JPH028353A - Manufacture of aluminum alloy for forming excellent in baking strength - Google Patents

Manufacture of aluminum alloy for forming excellent in baking strength

Info

Publication number
JPH028353A
JPH028353A JP16035988A JP16035988A JPH028353A JP H028353 A JPH028353 A JP H028353A JP 16035988 A JP16035988 A JP 16035988A JP 16035988 A JP16035988 A JP 16035988A JP H028353 A JPH028353 A JP H028353A
Authority
JP
Japan
Prior art keywords
strength
baking
alloy
ingot
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16035988A
Other languages
Japanese (ja)
Inventor
Shoshi Koga
詔司 古賀
Kazunori Kobayashi
一徳 小林
Masakazu Hirano
正和 平野
Mitsuo Hino
光雄 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16035988A priority Critical patent/JPH028353A/en
Publication of JPH028353A publication Critical patent/JPH028353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an Al alloy for forming excellent in baking strength by subjecting an Al-alloy ingot in which composition and crystal grain size are specified, respectively, to homogenizing treatment and to hot rolling and then successively applying cold rolling, heating, and cooling to the resulting rolled plate under respectively specified conditions. CONSTITUTION:An ingot of an Al alloy which has a composition containing, as essential components, 3.0-5.0%, by weight, Mg, 0.06-0.6% Zn, and 0.3-2.0% Cu, further containing one or >=2 kinds among 0.03-0.5% Mn, 0.03-0.3% Cr, 0.005-0.3% Ti, and 0.0005-0.05% B, and having the balance Al with inevitable impurities and in which crystal grain size is regulated to <=1.5mm is subjected to homogenizing treatment and then hot-rolled. Subsequently, the hot rolled plate is formed into a cold rolled sheet of the prescribed sheet thickness by regulating the final cold draft to >=60%, and this sheet is heated at 450-560 deg.C for <=100sec at >=100 deg.C/min heating rate and then cooled at >=200 deg.C/min cooling rate. By this method, the Al alloy having superior formability and particularly excellent in baking strength after painting can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、成形加工用アルミニウム合金の製造に係り、
より詳細には、特に自動車、車両等、車体加工用として
成形加工性が良好で、特に塗装後のベーキング強度が非
常に優れたアルミニウム合金の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the production of an aluminum alloy for forming,
More specifically, the present invention relates to a method for producing an aluminum alloy that has good moldability for processing car bodies, such as automobiles and vehicles, and has particularly excellent baking strength after painting.

(従来の技術及び解決しようとする課題)最近、自動車
、車両用材料には、機能の多様化及び高度化による重量
増加に伴い、燃費の向上、操縦性の向上等々のために軽
量化を図るべく、鋼材料に代ってアルミニウム合金板が
使用され始めてきている。
(Conventional technology and issues to be solved) Recently, as the weight of automobiles and vehicle materials has increased due to diversification and sophistication of functions, efforts have been made to reduce the weight of automobiles and vehicle materials in order to improve fuel efficiency, improve maneuverability, etc. Therefore, aluminum alloy plates are beginning to be used instead of steel materials.

このような用途に使用されるアルミニウム合金板におい
ては、成形加工性が重要であり、低耐力で形状凍結性が
良く、しかも耐プント性等の向上のために成形加工→塗
装後の焼付工程(ベーキング)において強度が高くなる
ことが要求されている。
For aluminum alloy sheets used in such applications, formability is important, and in order to have low yield strength and good shape fixability, and to improve Punto resistance, etc., the process of forming → baking after painting ( It is required to have high strength in baking).

ところが、従来、車両用等に用いられているアルミニウ
ム合金のうち、Afl−Mg系のアルミニラム合金とし
て5052.5154.5086.5182.5083
合金等があるが、いずれも成形加工性、耐食性等は優れ
ていても、成形加工後のベーキング強度が低いという欠
点があった。このため、強度を確保するには板厚を厚く
せざるを得す、軽量化効果が小さいことが問題であった
However, among the aluminum alloys conventionally used for vehicles, 5052.5154.5086.5182.5083 is an Afl-Mg-based aluminum alloy.
There are alloys, etc., but although they all have excellent moldability, corrosion resistance, etc., they have the drawback of low baking strength after molding. For this reason, the problem was that the plate thickness had to be increased to ensure strength, and the weight reduction effect was small.

一方、ベーキング強度を高くするために、AlCu系の
2036やAl−Mg−3i系の6009.6010合
金等が使用されているが、成形加工性が劣ったり、或い
は強度が不十分であったり、更には材料製造後の経時変
化により強度が高くなり、プレス加工時に形状凍結性が
悪くなったりするという問題があった。
On the other hand, in order to increase baking strength, AlCu-based 2036 and Al-Mg-3i-based 6009.6010 alloys are used, but they have poor moldability or insufficient strength. Furthermore, there was a problem in that the strength increased due to changes over time after the material was manufactured, and shape fixability deteriorated during press working.

本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、従来材の5052.5182等と同
等以上の成形性を有し、しかもベーキング後の強度が極
めて高い成形加工用アルミニウム合金の製造方法を提供
することを目的とするものである。
The present invention has been made in order to solve the problems of the prior art described above, and has moldability equivalent to or better than conventional materials such as 5052.5182, and has extremely high strength after baking. The object of the present invention is to provide a method for producing an aluminum alloy.

(課題を解決するための手段) か\る目的を達成するため、本発明者らは、従来材に上
記の如く問題があることに鑑みて、その対策を見い出す
べく鋭意研究を行った。
(Means for Solving the Problem) In order to achieve the above object, the inventors of the present invention, in view of the above-mentioned problems with conventional materials, conducted intensive research to find a countermeasure.

その結果、所定量のMg、Zn及びCuを必須成分とし
、これに適量のMn、Cr、Ti及びBの少なくとも1
種以上を添加して化学成分を調整すると共に、鋳塊の結
晶粒度、最終冷延加工率及び最終板厚での熱処理条件、
すなわち、溶体化処理条件、冷却条件等を規制すること
により、可能であることを見い出し、ここに本発明をな
したものである。
As a result, predetermined amounts of Mg, Zn, and Cu are essential components, and appropriate amounts of at least one of Mn, Cr, Ti, and B are added.
In addition to adjusting the chemical composition by adding seeds or more, the grain size of the ingot, the final cold rolling rate, the heat treatment conditions at the final plate thickness,
That is, we have discovered that it is possible by regulating the solution treatment conditions, cooling conditions, etc., and have hereby accomplished the present invention.

すなわち、本発明に係るベーキング強度に優れた成形加
工用アルミニウム合金の製造方法は、Mg:3.O−5
,0%、Zn:0.0B−0,6%及びCu:0.3〜
2.0%を必須成分とし、更にMn:0゜03〜0.5
%、Cr:0.03〜0.3%、Ti: 0 。
That is, the method for producing an aluminum alloy for forming with excellent baking strength according to the present invention is as follows: Mg: 3. O-5
, 0%, Zn: 0.0B-0.6% and Cu: 0.3~
2.0% is an essential component, and Mn: 0゜03~0.5
%, Cr: 0.03-0.3%, Ti: 0.

005〜0.3%及びB:O,OOO5〜0.05%の
うちの1種又は2種以上を含有し、残部がA D。
005-0.3% and B:O, OOO5-0.05%, and the remainder is AD.

及び不可避的不純物からなるAf1合金につき、結晶粒
径が1.5mm以下の鋳塊を用い、均質化処理後、熱間
圧延を行い、次いて最終の冷間加工率を60%以上与え
て所定の板厚とし、引き続いて、100°C/min以
上の加熱速度で450−560”CX 100秒以下の
加熱を行った後、冷却速度200℃/min以上で冷却
することを特徴とするものである。
For the Af1 alloy, which contains unavoidable impurities, an ingot with a crystal grain size of 1.5 mm or less is used, and after homogenization treatment, hot rolling is performed, and then a final cold working rate of 60% or more is applied to the specified rolling process. It is characterized by having a thickness of 450-560" CX for 100 seconds or less at a heating rate of 100°C/min or more, and then cooling at a cooling rate of 200°C/min or more. be.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) まず、本発明における化学成分の限定理由を述べる。(effect) First, the reason for limiting the chemical components in the present invention will be described.

Mg: Mgは、ベーキング性、強度、成形加工性の向上に寄与
する元素である。しかし、3.0%未満ではベーキング
性が悪く、強度が低い。また5゜0%を超えると強度は
高くなるが、圧延時に割れが起こり易くなり、通常の工
業的製造が困難になる。したがって、Mg量は3.0〜
5.0%の範囲とする。
Mg: Mg is an element that contributes to improving baking properties, strength, and moldability. However, if it is less than 3.0%, baking properties are poor and strength is low. If it exceeds 5.0%, the strength will be high, but cracks will easily occur during rolling, making normal industrial production difficult. Therefore, the Mg amount is 3.0~
The range shall be 5.0%.

Cu: Cuは、Mgと同様、ベーキング性、強度、成形加工性
の向上に寄与する元素であり、特にMgと共存するとそ
の効果は一層大きくなる。しかし、0.3%未満ではベ
ーキング後の強度が低く、また2、0%を超えるとベー
キング強度は飽和してしまい、通常の工業的製造が難し
くなる。したがって、Cu量は0.3〜2.0%の範囲
とする。
Cu: Similar to Mg, Cu is an element that contributes to improving baking properties, strength, and moldability, and its effects are particularly enhanced when it coexists with Mg. However, if it is less than 0.3%, the strength after baking will be low, and if it exceeds 2.0%, the baking strength will be saturated, making normal industrial production difficult. Therefore, the amount of Cu is in the range of 0.3 to 2.0%.

Zn: Znは成形加工性、ベーキング性の向上に寄与する元素
であるが、0.06%未満ではその効果はなく、また0
、6%を超えて添加してもその効果は飽和し、むしろ耐
食性が著しく悪くなり、使用できなくなる。したがって
、Zn量は0.06〜0.6%の範囲とする。
Zn: Zn is an element that contributes to improving moldability and baking properties, but if it is less than 0.06%, it has no effect and
, even if it is added in excess of 6%, the effect is saturated and the corrosion resistance deteriorates significantly, making it unusable. Therefore, the amount of Zn is set in the range of 0.06 to 0.6%.

以上の各元素を必須成分とするが、以下に示す元素のM
n、Cr、Ti及びBのうちの1種又は2種以上を含有
させる必要がある。
Each of the above elements is an essential component, but the M of the elements shown below is
It is necessary to contain one or more of n, Cr, Ti, and B.

Mn: Mnは成形加工性と強度の向上に寄与する元素であるが
、0.03%未満ではその効果がなく、また0、5%を
超えると成形加工性が劣るので、好ましくない。このた
め、Mn量は0.03〜0゜5%の範囲とする。
Mn: Mn is an element that contributes to improving moldability and strength, but if it is less than 0.03%, it has no effect, and if it exceeds 0.5%, moldability is poor, so it is not preferable. Therefore, the amount of Mn is set in the range of 0.03 to 0.5%.

Cr: Crは強度と成形加工性の向上に寄与する元素であるが
、0.03%未満てはその効果が少なく、また0、3%
を超えて添カ1比でも強度の改善効果が飽和し、むしろ
成形加工性が劣るので、好ましくない。このため、Cr
量は0.03〜0.3%の範囲とする。
Cr: Cr is an element that contributes to improving strength and formability, but less than 0.03% has little effect, and 0.3%
Even if the additive ratio exceeds 1, the strength improvement effect is saturated, and the moldability is rather poor, which is not preferable. For this reason, Cr
The amount should be in the range of 0.03-0.3%.

T1、B: T1とBは結晶粒微細化による成形加工性、強度の向上
に寄与する元素であるが、それぞれTiO,005%未
満、BO,0O05%未aではソノ効果がなく、またT
1が0.3%超、Bが。、05%超では伸びが低下し、
成形加工性が劣るので、好ましくない。したがって、T
i量は0.005〜0.3%、B量は0.0005−0
.05%の範囲とする。
T1, B: T1 and B are elements that contribute to improving formability and strength through grain refinement, but if TiO is less than 0.05% and BO is less than 0.05%, there is no sono effect, and T
1 exceeds 0.3%, B. , the elongation decreases when it exceeds 0.05%,
It is not preferred because the molding processability is poor. Therefore, T
The amount of i is 0.005-0.3%, the amount of B is 0.0005-0
.. The range is 0.05%.

なお、」1記化学成分のアルミニウム合金には不純物が
含まれるが、不純物量は可及的に少ないのが好ましく、
例えば、Fe、Siはそれぞれ0.5%以下、■、Ni
等その他の元素は0.1%以下であれば、本発明の効果
を損なうものではない。
In addition, although the aluminum alloy of chemical composition 1 contains impurities, it is preferable that the amount of impurities be as small as possible.
For example, Fe and Si are each 0.5% or less, ■, Ni
If the content of other elements is 0.1% or less, the effects of the present invention will not be impaired.

次に本発明の製造プロセスの条件について説明する。Next, the conditions of the manufacturing process of the present invention will be explained.

まず、上記化学成分を有するアルミニウム合金は常法に
より溶製し、鋳造して鋳塊を得る。
First, an aluminum alloy having the above chemical components is melted by a conventional method and cast to obtain an ingot.

但し、鋳塊の結晶粒径は、製品の結晶粒微細化に大きく
影響を及ぼすので、1.5mm以下とする必要がある。
However, since the crystal grain size of the ingot has a large effect on the grain refinement of the product, it needs to be 1.5 mm or less.

これは、上記組成のAl合金鎚塊を均質化処理し、熱間
圧延、冷間圧延をして所定の板厚にした時に、鋳塊の結
晶粒径が1. 、5 mmを超えるものではその後の工
程によっても、製品の結晶粒微細化効果が少なく、成形
加工性、ベーキング強度等が悪くなるためである。
This means that when an Al alloy hammered ingot with the above composition is homogenized, hot-rolled and cold-rolled to a predetermined thickness, the crystal grain size of the ingot is 1. This is because if the diameter exceeds 5 mm, subsequent steps will have little effect on refining the crystal grains of the product, resulting in poor moldability, baking strength, etc.

この鋳塊に対する均質化処理、熱間圧延までは通常の方
法を用いればよい。例えば、上記鋳塊を必要に応じて4
50〜550℃で1〜48時間加熱保持する均質化処理
を行い、常法に従って熱間圧延を行う。なお、その後、
必要に応して荒焼鈍(例、350〜b もよい。
Conventional methods may be used for the homogenization treatment and hot rolling of this ingot. For example, if necessary, the above ingot is
Homogenization treatment is performed by heating and holding at 50 to 550°C for 1 to 48 hours, and hot rolling is performed according to a conventional method. Furthermore, after that,
Rough annealing (for example, 350-b may also be used if necessary).

次いで、冷間圧延を行う。但し、冷間圧延は最終の冷間
加工率60%以上で圧延し、所定の板厚とする必要があ
る。冷間加工率が60%未満ではその後の熱処理により
固溶化促進が行われず、成形加工後のベーキング工程に
おいて強度向上を図ることができず、好ましくない。
Next, cold rolling is performed. However, the cold rolling must be performed at a final cold working rate of 60% or more to obtain a predetermined plate thickness. If the cold working ratio is less than 60%, the subsequent heat treatment will not promote solid solution formation, making it impossible to improve the strength in the baking step after forming, which is not preferable.

次に、最終熱処理として、100℃/min以上の加熱
速度で450〜b 温度範囲、時間範囲で溶体化処理し、200℃/min
以上の冷却速度で冷却する。
Next, as a final heat treatment, solution treatment is performed at a heating rate of 100°C/min or more in a temperature range of 450°C to 450°C for a time range of 200°C/min.
Cool at the cooling rate above.

この熱処理は成形加工性、強度への寄与が大きく、組織
の再結晶粒微細化により、並びにMg、Cuの固溶化に
より、ベーキング強度を向上させることを目的としたも
のである。
This heat treatment greatly contributes to moldability and strength, and is intended to improve baking strength by refining the recrystallized grains of the structure and by making Mg and Cu a solid solution.

しかし、加熱速度が100 ’C/min未満では再結
晶の微細化効果が不十分であって、十分なベーキング強
度、成形性が得られない。
However, if the heating rate is less than 100'C/min, the effect of recrystallization into fine particles is insufficient, and sufficient baking strength and formability cannot be obtained.

また、溶体化温度が450℃未満ではMg、Cu等の固
溶体化や再結晶微細化が不十分となり、ベーキング強度
、成形加工性を得ることができず、また560℃を超え
ると共晶融解の恐れがあるので避けるべきである。また
、溶体化処理時間が100秒を超えると同溶体化は十分
となるが、再結晶粒の粗大化が起り、成形加工性、強度
が低下すると共に、工業的製品での長時間加熱、すなわ
ち通板速度を遅くすることになるので経済的でない。
Furthermore, if the solution temperature is lower than 450°C, solid solution formation and recrystallization of Mg, Cu, etc. will be insufficient, making it impossible to obtain baking strength and moldability, and if it exceeds 560°C, eutectic melting will occur. It is dangerous and should be avoided. In addition, if the solution treatment time exceeds 100 seconds, the solution treatment is sufficient, but the recrystallized grains become coarser and the moldability and strength decrease, and the long-term heating of industrial products, i.e. This is not economical because it slows down the sheet threading speed.

1〜100秒の範囲が望ましい。A range of 1 to 100 seconds is desirable.

一方、溶体化処理後の冷却では、Mg、Cu等の固溶体
化を図り、ベーキング強度の向上、成形加工性の向上の
ために200℃/mjn以上の冷却速度とする必要があ
る。しかし、冷却速度が200’C/min未満ではM
g、Cuの化合物が析出し、その後のベーキング強度を
低下させるので好ましくない。なお、このような冷却速
度を得るための方法としては強制空冷や水冷却等がある
が、焼入れ時の歪の低減の観点からすると強制空冷を適
用するのが望ましい。
On the other hand, in cooling after solution treatment, it is necessary to make Mg, Cu, etc. into a solid solution, and to set the cooling rate to 200° C./mjn or more in order to improve baking strength and moldability. However, if the cooling rate is less than 200'C/min, M
This is not preferable because the compound of g and Cu precipitates and reduces the subsequent baking strength. Note that methods for obtaining such a cooling rate include forced air cooling, water cooling, etc., but from the viewpoint of reducing distortion during quenching, it is desirable to apply forced air cooling.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

失席剣↓− 第1表に示す化学成分を有するアルミニウム合金を溶製
、鋳造して、結晶粒径が1.5mm以下で500mm厚
の鋳塊を得た。この鋳塊に490℃X4hrの均質化処
理を施した後、520〜350℃で板厚4mmまで熱間
圧延し、続いて板厚1mmまで冷間圧延(最終冷間加工
率75%)を行った。
Lost Sword↓- An aluminum alloy having the chemical components shown in Table 1 was melted and cast to obtain an ingot with a crystal grain size of 1.5 mm or less and a thickness of 500 mm. After homogenizing the ingot at 490°C for 4 hours, it was hot rolled at 520 to 350°C to a thickness of 4mm, and then cold rolled to a thickness of 1mm (final cold working rate 75%). Ta.

この板厚1mmのアルミニウム合金板を加熱速度700
℃/minで加熱し、溶体化処理(530℃×20秒)
した後、冷却速度800℃/minで冷却した。
This aluminum alloy plate with a thickness of 1 mm was heated at a heating rate of 700.
Heating at °C/min and solution treatment (530 °C x 20 seconds)
After that, it was cooled at a cooling rate of 800° C./min.

熱処理後に、機械的性質、エリクセン値(Er)及びベ
ーキング(175°CX20m1n)後の強度について
調査した。その結果を第2表に示す。
After heat treatment, mechanical properties, Erichsen value (Er), and strength after baking (175°C x 20ml) were investigated. The results are shown in Table 2.

第2表から明らかなように、本発明例Na 1〜Nn2
は、比較例N(13〜Nα5に比べ、ベーキング強度が
優れているばかりでなく、成形加工性(伸び、エリクセ
ン値)等も優れていることがわかる。従来合金に対して
本発明の製造プロセスを適用した比較例Nα3〜Nα4
ではベーキング強度が低く、成形加工性も劣っており、
またCuが多い比較例N。
As is clear from Table 2, examples of the present invention Na 1 to Nn2
It can be seen that compared to Comparative Example N (13 to Nα5), not only is baking strength superior, but also moldability (elongation, Erichsen value), etc. is superior. Comparative examples Nα3 to Nα4 applying
has low baking strength and poor moldability,
Comparative example N also contains a large amount of Cu.

5は熱間圧延時に割れが発生した。In No. 5, cracks occurred during hot rolling.

[以下余白1 実施例り 前記第1表に示した化学成分を有するアルミニウム台金
Ha 1について、第3表に示す種々の条件(鋳塊結晶
粒サイズ、最終冷間圧延率、加熱速度、溶体化処理温度
及び時間、冷却速度)にてアルミニウム合金板を製造し
、それらの条件の及ぼす影響について調査した。その結
果を第4表に示す。
[Blank below 1 Examples] Regarding the aluminum base metal Ha 1 having the chemical composition shown in Table 1 above, various conditions shown in Table 3 (ingot crystal grain size, final cold rolling rate, heating rate, solution The effects of these conditions were investigated. The results are shown in Table 4.

なお、他の条件は実施例1と同様とした。Note that other conditions were the same as in Example 1.

第4表から明らかなように、本発明例Nαlはベーキン
グ強度が優れているばかりでなく、成形加工性(伸び、
エリクセン値)等も優れていることがわかる。
As is clear from Table 4, inventive example Nαl not only has excellent baking strength but also moldability (elongation,
It can be seen that the Erichsen value) etc. are also excellent.

一方、第3表の条件のうち、いずれかの条件が本発明範
囲外である比較例の場合、すなわち、鋳塊結晶粒サイズ
が大きい比較例Nα2、最終冷間圧延率が小さい比較例
Nn 3、熱処理条件が本発明範囲外の比較例Na4〜
Na 7はいずれもベーキング後の強度が低く、成形加
工性も劣っている。
On the other hand, in the case of comparative examples in which any of the conditions in Table 3 is outside the scope of the present invention, that is, comparative example Nα2 with a large ingot crystal grain size, and comparative example Nn 3 with a small final cold rolling reduction. , Comparative examples Na4 to 4 where the heat treatment conditions were outside the range of the present invention.
All of Na 7 have low strength after baking and poor moldability.

[以下余白] (発明の効果) 以上詳述したように、本発明によれば、成形加工後のベ
ーキングにおける強度向上が要求される成形加工品に使
用されるアルミニウム合金板として、従来材の5182
.5052と同等以上の成形加工性を有し、しかもベー
キング後の強度が格段に優れているため、薄肉化が可能
となり、自動車、車両等の軽量化に寄与するところが大
きい。
[Blank below] (Effects of the Invention) As detailed above, according to the present invention, the conventional material 5182 can be used as an aluminum alloy plate used in molded products that require improved strength during baking after molding.
.. It has moldability equal to or better than 5052, and its strength after baking is significantly superior, so it can be made thinner, which greatly contributes to reducing the weight of automobiles, vehicles, etc.

特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚Patent applicant: Kobe Steel, Ltd. Representative Patent Attorney Takashi Nakamura

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、Mg:3.0〜5.0%、Z
n:0.06〜0.6%及びCu:0.3〜2.0%を
必須成分とし、更にMn:0.03〜0.5%、Cr:
0.03〜0.3%、Ti:0.005〜0.3%及び
B:0.0005〜0.05%のうちの1種又は2種以
上を含有し、残部がAl及び不可避的不純物からなるA
l合金につき、結晶粒径が1.5mm以下の鋳塊を用い
、均質化処理後、熱間圧延を行い、次いで最終の冷間加
工率を60%以上与えて所定の板厚とし、引き続いて、
100℃/min以上の加熱速度で450〜560℃×
100秒以下の加熱を行った後、冷却速度200℃/m
in以上で冷却することを特徴とするベーキング強度に
優れた成形加工用アルミニウム合金の製造方法。
In weight% (the same applies hereinafter), Mg: 3.0 to 5.0%, Z
n: 0.06-0.6% and Cu: 0.3-2.0% as essential components, further Mn: 0.03-0.5%, Cr:
0.03 to 0.3%, Ti: 0.005 to 0.3%, and B: 0.0005 to 0.05%, and the remainder is Al and inevitable impurities. A consisting of
For l alloy, an ingot with a crystal grain size of 1.5 mm or less is used, and after homogenization treatment, hot rolling is performed, and then a final cold working rate of 60% or more is applied to obtain a predetermined plate thickness, and then ,
450 to 560℃ at a heating rate of 100℃/min or more
After heating for 100 seconds or less, cooling rate 200℃/m
A method for producing an aluminum alloy for molding with excellent baking strength, characterized by cooling at a temperature of at least 100 mL.
JP16035988A 1988-06-27 1988-06-27 Manufacture of aluminum alloy for forming excellent in baking strength Pending JPH028353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16035988A JPH028353A (en) 1988-06-27 1988-06-27 Manufacture of aluminum alloy for forming excellent in baking strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16035988A JPH028353A (en) 1988-06-27 1988-06-27 Manufacture of aluminum alloy for forming excellent in baking strength

Publications (1)

Publication Number Publication Date
JPH028353A true JPH028353A (en) 1990-01-11

Family

ID=15713270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16035988A Pending JPH028353A (en) 1988-06-27 1988-06-27 Manufacture of aluminum alloy for forming excellent in baking strength

Country Status (1)

Country Link
JP (1) JPH028353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613959A1 (en) * 1993-03-03 1994-09-07 Nkk Corporation An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same
EP0616044A2 (en) * 1993-03-03 1994-09-21 Nkk Corporation Method of manufacturing natural aging retardated aluminum alloy sheet
US5423925A (en) * 1992-10-23 1995-06-13 The Furukawa Electric Co., Ltd. Process for manufacturing Al-Mg alloy sheets for press forming
DE10231437B4 (en) 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423925A (en) * 1992-10-23 1995-06-13 The Furukawa Electric Co., Ltd. Process for manufacturing Al-Mg alloy sheets for press forming
EP0613959A1 (en) * 1993-03-03 1994-09-07 Nkk Corporation An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same
EP0616044A2 (en) * 1993-03-03 1994-09-21 Nkk Corporation Method of manufacturing natural aging retardated aluminum alloy sheet
US5580402A (en) * 1993-03-03 1996-12-03 Nkk Corporation Low baking temperature hardenable aluminum alloy sheet for press-forming
EP0616044A3 (en) * 1993-03-03 1997-05-02 Nippon Kokan Kk Method of manufacturing natural aging retardated aluminum alloy sheet.
DE10231437B4 (en) 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP2003105471A (en) Aluminum alloy sheet, and production method therefor
JPS626740B2 (en)
JPH09249950A (en) Production of aluminum alloy sheet excellent in formability and hardenability in coating/baking
JPS62207850A (en) Rolled aluminum alloy sheet for forming and its production
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH028353A (en) Manufacture of aluminum alloy for forming excellent in baking strength
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP2003129203A (en) Production method for aluminum alloy plate excellent in rivet formability, score workability, and blowup resistance and used for lid of positive-pressure can
JPS61201748A (en) Rolled aluminum alloy sheet for forming and its manufacture
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH06256916A (en) Production of aluminum alloy sheet
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JPS6227544A (en) Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JP4237364B2 (en) Method for producing an aluminum alloy plate excellent in press formability
JPH03260040A (en) Manufacture of high strength al-mn series alloy sheet
JPH08109428A (en) Aluminum alloy sheet excellent in baking finish hardenability and its production