 1991-10-01 Mitsubishi Heavy Ind Ltd

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093959B1 (en) * 2010-02-04 2011-12-15 에스비리모티브 주식회사 Battery module cooling apparatus
CN111647775A (en) * 2020-05-08 2020-09-11 银邦金属复合材料股份有限公司 New energy power battery case, aluminum alloy and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105509A (en) * 1976-03-03 1977-09-05 Mitsubishi Aluminium Production of aluminium alloy sheet for deep drawing
JPS5425207A (en) * 1977-07-29 1979-02-26 Mitsubishi Aluminium Aluminum alloy for thin sheet having good moldability and corrosion resistivity and method of making aluminum alloy thin sheets
JPS5517072A (en) * 1978-07-24 1980-02-06 Mitsubishi Keikinzoku Kogyo Kk Heat exchanger cross fin material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105509A (en) * 1976-03-03 1977-09-05 Mitsubishi Aluminium Production of aluminium alloy sheet for deep drawing
JPS5425207A (en) * 1977-07-29 1979-02-26 Mitsubishi Aluminium Aluminum alloy for thin sheet having good moldability and corrosion resistivity and method of making aluminum alloy thin sheets
JPS5517072A (en) * 1978-07-24 1980-02-06 Mitsubishi Keikinzoku Kogyo Kk Heat exchanger cross fin material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363480B2 (en) * 1984-08-27 1991-10-01 Mitsubishi Heavy Ind Ltd
JPS6326090U (en) * 1986-07-31 1988-02-20

Also Published As

Publication number Publication date
JPS56142844A (en) 1981-11-07

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
US4605448A (en) Aluminum alloy forming sheet and method for producing the same
US4838958A (en) Aluminum-alloy rolled sheet and production method therefor
JP2008500453A (en) Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet
JP2011202283A (en) Aluminum alloy, aluminum alloy foil, container and method of preparing aluminum alloy foil
JPS6121296B2 (en)
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2003293105A (en) Method for producing aluminum alloy sheet for bottle type drink can
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JP2862198B2 (en) Aluminum alloy plate for DI can body
JP3098637B2 (en) Aluminum alloy sheet for high speed forming and method for producing the same
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JP2002322530A (en) Aluminum foil for container and production method therefor
JPS6254183B2 (en)
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JP2003164903A (en) Method for manufacturing aluminium foil
JPS6328850A (en) Manufacture of al-alloy sheet metal for manufacture of all aluminum can
JP4326906B2 (en) Manufacturing method of brazing sheet
JPH0346541B2 (en)
KR20060030910A (en) Resistant alloy for heat exchanger
KR850000982B1 (en) Method for manufacturing an aluminum alloy sheet used deep drawing deformation
JP2942172B2 (en) Method of manufacturing aluminum alloy plate for PP cap
JP2005125365A (en) Brazing sheet manufacturing method