WO2023203794A1 - 液体加熱装置 - Google Patents

液体加熱装置 Download PDF

Info

Publication number
WO2023203794A1
WO2023203794A1 PCT/JP2022/040637 JP2022040637W WO2023203794A1 WO 2023203794 A1 WO2023203794 A1 WO 2023203794A1 JP 2022040637 W JP2022040637 W JP 2022040637W WO 2023203794 A1 WO2023203794 A1 WO 2023203794A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
ceramic
terminals
pair
heating device
Prior art date
Application number
PCT/JP2022/040637
Other languages
English (en)
French (fr)
Inventor
友亮 牧野
侑也 東出
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2023203794A1 publication Critical patent/WO2023203794A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor

Definitions

  • the present invention relates to a liquid heating device suitable for heating liquids such as water.
  • Hot water is required for toilet seats that flush with warm water, fuel cell systems, water heaters, 24-hour baths, heating vehicle washer fluid, and for vehicle air conditioners. Therefore, a liquid heating device is used that heats water using a built-in heater.
  • a heater with a high wattage density is required, so a rod-shaped ceramic heater is used, in which a heat generating part is embedded in a ceramic sheet wrapped around the outer periphery of an elongated ceramic base (Patent Document 1).
  • This ceramic heater has a pair of heater terminals at its base end, and by passing electricity between the respective heater terminals, the heat generating portion is electrically heated.
  • an object of the present invention is to provide a liquid heating device that is downsized and suppresses short circuits between a pair of heater terminals of a ceramic heater.
  • a liquid heating device includes a container having an internal space, an inlet port and a discharge port communicating with the internal space, and a container that extends in the front-rear direction and has a distal end thereof.
  • the liquid heating device heats the liquid by the ceramic heater in the process of flowing the liquid through the internal space to the discharge port, wherein the ceramic heaters are aligned with each other along the front-back direction and are arranged along the front-back direction.
  • a cross section that intersects with A first heater terminal is located therein, and a second heater terminal, which is the other of the pair of heater terminals of each ceramic heater, is located outside the polygon.
  • a pair of heater terminals of each ceramic heater are connected to a first heater terminal inside a polygon and a first heater terminal outside the polygon. and the first heater terminal. Therefore, even if the ceramic heater is downsized, it is possible to prevent a pair of heater terminals in each ceramic heater from coming into contact with each other and causing a short circuit.
  • a liquid heating device includes a container having an internal space, an inlet port and an outlet port communicating with the internal space, and a container that extends in the front-rear direction, and has a distal end thereof in the internal space.
  • the liquid heating device heats the liquid using a ceramic heater, wherein the ceramic heaters are arranged along the front-back direction, and when a cross section intersecting the front-back direction is viewed, the centers of gravity of the plurality of ceramic heaters are the same.
  • a first heater terminal which is one of the pair of heater terminals of each ceramic heater, is arranged in a straight line and is located on one side across the same straight line, and on the other side across the same straight line.
  • the second heater terminal which is the other of the pair of heater terminals of each ceramic heater, is located at.
  • this liquid heating device in a liquid heating device having a large number of ceramic heaters, two or more, a pair of heater terminals of each ceramic heater are connected to a first heater terminal and a first heater terminal with the same straight line in between. separated into Therefore, even if the ceramic heater is downsized, it is possible to prevent a pair of heater terminals in each ceramic heater from coming into contact with each other and causing a short circuit.
  • a distance D1 between the first heater terminal and the corresponding ceramic heater may be shorter than a distance D2 between the second heater terminal and the corresponding ceramic heater. good.
  • each ceramic heater can be brought close to the first heater terminal side, that is, inside, and three or more ceramic heaters can be brought close to each other in the radial direction. Can be made smaller.
  • the periphery of the holding portion surrounding the second heater terminal on the facing surface of the separator facing the container is arranged along the direction in which the pair of heater terminals are lined up.
  • a taper may be provided that extends from the ceramic heater toward the holding portion and connects to the holding portion.
  • the distances D1 and D2 of ceramic heaters are the same, but when a pair of heater terminals is inserted into the holding part of the separator, the tip of the second heater terminal hits the taper and spreads outward using the slope of the taper as a guide. Pass through the holding part in the same state. Thereby, even if the distance D1 of the ceramic heater is not made shorter than D2 in advance, the distance D1 can be reliably made shorter than the distance D2 using the taper as a guide when attaching the separator.
  • the first heater terminals of the plurality of ceramic heaters are all at the same potential, and the distance D3 between the adjacent first heater terminals is It may be smaller than any distance D4 of the second heater terminal.
  • a predetermined value for example, a spatial distance of 3 mm. Therefore, if all the first heater terminals are set to the same potential, the distance D3 between adjacent first heater terminals can be narrowed, and the ceramic heaters can be brought closer to each other in the radial direction, making it possible to downsize the liquid heating device. .
  • the first heater terminal or the second heater terminal of each of the plurality of ceramic heaters are all at the same potential, and any of the adjacent heater terminals at the same potential is
  • the distance D3 may also be smaller than any distance D4 between adjacent heater terminals that are not at the same potential.
  • a predetermined value for example, a spatial distance of 3 mm.
  • the distance D3 between adjacent first heater terminals can be narrowed, and the ceramic heaters can be brought closer to each other in the radial direction, making it possible to downsize the liquid heating device.
  • FIG. 1 is a perspective view showing the appearance of a liquid heating device according to an embodiment of the first aspect of the present invention.
  • FIG. 2 is an exploded perspective view of the liquid heating device. 2 is a sectional view taken along line AA in FIG. 1.
  • FIG. FIG. 2 is a perspective view showing the appearance of a ceramic heater.
  • FIG. 2 is an exploded perspective view showing the configuration of a ceramic heater.
  • FIG. 2 is a perspective view showing the configuration of a separator.
  • FIG. 3 is a cross-sectional view showing the arrangement of lead terminals within the separator. It is a perspective view showing a separator of a modification.
  • 9 is a partial cross-sectional view of a liquid heating device using the separator of FIG. 8.
  • FIG. 7 is a cross-sectional view showing yet another modification of the embodiment of the first aspect.
  • FIG. 2 is a perspective view showing the appearance of a liquid heating device according to an embodiment of the second aspect of the present invention.
  • FIG. 2 is an exploded perspective view of a liquid heating device according to an embodiment of a second aspect.
  • FIG. 7 is a cross-sectional view showing the arrangement of lead terminals within the separator in the embodiment of the second aspect.
  • 14 is a cross-sectional view showing a state in which the first heater terminals are at the same potential and the distance D3 is smaller than the distance D4 in FIG. 13.
  • FIG. FIG. 7 is a cross-sectional view showing a case where the liquid heating device according to the embodiment of the second aspect of the present invention is applied to three ceramic heaters.
  • FIG. 1 is a perspective view of a liquid heating device 300 according to an embodiment of the first aspect of the present invention
  • FIG. 2 is an exploded perspective view of the liquid heating device 300
  • FIG. 3 is a sectional view taken along line AA in FIG. 1.
  • FIG. 4 is a perspective view showing the appearance of the ceramic heater 171
  • FIG. 5 is an exploded perspective view of the ceramic heater 171.
  • the liquid heating device 300 is installed in a hot water bidet toilet seat, and is configured to heat water at room temperature using three built-in ceramic heaters 171 to 173 to supply hot water. .
  • the liquid heating device 300 includes a container 100 having an approximately triangular cylindrical shape as a whole (a cylindrical shape with a triangular cross section), three ceramic heaters 171 to 173, and a separator 240.
  • the container 100 includes an elongated cylindrical body 101 having an internal space 100i (FIG. 3) that accommodates liquid (water), and a front end lid 107 and a rear end that respectively close openings at both ends of the body 101 in the axis L direction. It has a lid 108 and an inlet 103 and an outlet 105 for the liquid W. Further, the inlet 103 and the outlet 105 are integrally provided in the front end lid 107 and the body 101, respectively.
  • the front end cover 107 is fitted to the flange portion 100F of the front end of the body portion 101 in the direction of the axis L (the end on the side where the ceramic heaters 171 to 173 are exposed).
  • a rear end lid 108 is liquid-tightly sealed at the rear end of the body portion 101 in the axial direction, for example, via a rubber seal such as a packing.
  • the three ceramic heaters 171 to 173 each have a rod shape extending in the front-rear direction AX, and each extend in the same direction (parallel). Furthermore, the base end portions 17R of the ceramic heaters 171 to 173 penetrate through the three openings 107m1 to 107m3 of the front end lid 107, respectively. The gaps between the ceramic heaters 171 to 173 and the openings 107m1 to 107m3 are sealed by the fixing member 160 made of epoxy resin, so that the ceramic heaters 171 to 173 are fixed to the container 100 in a cantilevered manner.
  • each tip 17T of the ceramic heaters 171 to 173 is located within the internal space 100i. It goes without saying that the position of the fixing member 160 is closer to the proximal end than the heat generating part 17a of the ceramic heater, which will be described later. Further, lead wires 15 and 16, which will be described later, are connected to the base end portions 17R of the ceramic heaters 171 to 173 for supplying power from the outside.
  • the ceramic heaters 171 to 173 are housed in the internal space 100i of the body 101 so that the front-rear direction AX, which is the direction in which the ceramic heaters 171 to 173 are lined up, is along the axis L direction of the body 101. ing.
  • the inlet 103 and the outlet 105 communicate with the internal space 100i and are spaced apart in the direction of the axis L, and the liquid introduced from the outside through the inlet 103 flows into the internal space along the direction of the axis L. 100i and is discharged from the discharge port 105. Furthermore, gaps are formed between the inner wall of the container 100 and the ceramic heaters 171 to 173, and the liquid introduced into the inner space 100i through the inlet 103 is directed along the axis L to the outer surface of the ceramic heaters 171 to 173. After being heated while contacting along the direction, it flows to the discharge port 105.
  • the front end lid 107 has a substantially triangular plate shape and includes three openings 107m1 to 107m3 and an inlet 103 extending outward from between the openings 107m1 to 107m3.
  • the three openings 107m1 to 107m3 are each arranged near the apex of the triangle to form a circular hole.
  • the introduction port 103 extends outward from the outer periphery of the front end cover 107 along the plate surface from between each of the openings 107m1 to 107m3.
  • the inner hole 103i (liquid flow path) of the introduction port 103 is bent so as to be substantially perpendicular to the plate surface of the front end lid 107, and opens into the inner surface 107a of the front end lid 107.
  • a fixing member 160 made of epoxy resin is filled not only in the gaps between the ceramic heaters 171 to 173 and the openings 107m1 to 107m3, but also in the front end cover 107. In this way, while the fixing member 160 embeds the ceramic heaters 171 to 173, the lead terminals 18 (18a, 18b) and lead wires 15, 16, which will be described later, protrude outside the fixing member 160 (to the right in FIG. 3). ing.
  • the separator 240 will be described later.
  • the ceramic heater 171 has a heating element 17h that generates heat by being supplied with electricity from the outside via the lead wires 15 and 16.
  • the heating element 17h has a heating part 17a formed by meandering a conductor in the front-rear direction L to form a heating pattern on the tip side, and also has a pair of lead parts 17b drawn out from both ends of the heating part 17a to the rear end side. are doing.
  • the heat generating portion 17a has a length of Lh in the front-back direction L.
  • the heating element 17h includes a heating part 17a, both lead parts 17b, and an electrode pattern 17c formed at the rear end of both the lead parts 17b.
  • the body 17h is sandwiched between two ceramic green sheets 17s1 and 17s2. Note that alumina is used as this ceramic green sheet.
  • the heat generating portion 17a and the lead portion 17b are made of tungsten, rhenium, or the like.
  • Two electrode pads 17p to which a pair of lead terminals 18 (see FIG. 4) are brazed are formed on the surface of the ceramic green sheet 17s2, and the electrode pattern 17c is connected to the electrode pad 17p through a through hole to form a ceramic green sheet. A stack of sheets is formed.
  • this laminate is wound around a rod-shaped ceramic substrate 17g mainly composed of alumina or the like, with the ceramic green sheet 17s2 on the front side, and fired, so that each of the ceramic green sheets 17s1 and 17s2 becomes a ceramic sheet 17s.
  • a ceramic heater 171 that is wound around the outer periphery of the ceramic base 17g and integrated.
  • the lead wires 15 and 16 are electrically connected to lead terminals 18 and 18 by caulking (see FIG. 4).
  • the ceramic base 17g is solid in this example, it may be cylindrical. However, in the case of a cylindrical shape, it is desirable to seal it with resin or the like to prevent water from leaking from the through hole.
  • a slit 17v serving as a concave groove along the front-rear direction L is formed as a non-heat generating portion in the winding portion of the outer surface of the ceramic heater 171.
  • a separator 240 is attached to the flange portion 100F so as to cover the fixing member 160.
  • the separator 240 is provided with a total of six holding portions 242a to 244a and 242b to 244b each having an opening.
  • the three ceramic heaters 171 to 173 have a total of six lead terminals 18, and each lead terminal 18 is inserted into the holding portions 242a to 244a and 242b to 244b, respectively.
  • the radial position (movement) of each lead terminal 18 is regulated, and each lead terminal 18 is held by the separator 240.
  • the separator 240 has a substantially triangular plate shape, and three holding parts 242a, 244a, and 246a are arranged near the vertices of the triangle to form circular holes. Further, the other three holding parts 242b, 244b, and 246b are arranged near the vertices of the triangle so as to surround the holding parts 242a, 244a, and 246a, respectively, and form circular holes. Furthermore, among the holding parts, the holding parts 242a and 242b are closest to each other, the holding parts 244a and 244b are the closest to each other, and the holding parts 246a and 246b are the closest to each other.
  • two claw portions 248 extending toward the flange portion 100F are integrally formed on the side of the separator 240 that connects the holding portions 244b and 246b.
  • one claw portion 249 extending toward the flange portion 100F is integrally formed on the side connecting the holding portions 242b and 246b and the side connecting the holding portions 242b and 244b, respectively.
  • the tips 248c of the claws 248 are bent inward, and the tips 248c of each claw 248 are engaged with the two recesses 100r located at corresponding positions in the flange 100F.
  • the claw portion 249 similarly engages with a recess (not shown) in the flange portion 100F. In this way, separator 240 is fixed to flange portion 100F.
  • each lead terminal 18 within the separator 240 when looking at a cross section intersecting the front-back direction AX (the appearance of the separator 240 viewed from the right side in FIG. 1), the centers of gravity G1 to G3 of each ceramic heater 171 to 173 are polygonal ( In this example, they are located at the vertices of the triangle (in this example) PL.
  • a total of three first heater terminals 18a, which are one of the pair of heater terminals 18 of each ceramic heater 171 to 173, are located inside the polygon PL, and each ceramic heater 171 is located outside the polygon PL.
  • a total of three second heater terminals 18b, which are the other of the pair of heater terminals 18 through 173, are located.
  • the pair of heater terminals 18 of each ceramic heater is connected to the first heater terminal 18a inside the polygon PL, respectively. It is separated into a first heater terminal 18b outside the rectangular shape PL. Therefore, even if the ceramic heaters 171 to 173 are downsized, it is possible to prevent the pair of heater terminals 18a and 18b in each ceramic heater from coming into contact with each other and causing a short circuit.
  • the distance D1 between the first heater terminal 18a and the corresponding ceramic heater is shorter than the distance D2 between the second heater terminal 18b and the corresponding ceramic heater.
  • the individual ceramic heaters can be brought close to the first heater terminal 18a side, that is, the inside, and three or more ceramic heaters 171 to 173 can be brought close to each other in the radial direction. Can be made smaller.
  • the distances D1 and D2 of the ceramic heater are the same, but when the pair of heater terminals 18 are inserted through the holding parts 242a and 242b of the separator 240, the tip of the second heater terminal 18b hits the taper 240t, It passes through the holding portion 242b in an outwardly expanded state using the slope as a guide.
  • the distance D1 can be reliably made shorter than the distance D2 using the taper 240t as a guide when attaching the separator 240, even if the distance D1 of the ceramic heater is not made shorter than the distance D2 in advance.
  • FIG. 8 is a perspective view showing a modified separator 250.
  • the separator 250 differs from the separator 240 in that the holding parts 242r, 244r, and 246r surrounding the second heater terminal 18b are not through holes but grooves recessed from the opposing surface 250F facing the container 100 side. Even with such a groove, the second heater terminal 18b is held around the outer surface of the groove and functions as a holding part in that it is regulated at a predetermined position. However, as shown in FIG. 9, this groove needs to extend to the outer edge of the separator 250. Thereby, the second heater terminal 18b or the lead wire connected thereto can be guided to the outside from the outer edge of the separator 250.
  • FIG. 10 is a sectional view showing still another modification of the embodiment of the first aspect, and is a diagram corresponding to FIG.
  • the centers of gravity G1 to G4 of each ceramic heater are polygonal (square in this example) PL. located at the apex of each.
  • the pair of heater terminals 18 of each ceramic heater is regulated by each holding portion of the separator 260, and a first heater terminal 18a inside the polygon PL and a first heater terminal 18b outside the polygon PL are connected to each other. It is separated into It is possible to prevent the pair of heater terminals 18a, 18b in each ceramic heater from coming into contact with each other and causing a short circuit.
  • FIG. 11 is a perspective view showing the appearance of the liquid heating device 300B
  • FIG. 12 is an exploded perspective view of the liquid heating device 300B.
  • the liquid heating device 300B includes two ceramic heaters 171 and 172 and a separator 200, and is the same as the liquid heating device according to the embodiment of the first aspect except that the configurations of the container 100B and the separator 200 are different.
  • 300, the same components as those of the liquid heating device 300 are designated by the same reference numerals, and a description thereof will be omitted.
  • the liquid heating device 300B has a generally elongated cylindrical shape (having a rectangular cross section with rounded corners) extending in the direction of the axis L as a whole, and includes a container 100B, two ceramic heaters 171 and 172, and a separator 200.
  • the container 100B includes an elongated cylindrical body 101B having an internal space 100Bi that accommodates liquid (water), a front end lid 107B and a rear end lid 109B that respectively close openings at both axial ends of the trunk 101B, and a trunk.
  • 101B has a liquid inlet 103B and an outlet 105B integrally provided. Both ends of the body portion 101B, the front end lid 107B, and the rear end lid 109B are hermetically sealed with O-rings (not shown).
  • the ceramic heaters 171 and 172 each have a rod shape extending in the front-rear direction AX, and are arranged in the same direction (parallel) along the front-rear direction AX. Furthermore, the ceramic heaters 171 and 172 are each attached to the container 100B by having their base ends 17R held in a cantilever manner by the sealing portion 160 at the opening of the tip lid 107B of the container 100B.
  • a gap is formed between the inner wall of the container 100B and the ceramic heaters 171, 172, and the liquid introduced into the internal space 100i through the introduction port 103B is After being heated while contacting the outer surfaces of the ceramic heaters 171 and 172 along the axis L direction, it flows to the discharge port 105B.
  • a separator 200 is attached to the container 100B so as to cover the tip lid 107B.
  • the separator 200 is provided with a total of four holding parts 202a, 204a, 202b, and 204b each having an opening.
  • a heater hole 202c for passing the rear end of the ceramic heater 172 is provided between the holding parts 202a and 202b.
  • a heater hole 204c for passing the rear end of the ceramic heater 171 is provided between the holding parts 204a and 204b.
  • the two ceramic heaters 171 to 172 have a total of four lead terminals 18, and each lead terminal 18 is inserted through the holding portions 202a, 204a, 202b, and 204b, respectively. Thereby, the radial position (movement) of each lead terminal 18 is regulated, and each lead terminal 18 is held by the separator 200.
  • the separator 200 has a substantially elliptical plate shape, and two holding parts 202a and 202b are arranged along the short axis of the separator 200 to form a circular hole. Further, a heater hole 202c is provided between the holding parts 202a and 202b. Similarly, two holding parts 204a and 2042b are arranged along the short axis, and a heater hole 204c is provided between the holding parts 202a and 202b.
  • two claw portions 201 extending toward the container 100B are integrally formed on the upper side of the long axis side of the separator 200. Furthermore, protrusions 201p extending toward the container 100B are integrally formed on both short axis sides of the separator 200. Then, the tip 201c of the claw portion 201 is bent inward and engaged with the flange of the container 100B. Further, when the claw portion 201 engages with the container 100B, the protruding portion 201p comes into contact with the container 100B. In this way, separator 200 is fixed to container 100B.
  • each lead terminal 18 within the separator 200 when looking at a cross section intersecting the front-rear direction AX (the appearance of the separator 200 seen from the left side in FIG. 11), the centers of gravity G1 and G2 of each ceramic heater 171 to 172 are on the same straight line SL. line up on top.
  • a total of two first heater terminals 18a, which are one of the pair of heater terminals 18 of each of the ceramic heaters 171 to 172, are located on one side across the same straight line SL.
  • a total of two second heater terminals 18b which are the other of the pair of heater terminals 18 of each of the ceramic heaters 171 to 172, are located on the other side.
  • the pair of heater terminals 18 of each ceramic heater is connected to the first heater terminal 18a and the first heater terminal 18 with the same straight line SL in between.
  • the heater terminal 18b is separated from the heater terminal 18b. Therefore, even if the ceramic heaters 171 to 172 are downsized, it is possible to prevent the pair of heater terminals 18a and 18b in each ceramic heater from coming into contact with each other and causing a short circuit.
  • the first heater terminals 18a of all the ceramic heaters 171 to 172 are at the same potential, and adjacent heater terminals 18a of the same potential,
  • the distance D3 between the heater terminals 18a may be smaller than the distance D4 between adjacent heater terminals (second heater terminals 18b) that are not at the same potential.
  • a predetermined value for example, a spatial distance of 3 mm.
  • the distance D3 between adjacent first heater terminals 18a can be narrowed, and the ceramic heaters 171 to 172 can be brought closer to each other in the radial direction.
  • the device 300B can be downsized.
  • the same potential is usually the ground potential.
  • the first heater terminals 18a may be at the same potential, and the second heater terminals 18b may be at the same potential.
  • the first heater terminal 18a is a terminal of the ceramic heaters 171 to 172 that has the same potential characteristics (for example, on the ground potential side), and the second heater terminal 18 is also a terminal that has the same potential characteristic (for example, on the applied potential side). It is.
  • the present invention is not limited to the above-described embodiments, but extends to various modifications and equivalents that fall within the spirit and scope of the present invention.
  • three or more ceramic heaters 171 to 173 may be arranged within the separator 210 as long as their centers of gravity are aligned on the same straight line SL.
  • the first heater terminals 18a of all the ceramic heaters 171 to 173 are set to the same potential, and the distances D31 and D32 are set to the adjacent heater terminals (second The distance may be smaller than the distance D41, D42 of the heater terminal 18b).
  • the distance D3 is the distance D31 and D32 between all adjacent heater terminals 18a
  • the distance D4 is the distance D31 and D32 between all the adjacent heater terminals 18a. targets distances D41 and D42 between all adjacent heater terminals 18b. Both distances D31 and D32 need to be smaller than both distances D41 and D42. Specifically, in all combinations of D3 and D4, it is necessary that D31 ⁇ D41, D32 ⁇ D41, D31 ⁇ D42, and D32 ⁇ D42.
  • the first heater terminals 18a inside the polygon PL are set to the same potential, and the distance D3 between the adjacent first heater terminals 18a is set to the distance D3 between the adjacent second heater terminals 18b. It can be made smaller than the distance D4 between them.

Landscapes

  • Resistance Heating (AREA)

Abstract

【課題】小型化を実現すると共に、セラミックヒータの1対のヒータ端子間の短絡を抑制した液体加熱装置を提供する。 【解決手段】容器100と、先後方向AXに延び、基端部17Rに1対のヒータ端子18a、18bを有する3個以上のセラミックヒータ171~173と、容器に対向し、1対のヒータ端子のそれぞれの少なくとも一部を囲む保持部242a~246a、242b~246bを有してヒータ端子の位置を規制するセパレータ240と、を備える液体加熱装置300であって、セラミックヒータは、互いに先後方向に沿って並び、先後方向に交差する断面を見たとき、複数のセラミックヒータの重心G1~G3が多角形PLの頂点にそれぞれ位置し、かつ、多角形の内部に各セラミックヒータの1対のヒータ端子のうちの一方である第1ヒータ端子18aが位置し、多角形の外部に第2ヒータ端子18bが位置する。

Description

液体加熱装置
 本発明は、水等の液体を加熱するのに好適な液体加熱装置に関する。
 温水洗浄便座、燃料電池システム、給湯器、24時間風呂、車両のウォッシャー液の加熱、車載エアコン用等には温水が必要となる。そこで、内蔵するヒータにて水を加熱する液体加熱装置が用いられている。
 特に、急速加熱等を目的とする場合にはワット密度の高いヒータが必要となるので、細長いセラミック基体の外周に巻き付けたセラミックシートに発熱部を埋設した棒状のセラミックヒータが使用される(特許文献1)。
 このセラミックヒータは基端部に1対のヒータ端子を有し、各ヒータ端子間に通電することで、発熱部を通電加熱するようになっている。
特開2013-126844号公報
 ところで、液体加熱装置の小型化を実現するためには、セラミックヒータを小型化する必要がある。しかしながら、セラミックヒータを小型化すると、1対のヒータ端子間の距離も小さくなり、ヒータ端子同士が接触して短絡するおそれがある。
 従って、本発明は、小型化を実現すると共に、セラミックヒータの1対のヒータ端子間の短絡を抑制した液体加熱装置の提供を目的とする。
 上記課題を解決するため、本発明の第1の態様の液体加熱装置は、内部空間と、前記内部空間に連通する導入口及び排出口と、を有する容器と、先後方向に延び、自身の先端部が前記内部空間内に位置し、自身の基端部が前記容器の外部に位置し、前記先端部に発熱部を有すると共に前記基端部に1対のヒータ端子を有する3個以上のセラミックヒータと、前記容器に対向し、前記1対のヒータ端子のそれぞれの少なくとも一部を囲む保持部を有して前記ヒータ端子の位置を規制するセパレータと、を備え、液体が前記導入口から導入され、前記内部空間を通って、前記排出口まで流れる過程において、前記セラミックヒータによって前記液体を加熱する液体加熱装置であって、前記セラミックヒータは、互いに前記先後方向に沿って並び、前記先後方向に交差する断面を見たとき、複数の前記セラミックヒータの重心が多角形の頂点にそれぞれ位置し、かつ、前記多角形の内部に各セラミックヒータの前記1対のヒータ端子のうちの一方である第1ヒータ端子が位置し、前記多角形の外部に各セラミックヒータの前記1対のヒータ端子のうちの他方である第2ヒータ端子が位置することを特徴とする。
 この液体加熱装置によれば、3個以上の多数のセラミックヒータを有する液体加熱装置において、各セラミックヒータの1対のヒータ端子が、それぞれ多角形の内部の第1ヒータ端子と、多角形の外部の第1ヒータ端子とに分離される。従って、セラミックヒータを小型化しても、個々のセラミックヒータ内の1対のヒータ端子同士が接触して短絡することを抑制できる。
 本発明の第2の態様の液体加熱装置は、内部空間と、前記内部空間に連通する導入口及び排出口と、を有する容器と、先後方向に延び、自身の先端部が前記内部空間内に位置し、自身の基端部が前記容器の外部に位置し、前記先端部に発熱部を有すると共に前記基端部に1対のヒータ端子を有する2個以上のセラミックヒータと、前記1対のヒータ端子のそれぞれの少なくとも一部を囲んで前記ヒータ端子の位置を規制するセパレータと、を備え、液体が前記導入口から導入され、前記内部空間を通って、前記排出口まで流れる過程において、前記セラミックヒータによって前記液体を加熱する液体加熱装置であって、前記セラミックヒータは、互いに前記先後方向に沿って並び、前記先後方向に交差する断面を見たとき、複数の前記セラミックヒータの重心が同一直線上に並び、かつ、前記同一直線を挟んで一方の側に各セラミックヒータの前記1対のヒータ端子のうちの一方である第1ヒータ端子が位置し、前記同一直線を挟んで他方の側に各セラミックヒータの前記1対のヒータ端子のうちの他方である第2ヒータ端子が位置することを特徴とする。
 この液体加熱装置によれば、2個以上の多数のセラミックヒータを有する液体加熱装置において、各セラミックヒータの1対のヒータ端子が、それぞれ同一直線を挟んで第1ヒータ端子と第1ヒータ端子とに分離される。従って、セラミックヒータを小型化しても、個々のセラミックヒータ内の1対のヒータ端子同士が接触して短絡することを抑制できる。
 本発明の第1の態様の液体加熱装置において、前記第1ヒータ端子と対応する前記セラミックヒータとの距離D1が、前記第2ヒータ端子と対応する前記セラミックヒータとの距離D2よりも短くてもよい。
 この液体加熱装置によれば、個々のセラミックヒータを第1ヒータ端子側、つまり内側に近接させることができ、ひいては3個以上のセラミックヒータ同士を径方向に近接させることができ、液体加熱装置を小型化できる。
 本発明の第1の態様の液体加熱装置において、前記セパレータの前記容器に向く対向面のうち前記第2ヒータ端子を囲む前記保持部の周囲には、前記1対のヒータ端子の並ぶ方向に沿って前記セラミックヒータから当該保持部へ向かって広がると共に前記保持部に繋がるテーパが設けられていてもよい。
 通常、セラミックヒータの距離D1とD2は同等であるが、セパレータの保持部に1対のヒータ端子を挿通した際、第2ヒータ端子の先端がテーパに当たり、テーパの斜面をガイドとして外側に広げられた状態で保持部を通り抜ける。
 これにより、予めセラミックヒータの距離D1をD2より短くしなくても、セパレータを取付ける際にテーパをガイドとして距離D1を距離D2よりも確実に短くすることができる。
 本発明の第1の態様の液体加熱装置において、複数の前記セラミックヒータのそれぞれの前記第1ヒータ端子がすべて同電位であり、かつ隣接する前記第1ヒータ端子のいずれの距離D3も、隣接する前記第2ヒータ端子のいずれの距離D4より小さくてもよい。
 通常、放電短絡を防止するため、隣接する同電位で無いヒータ端子間の距離を所定値(例えば空間距離で3mm)以上とすることが定められている。そこで、第1ヒータ端子をすべて同電位とすれば、隣接する第1ヒータ端子の間隔D3を狭めることができ、ひいてはセラミックヒータ同士を径方向に近接させることができ、液体加熱装置を小型化できる。
 本発明の第2の態様の液体加熱装置において、複数の前記セラミックヒータのそれぞれの前記第1ヒータ端子又は前記第2ヒータ端子がすべて同電位であり、かつ隣接する前記同電位のヒータ端子のいずれの距離D3も、隣接する前記同電位で無いヒータ端子のいずれの距離D4より小さくてもよい。
 通常、放電短絡を防止するため、隣接する同電位で無いヒータ端子間の距離を所定値(例えば空間距離で3mm)以上とすることが定められている。そこで、第1ヒータ端子をすべて同電位とすれば、隣接する第1ヒータ端子の間隔D3を狭めることができ、ひいてはセラミックヒータ同士を径方向に近接させることができ、液体加熱装置を小型化できる。
 この発明によれば、小型化を実現すると共に、セラミックヒータの1対のヒータ端子間の短絡を抑制した液体加熱装置が得られる。
本発明の第1の態様の実施形態に係る液体加熱装置の外観を示す斜視図である。 液体加熱装置の分解斜視図である。 図1のA-A線に沿う断面図である。 セラミックヒータの外観を示す斜視図である。 セラミックヒータの構成を示す分解斜視図である。 セパレータの構成を示す斜視図である。 セパレータ内での各リード端子の配置状態を示す断面図である。 変形例のセパレータを示す斜視図である。 図8のセパレータを用いた液体加熱装置の部分断面図である。 第1の態様の実施形態のさらに別の変形例を示す断面図である。 本発明の第2の態様の実施形態に係る液体加熱装置の外観を示す斜視図である。 第2の態様の実施形態に係る液体加熱装置の分解斜視図である。 第2の態様の実施形態において、セパレータ内での各リード端子の配置状態を示す断面図である。 図13において、第1ヒータ端子を同電位とし、かつ距離D3を距離D4より小さくした状態を示す断面図である。 本発明の第2の態様の実施形態に係る液体加熱装置を3つのセラミックヒータに適用した場合を示す断面図である。
 以下、本発明の実施形態について説明する。
 図1は、本発明の第1の態様の実施形態に係る液体加熱装置300の斜視図、図2は液体加熱装置300の分解斜視図、図3は図1のA-A線に沿う断面図、図4はセラミックヒータ171の外観を示す斜視図、図5はセラミックヒータ171の分解斜視図、である。
 この第1の態様の実施形態において、液体加熱装置300は、温水洗浄便座に設置され、内蔵された3つのセラミックヒータ171~173により常温の水を加熱して温水を供給するようになっている。
 図1に示すように、液体加熱装置300は、全体として略三角筒状(断面が三角形の筒状)をなす容器100と、3つのセラミックヒータ171~173と、セパレータ240とを有する。
 容器100は、液体(水)を収容する内部空間100i(図3)を有する長円筒状の胴部101と、胴部101の軸線L方向の両端の開口をそれぞれ閉塞する前端蓋107及び後端蓋108と、液体Wの導入口103及び排出口105と、を有する。
 又、導入口103及び排出口105は、それぞれ前端蓋107及び胴部101に一体に設けられている。そして、胴部101の軸線L方向の前端(セラミックヒータ171~173が露出する側の端部)のフランジ部100Fに前端蓋107を嵌合するようになっている。
 一方、胴部101の軸方向の後端には、たとえばパッキンのようなゴムシールを介して後端蓋108が液密にシールされている。
 3つのセラミックヒータ171~173はそれぞれ先後方向AXに延びる棒状をなし、それぞれ同一方向に(平行に)延びている。また、セラミックヒータ171~173はそれぞれ基端部17Rが前端蓋107の3つの開口部107m1~107m3を貫通している。そして、エポキシ樹脂による固定部材160によってセラミックヒータ171~173と開口部107m1~107m3の隙間が封止されることで、セラミックヒータ171~173が片持ち式に容器100に固定されている。
 このようにして、図3に示すように、セラミックヒータ171~173の各先端部17Tが内部空間100i内に位置している。なお、固定部材160の位置は、後述するセラミックヒータの発熱部17aよりも基端側であるのはいうまでもない。
 又、セラミックヒータ171~173の基端部17R側には、外部から電力を供給するための後述するリード線15,16が接続されている。
 なお、本例では、各セラミックヒータ171~173の並ぶ方向である先後方向AXが胴部101の軸線L方向に沿うようにして各セラミックヒータ171~173が胴部101の内部空間100iに収容されている。
 導入口103及び排出口105は、内部空間100iに連通するとともに軸線L方向に離間して配置されており、外部から導入口103を通って導入された液体は、軸線L方向に沿って内部空間100iを通って排出口105から排出される。
 また、容器100の内壁とセラミックヒータ171~173との間には隙間が形成されており、導入口103を通って内部空間100iに導入された液体は、セラミックヒータ171~173の外面に軸線L方向に沿って接触しつつ加熱された後、排出口105まで流れる。
 図2に示すように、前端蓋107は、略三角形で板状をなし、3つの開口部107m1~107m3と、開口部107m1~107m3の間から外側に延びる導入口103と、を備える。
 3つの開口部107m1~107m3は、三角形の頂点付近にそれぞれ配置されて円孔をなす。導入口103は、各開口部107m1~107m3の間から板面に沿って前端蓋107の外周より外側に延びている。
 図3に示すように、導入口103の内孔103i(液体の流路)は、前端蓋107の板面に略垂直になるように屈曲し、前端蓋107の内面107aに開口している。
 そして、エポキシ樹脂による固定部材160がセラミックヒータ171~173と開口部107m1~107m3の隙間だけでなく、前端蓋107を埋設するように充填されている。
 このようにして、固定部材160がセラミックヒータ171~173を埋設しつつ、後述するリード端子18(18a,18b)及びリード線15,16が固定部材160よりも外側(図3の右側)に突出している。
 セパレータ240については後述する。
 次に、図4、図5を参照してセラミックヒータの構成について説明する。なお、セラミックヒータ171~173は同一形状であるので、セラミックヒータ171について説明する。
 図4に示すように、セラミックヒータ171は、リード線15,16を介して外部からの通電により発熱する発熱体17hを有する。発熱体17hは、導体を先後方向Lに蛇行させて発熱パターンとして形成してなる発熱部17aを先端側に有すると共に、発熱部17aの両端から後端側に引き出される一対のリード部17bを有している。
 なお、発熱部17aは先後方向LにLhの長さを有する。
 より具体的には、図5に示すように、発熱体17hは、発熱部17aと、両リード部17bと、両リード部17bの後端に形成された電極パターン17cとを有し、この発熱体17hは二枚のセラミックグリーンシート17s1、17s2の間に挟持される。なお、このセラミックグリーンシートとしては、アルミナが用いられる。また、発熱部17a、リード部17bはタングステンやレニウム等が用いられる。セラミックグリーンシート17s2の表面には1対のリード端子18(図4参照)がロウ付けされる2つの電極パッド17pが形成され、電極パターン17cを電極パッド17pにスルーホールにて接続してセラミックグリーンシートの積層体を形成する。
 更に、この積層体を、セラミックグリーンシート17s2を表側にして、アルミナ等を主成分とする棒状のセラミック基体17gに巻き付けて焼成することにより、各セラミックグリーンシート17s1、17s2がセラミックシート17sとなってセラミック基体17gの外周に巻き付けられて一体化したセラミックヒータ171を製造することができる。
 なお、リード線15,16はリード端子18,18にカシメられて電気的に接続されている(図4参照)。
 又、本例ではセラミック基体17gは中実であるが、筒状であってもよい。但し、筒状の場合は貫通孔から水が漏れないように樹脂等で封止することが望ましい。
 ここで、上記積層体をセラミック基体17gに巻き付ける際、積層体の先後方向Lに沿う両端同士を、間隔を空けて巻き付ける。このため、セラミックヒータ171の外面の巻合わせ部には、先後方向Lに沿って凹溝となるスリット17vが非発熱部として形成されている。
 次に、図1~図3に戻り、セパレータ240について説明する。
 図1に示すように、固定部材160を覆うようにして、セパレータ240がフランジ部100Fに取り付けられている。具体的には、図2に示すように、セパレータ240にはそれぞれ開口をなす合計6個の保持部242a~244a、242b~244bが設けられている。一方で、3つのセラミックヒータ171~173は合計6個のリード端子18を有しており、各リード端子18が保持部242a~244a、242b~244bにそれぞれ挿通されている。これにより、各リード端子18の径方向の位置(移動)が規制され、各リード端子18がセパレータ240に保持される。
 図6に示すように、セパレータ240は略三角形の板状をなし、3つの保持部242a、244a、246aが三角形の頂点付近にそれぞれ配置されて円孔をなす。又、他の3つの保持部242b、244b、246bは、保持部242a、244a、246aを囲むように三角形の頂点付近にそれぞれ配置されて円孔をなす。
 又、各保持部のうち、保持部242a、242bが最も近接し、保持部244a、244bが最も近接し、保持部246a、246bが最も近接する。
 さらに、セパレータ240のうち、保持部244b、246bを結ぶ辺には、フランジ部100F側に向かって延びる2つの爪部248が一体に形成されている。同様に、保持部242b、246bを結ぶ辺と、保持部242b、244bを結ぶ辺には、それぞれフランジ部100F側に向かって延びる1つの爪部249が一体に形成されている。
 そして、爪部248の先端248cは内側に向かって屈曲し、フランジ部100Fの対応する位置にある2つの凹部100rに各爪部248の先端248cが係合する。爪部249も同様にしてフランジ部100Fの凹部(図示せず)に係合する。このようにして、セパレータ240がフランジ部100Fに固定される。
 次に、図7を参照し、セパレータ240内での各リード端子18の配置状態について説明する。
 図7に示すように、先後方向AXに交差する断面(図1の右方向からセパレータ240を見た外観でもよい)を見たとき、各セラミックヒータ171~173の重心G1~G3が多角形(本例では三角形)PLの頂点にそれぞれ位置する。
 そして、多角形PLの内部に各セラミックヒータ171~173の1対のヒータ端子18のうちの一方である合計3個の第1ヒータ端子18aが位置し、多角形PLの外部に各セラミックヒータ171~173の1対のヒータ端子18のうちの他方である合計3個の第2ヒータ端子18bが位置する。
 このように、3個以上の多数のセラミックヒータ171~173を有する液体加熱装置300において、各セラミックヒータの1対のヒータ端子18が、それぞれ多角形PLの内部の第1ヒータ端子18aと、多角形PLの外部の第1ヒータ端子18bとに分離される。従って、セラミックヒータ171~173を小型化しても、個々のセラミックヒータ内の1対のヒータ端子18a、18b同士が接触して短絡することを抑制できる。
 又、本例では、第1ヒータ端子18aと対応するセラミックヒータとの距離D1が、第2ヒータ端子18bと対応するセラミックヒータとの距離D2よりも短い。
 これにより、個々のセラミックヒータを第1ヒータ端子18a側、つまり内側に近接させることができ、ひいては3個以上のセラミックヒータ171~173同士を径方向に近接させることができ、液体加熱装置300を小型化できる。
 又、図6に示すように、本例では、セパレータ240の容器100側に向く対向面240Fのうち第2ヒータ端子18bを囲む保持部242bの周囲には、1対のヒータ端子18の並ぶ方向Rに沿ってセラミックヒータ171から当該保持部242bへ向かって広がると共に保持部242bに繋がるテーパ240tが設けられている。保持部244b、246bについても同様にテーパ240tが繋がっている。
 通常、セラミックヒータの距離D1とD2は同等であるが、セパレータ240の保持部242a、242bに1対のヒータ端子18を挿通した際、第2ヒータ端子18bの先端がテーパ240tに当たり、テーパ240tの斜面をガイドとして外側に広げられた状態で保持部242bを通り抜ける。
 これにより、予めセラミックヒータの距離D1をD2より短くしなくても、セパレータ240を取付ける際にテーパ240tをガイドとして距離D1を距離D2よりも確実に短くすることができる。
 図8は、変形例のセパレータ250を示す斜視図である。セパレータ250は、第2ヒータ端子18bを囲む保持部242r、244r、246rが貫通孔でなく、容器100側に向く対向面250Fから凹む溝である点がセパレータ240と異なる。
 このような溝であっても、溝の外面の周りに第2ヒータ端子18bが保持され、所定の位置に規制される点で保持部として機能する。
 但し、図9に示すように、この溝はセパレータ250の外縁まで繋がっている必要がある。これにより、セパレータ250の外縁から第2ヒータ端子18bまたはそれに繋がるリード線を外部に誘導することができる。
 図10は、第1の態様の実施形態のさらに別の変形例を示す断面図であり、図7に相当する図である、
 図10に示すように、4個のセラミックヒータを有する液体加熱装置においても、先後方向AXに交差する断面を見たとき、各セラミックヒータの重心G1~G4が多角形(本例では四角形)PLの頂点にそれぞれ位置する。そして、セパレータ260の各保持部に規制されて、各セラミックヒータの1対のヒータ端子18が、それぞれ多角形PLの内部の第1ヒータ端子18aと、多角形PLの外部の第1ヒータ端子18bとに分離される。個々のセラミックヒータ内の1対のヒータ端子18a、18b同士が接触して短絡することを抑制できる。
 次に、図11,図12を参照し、本発明の第2の態様の実施形態に係る液体加熱装置300Bについて説明する。
 図11は、液体加熱装置300Bの外観を示す斜視図、図12は液体加熱装置300Bの分解斜視図である。
 なお、液体加熱装置300Bは、2個のセラミックヒータ171,172と、セパレータ200とを有し、容器100B及びセパレータ200の構成が異なること以外は、第1の態様の実施形態に係る液体加熱装置300と同様であるので、液体加熱装置300と同一の構成部分を同一の符号を付して説明を省略する。
 液体加熱装置300Bは、全体として軸線L方向に延びる略長円筒状(断面が角丸長方形の筒状)をなし、容器100Bと、2つのセラミックヒータ171、172と、セパレータ200とを有する。
 容器100Bは、液体(水)を収容する内部空間100Biを有する長円筒状の胴部101Bと、胴部101Bの軸方向の両端開口をそれぞれ閉塞する先端蓋107B及び後端蓋109Bと、胴部101Bに一体に設けられた液体の導入口103B及び排出口105Bと、を有する。
 胴部101Bの両端と、先端蓋107B及び後端蓋109Bとは、Oリング(図示せず)により気密にシールされている。
 セラミックヒータ171、172はそれぞれ先後方向AXに延びる棒状をなし、それぞれ先後AX方向に沿って同一方向に(平行に)並んでいる。また、セラミックヒータ171、172はそれぞれ基端部17Rが容器100Bの先端蓋107Bの開口部に封止部160によって片持ち式に保持されることで、容器100Bに取り付けられている。
 そして、液体加熱装置300の場合と同様に、容器100Bの内壁とセラミックヒータ171、172との間には隙間が形成されており、導入口103Bを通って内部空間100iに導入された液体は、セラミックヒータ171、172の外面に軸線L方向に沿って接触しつつ加熱された後、排出口105Bまで流れる。
 次に、セパレータ200について説明する。
 図11に示すように、先端蓋107Bを覆うようにして、セパレータ200が容器100Bに取り付けられている。具体的には、図12に示すように、セパレータ200にはそれぞれ開口をなす合計4個の保持部202a、204a、202b、204bが設けられている。又、保持部202a、202bの間には、セラミックヒータ172の後端を通すためのヒータ孔202cが設けられている。同様に、保持部204a、204bの間には、セラミックヒータ171の後端を通すためのヒータ孔204cが設けられている。
 一方で、2つのセラミックヒータ171~172は合計4個のリード端子18を有しており、各リード端子18が保持部202a、204a、202b、204bにそれぞれ挿通されている。これにより、各リード端子18の径方向の位置(移動)が規制され、各リード端子18がセパレータ200に保持される。
 図12に示すように、セパレータ200は略楕円形の板状をなし、2つの保持部202a、202bがセパレータ200の短軸に沿って配置されて円孔をなす。又、保持部202a、202bの間にヒータ孔202cが設けられている。同様に、2つの保持部204a、2042bが短軸に沿って配置され、保持部202a、202bの間にヒータ孔204cが設けられている。
 さらに、セパレータ200のうち、長軸側の上辺には、容器100B側に向かって延びる2つの爪部201が一体に形成されている。又、セパレータ200の両短軸側には容器100B側に向かって延びる突出部201pが一体に形成されている。
 そして、爪部201の先端201cは内側に向かって屈曲し、容器100Bのフランジに係合する。又、爪部201が容器100Bに係合した際、突出部201pが容器100Bに当接する。このようにして、セパレータ200が容器100Bに固定される。
 次に、図13を参照し、セパレータ200内での各リード端子18の配置状態について説明する。
 図13に示すように、先後方向AXに交差する断面(図11の左方向からセパレータ200を見た外観でもよい)を見たとき、各セラミックヒータ171~172の重心G1、G2が同一直線SL上に並ぶ。
 そして、同一直線SLを挟んで一方の側に各セラミックヒータ171~172の1対のヒータ端子18のうちの一方である合計2個の第1ヒータ端子18aが位置し、同一直線SLを挟んで他方の側に各セラミックヒータ171~172の1対のヒータ端子18のうちの他方である合計2個の第2ヒータ端子18bが位置する。
 このように、2個以上の多数のセラミックヒータ171~172を有する液体加熱装置300において、各セラミックヒータの1対のヒータ端子18が、それぞれ同一直線SLを挟んで第1ヒータ端子18aと第1ヒータ端子18bとに分離される。従って、セラミックヒータ171~172を小型化しても、個々のセラミックヒータ内の1対のヒータ端子18a、18b同士が接触して短絡することを抑制できる。
 又、本発明の第2の態様の実施形態においては、図14に示すように、すべてのセラミックヒータ171~172の第1ヒータ端子18aを同電位とし、かつ隣接する同電位のヒータ端子18a、18aの距離D3を、隣接する同電位で無いヒータ端子(第2ヒータ端子18b)の距離D4より小さくしてもよい。
 通常、放電短絡を防止するため、隣接する同電位で無いヒータ端子間の距離を所定値(例えば空間距離で3mm)以上とすることが定められている。
 そこで、第1ヒータ端子18aをすべて同電位とすれば、隣接する第1ヒータ端子18aの間隔D3を狭めることができ、ひいてはセラミックヒータ171~172同士を径方向に近接させることができ、液体加熱装置300Bを小型化できる。
 なお、同電位とは、通常はアース電位である。又、第2の態様の実施形態においては、第1ヒータ端子18aを同電位としてもよく、第2ヒータ端子18bを同電位としてもよい。
 又、第1ヒータ端子18aは、セラミックヒータ171~172の中でいずれも同じ電位特性(例えばアース電位側)の端子であり、第2ヒータ端子18も同じ電位特性(例えば印加電位側)の端子である。
 本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
 例えば、図15に示すように、第2の態様の実施形態において、同一直線SL上に重心が並ぶ限り、セパレータ210内に3つ以上のセラミックヒータ171~173を配置してもよい。又、この場合、図14の場合と同様に、すべてのセラミックヒータ171~173の第1ヒータ端子18aを同電位とし、かつその距離D31,D32を、隣接する同電位で無いヒータ端子(第2ヒータ端子18b)の距離D41,D42より小さくしてもよい。
 なお、同電位のヒータ端子18a、及び同電位で無いヒータ端子18bがそれぞれ3つ以上の場合、距離D3としては、すべての隣接するヒータ端子18a間の距離D31,D32を対象とし、距離D4としては、すべての隣接するヒータ端子18b間の距離D41,D42を対象とする。
 そして、いずれの距離D31,D32も、いずれの距離D41,D42より小さい必要がある。具体的には、D3とD4の組み合わせのすべてにおいて、D31<D41,D32<D41、D31<D42,D32<D42である必要がある。
 又、第1の態様の実施形態においては、多角形PLの内部にある第1ヒータ端子18aを同電位とし、かつ隣接する第1ヒータ端子18a間の距離D3を、隣接する第2ヒータ端子18b間の距離D4よりも小さくすることができる。
 17a  発熱部
 17T  先端部
 17R  基端部
 18,18a  ヒータ端子(第1ヒータ端子)
 18,18b  ヒータ端子(第2ヒータ端子)
 100、100B  容器
 100i、100Bi  内部空間
 101r、101Br1、101Br2  凹部
 103、103B  導入口
 105、105B  排出口
 171~174  セラミックヒータ
 200、210、240、250、260  セパレータ
 202a、204a、202b、204b、242a~246a、242b~246b、242r~246r  保持部
 240F、250F  対向面
 240t  テーパ
 300、300B  液体加熱装置
 AX  先後方向
 G1~G4  セラミックヒータの重心
 PL  多角形
 SL  同一直線

Claims (6)

  1.  内部空間と、前記内部空間に連通する導入口及び排出口と、を有する容器と、
     先後方向に延び、自身の先端部が前記内部空間内に位置し、自身の基端部が前記容器の外部に位置し、前記先端部に発熱部を有すると共に前記基端部に1対のヒータ端子を有する3個以上のセラミックヒータと、
     前記容器に対向し、前記1対のヒータ端子のそれぞれの少なくとも一部を囲む保持部を有して前記ヒータ端子の位置を規制するセパレータと、
    を備え、
     液体が前記導入口から導入され、前記内部空間を通って、前記排出口まで流れる過程において、前記セラミックヒータによって前記液体を加熱する液体加熱装置であって、
     前記セラミックヒータは、互いに前記先後方向に沿って並び、
     前記先後方向に交差する断面を見たとき、複数の前記セラミックヒータの重心が多角形の頂点にそれぞれ位置し、かつ、前記多角形の内部に各セラミックヒータの前記1対のヒータ端子のうちの一方である第1ヒータ端子が位置し、前記多角形の外部に各セラミックヒータの前記1対のヒータ端子のうちの他方である第2ヒータ端子が位置することを特徴とする液体加熱装置。
  2.  内部空間と、前記内部空間に連通する導入口及び排出口と、を有する容器と、
     先後方向に延び、自身の先端部が前記内部空間内に位置し、自身の基端部が前記容器の外部に位置し、前記先端部に発熱部を有すると共に前記基端部に1対のヒータ端子を有する2個以上のセラミックヒータと、
     前記1対のヒータ端子のそれぞれの少なくとも一部を囲んで前記ヒータ端子の位置を規制するセパレータと、
    を備え、
     液体が前記導入口から導入され、前記内部空間を通って、前記排出口まで流れる過程において、前記セラミックヒータによって前記液体を加熱する液体加熱装置であって、
     前記セラミックヒータは、互いに前記先後方向に沿って並び、
     前記先後方向に交差する断面を見たとき、複数の前記セラミックヒータの重心が同一直線上に並び、かつ、前記同一直線を挟んで一方の側に各セラミックヒータの前記1対のヒータ端子のうちの一方である第1ヒータ端子が位置し、前記同一直線を挟んで他方の側に各セラミックヒータの前記1対のヒータ端子のうちの他方である第2ヒータ端子が位置することを特徴とする液体加熱装置。
  3.  前記第1ヒータ端子と対応する前記セラミックヒータとの距離D1が、前記第2ヒータ端子と対応する前記セラミックヒータとの距離D2よりも短いことを特徴とする請求項1に記載の液体加熱装置。
  4.  前記セパレータの前記容器に向く対向面のうち前記第2ヒータ端子を囲む前記保持部の周囲には、前記1対のヒータ端子の並ぶ方向に沿って前記セラミックヒータから当該保持部へ向かって広がると共に前記保持部に繋がるテーパが設けられていることを特徴とする請求項3に記載の液体加熱装置。
  5.  複数の前記セラミックヒータのそれぞれの前記第1ヒータ端子がすべて同電位であり、かつ隣接する前記第1ヒータ端子のいずれの距離D3も、隣接する前記第2ヒータ端子のいずれの距離D4より小さいことを特徴とする請求項1に記載の液体加熱装置。
  6.  複数の前記セラミックヒータのそれぞれの前記第1ヒータ端子又は前記第2ヒータ端子がすべて同電位であり、かつ隣接する前記同電位のヒータ端子のいずれの距離D3も、隣接する前記同電位で無いヒータ端子のいずれの距離D4より小さいことを特徴とする請求項2に記載の液体加熱装置。
PCT/JP2022/040637 2022-04-22 2022-10-31 液体加熱装置 WO2023203794A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070578 2022-04-22
JP2022070578A JP2023160310A (ja) 2022-04-22 2022-04-22 液体加熱装置

Publications (1)

Publication Number Publication Date
WO2023203794A1 true WO2023203794A1 (ja) 2023-10-26

Family

ID=88419547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040637 WO2023203794A1 (ja) 2022-04-22 2022-10-31 液体加熱装置

Country Status (2)

Country Link
JP (1) JP2023160310A (ja)
WO (1) WO2023203794A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574094U (ja) * 1980-06-05 1982-01-09
JPH07153558A (ja) * 1993-10-04 1995-06-16 Kawai Denki Seisakusho:Kk カートリッジヒータ
JPH10122656A (ja) * 1996-10-18 1998-05-15 Nichias Corp 流体加熱装置
US6289177B1 (en) * 1998-06-29 2001-09-11 John W. Finger Encapsulated heating element fluid heater
JP2005216736A (ja) * 2004-01-30 2005-08-11 Ushio Inc ランプユニット
KR20120005580A (ko) * 2010-07-09 2012-01-17 윤태진 질화규소세라믹히터의 고정수단

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574094U (ja) * 1980-06-05 1982-01-09
JPH07153558A (ja) * 1993-10-04 1995-06-16 Kawai Denki Seisakusho:Kk カートリッジヒータ
JPH10122656A (ja) * 1996-10-18 1998-05-15 Nichias Corp 流体加熱装置
US6289177B1 (en) * 1998-06-29 2001-09-11 John W. Finger Encapsulated heating element fluid heater
JP2005216736A (ja) * 2004-01-30 2005-08-11 Ushio Inc ランプユニット
KR20120005580A (ko) * 2010-07-09 2012-01-17 윤태진 질화규소세라믹히터의 고정수단

Also Published As

Publication number Publication date
JP2023160310A (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
ES2228000T3 (es) Vallvulapiezoelectrica.
JPH0468947B2 (ja)
WO1998008032A1 (fr) Unite de regulation de l'humidification et procede de fabrication
CN211746937U (zh) 雾化器及其气溶胶发生装置
WO2023203794A1 (ja) 液体加熱装置
CN115804480A (zh) 电子雾化装置及其雾化器
EP3360430B1 (en) Electronic cigarette and atomizer thereof
JP3734503B2 (ja) 小径燃料噴射装置用傾斜端子/コイル装置
ES2407663T3 (es) Válvula para la proyección de producto de revestimiento y proyector que comprende dicha válvula
CN114158779A (zh) 一种电子雾化装置及其雾化器
CN118140591A (zh) 液体加热装置
CN114259085B (zh) 单体陶瓷发热体
JP4567725B2 (ja) 圧電素子用の接点ピンを配置する方法並びにスリーブ及びアクチュエータユニット
JP3943599B2 (ja) ガスパージ式液没ヒータのパージ管理システム
JP4212037B2 (ja) 送風装置
ES2779227T3 (es) Aparato de planchado que comprende una base conectada por un cordón a una plancha
WO2023132121A1 (ja) 液体加熱装置
WO2021171534A1 (ja) カートリッジおよび非燃焼式吸引器
WO2022222455A1 (zh) 一种雾化模块、气雾弹和气雾散发装置
CN217038895U (zh) 陶瓷发热体模组、雾化器模组及电子雾化装置
KR200277189Y1 (ko) 음이온발생장치를 갖는 헤어드라이기
JP2022177349A (ja) 液体加熱装置
WO2023119978A1 (ja) 液体加熱装置
CN215873469U (zh) 直通式气雾发生装置
JPH05293787A (ja) 3次元屈曲型ロボットア−ム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938592

Country of ref document: EP

Kind code of ref document: A1