WO2023203612A1 - レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ - Google Patents

レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ Download PDF

Info

Publication number
WO2023203612A1
WO2023203612A1 PCT/JP2022/018062 JP2022018062W WO2023203612A1 WO 2023203612 A1 WO2023203612 A1 WO 2023203612A1 JP 2022018062 W JP2022018062 W JP 2022018062W WO 2023203612 A1 WO2023203612 A1 WO 2023203612A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
irradiation position
line
laser irradiation
laser
Prior art date
Application number
PCT/JP2022/018062
Other languages
English (en)
French (fr)
Inventor
芳邦 鈴木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/018062 priority Critical patent/WO2023203612A1/ja
Priority to TW111122834A priority patent/TW202342219A/zh
Publication of WO2023203612A1 publication Critical patent/WO2023203612A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece

Definitions

  • the present invention relates to a technique for processing a processing line provided on a workpiece by irradiating the processing line with a laser beam.
  • Patent Documents 1 to 3 disclose a laser processing technology that processes the planned dividing line by irradiating the planned dividing line provided on the semiconductor substrate with a laser beam and moving the laser beam relatively to the semiconductor substrate.
  • Patent Document 1 in this laser processing technology, by reciprocating the laser beam while changing the scheduled division lines on which the laser beam is irradiated on the outbound and return passes, the laser beam is reciprocated, so that multiple division lines are Machining is performed. At this time, the position of the laser beam is adjusted according to the result of an alignment process that recognizes the position of the planned dividing line based on the image obtained by capturing a predetermined location on the semiconductor substrate. It is possible to irradiate accurately (Patent Document 2).
  • Patent Document 3 by processing the planned dividing line with a laser beam, the width of the planned dividing line expands, and the position of the unprocessed planned dividing line moves in the feeding direction perpendicular to the processing direction. It may shift. In order to deal with such a positional shift of the scheduled dividing line, it is appropriate to image the semiconductor substrate as appropriate.
  • Patent No. 5804716 Japanese Patent Application Publication No. 5554593 Japanese Patent Application Publication No. 5037082
  • Patent Document 2 two imaging units each capturing an image of a workpiece (semiconductor substrate) and a processing head are lined up in the feeding direction.
  • a workpiece semiconductor substrate
  • a processing head there are situations in which it is required to be able to recognize the state of the workpiece in a range aligned in the processing direction with respect to the laser irradiation position where the laser light is irradiated from the processing head. .
  • it can be said to be suitable for recognizing the state of the workpiece on both sides of the laser irradiation position in the processing direction.
  • This invention has been made in view of the above-mentioned problems, and is a laser processing technology in which a laser beam is irradiated from a processing head to a laser irradiation position and the laser irradiation position is moved in the processing direction relative to the workpiece.
  • the object of the present invention is to provide a technology that makes it possible to recognize the state of a workpiece on both sides of a laser irradiation position in a direction.
  • a laser processing apparatus includes a support member that supports a workpiece having a plurality of processing lines parallel to each other so that the processing lines are parallel to a predetermined processing direction, and a laser beam at a predetermined laser irradiation position.
  • a processing head that irradiates the object
  • a processing shaft drive unit that moves the laser irradiation position relative to the workpiece in the processing direction by driving at least one of the support member and the processing head in the processing direction, and a support member.
  • a feed shaft drive unit that moves the laser irradiation position relative to the workpiece in the feed direction by driving at least one of the processing heads in the feed direction perpendicular to the processing direction; a first imaging unit disposed on a first side in the processing direction and capturing an image of a first imaging range located on the first side of the laser irradiation position; A second imaging unit that is arranged on the opposite second side and images a second imaging range located on the second side of the laser irradiation position, and a feed shaft drive unit that aligns the laser irradiation position with the processing line.
  • the machining line is machined by executing line machining processing in which the laser beam is irradiated from the machining head to the laser irradiation position while the machining axis drive unit moves the laser irradiation position in the machining direction relative to the workpiece.
  • the first imaging range and the second imaging range move integrally with the laser irradiation position relative to the workpiece as the laser irradiation position moves, and control the first imaging range and the second imaging range.
  • the unit causes the first imaging unit to image a portion of the workpiece that overlaps with the first imaging range, and causes the second imaging unit to image a portion of the workpiece that overlaps with the second imaging range.
  • Laser processing equipment that captures images.
  • the laser processing method is a laser processing method that performs processing on a processing line of a workpiece having a plurality of processing lines parallel to each other.
  • the processing shaft drive unit drives at least one of the processing head and the support member in the processing direction to move the laser irradiation position to the workpiece.
  • first imaging range located on the first side of the laser irradiation position by a first imaging unit disposed on the first side of the processing direction with respect to the processing head.
  • a second imaging range located on the second side of the laser irradiation position is imaged by a second imaging unit disposed on a second side opposite to the first side in the processing direction with respect to the processing head.
  • the first imaging range and the second imaging range move integrally with the laser irradiation position relative to the workpiece as the laser irradiation position moves;
  • the imaging unit images a portion of the workpiece that overlaps with the first imaging range, and the second imaging unit images a portion of the workpiece that overlaps with the first imaging range.
  • the first imaging section images the first imaging range located on the first side in the processing direction with respect to the laser irradiation position; , and a second imaging unit that images a second imaging range located on the second side in the processing direction.
  • the first and second imaging units then image a portion of the workpiece that overlaps with the first and second imaging ranges. This makes it possible to recognize the state of the workpiece on both sides of the laser irradiation position in the processing direction.
  • control unit performs a first line processing process that processes a first processing line among the plurality of processing lines by a line processing process that moves the laser irradiation position to a first side in the processing direction;
  • a line processing process that moves the laser irradiation position to the second side sequentially executes a second line processing process that processes a second processing line that is different from the first processing line among the plurality of processing lines.
  • the laser processing apparatus may be configured as follows.
  • the machining axis drive section switches the first machining line to the first line machining process in the machining direction.
  • a first reversal in which the laser irradiation position that has passed to the side is decelerated toward the first side, stopped, and then accelerated toward the second side, so that the laser irradiation position reaches the second processing line.
  • the feed shaft drive unit moves from a first imaginary straight line extending in the machining direction along the first machining line to the outside of the first machining line, along the second machining line.
  • the laser irradiation position is moved in the feeding direction to a second virtual straight line extending in the processing direction to the outside of the second processing line, and the second imaging unit captures the object to be processed during the first switching period.
  • the laser processing device may be configured to image a portion of the image that overlaps with the second imaging range. In this configuration, the state of the workpiece on the second side of the laser irradiation position is checked by effectively utilizing the first switching period in which the laser irradiation position that has passed through the first processing line is directed to the second processing line. The image shown can be captured by the second imaging unit.
  • control unit causes the feed axis drive unit to stop the laser irradiation position in the first switching period at the same time as the processing axis drive unit stops the laser irradiation position in the first reversal drive.
  • a first stop period is provided in which the laser irradiation position is stopped in both the processing direction and the feed direction
  • the second imaging unit detects a portion of the workpiece that overlaps with the second imaging range during the first stop period.
  • the laser processing device may be configured to image the image. In this configuration, the state of the workpiece on the second side of the laser irradiation position is checked by effectively utilizing the first switching period in which the laser irradiation position that has passed through the first processing line is directed to the second processing line. The still image shown can be captured by the second imaging unit.
  • the control unit also performs a third line processing process that processes a third processing line among the plurality of processing lines by a line processing process that moves the laser irradiation position to the second side in the processing direction;
  • the fourth line processing of processing a third processing line and a fourth processing line different from the third processing line among the plurality of processing lines is executed in order.
  • the machining axis drive section moves the third machining line to the second side in the machining direction.
  • a second reversal drive that causes the laser irradiation position to reach the fourth processing line by decelerating the laser irradiation position that has passed through the second side toward the second side, stopping it, and then accelerating it toward the first side.
  • the feed shaft drive section moves from a third imaginary straight line extending in the machining direction along the third machining line to the outside of the third machining line to a third imaginary straight line along the fourth machining line.
  • the laser irradiation position is moved in the feeding direction to a fourth virtual straight line extending in the processing direction to the outside of the processing line No. 4, and the first imaging unit detects the image of the workpiece in the second switching period.
  • the laser processing device may be configured to image a portion that overlaps with the first imaging range.
  • the state of the workpiece on the first side of the laser irradiation position is checked by effectively utilizing the second switching period in which the laser irradiation position that has passed through the third processing line is directed to the fourth processing line.
  • the image shown can be captured by the first imaging unit.
  • the control unit causes the feed axis drive unit to stop the laser irradiation position at the same time as the processing axis drive unit stops the laser irradiation position in the second reversal drive.
  • a second stop period is provided in which the laser irradiation position is stopped in both the processing direction and the feed direction, and the first imaging unit detects a portion of the workpiece that overlaps with the first imaging range during the second stop period.
  • the laser processing device may be configured to image the image. In this configuration, the state of the workpiece on the first side of the laser irradiation position is checked by effectively utilizing the second switching period in which the laser irradiation position that has passed through the third processing line is directed to the fourth processing line. The still image shown can be captured by the first imaging unit.
  • the first imaging unit images a portion of the workpiece that overlaps with the first imaging range during execution of the first line processing
  • the second imaging unit The laser processing apparatus may be configured to image a portion of the workpiece that overlaps with the second imaging range during execution of the process.
  • the first imaging unit can capture an image indicating the state of the workpiece on the first side of the laser irradiation position by using the execution period of the first line processing process, and the second line processing Using the execution period of the machining process, the second imaging unit can capture an image showing the state of the workpiece on the second side of the laser irradiation position.
  • a laser processing program causes a computer to execute the above laser processing method.
  • a recording medium records the above-mentioned laser processing program so as to be readable by a computer.
  • the semiconductor chip manufacturing method includes the steps of processing a semiconductor substrate on which a plurality of semiconductor chips separated by processing lines are arranged, by the above-described laser processing method, and bonding the semiconductor substrate processed by the laser processing method. and separating each of the plurality of semiconductor chips by expanding the tape held by force.
  • the semiconductor chip according to the present invention includes a step of processing a semiconductor substrate on which a plurality of semiconductor chips separated by processing lines are arranged, by the above-mentioned laser processing method, and a process of processing the semiconductor substrate processed by the laser processing method using adhesive force. It is manufactured by a process of separating each of a plurality of semiconductor chips by expanding a holding tape.
  • both sides of the laser irradiation position in the processing direction are provided. It becomes possible to recognize the state of the workpiece in the process.
  • FIG. 1 is a front view schematically showing an example of a laser processing apparatus according to the present invention.
  • 2 is a plan view schematically showing the laser processing apparatus of FIG. 1.
  • FIG. FIG. 2 is a block diagram showing the electrical configuration of the laser processing apparatus of FIG. 1.
  • FIG. 2 is a flowchart illustrating an example of a method for producing a laser-processed substrate that has been laser-processed. The flowchart which shows an example of taking out a ring frame.
  • 5 is a flowchart showing an example of transferring a ring frame.
  • FIG. 7 is a plan view schematically showing an example of operations performed according to the flowcharts of FIGS. 5 and 6.
  • FIG. 7 is a plan view schematically showing an example of operations performed according to the flowcharts of FIGS. 5 and 6.
  • FIG. 7 is a plan view schematically showing an example of operations performed according to the flowcharts of FIGS. 5 and 6.
  • FIG. 7 is a plan view schematically showing an example of operations performed according to the flowcharts of FIGS. 5 and 6.
  • FIG. 7 is a plan view schematically showing an example of operations performed according to the flowcharts of FIGS. 5 and 6.
  • FIG. 3 is a plan view schematically showing an example of an operation performed in ring frame alignment.
  • FIG. 1 is a flowchart showing an example of substrate processing.
  • FIG. 12 is a plan view schematically showing an example of operations performed according to the flowchart of FIG. 11; 5 is a flowchart showing an example of calibration.
  • 13A is a flowchart showing an example of stage plane identification performed in the calibration of FIG. 13A.
  • 13A is a flowchart showing an example of substrate plane identification performed in the calibration of FIG. 13A.
  • 2 is a flowchart showing the basic steps of line processing for each scheduled division line.
  • 15 is a diagram schematically showing a first example of operations performed according to the flowchart of FIG. 14.
  • FIG. 15 is a diagram schematically showing a second example of operations performed according to the flowchart of FIG. 14.
  • FIG. 15 is a diagram schematically showing a third example of operations performed according to the flowchart of FIG. 14.
  • FIG. 15 is a diagram schematically showing a fourth example of operations performed according to the flowchart of FIG. 14.
  • FIG. 15 is a diagram schematically showing a fifth example of operations performed according to the flowchart of FIG. 14.
  • FIG. 15 is a diagram schematically showing a sixth example of operations performed according to the flowchart of FIG. 14.
  • FIG. 15 is a diagram schematically showing a seventh example of operations performed according to the flowchart of FIG. 14.
  • FIG. 12 is a flowchart showing a first application example of line processing processing for each scheduled division line.
  • FIG. 17 is a diagram schematically showing an example of operations performed according to the flowchart of FIG.
  • FIG. 19 is a diagram schematically showing a first example of operations performed according to the flowchart of FIG. 18.
  • FIG. 19 is a diagram schematically showing a second example of operations performed according to the flowchart of FIG. 18.
  • FIG. 18 is a diagram schematically showing an example of an image of a semiconductor substrate acquired in step S1008 of FIG. 16 or step S1104 of FIG. 18.
  • FIG. 5 is a flowchart illustrating an example of a method for determining laser processing conditions in line processing.
  • FIG. 3 is a diagram showing parameters related to determining laser processing conditions.
  • 22 is a diagram showing an example of a table referred to in determining the laser processing conditions in FIG. 21.
  • FIG. 1 is a front view schematically showing an example of a laser processing apparatus according to the present invention
  • FIG. 2 is a plan view schematically showing the laser processing apparatus of FIG. 1.
  • the X direction which is a horizontal direction
  • the Y direction which is a horizontal direction perpendicular to the X direction
  • the Z direction which is a vertical direction
  • the (+X) side in the X direction (the right side of the paper in Figure 2) and the (-X) side opposite to the (+X) side in the X direction (the left side in the paper in Figure 2)
  • (+Y) side upper side of the paper in FIG. 2) and ( ⁇ Y) side (lower side of the paper in FIG. 2), which is opposite to the (+Y) side in the Y direction, are shown as appropriate.
  • the laser processing apparatus 1 processes the semiconductor substrate W (workpiece) by irradiating the semiconductor substrate W (workpiece) with laser light.
  • This semiconductor substrate W is held by a ring frame Fr via a tape E.
  • Tape E is a dicing tape or bonding tape, and the surface (upper surface) of tape E has adhesiveness.
  • the ring frame Fr has an outer shape in which a part of a regular octagon is cut out to provide a slit Fs, and a circular opening Fo is provided in the center of the ring frame Fr.
  • the surface of the tape E faces the ring frame Fr from below so as to overlap the entire opening Fo, and the peripheral edge of the surface of the tape E is adhered to the bottom surface of the ring frame Fr by adhesive force.
  • the semiconductor substrate W is attached to the surface of the tape E by adhesive force. In this manner, the semiconductor substrate W is transported within the laser processing apparatus 1 while being held by the ring frame Fr via the tape E.
  • the semiconductor substrate W has a front surface and a back surface opposite to the front surface, and while an electronic circuit is formed on the front surface of the semiconductor substrate W, the back surface of the semiconductor substrate W is flat.
  • the semiconductor substrate W is attached to the surface of the tape E with the front surface facing downward. That is, the semiconductor substrate W is held with the back surface of the semiconductor substrate W facing upward.
  • the laser processing apparatus 1 includes a substrate accommodating section 2 that accommodates a semiconductor substrate W, and a chuck stage 3 (support member) that holds the semiconductor substrate W taken out from the substrate accommodating section 2.
  • the laser processing apparatus 1 includes a flat base plate 11 , and the substrate accommodating section 2 and the chuck stage 3 are supported by the base plate 11 .
  • the chuck stage 3 In the X direction, the chuck stage 3 is arranged on the (+X) side of the substrate accommodating section 2, and in the Y direction, the chuck stage 3 is arranged on the (-Y) side of the substrate accommodating section 2.
  • the space on the (-X) side of the chuck stage 3 in the X direction and on the (-Y) side of the substrate storage section 2 in the Y direction becomes the substrate transfer area Aw.
  • the substrate storage section 2 has a substrate storage cassette 21.
  • the substrate storage cassette 21 has a pair of side walls 22 provided on both sides in the X direction, and an opening 23 provided between the side walls 22. side).
  • the pair of side walls 22 are flat plates provided perpendicularly to the X direction, and face each other in the X direction.
  • a support protrusion 24 is provided inside each of the pair of side walls 22 . In this way, a pair of support protrusions 24 facing each other in the X direction are provided at the same height. Then, the ring frame Fr that holds the semiconductor substrate W can be inserted into the upper side of the pair of support protrusions 24 from the (-Y) side through the opening 23.
  • Both ends of the ring frame Fr inserted in the X direction are supported from below by a pair of support protrusions 24. That is, the upper side of the pair of support protrusions 24 functions as the slot 25 that accommodates the ring frame Fr, and the ring frame Fr inserted into the slot 25 from the (-Y) side through the opening 23 corresponds to the slot 25. It is supported by a pair of support protrusions 24. Therefore, by inserting the ring frame Fr into the slot 25 of the substrate storage cassette 21, the semiconductor substrate W supported by the ring frame Fr can be stored in the substrate storage cassette 21, and the ring frame Fr can be inserted from the slot 25 of the substrate storage cassette 21. By pulling it out, the semiconductor substrate W can be taken out from the substrate storage cassette 21.
  • the substrate storage section 2 includes a Z-axis slider 26 that supports the substrate storage cassette 21, and a Z-axis drive mechanism 27 that drives the Z-axis slider 26 in the Z direction.
  • the Z-axis drive mechanism 27 is a single-axis robot attached to the base plate 11, and includes a Z-axis drive transmission section 271 that supports the Z-axis slider 26 movably in the Z direction, and a Z-axis drive transmission section 271 supported by the Z-axis drive transmission section 271. It has a Z-axis cassette motor 272 that drives the shaft slider 26 in the Z direction.
  • the Z-axis drive transmission section 271 has a ball screw driven by a Z-axis cassette motor 272, and the Z-axis slider 26 is attached to a nut of the ball screw.
  • the specific configuration of the Z-axis drive mechanism 27 is not limited to this example, and may be a linear motor, for example.
  • the Z-axis drive mechanism 27 drives the Z-axis slider 26 supported by the Z-axis drive transmission section 271 with the Z-axis cassette motor 272, thereby moving the substrate storage cassette 21 supported by the Z-axis slider 26 in the Z direction. move it.
  • a substrate insertion height 211 is provided for the substrate storage cassette 21, and the semiconductor substrate W can be inserted into and pulled out from the slot 25 located at the substrate insertion height 211. Therefore, by moving the substrate storage cassette 21 in the Z direction by the Z-axis drive mechanism 27 and changing the slot 25 located at the substrate insertion height 211 among the plurality of slots 25, the insertion and withdrawal of the semiconductor substrate W can be performed. The slot 25 to be executed can be changed.
  • the laser processing apparatus 1 includes a Y-axis transport mechanism 4 that transports the ring frame Fr in the Y direction between the slot 25 at the board insertion height 211 and the board transfer area Aw.
  • the Y-axis transport mechanism 4 includes a lift hand 41, a Y-axis slider 43 that supports the lift hand 41, and a Y-axis drive mechanism 45 that drives the Y-axis slider 43 in the Y direction.
  • the Y-axis drive mechanism 45 is a single-axis robot attached to the base plate 11 by a frame shown in the accompanying drawings, and includes a Y-axis drive transmission section 451 that supports the Y-axis slider 43 so as to be movable in the Y direction, and a Y-axis drive transmission section.
  • the Y-axis lift hand motor 452 drives the Y-axis slider 43 supported by the Y-axis slider 451 in the Y direction.
  • the Y-axis drive transmission section 451 has a ball screw driven by a Y-axis lift hand motor 452, and the Y-axis slider 43 is attached to a nut of the ball screw.
  • the specific configuration of the Y-axis drive mechanism 45 is not limited to this example, and may be a linear motor, for example.
  • the Y-axis drive mechanism 45 drives the Y-axis slider 43 supported by the Y-axis drive transmission section 451 with the Y-axis lift hand motor 452, thereby moving the lift hand 41 supported by the Y-axis slider 43 in the Y direction. move it.
  • the lift hand 41 has a base portion 411 supported by the Y-axis slider 43, and a fork 412 protruding from the base portion 411 to the (+Y) side.
  • the fork 412 is located at the board insertion height 211 and can hold the ring frame Fr from below.
  • the Y-axis transport mechanism 4 moves the ring frame Fr held by the fork 412 of the lift hand 41 to the substrate storage cassette 21 by driving the lift hand 41 in the Y direction by the Y-axis drive mechanism 45. It is moved between the substrate transfer area Aw and the substrate transfer area Aw.
  • the laser processing apparatus 1 also includes an XZ-axis transport mechanism 5 that transports the ring frame Fr in the X direction between the lift hand 41 located in the substrate transfer area Aw and the chuck stage 3.
  • the XZ-axis transport mechanism 5 includes a suction hand 51, an X-axis slider 53 that supports the suction hand 51, and an X-axis drive section 55 that drives the X-axis slider 53 in the X direction.
  • the X-axis drive section 55 is a single-axis robot attached to the base plate 11 by a frame shown in the accompanying drawings, and includes an X-axis drive transmission section 551 that supports the X-axis slider 53 so as to be movable in the X direction, and an X-axis drive transmission section.
  • the X-axis suction hand motor 552 drives the X-axis slider 53 supported by the X-axis slider 551 in the X direction.
  • the X-axis drive transmission section 551 has a ball screw driven by an X-axis suction hand motor 552, and the X-axis slider 53 is attached to the nut of the ball screw.
  • the specific configuration of the X-axis drive unit 55 is not limited to this example, and may be a linear motor, for example.
  • the X-axis drive section 55 drives the X-axis slider 53 supported by the X-axis drive transmission section 551 with the X-axis suction hand motor 552, thereby moving the suction hand 51 supported by the X-axis slider 53 in the X direction. move it.
  • the XZ-axis transport mechanism 5 also includes a Z-axis slider 56 attached to the suction hand 51 and a Z-axis drive section 58 that drives the Z-axis slider 56 in the Z direction with respect to the X-axis slider 53. That is, the suction hand 51 is supported by the X-axis slider 53 via the Z-axis slider 56 and the Z-axis drive section 58.
  • the Z-axis drive unit 58 is a single-axis robot attached to the X-axis slider 53, and includes a Z-axis drive transmission unit 581 that supports the Z-axis slider 56 so as to be movable in the Z direction, and a Z-axis drive transmission unit 581 that supports the Z-axis drive transmission unit 581.
  • the Z-axis suction hand motor 582 drives the Z-axis slider 56 in the Z direction.
  • the Z-axis drive transmission section 581 has a ball screw driven by a Z-axis suction hand motor 582, and the Z-axis slider 56 is attached to the nut of the ball screw.
  • the specific configuration of the Z-axis drive unit 58 is not limited to this example, and may be a linear motor, for example.
  • the Z-axis slider 56 extends from the Z-axis drive section 58 to the lower side of the X-axis drive transmission section 551, and the suction hand 51 is attached to the lower end of the Z-axis slider 56.
  • the Z-axis drive unit 58 drives the Z-axis slider 56 supported by the Z-axis drive transmission unit 581 with the Z-axis suction hand motor 582, thereby moving the suction hand 51 supported by the Z-axis slider 56 in the Z direction. move it.
  • the suction hand 51 includes a base portion 511 supported by the Z-axis slider 56, and an annular suction member 512 protruding from the base portion 511 toward the (+Y) side.
  • the annular suction member 512 has an annular shape, and a plurality of suction holes are opened in the bottom surface 513 of the annular suction member 512 .
  • the XZ-axis transport mechanism 5 moves the suction hand 51 by driving the suction hand 51 in the X direction with the X-axis drive section 55 and driving the suction hand 51 in the Z direction with the Z-axis drive section 58.
  • the ring frame Fr held by the annular suction member 512 is moved between the substrate transfer area Aw and the chuck stage 3.
  • the chuck stage 3 has a suction plate 31 on which a ring frame Fr that supports the semiconductor substrate W via the tape E is placed.
  • the suction plate 31 has a circular shape, and a plurality of suction holes are opened in the upper surface 311 of the suction plate 31 .
  • the tape E can be fixed to the suction plate 31 by suctioning the tape E in contact with the top surface 311 using the negative pressure generated in each suction hole on the top surface 311 of the suction plate 31 .
  • the chuck stage 3 includes a plurality of clampers 32 provided around the periphery of the suction plate 31.
  • This chuck stage 3 is configured such that the clamper 32 faces the ring frame Fr placed on the suction plate 31 from above, and the ring frame Fr is sandwiched between the clamper 32 and the suction plate 31. is fixed to the suction plate 31. Furthermore, the chuck stage 3 releases the fixation of the ring frame Fr to the suction plate 31 by retracting the clamper 32 laterally from the ring frame Fr.
  • the chuck stage 3 holds the semiconductor substrate W supported by the ring frame Fr via the tape E by suctioning the tape E by the suction plate 31 and fixing the ring frame Fr by the clamper 32.
  • the clamper 32 in combination in this way, the tape E can be attracted to the suction plate 31 with a weak suction force compared to the case where the semiconductor substrate W is held only by suction of the tape E by the suction plate 31. Therefore, the influence of suction of the tape E on the semiconductor substrate W can be alleviated.
  • the laser processing device 1 includes an XY ⁇ drive table 6 that supports the chuck stage 3.
  • the XY ⁇ drive table 6 is disposed on the base plate 11 and drives the chuck stage 3 relative to the base plate 11 in the X direction, Y direction, and ⁇ direction.
  • the ⁇ direction is a rotation direction centered on a rotation axis parallel to the Z direction.
  • the XY ⁇ drive table 6 includes a Y-axis guide 61 attached to the base plate 11 parallel to the Y-direction, a Y-axis slider 62 supported movably in the Y-direction by the Y-axis guide 61, and a Y-axis slider 62.
  • the Y-axis drive unit 63 is a single-axis robot attached to the base plate 11, and is supported by a Y-axis drive transmission unit 631 that supports the Y-axis slider 62 so as to be movable in the Y direction, and a Y-axis drive transmission unit 631. It has a Y-axis table motor 632 that drives the Y-axis slider 62 in the Y direction.
  • the Y-axis drive transmission section 631 has a ball screw driven by a Y-axis table motor 632, and the Y-axis slider 62 is attached to a nut of the ball screw.
  • the specific configuration of the Y-axis drive unit 63 is not limited to this example, and may be a linear motor, for example.
  • the XY ⁇ drive table 6 includes an X-axis slider 64 and an X-axis drive unit 65 that drives the X-axis slider 64 in the X direction with respect to the Y-axis slider 62.
  • the X-axis drive unit 65 is a single-axis robot attached to the Y-axis slider 62, and includes an X-axis drive transmission unit 651 that supports the X-axis slider 64 movably in the X direction, and is supported by the X-axis drive transmission unit 651. and an X-axis table motor 652 that drives the X-axis slider 64 in the X direction.
  • the X-axis drive transmission section 651 has a ball screw driven by an X-axis table motor 652, and the X-axis slider 64 is attached to the nut of the ball screw.
  • the specific configuration of the X-axis drive unit 65 is not limited to this example, and may be a linear motor, for example.
  • the XY ⁇ drive table 6 has a ⁇ -axis table motor 66 attached to the X-axis slider 64.
  • the ⁇ -axis table motor 66 drives the chuck stage 3 in the ⁇ direction relative to the X-axis slider 64.
  • the Y-axis table motor 632 drives the chuck stage 3 in the Y direction
  • the X-axis table motor 652 drives the chuck stage 3 in the X direction
  • the ⁇ -axis table motor 66 drives the chuck stage 3. can be driven in the ⁇ direction.
  • the laser processing apparatus 1 also includes a laser processing section 7 that performs laser processing on the semiconductor substrate W held on the chuck stage 3.
  • the laser processing section 7 has a processing head 71 that faces the semiconductor substrate W held by the chuck stage 3 from above.
  • the processing head 71 includes a laser light source 72 that generates laser light B of a predetermined frequency, and an optical system 73 (lens, aperture, etc.) that irradiates the semiconductor substrate W with the laser light B emitted from the laser light source 72.
  • This processing head 71 has a predetermined laser irradiation position Lb and faces the laser irradiation position Lb from above in the Z direction.
  • the processing head 71 focuses the laser beam B emitted from the laser light source 72 onto the laser irradiation position Lb using the optical system 73, thereby forming a modified layer on a portion of the semiconductor substrate W that overlaps with the laser irradiation position Lb. form.
  • the laser processing section 7 includes a Z-axis slider 78 that supports the processing head 71, and a Z-axis drive section 79 that drives the Z-axis slider 78 in the Z direction.
  • the Z-axis drive unit 79 is a single-axis robot attached to a base plate, and includes a Z-axis drive transmission unit 791 that supports the Z-axis slider 78 movably in the Z direction, and a Z-axis drive transmission unit 791 supported by the Z-axis drive transmission unit 791. It has a Z-axis head motor 792 that drives the slider 78 in the Z direction.
  • the Z-axis drive transmission section 791 has a ball screw driven by a Z-axis head motor 792, and the Z-axis slider 78 is attached to a nut of the ball screw.
  • the specific configuration of the Z-axis drive unit 79 is not limited to this example, and may be a linear motor, for example.
  • the Z-axis drive unit 79 moves the processing head 71 supported by the Z-axis slider 78 in the Z direction by driving the Z-axis slider 78 supported by the Z-axis drive transmission unit 791 with the Z-axis head motor 792. Then, the laser irradiation position Lb of the infrared camera 81 is moved in the Z direction.
  • the laser processing apparatus 1 includes an imaging unit 8 that images the semiconductor substrate W held on the chuck stage 3.
  • two imaging units 8 are provided that are arranged to sandwich the laser processing unit 7 in the X direction.
  • the imaging unit 8A the imaging unit 8 on the (+X) side of the laser processing unit 7
  • the imaging unit 8A the imaging unit 8 on the ( ⁇ X) side of the laser processing unit 7
  • part 8B the imaging section 8A, the laser processing section 7, and the imaging section 8B are arranged in the X direction.
  • the basic configuration of the imaging section 8A and the imaging section 8B is the same. Therefore, the configuration common to the imaging units 8A and 8B will be described without distinguishing between them.
  • the imaging unit 8 has an infrared camera 81 that faces the semiconductor substrate W held by the chuck stage 3 from above.
  • This infrared camera 81 has a predetermined imaging range Ri (in other words, a field of view) and faces the imaging range Ri from above in the Z direction. Then, the infrared camera 81 captures an image of the imaging range Ri by detecting infrared rays emitted from the imaging range Ri, thereby acquiring an image of the imaging range Ri.
  • the imaging unit 8 also includes a Z-axis slider 88 that supports the infrared camera 81 and a Z-axis drive unit 89 that drives the Z-axis slider 88 in the Z direction.
  • the Z-axis drive unit 89 is a single-axis robot attached to a base plate, and includes a Z-axis drive transmission unit 891 that supports the Z-axis slider 88 movably in the Z direction, and a Z-axis drive transmission unit 891 supported by the Z-axis drive transmission unit 891. It has a Z-axis camera motor 892 that drives the slider 88 in the Z direction.
  • the Z-axis drive transmission section 891 has a ball screw driven by a Z-axis camera motor 892, and the Z-axis slider 88 is attached to a nut of the ball screw.
  • the specific configuration of the Z-axis drive unit 89 is not limited to this example, and may be a linear motor, for example.
  • the Z-axis drive unit 89 moves the infrared camera 81 supported by the Z-axis slider 88 in the Z direction by driving the Z-axis slider 88 supported by the Z-axis drive transmission unit 891 with the Z-axis camera motor 892. Then, the imaging range Ri of the infrared camera 81 is moved in the Z direction.
  • the infrared camera 81 of the imaging section 8A and the infrared camera 81 of the imaging section 8B have mutually different resolutions. Specifically, the infrared camera 81 of the imaging section 8A has a higher resolution than the infrared camera 81 of the imaging section 8B, in other words, it has a narrow field of view. However, the resolutions of the infrared cameras 81 in the imaging section 8A and the imaging section 8B do not need to be different, and these infrared cameras 81 may have the same resolution.
  • the centers of the imaging range Ri of the imaging unit 8A, the laser irradiation position Lb of the processing head 71, and the imaging range Ri of the imaging unit 8B are arranged in parallel to the X direction. However, these do not necessarily have to be parallel to the X direction, and the imaging range Ri of the imaging unit 8A is located on the (+X) side with respect to the laser irradiation position Lb of the processing head 71, and the imaging range Ri of the imaging unit 8B is It is sufficient if it is located on the (-X) side.
  • FIG. 3 is a block diagram showing the electrical configuration of the laser processing apparatus of FIG. 1.
  • the laser processing apparatus 1 includes a control section 100 that controls the configuration shown in FIGS. 1 and 2.
  • the control unit 100 includes a handling control calculation unit 110 that is in charge of controlling the substrate transport system (substrate storage unit 2, Y-axis transport mechanism 4, and XZ-axis transport mechanism 5) involved in transporting the semiconductor substrate W in the laser processing apparatus 1. and a laser processing control calculation section 120 that is in charge of controlling the laser processing system (chuck stage 3, XY ⁇ drive table 6, laser processing section 7, and imaging section 8) related to laser processing on the semiconductor substrate W.
  • control unit 100 includes a cassette control unit 111 that controls the insertion and removal operation of the semiconductor substrate W into and out of the substrate storage cassette 21 in accordance with commands from the handling control calculation unit 110.
  • the cassette control unit 111 adjusts the position of the substrate storage cassette 21 in the Z direction by controlling the Z-axis cassette motor 272, and adjusts the position of the lift hand 41 in the Y direction by controlling the Y-axis lift hand motor 452. adjust.
  • control unit 100 includes a hand control unit 112 that controls the transport operation of the semiconductor substrate W by the suction hand 51 in accordance with a command from the handling control calculation unit 110.
  • the hand control unit 112 adjusts the position of the suction hand 51 in the X direction by controlling the X-axis suction hand motor 552, and the hand control unit 112 adjusts the position of the suction hand 51 in the X direction by controlling the Z-axis suction hand motor 582. Adjust the position in the Z direction.
  • the hand control unit 112 controls the suction pump 591 that sucks the suction hole opened in the bottom surface 513 of the annular suction member 512 of the suction hand 51 .
  • the hand control unit 112 sucks the ring frame Fr with the suction hand 51 by supplying negative pressure to the suction hole with the suction pump 591, and stops the supply of negative pressure to the suction hole with the suction pump 591. Release the ring frame Fr from the suction hand 51.
  • control unit 100 includes a stage control unit 121 that controls the substrate fixing operation by the chuck stage 3 and the driving of the chuck stage 3 in accordance with commands from the laser processing control calculation unit 120.
  • the stage control unit 121 adjusts the position of the chuck stage 3 in the X direction, the Y direction, and the ⁇ direction by controlling the X-axis table motor 652, the Y-axis table motor 632, and the ⁇ -axis table motor 66, respectively.
  • the stage control unit 121 controls the clamper drive unit 691 that drives the clamper 32 to cause the clamper drive unit 691 to fix the ring frame Fr to the suction plate 31 and to release the fixation.
  • the stage control unit 121 controls a suction pump 692 that sucks suction holes opened in the upper surface 311 of the suction plate 31 .
  • the stage control unit 121 causes the suction plate 31 to suction the tape E by supplying negative pressure to the suction hole using the suction pump 692, and adsorbs the tape E by stopping the suction pump 692 from supplying negative pressure to the suction hole. The adsorption of the tape E by the plate 31 is released.
  • control unit 100 includes a camera control unit 122A that controls the imaging unit 8A, and a camera control unit 122B that controls the imaging unit 8B.
  • These hand control units 112A and 112B execute the following control on the infrared camera 81 and Z-axis camera motor 892 of the imaging units 8A and 8B, respectively. That is, each of the camera control units 122A and 122B acquires an image of the semiconductor substrate W by causing the infrared camera 81 to take an image of the semiconductor substrate W, and drives the infrared camera 81 in the Z direction by the Z-axis camera motor 892. The distance from the camera 81 to the semiconductor substrate W is adjusted in the Z direction.
  • control section 100 includes a processing head control section 123 that controls the laser processing section 7.
  • the processing head control unit 123 drives the laser light source 72 to emit laser light B, and causes the Z-axis head motor 792 to drive the processing head 71 in the Z direction, thereby removing the semiconductor substrate from the processing head 71. Adjust the distance to W in the Z direction.
  • the processing head 71 includes a height detection section 74 that detects the height from the semiconductor substrate W (distance in the Z direction). This height detection section 74 is a so-called distance sensor.
  • the optical system 73 of the processing head 71 has a focus adjustment mechanism 75.
  • the focus adjustment mechanism 75 adjusts the position at which the laser beam B is focused by displacing the focal point of the optical system 73 in the Z direction.
  • the processing head control section 123 controls the focus adjustment mechanism 75 based on the height from the semiconductor substrate W to the processing head 71 detected by the height detection section 74, so that the laser beam is positioned at a predetermined position inside the semiconductor substrate W. Collect light B.
  • control unit 100 each function of the control unit 100 described above is implemented by a processor such as a CPU (Central Processing Unit) or an FPGA (Field This can be realized using a programmable gate array (Programmable Gate Array).
  • a processor such as a CPU (Central Processing Unit) or an FPGA (Field This can be realized using a programmable gate array (Programmable Gate Array).
  • the control unit 100 includes a storage unit 190 that is a storage device such as an HDD (Hard Disk Drive) or an SDD (Solid State Drive).
  • This storage unit 190 stores a laser processing program 191 that defines operations to be described later that are executed by the laser processing apparatus 1 for laser processing the semiconductor substrate W. That is, the control unit 100 executes each control described later using FIGS. 4 to 22C by executing the laser processing program 191.
  • the laser processing program 191 is provided by a recording medium 192 external to the laser processing apparatus 1, and the control unit 100 (computer) reads the laser processing program 191 recorded on the recording medium 192 and stores it in the storage unit 190.
  • Examples of such a recording medium 192 include a USB (Universal Serial Bus) memory, an external computer storage device, and the like.
  • FIG. 4 is a flowchart illustrating an example of a method for producing a laser-processed substrate that has undergone laser processing.
  • the flowchart in FIG. 4 is executed under the control of the control unit 100 based on the laser processing program 191.
  • step S101 the lift hand 41 takes out the ring frame Fr from the substrate storage cassette 21 to the substrate transfer area Aw
  • step S102 the suction hand 51 in the substrate transfer area Aw transfers the ring frame Fr from the lift hand 41 to the chuck stage 3. I will post it.
  • the semiconductor substrate W held by the ring frame Fr is taken out from the substrate storage cassette 21 to the substrate transfer area Aw, and then transferred from the substrate transfer area Aw to the chuck stage 3.
  • step S101 the ring frame shown in FIG. 5 is taken out, and in step S102, the ring frame shown in FIG. 6 is transferred.
  • FIG. 5 is a flowchart showing an example of taking out a ring frame
  • FIG. 6 is a flowchart showing an example of transferring a ring frame
  • FIGS. 7A to 7E show operations performed according to the flowcharts of FIGS. 5 and 6.
  • FIG. 2 is a plan view schematically showing an example.
  • step S201 in FIG. 5 the control unit 100 checks whether the lift hand 41 is empty, that is, whether the ring frame Fr is placed on the lift hand 41. Confirmation of whether the lift hand 41 is empty can be performed based on, for example, a history of operations performed by the lift hand 41. If the lift hand 41 is not empty ("NO” in step S201), the flowchart of FIG. 5 is ended, while if the lift hand 41 is empty ("YES" in step S201), The process advances to step S201.
  • step S202 the control unit 100 determines whether at least a portion of the lift hand 41 is located inside the substrate accommodating cassette 21, or in other words, inside the substrate accommodating cassette 21 from the opening 23 of the substrate accommodating cassette 21 (that is, (+Y ) side). Confirmation of whether part of the lift hand 41 is located within the substrate storage cassette 21 is performed based on the position of the lift hand 41 indicated by the output of the encoder of the Y-axis lift hand motor 452 that drives the lift hand 41 in the Y direction, for example. can do.
  • step S202 If the lift hand 41 has retreated from the substrate storage cassette 21 to the (-Y) side (“NO” in step S202), the process proceeds to step S204 without executing step S203, while the lift hand 41 If a portion is located within the substrate storage cassette 21 ("YES" in step S202), the process advances to step S203.
  • step S203 the control unit 100 causes the Y-axis lift hand motor 452 to drive the lift hand 41 toward the (-Y) side, pulls out the lift hand 41 from the substrate storage cassette 21 toward the (-Y) side, and removes the substrate. It is evacuated to the (-Y) side of the storage cassette 21.
  • step S204 the control unit 100 drives the board storage cassette 21 in the Z direction by the Z-axis cassette motor 272, thereby raising the slot 25 that accommodates the ring frame Fr to be taken out to a predetermined height from the board insertion height 211. position it at a higher position.
  • This predetermined height is shorter than the interval between adjacent slots 25 in the Z direction.
  • the bottom surface of the ring frame Fr to be taken out is adjusted to a position higher than the lift hand 41 by a predetermined height.
  • step S205 the control unit 100 inserts the lift hand 41 inside the substrate storage cassette 21 by driving the lift hand 41 toward the (+Y) side using the Y-axis lift hand motor 452. .
  • the lift hand 41 faces the ring frame Fr to be taken out from below with a gap therebetween.
  • step S206 the control unit 100 causes the Z-axis cassette motor 272 to lower the substrate storage cassette 21 in the Z direction.
  • the ring frame Fr to be taken out is placed on the lift hand 41 and raised relative to the slot 25 (that is, the pair of support protrusions 24 defining the slot 25).
  • step S207 the control unit 100 moves the lift hand 41 to the substrate transfer area Aw provided outside the substrate storage cassette 21 by driving the lift hand 41 in the (-Y) side using the Y-axis lift hand motor 452. Pull out.
  • the ring frame Fr placed on the lift hand 41 is located in the substrate transfer area Aw.
  • step S301 of FIG. 6 the control unit 100 adjusts the position of the suction hand 51 in the X direction using the X-axis suction hand motor 552, so that the suction hand 51 is supported by the lift hand 41 in the substrate transfer area Aw.
  • the suction hand 51 is opposed to the ring frame Fr from above.
  • the control unit 100 adjusts the height of the suction hand 51 using the Z-axis suction hand motor 582, thereby adjusting the suction hand 51 to a position higher than the ring frame Fr. Therefore, the suction hand 51 faces the ring frame Fr with an interval therebetween.
  • step S302 the control unit 100 lowers the suction hand 51 facing the ring frame Fr using the Z-axis drive transmission unit 581, and brings the bottom surface 513 of the suction hand 51 into contact with the top surface of the ring frame Fr.
  • step S303 the control unit 100 causes the suction pump 591 to generate negative pressure in the suction hole provided in the bottom surface 513 of the suction hand 51, and the suction hand 51 suctions the ring frame Fr using this negative pressure. In this way, the ring frame Fr is held by the suction hand 51.
  • step S304 the control unit 100 raises the suction hand 51 using the Z-axis suction hand motor 582. As a result, the suction hand 51 lifts the ring frame Fr from the lift hand 41.
  • step S305 the control unit 100 causes the X-axis suction hand motor 552 to drive the suction hand 51 toward the (+X) side to move the ring frame Fr onto the chuck stage 3, which is the transfer destination.
  • the suction hand 51 is opposed from above.
  • the control unit 100 adjusts the ring frame Fr held by the suction hand 51 to a higher position than the chuck stage 3 by adjusting the height of the suction hand 51 using the Z-axis suction hand motor 582. Therefore, the ring frame Fr held by the suction hand 51 faces the chuck stage 3 with an interval therebetween.
  • step S306 the control unit 100 places the ring frame Fr (and tape E) held by the suction hand 51 on the suction plate 31 of the chuck stage 3 by lowering the suction hand 51 using the Z-axis suction hand motor 582. place In step S307, the control unit 100 stops the suction pump 591 and releases the suction of the ring frame Fr by the suction hand 51.
  • step S308 the control unit 100 checks whether the chuck stage 3 is the transfer destination of the ring frame Fr. For example, when the transfer destination of the ring frame Fr is the lift hand 41 as in step S104, which will be described later, "NO” is determined in step S308, and the flowchart of FIG. 6 ends.
  • "YES" is determined in step S308, and the process proceeds to step S309.
  • step S309 the control unit 100 causes the clamper drive unit 691 to drive the clamper 32 to sandwich the ring frame Fr placed on the suction plate 31 of the chuck stage 3 between the clamper 32 and the suction plate 31. Then, clamp the ring frame Fr. Further, in step S310, the control unit 100 causes the suction pump 692 to generate negative pressure in the suction hole provided in the upper surface 311 of the suction plate 31, and the suction plate 31 removes the tape E attached to the ring frame Fr. Adsorbs by negative pressure. In this way, the ring frame Fr is held by the chuck stage 3. In step S311, the control unit 100 causes the Z-axis suction hand motor 582 to raise the suction hand 51.
  • step S103 in FIG. 4 substrate processing is performed in which the semiconductor substrate W held on the chuck stage 3 is processed with laser light B, and the laser light B is irradiated onto a plurality of dividing lines provided on the semiconductor substrate W. Ru. Details of this substrate processing will be described later.
  • steps S104 and S105 are executed.
  • step S104 the suction hand 51 transfers the ring frame Fr from the chuck stage 3 to the lift hand 41 in the substrate transfer area Aw
  • step S105 the lift hand 41 transfers the ring frame Fr from the substrate transfer area Aw to the substrate storage cassette 21. to store.
  • the semiconductor substrate W held by the ring frame Fr is transferred from the chuck stage 3 to the substrate transfer area Aw, and then stored in the substrate storage cassette 21 from the substrate transfer area Aw.
  • step S104 the transfer of the ring frame in FIG. 6 is executed, and in step S105, the storage of the ring frame in FIG. 8 is executed, and the operation opposite to that in FIGS. 7A to 7E described above is executed. be done.
  • FIG. 8 is a flowchart showing an example of storing the ring frame.
  • step S301 in FIG. 6 the control unit 100 adjusts the position of the suction hand 51 in the X direction by the X-axis suction hand motor 552, so that the suction hand 51 to face each other from above. Then, the control unit 100 lowers the suction hand 51 to the ring frame Fr (step S302), and causes the suction hand 51 to suction the ring frame Fr (step S303). Subsequently, the control unit 100 raises the suction hand 51 (step S304). As a result, the suction hand 51 lifts the ring frame Fr from the chuck stage 3.
  • step S305 the control unit 100 drives the suction hand 51 to the (-X) side by the X-axis suction hand motor 552.
  • the lift hand 41 is waiting in the substrate transfer area Aw, so that the suction hand 51 faces from above the lift hand 41 in the substrate transfer area Aw, which is the transfer destination of the ring frame Fr. .
  • the control unit 100 places the ring frame Fr held by the suction hand 51 on the lift hand 41 by lowering the suction hand 51 using the Z-axis suction hand motor 582 (step S306).
  • the control unit 100 stops the suction pump 591 and releases the suction of the ring frame Fr by the suction hand 51 (step S307).
  • step S308 the control unit 100 checks whether the chuck stage 3 is the transfer destination of the ring frame Fr.
  • "NO" is determined in step S308, and the flowchart of FIG. 6 ends.
  • step 401 in FIG. 8 the control unit 100 checks whether the ring frame Fr is placed on the lift hand 41. Confirmation of placement of the ring frame Fr on the lift hand 41 can be performed, for example, based on the operation history of the suction hand 51 that executes placement of the ring frame Fr. When placement of the ring frame Fr on the lift hand 41 is confirmed (“YES” in step S401), the control unit 100 controls the lift hand 41 so that at least a portion of the lift hand 41 is placed in the substrate storage cassette in the same manner as in step S202 described above. 21 (step S402).
  • step S403 the control unit 100 causes the Y-axis lift hand motor 452 to drive the lift hand 41 to the (-Y) side, thereby pulling out the lift hand 41 from the substrate storage cassette 21 to the (-Y) side, and It is evacuated to the (-Y) side of the storage cassette 21.
  • step S404 the control unit 100 drives the substrate storage cassette 21 in the Z direction by the Z-axis cassette motor 272, thereby moving the slot 25 (in other words, the pair of supports defining the slot 25) into which the ring frame Fr is stored.
  • the protrusion 24) is positioned at a predetermined height lower than the board insertion height 211.
  • the slot 25 to be accommodated is adjusted to a position lower than the bottom surface of the ring frame Fr supported by the lift hand 41 by a predetermined height.
  • step S405 the control unit 100 inserts the lift hand 41 inside the substrate storage cassette 21 by driving the lift hand 41 toward the (+Y) side using the Y-axis lift hand motor 452.
  • the pair of support protrusions 24 defining the slot 25 to be accommodated face the ring frame Fr supported by the lift hand 41 from below with a gap therebetween.
  • step S406 the control unit 100 causes the Z-axis cassette motor 272 to raise the substrate storage cassette 21 in the Z direction.
  • the ring frame Fr is placed on the pair of support protrusions 24 defining the slot 25 to be accommodated, and is raised relative to the lift hand 41.
  • step S407 the control unit 100 pulls out the lift hand 41 to the outside of the substrate storage cassette 21 by driving the lift hand 41 toward the (-Y) side using the Y-axis lift hand motor 452.
  • FIG. 9 is a flowchart showing an example of ring frame alignment
  • FIG. 10 is a plan view schematically showing an example of operations performed in ring frame alignment. Note that the flowchart in FIG. 9 is executed under the control of the control unit 100.
  • the members (alignment protrusion 413, etc.) on the lower side of the suction hand 51 are shown through the suction hand 51. That is, in this example, the lift hand 41 has a plurality of alignment protrusions 413 that protrude upward from the base portion 411. These plurality of alignment protrusions 413 correspond to the plurality of slits Fs of the ring frame Fr. Then, ring frame alignment is performed using the alignment protrusion 413 and the slit Fs.
  • the suction hand 51 suctions the ring frame Fr on the lift hand 41 (step S501). Then, the suction hand 51 holding the ring frame Fr rises to separate the ring frame Fr upward from the lift hand 41 (step S502). At this time, the height at which the ring frame Fr is separated from the lift hand 41 is adjusted so that the ring frame Fr is located at a height between the lower end and the upper end of the alignment protrusion 413 in the Z direction.
  • step S503 the XY ⁇ floating mechanism 561 built into the Z-axis slider 56 is turned on.
  • the XY ⁇ floating mechanism 561 selectively takes a floating state in which the suction hand 51 is supported in a floating manner and a locked state in which the suction hand 51 is fixedly supported.
  • floating support means supporting the suction hand 51 in a state in which the suction hand 51 is movable in the X direction, Y direction, and ⁇ direction relative to the XY ⁇ floating mechanism 561, and fixed support means that the suction hand 51 51 supports the suction hand 51 in a state fixed to the XY ⁇ floating mechanism 561.
  • the XY ⁇ floating mechanism 561 When the XY ⁇ floating mechanism 561 is turned on in step S503, the XY ⁇ floating mechanism 561 supports the suction hand 51 in a floating manner, and the suction hand 51 becomes movable relative to the XY ⁇ floating mechanism 561 in the X direction, the Y direction, and the ⁇ direction.
  • step S504 the lift hand 41 moves in the Y direction to bring the alignment protrusion 413 of the lift hand 41 into contact with the periphery of the ring frame Fr held by the suction hand 51.
  • the suction hand 51 moves relative to the XY ⁇ floating mechanism 561 so that the alignment protrusion 413 follows the peripheral edge of the ring frame Fr.
  • each alignment protrusion 413 of the lift hand 41 engages with each slit Fs of the ring frame Fr, and the ring frame Fr is positioned with respect to the lift hand 41. .
  • step S505 the XY ⁇ floating mechanism 561 is locked. As a result, the suction hand 51 is fixedly supported by the XY ⁇ floating mechanism 561. Then, in step S506, the suction hand 51 releases the ring frame Fr, and the ring frame Fr is placed on the lift hand 41. In step S507, the XY ⁇ floating mechanism 561 is turned off, and the suction hand 51 is supported by the Z-axis slider 56 while being fixed to the Z-axis slider 56. In this way, the ring frame Fr can be positioned with respect to the lift hand 41 (ring frame alignment).
  • FIG. 11 is a flowchart showing an example of substrate processing
  • FIG. 12 is a plan view schematically showing an example of the operation performed according to the flowchart of FIG. 11.
  • the flowchart in FIG. 11 is executed under the control of the control unit 100.
  • step S601 of substrate processing in FIG. 11 calibration is performed to determine the plane of the upper surface (back surface) of the semiconductor substrate W to be processed.
  • FIG. 13A is a flowchart showing an example of calibration
  • FIG. 13B is a flowchart showing an example of stage plane identification performed in the calibration of FIG. 13A
  • FIG. 13C is a flowchart showing an example of stage plane identification performed in the calibration of FIG. 13A. It is a flowchart which shows a specific example.
  • imaging of the suction plate 31 or the semiconductor substrate W is performed as appropriate. In the description here, it is assumed that imaging is performed by the imaging unit 8B. However, even if the imaging unit 8A performs imaging, the following operations can be performed in the same way.
  • stage plane identification (FIG. 13B) is performed.
  • the count value I for identifying a plurality of (three) imaging points Ps(I) provided on the upper surface 311 of the suction plate 31 of the chuck stage 3 is reset to zero. (step S801), and the count value I is incremented by 1 (step S802).
  • the imaging point Ps(I) is, for example, a mark having a predetermined pattern.
  • step S803 the control unit 100 adjusts the position of the chuck stage 3 using the XY ⁇ drive table 6 so that the imaging point Ps(I) faces the infrared camera 81 from below. As a result, the imaging point Ps(I) falls within the field of view of the infrared camera 81.
  • step S803 the infrared camera 81 images this imaging point Ps(I) to obtain an image indicating the imaging point Ps(I).
  • step S804 the control unit 100 checks whether a predetermined pattern possessed by the imaging point Ps(I) can be detected from the image by image processing such as pattern matching.
  • the control unit 100 causes the Z-axis camera motor 892 to By driving the camera 81 in the Z direction, the distance of the infrared camera 81 in the Z direction from the imaging point Ps(I) is changed (step S805). As a result, the focus of the infrared camera 81 is changed in the Z direction. Steps S803 to S805 are repeated until the infrared camera 81 focuses on the imaging point Ps(I) and a predetermined pattern is detected ("YES" in step S804).
  • step S806 the control unit 100 calculates the position (X, Y, Z) of the imaging point Ps(I) based on a predetermined pattern detected from the image obtained by imaging the imaging point Ps(I). .
  • the X and Y coordinates of the imaging point Ps(I) are calculated based on the position of a predetermined pattern included in the image.
  • the Z coordinate of the imaging point Ps(I) is calculated based on the position of the infrared camera 81 in the Z direction when the image in which the predetermined pattern can be detected is taken.
  • step S807 it is confirmed whether the count value I has reached 2, that is, whether the positions (X, Y, Z) of the two imaging points Ps(1) and Ps(2) have been acquired. If the count value I is less than 2 (“NO” in step S807), the process returns to step S802 and steps S802 to S806 are executed. If the count value I is 2 ("YES" in step S807), the process advances to step S808.
  • step S808 a rotation angle ⁇ a for rotating the chuck stage 3 in the ⁇ direction is calculated so that a straight line passing through the two imaging points Ps(1) and Ps(2) becomes horizontal. If the difference between the current rotation angle (actual rotation angle and rotation angle ⁇ a) of the suction plate 31 is not zero (“NO” in step S809), the chuck stage 3 is rotated by the rotation angle ⁇ a. (Step S810), returning to step S801. In this way, steps S801 to S809 are executed.
  • step S809 If the difference between the current rotation angle of the suction plate 31 (actual rotation angle and rotation angle ⁇ a) is zero (“YES” in step S809), the process advances to step S811.
  • step S811 the control unit 100 images the imaging point Ps(3) with the infrared camera 81 in the same manner as in step S803, and obtains an image showing the imaging point Ps(3). Then, in step S812, the control unit 100 checks whether a predetermined pattern possessed by the imaging point Ps(3) can be detected from the image by image processing such as pattern matching.
  • step S812 If the predetermined pattern cannot be detected from the image (“NO” in step S812), the control unit 100 causes the Z-axis camera motor 892 to drive the infrared camera 81 in the Z direction, thereby detecting the imaging point Ps(3). The distance of the infrared camera 81 in the Z direction relative to the distance is changed (step S813). Then, steps S811 to S813 are repeated until the predetermined pattern is detected ("YES" in step S812).
  • step S812 If the predetermined pattern can be detected in step S812 (YES), the control unit 100 determines the position of the imaging point Ps(3) ( X, Y, Z) are calculated (step S814). As a result, the positions (X, Y, Z) of the three imaging points Ps(1), Ps(2), and Ps(3) are obtained. In step S815, a plane passing through these three positions (X, Y, Z) is specified as the plane of the chuck stage 3, specifically, the plane representing the upper surface 311 of the suction plate 31.
  • step S702 of the calibration in FIG. 13A substrate plane identification (FIG. 13C) is performed.
  • the count value I for identifying a plurality of (three) imaging points Pw(I) on the semiconductor substrate W is reset to zero (step S901), and the count value I is reset to zero (step S901). I is incremented by 1 (step S902).
  • the imaging point Pw(I) is, for example, an area having a predetermined pattern.
  • the semiconductor substrate W is divided into a lattice shape by division lines S (Sa, Sb) that are orthogonal to each other. That is, the semiconductor substrate W is provided with a plurality of parallel dividing lines Sa and a plurality of parallel dividing lines Sb, and the dividing lines Sa and Sb are orthogonal to each other. In this way, a plurality of semiconductor chips C are arranged in a grid pattern with the scheduled dividing lines Sa and Sb in between.
  • an area including the intersection of the planned dividing line Sa and the planned dividing line Sb (in other words, a point surrounded by the semiconductor chips C arranged at the four corners) is set as the imaging point Pw(I). .
  • the infrared camera 81 detects the dividing lines Sa, Sb formed on the front surface of the semiconductor substrate W and the semiconductor chips C, and the back surface of the semiconductor substrate W. The image is captured using infrared light.
  • step S903 the control unit 100 adjusts the position of the chuck stage 3 using the XY ⁇ drive table 6 so that the imaging point Pw(I) faces the infrared camera 81 from below. As a result, the imaging point Pw(I) falls within the field of view of the infrared camera 81.
  • the infrared camera 81 images this imaging point Pw(I) to obtain an image indicating the imaging point Pw(I).
  • the control unit 100 uses pattern matching or the like to determine whether a predetermined pattern (for example, a pattern in which the planned dividing line Sa and the planned dividing line Sb intersect) of the imaging point Pw(I) can be detected from the image. Confirm by image processing.
  • the control unit 100 causes the Z-axis camera motor 892 to By driving the camera 81 in the Z direction, the distance of the infrared camera 81 in the Z direction from the imaging point Pw(I) is changed (step S905). As a result, the focus of the infrared camera 81 is changed in the Z direction. Steps S903 to S905 are repeated until the infrared camera 81 focuses on the imaging point Pw(I) and a predetermined pattern is detected ("YES" in step S904).
  • step S805 the height of the infrared camera 81 is changed so that the infrared camera 81 is focused within the range of the imaging point Pw(I) estimated from the stage plane.
  • step S906 the control unit 100 calculates the position (X, Y, Z) of the imaging point Pw(I) based on a predetermined pattern detected from the image obtained by imaging the imaging point Pw(I). .
  • the X and Y coordinates of the imaging point Pw(I) are calculated based on the position of a predetermined pattern included in the image.
  • the Z coordinate of the imaging point Pw(I) is calculated based on the position of the infrared camera 81 in the Z direction when the image in which the predetermined pattern can be detected is taken.
  • step S907 it is confirmed whether the count value I has reached 2, that is, whether the positions (X, Y, Z) of the two imaging points Pw(1) and Pw(2) have been acquired. If the count value I is less than 2 (“NO” in step S907), the process returns to step S902 and steps S902 to S906 are executed. If the count value I is 2 ("YES" in step S907), the process advances to step S908.
  • step S908 the rotation angle ⁇ b for rotating the chuck stage 3 in the ⁇ direction is set at two imaging points Pw(1) and Pw( Calculated based on 2). If the difference between the current rotation angle of the suction plate 31 (actual rotation angle and rotation angle ⁇ b) is not zero (“NO” in step S909), the chuck stage 3 is rotated by the rotation angle ⁇ b. (Step S910), returning to step S901. In this way, steps S901 to S909 are executed.
  • step S909 If the difference between the current rotation angle of the suction plate 31 (actual rotation angle and rotation angle ⁇ b) is zero (“YES” in step S909), the process advances to step S911.
  • step S911 the control unit 100 images the imaging point Pw(3) with the infrared camera 81 in the same manner as in step S903, and obtains an image showing the imaging point Pw(3). Then, in step S912, the control unit 100 checks whether a predetermined pattern possessed by the imaging point Pw(3) can be detected from the image by image processing such as pattern matching.
  • the control unit 100 causes the Z-axis camera motor 892 to drive the infrared camera 81 in the Z direction, thereby detecting the imaging point Pw(3).
  • the distance of the infrared camera 81 in the Z direction relative to the distance is changed (step S913).
  • steps S911 to S913 are repeated until the predetermined pattern is detected ("YES" in step S912).
  • the range in which the height of the infrared camera 81 is changed is set based on the stage plane, as described above.
  • step S912 If the predetermined pattern can be detected in step S912 (YES), the control unit 100 determines the position of the imaging point Pw(3) ( X, Y, Z) are calculated (step S914). As a result, the positions (X, Y, Z) of the three imaging points Pw(1), Pw(2), and Pw(3) are obtained. In step S915, a plane passing through these three positions (X, Y, Z) is specified as a plane representing the semiconductor substrate W.
  • step S602 the line processing process of irradiating the laser beam B to the laser irradiation position Lb while moving the laser irradiation position Lb in the X direction along the target division line Sa is performed to divide the target among the plurality of division lines Sa.
  • step S602 processing using the laser beam B is executed on each of the plurality of planned dividing lines Sa.
  • the line processing process moves the laser irradiation position Lb to the (+X) side in the X direction
  • the line processing process moves the laser irradiation position Lb to the (-X) side in the X direction. Processing is performed alternately.
  • the movement of the laser beam B toward the (+X) side with respect to the planned dividing line Sa is performed by driving the chuck stage 3 holding the semiconductor substrate W toward the (-X) side by the X-axis drive unit 65.
  • the movement of the laser beam B toward the ( ⁇ X) side with respect to the planned dividing line Sa is executed by driving the chuck stage 3 holding the semiconductor substrate W toward the (+X) side by the X-axis drive unit 65.
  • the planned dividing line Sa to be subjected to line processing is changed by driving the chuck stage 3 holding the semiconductor substrate W in the Y direction by the Y-axis drive section 63.
  • control unit 100 controls the Z-axis head motor 792 to adjust the position of the processing head 71 in the Z direction based on the plane representing the semiconductor substrate W specified in the calibration in step S601. Thereby, the condensing position of the laser beam B is adjusted inside the semiconductor substrate W, and a modified layer is formed inside the semiconductor substrate W along the planned dividing line Sa.
  • step S602 when the line processing for each of the plurality of planned division lines Sa is completed (step S602), the chuck stage 3 holding the semiconductor substrate W is rotated by 90 degrees in the ⁇ direction by the ⁇ -axis table motor 66.
  • the plurality of planned dividing lines Sb are positioned parallel to the X direction. 12 (column "S603" in FIG. 12).
  • step S604 calibration is performed in the same manner as in step S601 above. Further, in step S605, line processing processing is performed on each of the plurality of scheduled division lines Sb in the same manner as in step S602 described above.
  • FIG. 14 is a flowchart showing the basic process of line processing for each dividing line
  • FIG. 15A is a diagram schematically showing a first example of the operation performed according to the flowchart of FIG. 14.
  • the locus of the laser irradiation position Lb that moves relative to the semiconductor substrate W is shown by a dotted line
  • the trajectory is shown along the dividing lines S1, S2, S3 on both sides of the dividing lines S1, S2, S3.
  • Virtual straight lines Sv1, Sv2, and Sv3 extending parallel to the X direction between the two are indicated by dashed dotted lines.
  • a dotted line indicating the trajectory of the laser irradiation position Lb is shown preferentially.
  • the flowchart in FIG. 14 is started from a state where the laser irradiation position Lb is stopped at a position Pb1 on the (-X) side of the semiconductor substrate W in the X direction.
  • This position Pb1 is provided on the virtual straight line Sv1 along the planned dividing line S1, in other words, it is a position facing the planned dividing line S1 from the X direction.
  • the position of the laser irradiation position Lb at the time of starting the flowchart in FIG. 14 is not limited to this example, and can be changed as appropriate.
  • step S1001 the laser irradiation position Lb, which stops at the position Pb1, starts accelerating toward the (+X) side of the X direction and moves in parallel to the X direction. As a result, the laser irradiation position Lb moves toward the (+X) side along the virtual straight line Sv1. If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (-X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. (+X) side at a constant speed (step S1002).
  • the laser light source 72 is turned on, and the laser light B is irradiated from the processing head 71 to the laser irradiation position Lb.
  • the process is started (step S1003).
  • the laser light source 72 is turned off, and the irradiation of the laser light B from the processing head 71 to the laser irradiation position Lb ends. (Step S1004).
  • the laser irradiation position Lb moves toward the (+X) side along the division planned line S1, and the laser beam B is irradiated to the laser irradiation position Lb, so that the laser beam B is applied to the division planned line S1.
  • Laser processing is performed on the material (line processing).
  • the laser irradiation position Lb When the laser irradiation position Lb passes the dividing line S1 in the (+X) side, the laser irradiation position Lb starts decelerating toward the (+X) side in the X direction (step S1005), and the ( The laser irradiation position Lb stops at the position Pb2 on the +X) side (step S1006).
  • This position Pb2 is provided on the virtual straight line Sv2 adjacent to the virtual straight line Sv1 in the Y direction, in other words, it is a position facing the planned dividing line S2 from the X direction. That is, in steps S1005 and S1006, the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the virtual straight line Sv2 in parallel with deceleration in the X direction.
  • the positional relationship between the imaging range Ri (FIG. 1) of the imaging units 8A and 8B and the laser irradiation position Lb of the processing head 71 is fixed. Therefore, in steps S1001 to S1006, as the laser irradiation position Lb moves relative to the semiconductor substrate W, the imaging range Ri also moves relative to the semiconductor substrate W.
  • the imaging range Ri of the imaging unit 8B is stopped at a position that includes at least the imaging point Pw (S2).
  • This imaging point Pw (S2) is an intersection where the scheduled dividing line S2 and the scheduled dividing line S perpendicular thereto intersect in the semiconductor substrate W.
  • step S1006 the control unit 100 causes the imaging unit 8B to image the imaging range Ri, and acquires an image including the imaging point Pw (S2). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned dividing line S2.
  • step S1007 it is confirmed whether laser processing has been completed for a plurality of planned dividing lines S parallel to the X direction. If there is an unprocessed planned dividing line S among these planned dividing lines S (“NO” in step S1007), the process returns to step S1001.
  • step S1001 the laser irradiation position Lb that stops at position Pb2 starts accelerating toward the ( ⁇ X) side of the X direction and moves in parallel to the X direction. As a result, the laser irradiation position Lb moves toward the (-X) side along the virtual straight line Sv2. If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (+X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. It moves at a constant speed toward the (-X) side (step S1002).
  • the laser irradiation position Lb that has passed the planned dividing line S1 to the (+X) side starts deceleration (in other words, the X coordinate where the uniform velocity movement to the (+X) side ends).
  • the position at which the laser irradiation position Lb, which accelerates toward the (-X) side toward the planned dividing line S, ends its acceleration is: Match.
  • the X coordinate at which the laser irradiation position Lb, which has passed through the planned division line Sn where the line processing is executed on the nth line, finishes moving at a constant velocity and starts decelerating, and the division on which the line processing is executed on the n+1st This coincides with the X direction in which the laser irradiation position Lb toward the scheduled line Sn+1 finishes accelerating and starts moving at a constant speed.
  • the laser light source 72 is turned on and the irradiation of the laser light B from the processing head 71 to the laser irradiation position Lb starts. (Step S1003). Further, in accordance with the timing when the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (-X) side, the laser light source 72 is turned off, and the laser light B is irradiated from the processing head 71 to the laser irradiation position Lb. The process ends (step S1004).
  • the laser irradiation position Lb is irradiated with the laser beam B while moving toward the (-X) side along the division planned line S2, and the laser beam B is irradiated on the laser irradiation position Lb.
  • Laser processing is performed on (line processing).
  • the laser irradiation position Lb When the laser irradiation position Lb passes the planned dividing line S2 in the (-X) side, the laser irradiation position Lb starts decelerating toward the (-X) side in the X direction (step S1005), and the semiconductor substrate W in the X direction starts decelerating.
  • the laser irradiation position Lb stops at a position Pb3 on the (-X) side of (step S1006).
  • This position Pb3 is provided on the virtual straight line Sv3 adjacent to the virtual straight line Sv2 in the Y direction, in other words, it is a position facing the planned division line S3 from the X direction. That is, in steps S1005 and S1006, the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv2 to the virtual straight line Sv3 in parallel with the deceleration in the X direction.
  • the imaging range Ri of the imaging unit 8A is stopped at a position that includes at least the imaging point Pw (S3).
  • This imaging point Pw (S3) is an intersection where the scheduled dividing line S3 and the scheduled dividing line S perpendicular thereto intersect in the semiconductor substrate W. Therefore, in step S1006, the control unit 100 causes the imaging unit 8A to image the imaging range Ri, and acquires an image including the imaging point Pw (S3). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned division line S3.
  • Steps S1001 to S1007 are then repeated until it is confirmed that the laser processing has been completed for the plurality of planned dividing lines S (S1, S2, S3,%) parallel to the X direction ("YES" in step S1007). It will be done.
  • the speed Vx indicates the speed at which the laser irradiation position Lb moves in the X direction with respect to the semiconductor substrate W
  • the speed Vy indicates the speed at which the laser irradiation position Lb moves in the Y direction with respect to the semiconductor substrate W.
  • the processing speed Vxd indicates the speed at which the laser irradiation position Lb moves at a constant speed in the X direction along the planned dividing line S (that is, the speed Vx), and the processing speed Vxd indicates the speed at which the laser irradiation position Lb moves at a constant speed in the X direction along the planned dividing line S. It is expressed as an absolute value regardless of the movement of .
  • the laser irradiation position Lb is moved in the X direction at a constant processing speed Vxd. while moving in the Y direction.
  • the laser irradiation position Lb is set at a constant processing speed Vxd. While moving in the X direction, it does not move in the Y direction.
  • the X-axis drive unit 65 (processing axis drive unit) irradiates laser beams that have passed through the scheduled dividing line S1 (first processing line) to the (+X) side (first side) in the X direction (processing direction).
  • the laser irradiation position Lb is aligned with the scheduled division line S2 (the first division line S2). 2 processing line).
  • the Y-axis drive unit 63 moves a virtual straight line Sv1 (first virtual straight line) extending in the X direction along the scheduled dividing line S1 to the outside of the scheduled dividing line S1.
  • the laser irradiation position Lb is changed from direction (feed direction).
  • the switching period Tc includes a deceleration period Td (step S1005) in which the laser irradiation position Lb is decelerated in the X direction and an acceleration period Ta (step S1001) in which the laser irradiation position Lb is accelerated in the X direction.
  • the movement of Lb in the Y direction is performed during the deceleration period Td of the deceleration period Td and the acceleration period Ta.
  • the movement of the laser irradiation position Lb in the Y direction starts after the deceleration period Td starts, and the movement of the laser irradiation position Lb in the Y direction ends before the deceleration period Td ends.
  • the laser irradiation position Lb does not move in the Y direction during the acceleration period Ta.
  • the start time of the deceleration period Td indicates the time when deceleration of the laser irradiation position Lb in the X direction (in other words, a decrease in the absolute value of the speed Vx from the processing speed Vxd) starts, and the start time of the deceleration period Td
  • the end point indicates the point in time when the speed of the laser irradiation position Lb in the X direction (in other words, the speed Vx) becomes zero.
  • the start time of the acceleration period Ta indicates the time when the acceleration of the laser irradiation position Lb in the X direction (in other words, the increase in the absolute value of the velocity Vx from zero) starts
  • the end time of the acceleration period Ta is the time when the This indicates the time when the acceleration of the laser irradiation position Lb in the direction ends (in other words, the time when the absolute value of the speed Vx reaches the processing speed Vxd).
  • both the speed Vx in the X direction and the speed Vy in the Y direction of the laser irradiation position Lb become zero, and the laser irradiation position Lb is stopped relative to the semiconductor substrate W at position Pb2.
  • the imaging ranges Ri of the imaging units 8A and 8B are also stopped with respect to the semiconductor substrate W, and in particular, the imaging range Ri of the imaging unit 8B is located on the (+X) side of the semiconductor substrate W. It is located on the ( ⁇ X) side of position Lb and overlaps semiconductor substrate W. Therefore, during the stop period Tt, the infrared camera 81 of the imaging unit 8B images a portion of the semiconductor substrate W that overlaps with the imaging range Ri (step S1006).
  • FIG. 15B is a diagram schematically showing a second example of operations performed according to the flowchart of FIG. 14.
  • the notation in FIG. 15B is similar to that in FIG. 15A.
  • laser processing is sequentially performed on the planned division lines S1, S2, and S3 according to the flowchart in FIG. 14.
  • the operation during the switching period Tc for changing the planned dividing line S to be subjected to laser processing is different between FIG. 15B and FIG. 15A. Therefore, the explanation will focus on the differences from FIG. 15A, and the common operations will be given corresponding symbols and the explanation will be omitted as appropriate.
  • the laser irradiated position Lb When the laser irradiation position Lb passes through the planned division line S1 in the (+X) side with the end of the laser processing on the planned dividing line S1, the laser irradiated position Lb starts to decelerate toward the (+X) side in the X direction. (Step S1005), and the laser irradiation position Lb stops at a position Pb2 on the (+X) side of the semiconductor substrate W in the X direction (Step S1006). This position Pb2 is provided on the virtual straight line Sv1. Further, in a state where the laser irradiation position Lb is stopped at the position Pb2, the imaging range Ri of the imaging unit 8B is stopped at a position including at least the imaging point Pw (S2).
  • step S1006 the control unit 100 causes the imaging unit 8B to image the imaging range Ri, and acquires an image including the imaging point Pw (S2). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned dividing line S2.
  • the laser irradiation position Lb which stops at the position Pb2, starts accelerating toward the (-X) side in the X direction (step S1001). If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (+X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. It moves at a constant speed toward the (-X) side (step S1002).
  • the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the virtual straight line Sv2. That is, in steps S1001 and S1002, the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the virtual straight line Sv2 in parallel with acceleration in the X direction. As a result, the laser irradiation position Lb reaches the scheduled dividing line S2, and line processing to the scheduled dividing line S2 can be started.
  • Step S1005 When the laser irradiation position Lb passes through the planned dividing line S2 in the (-X) side, the laser irradiated position Lb decelerates toward the (-X) side in the X direction.
  • Step S1006 This position Pb3 is provided on the virtual straight line Sv2.
  • the imaging range Ri of the imaging unit 8A is stopped at a position including at least the imaging point Pw (S3).
  • step S1006 the control unit 100 causes the imaging unit 8A to image the imaging range Ri, and acquires an image including the imaging point Pw (S3). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned division line S3.
  • step S1002 to S1004 the laser irradiation position Lb is moved in the X direction at a constant processing speed Vxd. while moving in the Y direction.
  • the laser irradiation position Lb is set at a constant processing speed Vxd. While moving in the X direction, it does not move in the Y direction.
  • step S1005, S1006, S1001 in which the line processing period Ts1 switches to the line processing period Ts2, in parallel with performing reversal driving in the X direction as described above, from the virtual straight line Sv1 to the virtual straight line
  • the laser irradiation position Lb is moved in the Y direction (feeding direction) to Sv2.
  • the movement of the laser irradiation position Lb in the Y direction is executed during the acceleration period Ta.
  • the movement of the laser irradiation position Lb in the Y direction starts after the acceleration period Ta starts, and the movement of the laser irradiation position Lb in the Y direction ends before the acceleration period Ta ends. Furthermore, the laser irradiation position Lb does not move in the Y direction during the deceleration period Td.
  • both the speed Vx in the X direction and the speed Vy in the Y direction of the laser irradiation position Lb become zero, and the laser irradiation position Lb is stopped relative to the semiconductor substrate W at position Pb2.
  • the imaging ranges Ri of the imaging units 8A and 8B are also stopped with respect to the semiconductor substrate W, and in particular, the imaging range Ri of the imaging unit 8B is located on the (+X) side of the semiconductor substrate W. It is located on the ( ⁇ X) side of position Lb and overlaps semiconductor substrate W. Therefore, during the stop period Tt, the infrared camera 81 of the imaging unit 8B images a portion of the semiconductor substrate W that overlaps with the imaging range Ri (step S1006).
  • FIG. 15C is a diagram schematically showing a third example of the operation performed according to the flowchart of FIG. 14.
  • the notation in FIG. 15C is similar to that in FIG. 15A.
  • laser processing is sequentially performed on the planned division lines S1, S2, and S3 according to the flowchart in FIG. 14.
  • the operation during the switching period Tc for changing the scheduled dividing line S to be subjected to laser processing differs between FIG. 15C and FIG. 15A. Therefore, the explanation will focus on the differences from FIG. 15A, and the common operations will be given corresponding symbols and the explanation will be omitted as appropriate.
  • the laser irradiated position Lb When the laser irradiation position Lb passes through the planned division line S1 in the (+X) side with the end of the laser processing on the planned dividing line S1, the laser irradiated position Lb starts to decelerate toward the (+X) side in the X direction. (Step S1005), and the laser irradiation position Lb stops at a position Pb2 on the (+X) side of the semiconductor substrate W in the X direction (Step S1006). This position Pb2 is provided between the virtual straight line Sv1 and the virtual straight line Sv2 in the Y direction.
  • step S1005 and S1006 the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the position Pb2 in parallel with the deceleration in the X direction. Further, in a state where the laser irradiation position Lb is stopped at the position Pb2, the imaging range Ri of the imaging unit 8B is stopped at a position including at least the imaging point Pw (S2). Therefore, in step S1006, the control unit 100 causes the imaging unit 8B to image the imaging range Ri, and acquires an image including the imaging point Pw (S2). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned dividing line S2.
  • the laser irradiation position Lb which stops at the position Pb2, starts accelerating toward the (-X) side in the X direction (step S1001). If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (+X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. It moves at a constant speed toward the (-X) side (step S1002).
  • the laser irradiation position Lb moves in the Y direction from the position Pb2 to the virtual straight line Sv2. That is, in steps S1001 and S1002, the laser irradiation position Lb moves in the Y direction from the position Pb2 to the virtual straight line Sv2 in parallel with the acceleration in the X direction. As a result, the laser irradiation position Lb reaches the scheduled dividing line S2, and line processing to the scheduled dividing line S2 can be started.
  • Step S1005 When the laser irradiation position Lb passes through the planned dividing line S2 in the (-X) side, the laser irradiated position Lb decelerates toward the (-X) side in the X direction.
  • Step S1006 the laser irradiation position Lb stops at position Pb3 on the (-X) side of the semiconductor substrate W in the X direction.
  • This position Pb3 is provided between the virtual straight line Sv2 and the virtual straight line Sv3 in the Y direction.
  • step S1005 and S1006 the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv2 to the position Pb3 in parallel with the deceleration in the X direction. Further, in a state where the laser irradiation position Lb is stopped at the position Pb3, the imaging range Ri of the imaging unit 8A is stopped at a position including at least the imaging point Pw (S3). Therefore, in step S1006, the control unit 100 causes the imaging unit 8A to image the imaging range Ri, and acquires an image including the imaging point Pw (S3). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned division line S3.
  • step S1002 to S1004 the laser irradiation position Lb is moved in the X direction at a constant processing speed Vxd. while moving in the Y direction.
  • the laser irradiation position Lb is set at a constant processing speed Vxd. While moving in the X direction, it does not move in the Y direction.
  • step S1005, S1006, S1001 in which the line processing period Ts1 switches to the line processing period Ts2, in parallel with performing reversal driving in the X direction as described above, from the virtual straight line Sv1 to the virtual straight line
  • the laser irradiation position Lb is moved in the Y direction (feeding direction) to Sv2.
  • this movement of the laser irradiation position Lb is executed via the position Pb2.
  • the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the position Pb2 in the deceleration period Td, and the laser irradiation position Lb moves in the Y direction in the acceleration period Ta.
  • the laser irradiation position Lb starts moving from the virtual straight line Sv1 to the position Pb2 at the same time as the deceleration period Td starts, and the laser irradiation position Lb reaches the position Pb2 at the same time as the deceleration period Td ends. do.
  • the laser irradiation position Lb starts moving from the position Pb2 to the virtual straight line Sv2 at the same time as the acceleration period Ta starts, and the laser irradiation position Lb reaches the virtual straight line Sv2 at the same time as the acceleration period Ta ends.
  • both the speed Vx in the X direction and the speed Vy in the Y direction of the laser irradiation position Lb become zero, and the laser irradiation position Lb is stopped relative to the semiconductor substrate W at position Pb2.
  • the imaging ranges Ri of the imaging units 8A and 8B are also stopped with respect to the semiconductor substrate W, and in particular, the imaging range Ri of the imaging unit 8B is located on the (+X) side of the semiconductor substrate W. It is located on the ( ⁇ X) side of position Lb and overlaps semiconductor substrate W. Therefore, during the stop period Tt, the infrared camera 81 of the imaging unit 8B images a portion of the semiconductor substrate W that overlaps with the imaging range Ri (step S1006).
  • the specific mode of moving in the Y direction from the virtual straight line Sv1 to the position Pb2 and then moving in the Y direction from the position Pb2 to the virtual straight line Sv2 is not limited to the example of FIG. 15C, and for example, This movement may be performed in the manner shown in FIGS. 15D, 15E, and 15F.
  • FIGS. 15D to 15F are diagram schematically showing a fourth example of the operation performed according to the flowchart of FIG. 14, and FIG. 15E is a diagram schematically showing a fifth example of the operation performed according to the flowchart of FIG. 14, FIG. 15F is a diagram schematically showing a sixth example of the operation performed according to the flowchart of FIG. 14.
  • the notation in FIGS. 15D to 15F is the same as that in FIG. 15C.
  • the difference between FIGS. 15D to 15F and FIG. 15C is the manner in which the laser irradiation position Lb moves during the switching period Tc. Therefore, the explanation will focus on the differences from FIG. 15C, and the common operations will be given corresponding symbols and the explanation will be omitted as appropriate.
  • the laser irradiation position Lb starts moving in the Y direction from the virtual straight line Sv1 to the position Pb2 at the same time as the deceleration period Td starts, and before the deceleration period Td ends, In the Y direction, the laser irradiation position Lb reaches the position Pb2 and stops at the position Pb2 (that is, the speed Vy is zero). However, after the laser irradiation position Lb reaches the position Pb2 in the Y direction, the deceleration period Td continues, and the laser irradiation position Lb continues to move in the X direction.
  • the laser irradiation position Lb starts moving in the Y direction from the position Pb2 to the virtual straight line Sv2, and at the same time as the acceleration period Ta ends, the laser irradiation position Lb reaches the virtual straight line Sv2. do. That is, during the period ⁇ Ty from the middle of the deceleration period Td to the middle of the acceleration period Ta, the laser irradiation position Lb stops in the Y direction (that is, the speed Vy is zero).
  • the laser irradiation position Lb starts moving in the Y direction from the virtual straight line Sv1 to the position Pb2 at the same time as the deceleration period Td starts, and before the deceleration period Td ends, In the Y direction, the laser irradiation position Lb reaches the position Pb2 and stops at the position Pb2 (that is, the speed Vy is zero). However, after the laser irradiation position Lb reaches the position Pb2 in the Y direction, the deceleration period Td continues, and the laser irradiation position Lb continues to move in the X direction.
  • the laser irradiation position Lb starts moving in the Y direction from the position Pb2 to the virtual straight line Sv2, and at the same time as the acceleration period Ta ends, the laser irradiation position Lb moves to the virtual straight line Sv2. reach. That is, during the period ⁇ Ty from the middle of the deceleration period Td to the start of the acceleration period Ta, the laser irradiation position Lb stops in the Y direction (that is, the speed Vy is zero).
  • the laser irradiation position Lb starts moving in the Y direction from the virtual straight line Sv1 to the position Pb2 at the same time as the deceleration period Td starts. However, at the end of the deceleration period Td, the laser irradiation position Lb does not reach the position Pb2 in the Y direction. Note that at the end of the deceleration period Td, the position of the laser irradiation position Lb (ie, the X coordinate) and the position of the position Pb2 (ie, the X coordinate) match in the X direction.
  • the laser irradiation position Lb continues to move in the Y direction toward the position Pb2 even after the deceleration period Td ends. Further, while the laser irradiation position Lb moves in the Y direction toward the position Pb2 from the end of the deceleration period Td, the laser irradiation position Lb is stopped in the X direction (that is, the speed Vx is zero). Then, at the same time that the laser irradiation position Lb reaches the position Pb2, the acceleration period Ta starts, and the laser irradiation position Lb starts moving in the Y direction from the position Pb2 to the virtual straight line Sv2. Further, at the same time as the acceleration period Ta ends, the laser irradiation position Lb reaches the virtual straight line Sv2.
  • FIG. 15G is a diagram schematically showing a seventh example of the operation performed according to the flowchart of FIG. 14.
  • the notation in FIG. 15G is similar to that in FIG. 15A.
  • laser processing is sequentially performed on the planned division lines S1, S2, and S3 according to the flowchart in FIG. 14.
  • the operation during the switching period Tc for changing the scheduled dividing line S to be subjected to laser processing differs between FIG. 15G and FIG. 15A. Therefore, the explanation will focus on the differences from FIG. 15A, and the common operations will be given corresponding symbols and the explanation will be omitted as appropriate.
  • the laser irradiated position Lb When the laser irradiation position Lb passes through the planned division line S1 in the (+X) side with the end of the laser processing on the planned dividing line S1, the laser irradiated position Lb starts to decelerate toward the (+X) side in the X direction. (Step S1005), and the laser irradiation position Lb stops at a position Pb2 on the (+X) side of the semiconductor substrate W in the X direction (Step S1006). This position Pb2 is provided outside the section between the virtual straight line Sv1 and the virtual straight line Sv2 (on the opposite side of the virtual straight line Sv1 to the virtual straight line Sv2) in the Y direction.
  • the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the position Pb2 beyond the virtual straight line Sv2 in parallel with the deceleration in the X direction. Further, in a state where the laser irradiation position Lb is stopped at the position Pb2, the imaging range Ri of the imaging unit 8B is stopped at a position including at least the imaging point Pw (S3). Therefore, in step S1006, the control unit 100 causes the imaging unit 8B to image the imaging range Ri, and acquires an image including the imaging point Pw (S3). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned division line S3.
  • the laser irradiation position Lb which stops at the position Pb2, starts accelerating toward the (-X) side in the X direction (step S1001). If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (+X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. It moves at a constant speed toward the (-X) side (step S1002).
  • the laser irradiation position Lb moves in the Y direction from the position Pb2 to the virtual straight line Sv2. That is, in steps S1001 and S1002, the laser irradiation position Lb moves in the Y direction from the position Pb2 to the virtual straight line Sv2 in parallel with the acceleration in the X direction. As a result, the laser irradiation position Lb reaches the scheduled dividing line S2, and line processing to the scheduled dividing line S2 can be started.
  • Step S1005 When the laser irradiation position Lb passes through the planned dividing line S2 in the (-X) side, the laser irradiated position Lb decelerates toward the (-X) side in the X direction.
  • Step S1006 the laser irradiation position Lb stops at position Pb3 on the (-X) side of the semiconductor substrate W in the X direction.
  • This position Pb3 is provided outside the section between the virtual straight line Sv2 and the virtual straight line Sv3 (on the opposite side of the virtual straight line Sv2 to the virtual straight line Sv3) in the Y direction.
  • step S1005 and S1006 the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv2 to the position Pb2 beyond the virtual straight line Sv3 in parallel with the deceleration in the X direction. Further, in a state where the laser irradiation position Lb is stopped at the position Pb3, the imaging range Ri of the imaging unit 8A is stopped at a position including at least the imaging point Pw (S4). Therefore, in step S1006, the control unit 100 causes the imaging unit 8A to image the imaging range Ri, and acquires an image including the imaging point Pw (S4). Thereby, the control unit 100 can acquire an image showing the position of the unprocessed planned division line S4.
  • step S1002 to S1004 the laser irradiation position Lb is moved in the X direction at a constant processing speed Vxd. while moving in the Y direction.
  • the laser irradiation position Lb is set at a constant processing speed Vxd. While moving in the X direction, it does not move in the Y direction.
  • step S1005, S1006, S1001 in which the line processing period Ts1 switches to the line processing period Ts2, in parallel with performing reversal driving in the X direction as described above, from the virtual straight line Sv1 to the virtual straight line
  • the laser irradiation position Lb is moved in the Y direction (feeding direction) to Sv2.
  • this movement of the laser irradiation position Lb is performed via a position Pb2 provided outside the section between the virtual straight line Sv1 and the virtual straight line Sv2 in the Y direction.
  • the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the position Pb2 beyond the virtual straight line Sv2, and in the acceleration period Ta.
  • the laser irradiation position Lb moves in the Y direction from the position Pb2 to the virtual straight line Sv2.
  • the laser irradiation position Lb starts moving from the virtual straight line Sv1 to the position Pb2 at the same time as the deceleration period Td starts, and the laser irradiation position Lb reaches the position Pb2 at the same time as the deceleration period Td ends. do.
  • the laser irradiation position Lb starts moving from the position Pb2 to the virtual straight line Sv2 at the same time as the acceleration period Ta starts, and the laser irradiation position Lb reaches the virtual straight line Sv2 at the same time as the acceleration period Ta ends.
  • both the speed Vx in the X direction and the speed Vy in the Y direction of the laser irradiation position Lb become zero, and the laser irradiation position Lb is stopped relative to the semiconductor substrate W at position Pb2.
  • the imaging ranges Ri of the imaging units 8A and 8B are also stopped with respect to the semiconductor substrate W, and in particular, the imaging range Ri of the imaging unit 8B is located on the (+X) side of the semiconductor substrate W. It is located on the ( ⁇ X) side of position Lb and overlaps semiconductor substrate W. Therefore, during the stop period Tt, the infrared camera 81 of the imaging unit 8B images a portion of the semiconductor substrate W that overlaps with the imaging range Ri (step S1006).
  • the position Pb2 is provided on the opposite side of the virtual straight line Sv1 to the virtual straight line Sv2 in the Y direction.
  • the position Pb2 may be provided on the opposite side of the virtual straight line Sv2 to the virtual straight line Sv1 in the Y direction.
  • the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the position Pb2
  • the acceleration period Ta the laser irradiation position Lb moves from the position Pb2 beyond the virtual straight line Sv1 to the virtual straight line Sv2. Move in the Y direction. Similar changes can be made to position Pb3.
  • FIG. 16 is a flowchart illustrating a first application example of line processing processing for each scheduled division line
  • FIG. 17 is a diagram schematically illustrating an example of the operation performed according to the flowchart of FIG. 16.
  • the notation in FIG. 17 is similar to the notation in FIGS. 15A to 15G.
  • the example in FIG. 16 and the example in FIG. 14 differ in the presence or absence of step S1008 for imaging the semiconductor substrate W during execution of the line processing process, but are common in other steps S1001 to S1007. Therefore, in the example of FIG. 16, any of the operations (first to seventh examples) shown in FIGS. 15A to 15G are executed.
  • FIG. 17 does not show the locus of the laser irradiation position Lb during the switching period Tc, the laser irradiation position Lb can move along the locus shown in any of FIGS. 15A to 15G.
  • Step S1008 in FIG. 16 is executed as follows. That is, the semiconductor substrate W is imaged while the laser irradiation position Lb is moving along the planned dividing line S1 (step S1008). Specifically, the imaging range Ri (i.e., the imaging range Ri of the imaging unit 8A) is located on the moving side (i.e., (+X) side) of the laser irradiation position Lb that moves to the (+X) side. ) is imaged. As a result, an image including an imaging point Pw (S11) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb is acquired. In this way, it is possible to obtain an image showing the position of the unprocessed portion of the scheduled division line S1 on which line processing is being performed.
  • the semiconductor substrate W is imaged while the laser irradiation position Lb is moving along the planned dividing line S2 (step S1008).
  • the imaging range Ri that is, the imaging section 8B located on the moving side (that is, the (-X) side) of the laser irradiation position Lb that moves to the (-X) side A range Ri) is imaged.
  • an image including an imaging point Pw (S21) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb is acquired. In this way, it is possible to obtain an image showing the position of the unprocessed portion of the planned division line S2 on which line processing is currently being performed.
  • the semiconductor substrate W is imaged while the laser irradiation position Lb is moving along the planned dividing line S3 (step S1008).
  • the imaging range Ri i.e., the imaging range Ri of the imaging unit 8A
  • the moving side i.e., (+X) side
  • the laser irradiation position Lb that moves to the (+X) side.
  • an image including an imaging point Pw (S31) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb is acquired. In this way, it is possible to obtain an image showing the position of the unprocessed portion of the planned division line S3 on which line processing is currently being performed.
  • Steps S1001 to S1007 are then repeated until it is confirmed that the laser processing has been completed for the plurality of planned dividing lines S (S1, S2, S3,%) parallel to the X direction ("YES" in step S1007). It will be done.
  • FIG. 18 is a flowchart showing a second application example of line processing processing for each scheduled dividing line
  • FIG. 19A is a diagram schematically showing a first example of the operation performed according to the flowchart of FIG. 18.
  • the locus of the laser irradiation position Lb that moves relative to the semiconductor substrate W is shown by a dotted line
  • the trajectory is shown along the dividing lines S1, S2, S3 on both sides of the dividing lines S1, S2, S3.
  • Virtual straight lines Sv1, Sv2, and Sv3 extending parallel to the X direction between the two are indicated by dashed dotted lines.
  • a dotted line indicating the trajectory of the laser irradiation position Lb is shown preferentially.
  • the flowchart in FIG. 18 is started from a state where the laser irradiation position Lb is stopped at a position Pb1 on the ( ⁇ X) side of the semiconductor substrate W in the X direction.
  • This position Pb1 is provided on the virtual straight line Sv1 along the planned dividing line S1, in other words, it is a position facing the planned dividing line S1 from the X direction.
  • the position of the laser irradiation position Lb at the time of starting the flowchart of FIG. 18 is not limited to this example, and can be changed as appropriate.
  • step S1101 the laser irradiation position Lb, which stops at the position Pb1, starts accelerating toward the (+X) side of the X direction and moves in parallel to the X direction. As a result, the laser irradiation position Lb moves toward the (+X) side along the virtual straight line Sv1. If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (-X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. (+X) side at a constant speed (step S1102).
  • the laser light source 72 is turned on, and the laser light B is irradiated from the processing head 71 to the laser irradiation position Lb.
  • the process is started (step S1103).
  • the laser beam B is irradiated onto the laser irradiation position Lb moving in the (+X) side of the X direction along the planned dividing line S1, and the planned dividing line S1 is processed (line processing process).
  • the semiconductor substrate W is imaged while the laser irradiation position Lb is moving along the planned dividing line S1 (step S1104).
  • the imaging range Ri i.e., the imaging range Ri of the imaging unit 8A
  • the moving side i.e., (+X) side
  • the laser irradiation position Lb that moves to the (+X) side.
  • an image including an imaging point Pw (S11) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb is acquired. In this way, it is possible to obtain an image showing the position of the unprocessed portion of the scheduled division line S1 on which line processing is being performed.
  • Step S1105 the laser light source 72 is turned off, and the irradiation of the laser light B from the processing head 71 to the laser irradiation position Lb ends.
  • step S1106 it is confirmed whether laser processing has been completed for a plurality of scheduled division lines S parallel to the X direction. If there is an unprocessed planned dividing line S among these scheduled dividing lines S ("NO" in step S1107), the process returns to step S1101.
  • Step S1101 the velocity Vx in the X direction of the laser irradiation position Lb that has decelerated in the (+X) side of the X direction becomes zero, and then the laser irradiation position Lb accelerates in the (-X) side of the X direction ( Step S1101). If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (+X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. It moves at a constant speed toward the (-X) side (step S1102).
  • inversion driving is performed in the X direction in the same manner as described above.
  • the laser irradiation position Lb moves in the Y direction from the virtual straight line Sv1 to the virtual straight line Sv2.
  • the laser irradiation position Lb moves to the virtual straight line Sv2 in the Y direction, and the laser irradiation position Lb reaches the planned dividing line S2. do.
  • the manner in which the laser irradiation position Lb moves in the Y direction is different from that described above.
  • the laser irradiation position Lb continuously moves in the Y direction from the planned dividing line Sb1 to the scheduled dividing line Sb2.
  • Execute (continuous feed drive) In particular, continuous feeding drive of the laser irradiation position Lb in the Y direction is performed before and after the time when the speed Vx of the laser irradiation position Lb in the X direction becomes zero due to the reversal drive. Therefore, in this example, there is no timing when both the velocity Vx in the X direction and the velocity Vy in the Y direction of the laser irradiation position Lb become zero.
  • Step S1103 the laser beam B is irradiated to the laser irradiation position Lb moving in the (-X) side of the X direction along the planned dividing line S2, and the scheduled dividing line S2 is processed (line processing process).
  • the semiconductor substrate W is imaged while the laser irradiation position Lb is moving along the planned dividing line S2 (step S1104).
  • the imaging range Ri that is, the imaging section 8B located on the moving side (that is, the (-X) side) of the laser irradiation position Lb that moves to the (-X) side A range Ri) is imaged.
  • an image including an imaging point Pw (S21) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb is acquired. In this way, it is possible to obtain an image showing the position of the unprocessed portion of the planned division line S2 on which line processing is currently being performed.
  • step S1105 in accordance with the timing when the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (-X) side, the laser light source 72 is turned off and the laser light B is irradiated from the processing head 71 to the laser irradiation position Lb.
  • the process ends (step S1105).
  • the unprocessed portion of the scheduled dividing line S2, which is the target of the line processing is An image is captured.
  • step S1106 it is confirmed whether laser processing has been completed for a plurality of scheduled division lines S parallel to the X direction. If there is an unprocessed planned dividing line S among these scheduled dividing lines S ("NO" in step S1107), the process returns to step S1101.
  • Step S1101 If the speed Vx of the laser irradiation position Lb increases to the processing speed Vxd by the time the laser irradiation position Lb reaches the edge of the semiconductor substrate W on the (-X) side, the laser irradiation position Lb will move in the X direction at the processing speed Vxd. (+X) side at a constant speed (step S1102).
  • Step S1103 the laser beam B is irradiated onto the laser irradiation position Lb moving in the (+X) side of the X direction along the planned dividing line S3, and the planned dividing line S3 is processed (line processing process).
  • the semiconductor substrate W is imaged while the laser irradiation position Lb is moving along the planned dividing line S3 (step S1104).
  • the imaging range Ri i.e., the imaging range Ri of the imaging unit 8A
  • the moving side i.e., (+X) side
  • the laser irradiation position Lb that moves to the (+X) side.
  • an image including an imaging point Pw (S31) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb is acquired. In this way, it is possible to obtain an image showing the position of the unprocessed portion of the planned division line S3 on which line processing is currently being performed.
  • Step S1105) the laser light source 72 is turned off, and the irradiation of the laser light B from the processing head 71 to the laser irradiation position Lb ends.
  • the speed change of the laser irradiation position Lb will be explained with reference to "speed change in the X direction" and "speed change in the Y direction” in FIG. 19A.
  • the laser irradiation position Lb is moved in the X direction at a constant processing speed Vxd. while moving in the Y direction.
  • the laser irradiation position Lb is set at a constant processing speed Vxd. While moving in the X direction, it does not move in the Y direction.
  • the X-axis drive unit 65 (processing axis drive unit) irradiates laser beams that have passed through the scheduled dividing line S1 (first processing line) to the (+X) side (first side) in the X direction (processing direction).
  • the laser irradiation position Lb is aligned with the scheduled division line S2 (the first division line S2). 2 processing line).
  • the Y-axis drive unit 63 moves a virtual straight line Sv1 (first virtual straight line) extending in the X direction along the scheduled dividing line S1 to the outside of the scheduled dividing line S1.
  • the laser irradiation position Lb is moved in the Y direction (feeding direction) from above (straight line) to above the virtual straight line Sv2 (second virtual straight line) extending in the X direction along the scheduled dividing line S2 to the outside of the scheduled dividing line S2.
  • Execute continuous feed drive to continuously move to .
  • control unit 100 causes the Y-axis drive unit 63 to start continuous feeding drive before the X-axis drive unit 65 stops the laser irradiation position Lb in the X direction by reverse drive, and the X-axis drive unit 65 performs reverse drive.
  • the X-axis drive section 65 and the Y-axis drive section 63 are controlled so that the Y-axis drive section 63 ends the continuous feeding drive after stopping the laser irradiation position Lb in the X direction.
  • the Y-axis drive unit 63 moves the laser irradiation position Lb in the Y direction during the period in which the X-axis drive unit 65 uses reverse driving to stop the laser irradiation position Lb in the X direction.
  • the switching period Tc includes a deceleration period Td (step S1006) in which the laser irradiation position Lb is decelerated in the X direction and an acceleration period Ta (step S1001) in which the laser irradiation position Lb is accelerated in the X direction.
  • the Y-axis drive unit 63 continuously moves the laser irradiation position Lb in the Y direction before and after the transition period Tx that transitions from the deceleration period Td to the acceleration period Ta (i.e., (Executed without stopping the laser irradiation position Lb in the Y direction). Note that during the transition period Tx, the laser irradiation position Lb is stopped in the X direction (that is, the speed Vx is zero).
  • FIG. 19B is a diagram schematically showing a second example of operations performed according to the flowchart of FIG. 18.
  • the difference between FIG. 19B and FIG. 19A is the number of times the semiconductor substrate W is imaged in parallel with the line processing.
  • the laser irradiation position Lb in order to execute the line processing process on the planned division line S1, the laser irradiation position Lb is moved to the (+X) side (i.e., the laser irradiation position Lb is moved to the Imaging of the imaging range Ri (that is, the imaging range Ri of the imaging unit 8A) located on the side) is performed multiple times (twice in this example) (step S1104).
  • the laser irradiation position Lb is moved to the (-X) side rather than the laser irradiation position Lb that moves to the (-X) side.
  • Imaging of the located imaging range Ri (that is, the imaging range Ri of the imaging unit 8B) is performed multiple times (twice in this example) (step S1104).
  • two images each including two imaging points Pw (S21) and Pw (S22) on the moving side of the laser irradiation position Lb than the laser irradiation position Lb are acquired.
  • imaging is similarly performed a plurality of times (step S1104).
  • FIG. 20 is a diagram schematically showing an example of an image of a semiconductor substrate acquired in step S1008 of FIG. 16 or step S1104 of FIG. 18.
  • an image IM is obtained by capturing an image of a region including the intersection of two planned dividing lines S that are orthogonal to each other.
  • the luminance appears averaged in the X direction in the image IM.
  • a high-brightness area extending parallel to the X direction corresponding to the planned dividing line S and a low-brightness area lower in brightness than the high-brightness area extending parallel to the X direction corresponding to the semiconductor chip C are formed.
  • a high brightness area is sandwiched between two low brightness areas. Therefore, the control unit 100 can confirm the position of the planned division line S in the Y direction based on the high brightness area corresponding to the planned division line S.
  • imaging is performed to image an imaging range Ri (first imaging range) located on the (+X) side (first side) in the X direction (processing direction) with respect to the laser irradiation position Lb.
  • 8A first imaging section
  • an imaging section 8B second imaging section
  • the imaging unit 8A and the imaging unit 8B image a portion of the semiconductor substrate W that overlaps with each imaging range Ri (steps S1006, S1008, S1104). This makes it possible to recognize the state of the semiconductor substrate W on both sides of the laser irradiation position Lb in the X direction.
  • control unit 100 performs a line processing process (first line processing process) in which the laser irradiation position Lb is moved to the (+X) side in the X direction to process the scheduled division line S1 (first processing line);
  • a line machining process (second line machining process) in which the laser irradiation position Lb is moved to the (-X) side in the X direction to process the scheduled dividing line S2 (second machining line) is sequentially executed.
  • the X-axis drive unit 65 In the direction, the laser irradiation position Lb, which has passed the dividing line S1 on the (+X) side, is decelerated toward the (+X) side, stopped, and then accelerated toward the (-X) side, thereby changing the laser irradiation position.
  • a reversal drive (first reversal drive) is performed to cause Lb to reach the planned division line S2 (steps S1005, S1001).
  • the Y-axis drive unit 63 moves the dividing line from above the virtual straight line Sv1 (first virtual straight line) extending in the X direction along the scheduled dividing line S1 to the outside of the scheduled dividing line S1.
  • the laser irradiation position Lb is moved in the Y direction (feeding direction) to the virtual straight line Sv2 (second virtual straight line) extending in the X direction along the scheduled line S2 to the outside of the scheduled dividing line S2.
  • the imaging unit 8B images a portion of the semiconductor substrate W that overlaps with the imaging range Ri of the imaging unit 8B (step S1006).
  • the state of the semiconductor substrate W on the (-X) side of the laser irradiation position Lb is shown by effectively utilizing the switching period Tc in which the laser irradiation position Lb that has passed through the planned dividing line S1 is directed toward the scheduled dividing line S2.
  • An image can be captured by the imaging unit 8B.
  • control unit 100 determines the timing at which the X-axis drive unit 65 stops the laser irradiation position Lb by reverse driving during the switching period Tc from the line processing process for the scheduled dividing line S1 to the line processing process for the scheduled dividing line S2.
  • a stop period Tt (first stop period) is provided in which the laser irradiation position Lb is stopped in both the X direction and the Y direction.
  • the imaging unit 8B images a portion of the semiconductor substrate W that overlaps with the imaging range Ri of the imaging unit 8B during the stop period Tt.
  • the state of the semiconductor substrate W on the (-X) side of the laser irradiation position Lb is shown by effectively utilizing the switching period Tc in which the laser irradiation position Lb that has passed through the scheduled dividing line S1 is directed toward the scheduled dividing line S2.
  • a still image can be captured by the imaging unit 8B.
  • the control unit 100 also performs a line processing process (third line processing process) in which the laser irradiation position Lb is moved to the (-X) side in the X direction to process the dividing line S2 (third processing line). , a line machining process (fourth line machining process) in which the laser irradiation position Lb is moved to the (+X) side in the X direction to process the scheduled dividing line S3 (fourth machining line).
  • a line processing process third line processing process
  • a line machining process fourth line machining process
  • the X-axis drive unit 65 In the direction, the laser irradiation position Lb, which has passed through the planned dividing line S2 on the (-X) side, is decelerated toward the (-X) side, stopped, and then accelerated toward the (+X) side.
  • a reversal drive (second reversal drive) is performed to bring the position Lb to the planned division line S3 (steps S1005, S1001).
  • the Y-axis drive unit 63 moves from above the virtual straight line Sv2 (third virtual straight line) extending in the X direction along the scheduled dividing line S2 to the outside of the scheduled dividing line S2.
  • the laser irradiation position Lb is moved in the Y direction to a position on a virtual straight line Sv3 (fourth virtual straight line) extending in the X direction along the planned line S3 to the outside of the planned dividing line S3.
  • the imaging unit 8A images a portion of the semiconductor substrate W that overlaps with the imaging range Ri of the imaging unit 8A (step S1006).
  • an image showing the state of the semiconductor substrate W on the (+X) side of the laser irradiation position Lb is effectively utilized by the switching period Tc in which the laser irradiation position Lb that has passed through the planned dividing line S2 is directed toward the scheduled dividing line S3. can be imaged by the imaging unit 8A.
  • control unit 100 determines the timing at which the X-axis drive unit 65 stops the laser irradiation position Lb by reverse driving during the switching period Tc from the line processing process for the scheduled dividing line S2 to the line processing process for the scheduled dividing line S3.
  • a stop period Tt (second stop period) is provided in which the laser irradiation position Lb is stopped in both the X direction and the Y direction.
  • the imaging unit 8A images a portion of the semiconductor substrate W that overlaps with the imaging range Ri of the imaging unit 8A during the stop period Tt (step S1006).
  • the imaging unit 8A images a portion of the semiconductor substrate W that overlaps with the imaging range Ri of the imaging unit 8A (steps S1008, S1104), and the imaging unit 8B During the execution of the line processing process on the scheduled dividing line S2, a portion of the semiconductor substrate W that overlaps with the imaging range Ri of the imaging unit 8B is imaged (steps S1008, S1104).
  • the image capturing unit 8A can capture an image showing the state of the semiconductor substrate W on the (+X) side of the laser irradiation position Lb by using the execution period of the line processing process for the scheduled dividing line S1, and also Using the execution period of the line processing process for the line S2, an image showing the state of the semiconductor substrate W on the (-X) side of the laser irradiation position Lb can be captured by the imaging unit 8B.
  • FIG. 21 is a flowchart showing an example of a method for determining laser processing conditions in line processing
  • FIG. 22A is a diagram showing parameters related to determining laser processing conditions
  • FIG. 22B is a diagram showing the temporal influence of laser processing conditions
  • 22C is a diagram showing an example of a table referred to in determining the laser processing conditions in FIG. 21. This table is stored in the storage unit 190 in advance.
  • FIG. 22A shows the upper graph showing the relationship between the speed Vx at which the laser irradiation position Lb moves in the X direction and time and the speed Vx at which the laser irradiation position Lb moves in the X direction and the laser irradiation position Lb in line processing processing.
  • the lower graph showing the relationship between the position in the X direction (that is, the X coordinate) is shown.
  • An irradiation position scan is performed in which the laser beam B is irradiated onto the laser irradiation position Lb that overlaps the planned dividing line S while moving the laser irradiation position Lb in the X direction until . That is, the irradiation position scanning is performed by moving the laser irradiation position Lb in the X direction from the start point Irradiate light B. In this way, the above-mentioned line processing process is executed in conjunction with the scanning of the irradiation position.
  • a constant velocity section SC is set for the planned division line S.
  • This constant velocity section SC is located between the start point Xs and the end point Xe in the X direction, and is set to include the planned dividing line S.
  • both ends of the constant velocity section SC coincide with both ends of the planned division line S in the X direction, in other words, the constant velocity section SC coincides with the planned division line S.
  • the manner in which the constant velocity section SC is set is not limited to this example, and the constant velocity section SC may be set by adding an offset outward from both ends of the planned dividing line S. In this case, the constant velocity section SC is longer than the planned dividing line S.
  • the length of the offset may be a predetermined constant value, or may be a value obtained by multiplying the length of the scheduled division line S by a predetermined multiplier (for example, 1%).
  • the length of the constant velocity section SC is set according to the length of the scheduled dividing line S. Specifically, the longer the scheduled dividing line S becomes, the longer the constant velocity section SC becomes (in other words, the scheduled dividing line S (The shorter the constant velocity section SC becomes, the shorter the constant velocity section SC becomes.)
  • the laser irradiation position Lb moves in the X direction from a start point Xs provided on one side of the constant velocity section SC to an end point Xe provided on the other side of the constant velocity section SC.
  • the laser irradiation position Lb is accelerated at an acceleration A in the X direction, and the laser irradiation position Lb is The speed Vx in the X direction at the position Lb increases from zero to the processing speed Vxd.
  • the laser irradiation position Lb moves from one end Xss to the other end Xse of the constant velocity section SC during a constant velocity period Tsc (in this example, coincides with the line processing period Ts).
  • the irradiation position Lb moves in the X direction at a constant processing speed Vxd.
  • the laser irradiation position Lb decelerates in the X direction at an acceleration A, and the laser irradiation position
  • the speed Vx of Lb in the X direction decreases from the machining speed Vxd to zero.
  • the acceleration period Ta is the period (Vxd/A) required for the speed Vx to increase from zero to the machining speed Vxd at the acceleration A
  • the constant speed period Tsc is the constant speed that is the length of the constant speed section SC.
  • the period required to move the distance Lsc at the machining speed Vxd is (Lsc/Vxd)
  • the processing speed Vxd is set to Vxd(1)
  • the frequency of the laser beam B is set to fc(1)
  • the constant velocity distance is
  • Lsc is greater than Lsc(1) and less than Lsc(2)
  • the laser processing conditions are such that the processing speed Vxd is set to Vxd(2) and the frequency of laser beam B is set to fc(2).
  • the length of the constant velocity section SC (uniform velocity distance Lsc) set for the planned division line S that is the target of line processing processing is acquired (step S1201). Then, based on the constant velocity distance Lsc acquired in step S1201 and the table of FIG. 22C, the machining speed Vxd is determined (step S1202), and the frequency fc of the laser beam B is determined (step S1203). Irradiation position scanning is thus performed according to the laser processing conditions (processing speed Vxd and frequency fc) determined according to FIG.
  • the irradiation position scanning is performed sequentially on a plurality of scheduled division lines S parallel to the X direction.
  • a plurality of irradiation position scans targeting different scheduled division lines S are executed.
  • the laser processing condition determination in FIG. 21 is executed for each of a plurality of irradiation position scans, and each irradiation position scan moves the laser irradiation position Lb according to the laser processing conditions determined for that irradiation position scan. and irradiation with laser light B.
  • the scheduled dividing lines S become shorter as the distance from the center of the circle in the Y direction increases.
  • the constant velocity distance Lsc set for the planned dividing line S also becomes shorter. That is, the constant velocity distance Lsc set in the irradiation position scan differs depending on the position in the Y direction of the planned division line S targeted by the irradiation position scan. Therefore, it is appropriate to determine the laser processing conditions for each of the irradiation position scans that are sequentially performed on the plurality of scheduled dividing lines S.
  • the laser processing condition determination can be performed at any timing before the start of the irradiation position scanning targeted by the laser processing condition determination. For example, before starting a plurality of irradiation position scans respectively corresponding to a plurality of scheduled division lines S parallel to the X direction, laser processing condition determination may be performed for all of the plurality of irradiation position scans. Alternatively, when performing one irradiation position scan and then performing the next irradiation position scan, the laser processing conditions for the next irradiation position scan may be determined during execution of one irradiation position scan.
  • the machining speed Vxd is adjusted by selecting one of a plurality of discrete machining speeds Vxd(1), Vxd(2), Vxd(3), and Vxd(4).
  • the transmission frequency fc is adjusted by selecting one of a plurality of discrete transmission frequencies fc(1), Vxd(2), Vxd(3), and Vxd(4). Ru. That is, in determining the laser processing conditions, the processing speed Vxd and the oscillation frequency fc are selected depending on which of the plurality (four) ranges shown in FIG. 22C the constant velocity distance Lsc belongs to.
  • adjusting the machining speed Vxd includes maintaining the machining speed Vxd and changing (switching) the machining speed Vxd
  • adjusting the oscillation frequency fc includes maintaining the oscillation frequency fc and changing the oscillation frequency fc. (switching).
  • the laser processing device 1 corresponds to an example of the "laser processing device” of the present invention
  • the chuck stage 3 corresponds to an example of the "support member” of the present invention
  • the Y-axis drive unit 63 corresponds to an example of the "support member” of the present invention.
  • the X-axis drive section 65 corresponds to an example of the “processing axis drive section” of the present invention
  • the processing head 71 corresponds to an example of the "processing head” of the present invention.
  • the imaging section 8A corresponds to an example of the "first imaging section” of the present invention
  • the imaging range Ri of the imaging section 8A corresponds to an example of the "first imaging range” of the invention
  • the imaging section 8B corresponds to an example of the "second imaging section” of the present invention
  • the imaging range Ri of the imaging section 8B corresponds to an example of the "second imaging range” of the invention
  • the control section 100 corresponds to the "second imaging range” of the invention.
  • the control unit 100 corresponds to an example of the "computer” of the present invention
  • the laser processing program 191 corresponds to an example of the "laser processing program” of the present invention
  • the recording medium 192 corresponds to an example of the "laser processing program” of the present invention.
  • the laser beam B corresponds to an example of the "recording medium” of the present invention
  • the laser beam B corresponds to an example of the "laser beam” of the present invention
  • the laser irradiation position Lb corresponds to an example of the "laser irradiation position” of the present invention
  • the scheduled dividing line S corresponds to an example of the "processing line” of the present invention
  • the scheduled dividing line S1 corresponds to an example of the "first processing line” of the present invention
  • the scheduled dividing line S2 corresponds to an example of the "second processing line” of the present invention.
  • the virtual straight line Sv1 corresponds to an example of the “first virtual straight line” of the present invention
  • the virtual straight line Sv2 corresponds to an example of the “second virtual straight line” of the present invention
  • the planned dividing line S2 corresponds to an example of the "third processing line” of the present invention
  • the scheduled dividing line S3 corresponds to an example of the "fourth processing line” of the present invention
  • the virtual straight line Sv2 corresponds to the "third processing line” of the present invention.
  • the virtual straight line Sv3 corresponds to an example of the "fourth virtual straight line” of the present invention
  • the semiconductor substrate W corresponds to an example of the "workpiece” of the present invention
  • the X direction corresponds to an example of the "fourth virtual straight line” of the present invention.
  • This corresponds to an example of the "processing direction” of the present invention
  • the Y direction corresponds to an example of the "feeding direction” of the present invention
  • the (+X) side corresponds to an example of the "first side” of the present invention
  • the (- The X) side corresponds to an example of the "second side” of the present invention.
  • the present invention is not limited to the embodiments described above, and various changes can be made to what has been described above without departing from the spirit thereof.
  • the purpose of the captured image is not particularly explained.
  • the control unit 100 calculates the amount of displacement of the unprocessed planned dividing line S in the Y direction based on the image taken of the semiconductor substrate W, and calculates the displacement amount of the planned dividing line S to be subjected to line processing and laser irradiation. Alignment with position Lb can be performed based on the amount of displacement.
  • the imaging unit 8 images the intersection of the two planned dividing lines S that are orthogonal to each other, but the imaging target of the imaging unit 8 is not limited to this, for example, an alignment mark attached to the semiconductor chip C. etc. is also fine.
  • the specific configuration for moving the laser irradiation position Lb relative to the semiconductor substrate W is not limited to the above-mentioned XY ⁇ drive table 6, but may be a drive mechanism that drives the processing head 71 in the X direction and the Y direction, for example. do not have.
  • individually separated semiconductor chips C may be manufactured by the laser processing method shown above (substrate processing in FIG. 11, etc.) (semiconductor chip manufacturing method).
  • line processing is performed on the planned dividing line S of the semiconductor substrate W using the above laser processing method to form a modified layer (laser processing step).
  • laser processing step by stretching the tape E holding the semiconductor substrate W and expanding the tape E, each of the plurality of semiconductor chips C is separated (expansion step).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ照射位置Lbに対して、X方向(加工方向)の(+X)側(第1の側)に位置する撮像範囲Ri(第1の撮像範囲)を撮像する撮像部8A(第1の撮像部)と、X方向の(-X)側(第2の側)に位置する撮像範囲Ri(第2の撮像範囲)を撮像する撮像部8B(第2の撮像部)とが設けられている。そして、撮像部8Aおよび撮像部8Bは、半導体基板Wのうちそれぞれの撮像範囲Riに重複する部分を撮像する(ステップS1006、S1008、S1104)。これによって、X方向においてレーザ照射位置Lbの両側における半導体基板Wの状態を認識することが可能となっている。

Description

レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ
 この発明は、加工対象物に設けられた加工ラインにレーザ光を照射することで加工ラインを加工する技術に関する。
 特許文献1~3には、半導体基板に設けられた分割予定ラインにレーザ光を照射しつつ、半導体基板に対してレーザ光を相対的に移動させることで分割予定ラインを加工するレーザ加工技術が記載されている。例えば特許文献1に示されるように、このレーザ加工技術では、往路と復路でレーザ光を照射する分割予定ラインを変更しつつ、レーザ光を往復させることで、複数の分割予定ラインに対して順番に加工が実行される。この際、半導体基板の所定箇所を撮像することで取得した画像に基づき分割予定ラインの位置を認識するアライメント処理の結果に応じてレーザ光の位置を調整することで、分割予定ラインにレーザ光を的確に照射することができる(特許文献2)。また、特許文献3で指摘されるように、分割予定ラインをレーザ光により加工することで分割予定ラインの幅が膨張して、未加工の分割予定ラインの位置が加工方向に直交する送り方向にずれる場合がある。このような分割予定ラインの位置ずれに対応するためには、半導体基板の撮像を適宜実行することが適当となる。
特許第5804716号公報 特開第5554593号公報 特開第5037082号公報
 ところで、特許文献2では、それぞれ加工対象物(半導体基板)を撮像する2個の撮像部と加工ヘッドとが送り方向に並ぶ。しかしながら、加工対象物に対して加工を行うに当たっては、加工ヘッドからレーザ光が照射されるレーザ照射位置に対して、加工方向に並ぶ範囲における加工対象物の状態を認識できることが求められる場面がある。特に、加工方向においてレーザ照射位置の両側における加工対象物の状態が認識できる好適と言える。
 この発明は上記課題に鑑みなされたものであり、加工ヘッドからレーザ照射位置にレーザ光を照射しつつレーザ照射位置を加工対象物に対して相対的に加工方向に移動させるレーザ加工技術において、加工方向においてレーザ照射位置の両側における加工対象物の状態を認識可能とする技術の提供を目的とする。
 本発明に係るレーザ加工装置は、互いに平行な複数の加工ラインを有する加工対象物を、加工ラインが所定の加工方向に平行となるように支持する支持部材と、所定のレーザ照射位置にレーザ光を照射する加工ヘッドと、支持部材および加工ヘッドの少なくとも一方を加工方向に駆動することで、加工対象物に対してレーザ照射位置を加工方向に相対的に移動させる加工軸駆動部と、支持部材および加工ヘッドの少なくとも一方を加工方向に直交する送り方向に駆動することで、加工対象物に対してレーザ照射位置を送り方向に相対的に移動させる送り軸駆動部と、加工ヘッドに対して加工方向の第1の側に配置されて、レーザ照射位置の第1の側に位置する第1の撮像範囲を撮像する第1の撮像部と、加工ヘッドに対して加工方向の第1の側の逆の第2の側に配置されて、レーザ照射位置の第2の側に位置する第2の撮像範囲を撮像する第2の撮像部と、送り軸駆動部によりレーザ照射位置を加工ラインに合わせた状態で加工ヘッドからレーザ照射位置にレーザ光を照射しつつ、加工軸駆動部によりレーザ照射位置を加工対象物に対して加工方向へ移動させるライン加工処理を実行することで、加工ラインを加工する制御部とを備え、第1の撮像範囲および第2の撮像範囲は、レーザ照射位置が移動するのに伴ってレーザ照射位置と一体的に加工対象物に対して相対的に移動し、制御部は、加工対象物のうち、第1の撮像範囲に重複する部分を第1の撮像部に撮像させ、加工対象物のうち、第2の撮像範囲に重複する部分を第2の撮像部に撮像させるレーザ加工装置。
 本発明に係るレーザ加工方法は、互いに平行な複数の加工ラインを有する加工対象物の加工ラインに加工を行うレーザ加工方法であって、加工ラインが所定の加工方向に平行となるように加工対象物を支持部材により支持する工程と、所定のレーザ照射位置にレーザ光を照射する加工ヘッドおよび支持部材の少なくとも一方を加工方向に直交する送り方向に駆動する送り軸駆動部によってレーザ照射位置を加工ラインに合わせた状態で加工ヘッドからレーザ照射位置にレーザ光を照射しつつ、加工ヘッドおよび支持部材の少なくとも一方を加工方向に駆動する加工軸駆動部によってレーザ照射位置を加工対象物に対して加工方向へ移動させる工程と、加工ヘッドに対して加工方向の第1の側に配置された第1の撮像部によって、レーザ照射位置の第1の側に位置する第1の撮像範囲を撮像する工程と、加工ヘッドに対して加工方向の第1の側と逆の第2の側に配置された第2の撮像部によって、レーザ照射位置の第2の側に位置する第2の撮像範囲を撮像する工程とを備え、第1の撮像範囲および第2の撮像範囲は、レーザ照射位置が移動するのに伴ってレーザ照射位置と一体的に加工対象物に対して相対的に移動し、第1の撮像部は、加工対象物のうち、第1の撮像範囲に重複する部分を撮像し、第2の撮像部は、加工対象物のうち、第1の撮像範囲に重複する部分を撮像する。
 このように構成された本発明(レーザ加工装置およびレーザ加工方法)では、レーザ照射位置に対して、加工方向の第1の側に位置する第1の撮像範囲を撮像する第1の撮像部と、加工方向の第2の側に位置する第2の撮像範囲を撮像する第2の撮像部とが設けられている。そして、第1および第2の撮像部は、加工対象物のうち第1および第2の撮像範囲に重複する部分を撮像する。これによって、加工方向においてレーザ照射位置の両側における加工対象物の状態を認識することが可能となっている。
 また、制御部は、加工方向の第1の側にレーザ照射位置を移動させるライン加工処理によって、複数の加工ラインのうち第1の加工ラインを加工する第1のライン加工処理と、加工方向の第2の側にレーザ照射位置を移動させるライン加工処理によって、複数の加工ラインのうち第1の加工ラインと異なる第2の加工ラインを加工する第2のライン加工処理とを、順番に実行するように、レーザ加工装置を構成してもよい。
 また、第1のライン加工処理を終了してから第2のライン加工処理を開始するまでの第1の切換期間において、加工軸駆動部は、加工方向において、第1の加工ラインを第1の側に通過したレーザ照射位置を第1の側に向けて減速させて停止させてから第2の側に向けて加速することで、レーザ照射位置を第2の加工ラインへ到達させる第1の反転駆動を実行し、送り軸駆動部は、第1の加工ラインに沿って第1の加工ラインの外側まで加工方向に延設された第1の仮想直線上から、第2の加工ラインに沿って第2の加工ラインの外側まで加工方向に延設された第2の仮想直線上まで、レーザ照射位置を送り方向へ移動させ、第2の撮像部は、第1の切換期間において加工対象物のうち第2の撮像範囲に重複する部分を撮像するように、レーザ加工装置を構成してもよい。かかる構成では、第1の加工ラインを通過したレーザ照射位置を第2の加工ラインに向かわせる第1の切換期間を有効活用して、レーザ照射位置の第2の側における加工対象物の状態を示す画像を第2の撮像部により撮像することができる。
 また、制御部は、第1の切換期間において、加工軸駆動部が第1の反転駆動でレーザ照射位置を停止させるタイミングに重複して、送り軸駆動部にレーザ照射位置を停止させることで、加工方向および送り方向の両方においてレーザ照射位置が停止する第1の停止期間を設け、第2の撮像部は、第1の停止期間において、加工対象物のうち第2の撮像範囲に重複する部分を撮像するように、レーザ加工装置を構成してもよい。かかる構成では、第1の加工ラインを通過したレーザ照射位置を第2の加工ラインに向かわせる第1の切換期間を有効活用して、レーザ照射位置の第2の側における加工対象物の状態を示す静止画像を第2の撮像部により撮像することができる。
 また、制御部は、加工方向の第2の側にレーザ照射位置を移動させるライン加工処理によって、複数の加工ラインのうち第3の加工ラインを加工する第3のライン加工処理と、加工方向の第1の側にレーザ照射位置を移動させるライン加工処理によって、複数の加工ラインのうち第3の加工ラインと異なる第4の加工ラインを加工する第4のライン加工処理とを、順番に実行し、第3のライン加工処理を終了してから第4のライン加工処理を開始するまでの第2の切換期間において、加工軸駆動部は、加工方向において、第3の加工ラインを第2の側に通過したレーザ照射位置を第2の側に向けて減速させて停止させてから第1の側に向けて加速することで、レーザ照射位置を第4の加工ラインへ到達させる第2の反転駆動を実行し、送り軸駆動部は、第3の加工ラインに沿って第3の加工ラインの外側まで加工方向に延設された第3の仮想直線上から、第4の加工ラインに沿って第4の加工ラインの外側まで加工方向に延設された第4の仮想直線上まで、レーザ照射位置を送り方向へ移動させ、第1の撮像部は、第2の切換期間において加工対象物のうち第1の撮像範囲に重複する部分を撮像するように、レーザ加工装置を構成してもよい。かかる構成では、第3の加工ラインを通過したレーザ照射位置を第4の加工ラインに向かわせる第2の切換期間を有効活用して、レーザ照射位置の第1の側における加工対象物の状態を示す画像を第1の撮像部により撮像することができる。
 また、制御部は、第2の切換期間において、加工軸駆動部が第2の反転駆動でレーザ照射位置を停止させるタイミングに重複して、送り軸駆動部にレーザ照射位置を停止させることで、加工方向および送り方向の両方においてレーザ照射位置が停止する第2の停止期間を設け、第1の撮像部は、第2の停止期間において、加工対象物のうち第1の撮像範囲に重複する部分を撮像するように、レーザ加工装置を構成してもよい。かかる構成では、第3の加工ラインを通過したレーザ照射位置を第4の加工ラインに向かわせる第2の切換期間を有効活用して、レーザ照射位置の第1の側における加工対象物の状態を示す静止画像を第1の撮像部により撮像することができる。
 また、第1の撮像部は、第1のライン加工処理の実行中に、加工対象物のうち第1の撮像範囲に重複する部分を撮像し、第2の撮像部は、第2のライン加工処理の実行中に、加工対象物のうち第2の撮像範囲に重複する部分を撮像するように、レーザ加工装置を構成してもよい。かかる構成では、第1のライン加工処理の実行期間を利用して、レーザ照射位置の第1の側における加工対象物の状態を示す画像を第1の撮像部により撮像できるとともに、第2のライン加工処理の実行期間を利用して、レーザ照射位置の第2の側における加工対象物の状態を示す画像を第2の撮像部により撮像できる。
 本発明に係るレーザ加工プログラムは、上記のレーザ加工方法をコンピュータに実行させる。
 本発明に係る記録媒体は、上記のレーザ加工プログラムを、コンピュータにより読み出し可能に記録する。
 本発明に係る半導体チップ製造方法は、加工ラインによって区分けされた複数の半導体チップが配列された半導体基板を、上記のレーザ加工方法によって加工する工程と、レーザ加工方法によって加工された半導体基板を粘着力によって保持するテープを拡張することで複数の半導体チップのそれぞれを分離する工程とを備える。
 本発明に係る半導体チップは、加工ラインによって区分けされた複数の半導体チップが配列された半導体基板を、上記のレーザ加工方法によって加工する工程と、レーザ加工方法によって加工された半導体基板を粘着力によって保持するテープを拡張することで複数の半導体チップのそれぞれを分離する工程とによって製造される。
 本発明によれば、加工ヘッドからレーザ照射位置にレーザ光を照射しつつレーザ照射位置を加工対象物に対して相対的に加工方向に移動させるレーザ加工技術において、加工方向においてレーザ照射位置の両側における加工対象物の状態を認識することが可能となる。
本発明に係るレーザ加工装置の一例を模式的に示す正面図。 図1のレーザ加工装置を模式的に示す平面図。 図1のレーザ加工装置が備える電気的構成を示すブロック図。 レーザ加工が実行済みのレーザ加工基板を生産する方法の一例を示すフローチャート。 リングフレームの取り出しの一例を示すフローチャート。 リングフレームの移載の一例を示すフローチャート。 図5および図6のフローチャートに従って実行される動作の一例を模式的に示す平面図。 図5および図6のフローチャートに従って実行される動作の一例を模式的に示す平面図。 図5および図6のフローチャートに従って実行される動作の一例を模式的に示す平面図。 図5および図6のフローチャートに従って実行される動作の一例を模式的に示す平面図。 図5および図6のフローチャートに従って実行される動作の一例を模式的に示す平面図。 リングフレームの収納の一例を示すフローチャート。 リングフレームアライメントの一例を示すフローチャートであり、 リングフレームアライメントで実行される動作の一例を模式的に示す平面図。 基板加工の一例を示すフローチャート。 図11のフローチャートに従って実行される動作の一例を模式的に示す平面図。 キャリブレーションの一例を示すフローチャート。 図13Aのキャリブレーションで実行されるステージ平面特定の一例を示すフローチャート。 図13Aのキャリブレーションで実行される基板平面特定の一例を示すフローチャート。 各分割予定ラインへのライン加工処理の基本工程を示すフローチャート。 図14のフローチャートに従って実行される動作の第1例を模式的に示す図。 図14のフローチャートに従って実行される動作の第2例を模式的に示す図。 図14のフローチャートに従って実行される動作の第3例を模式的に示す図。 図14のフローチャートに従って実行される動作の第4例を模式的に示す図。 図14のフローチャートに従って実行される動作の第5例を模式的に示す図。 図14のフローチャートに従って実行される動作の第6例を模式的に示す図。 図14のフローチャートに従って実行される動作の第7例を模式的に示す図。 各分割予定ラインへのライン加工処理の第1応用例を示すフローチャート。 図16のフローチャートに従って実行される動作の一例を模式的に示す図。 各分割予定ラインへのライン加工処理の第2応用例を示すフローチャート。 図18のフローチャートに従って実行される動作の第1例を模式的に示す図。 図18のフローチャートに従って実行される動作の第2例を模式的に示す図。 図16のステップS1008あるいは図18のステップS1104で取得される半導体基板の画像の一例を模式的に示す図。 ライン加工処理でのレーザ加工条件の決定方法の一例を示すフローチャート。 レーザ加工条件の決定に関わるパラメータを示す図。 レーザ加工条件の時間的影響を示す図。 図21のレーザ加工条件の決定で参照するテーブルの一例を示す図。
 図1は本発明に係るレーザ加工装置の一例を模式的に示す正面図であり、図2は図1のレーザ加工装置を模式的に示す平面図である。両図および以下の図では、水平方向であるX方向と、X方向に直交する水平方向であるY方向と、鉛直方向であるZ方向とを適宜示す。さらに、X方向の(+X)側(図2紙面の右側)と、X方向の(+X)側と逆の(-X)側(図2紙面の左側)とを適宜示すとともに、Y方向の(+Y)側(図2紙面の上側)と、Y方向の(+Y)側と逆の(-Y)側(図2紙面の下側)とを適宜示す。
 レーザ加工装置1は半導体基板W(加工対象物)にレーザ光を照射することで、半導体基板Wを加工する。この半導体基板Wは、テープEを介してリングフレームFrによって保持される。テープEは、ダイシングテープあるいはボンディングテープであり、テープEの表面(上面)は粘着性を有する。リングフレームFrは、正八角形の一部を切り欠いてスリットFsを設けた外形を有し、リングフレームFrの中央には円形の開口Foが設けられている。テープEの表面は、開口Foの全体に重複するようにリングフレームFrに下側から対向し、テープEの表面の周縁がリングフレームFrの底面に粘着力により貼り付けられている。また、半導体基板WがテープEの表面に粘着力により貼り付けられている。こうして、半導体基板WはテープEを介してリングフレームFrによって保持された状態で、レーザ加工装置1内で運搬される。なお、半導体基板Wは表面と当該表面と逆の裏面を有し、半導体基板Wの表面に電子回路が形成される一方、半導体基板Wの裏面は平坦である。そして、半導体基板Wの表面が下側を向いて、テープEの表面に貼り付けられている。つまり、半導体基板Wの裏面が上側を向いた状態で、半導体基板Wは保持される。
 レーザ加工装置1は、半導体基板Wを収容する基板収容部2と、基板収容部2から取り出された半導体基板Wを保持するチャックステージ3(支持部材)とを備える。レーザ加工装置1は、平板形状のベースプレート11を備え、基板収容部2およびチャックステージ3は、ベースプレート11によって支持される。X方向において、チャックステージ3は基板収容部2の(+X)側に配置され、Y方向においてチャックステージ3は基板収容部2の(-Y)側に配置される。そして、X方向においてチャックステージ3の(-X)側であって、Y方向において基板収容部2の(-Y)側のスペースが基板受渡領域Awとなる。
 基板収容部2は、基板収容カセット21を有する。基板収容カセット21は、X方向の両側に設けられた一対の側壁22と、側壁22の間に設けられた開口23とを有し、開口23は(-Y)側(すなわち、基板受渡領域Aw側)を向く。一対の側壁22は、X方向に対して垂直に設けられた平板であり、X方向に互いに対向する。また、一対の側壁22それぞれの内側には支持突起24が設けられる。こうして、X方向に対向する一対の支持突起24が互いに同一の高さに設けられる。そして、開口23を介して(-Y)側から一対の支持突起24の上側に対して、半導体基板Wを保持するリングフレームFrを差し込むことができる。こうして差し込まれたリングフレームFrのX方向の両端が、一対の支持突起24によって下側から支持される。つまり、一対の支持突起24の上側が、リングフレームFrを収容するスロット25として機能し、開口23を介して(-Y)側からスロット25に挿入されたリングフレームFrは、当該スロット25に対応する一対の支持突起24によって支持される。したがって、基板収容カセット21のスロット25にリングフレームFrを挿入することで、リングフレームFrに支持される半導体基板Wを基板収容カセット21に収容でき、基板収容カセット21のスロット25からリングフレームFrを引き出すことで、基板収容カセット21から半導体基板Wを取り出すことができる。
 また、基板収容部2は、基板収容カセット21を支持するZ軸スライダ26と、Z軸スライダ26をZ方向に駆動するZ軸駆動機構27を有する。Z軸駆動機構27はベースプレート11に取り付けられた単軸ロボットであり、Z軸スライダ26をZ方向に移動可能に支持するZ軸駆動伝達部271と、Z軸駆動伝達部271に支持されるZ軸スライダ26をZ方向に駆動するZ軸カセットモータ272とを有する。Z軸駆動伝達部271は、Z軸カセットモータ272によって駆動されるボールネジを有し、当該ボールネジのナットにZ軸スライダ26が取り付けられている。ただし、Z軸駆動機構27の具体的構成はこの例に限られず、例えばリニアモータでもよい。かかるZ軸駆動機構27は、Z軸駆動伝達部271に支持されるZ軸スライダ26をZ軸カセットモータ272によって駆動することで、Z軸スライダ26に支持される基板収容カセット21をZ方向に移動させる。
 基板収容カセット21に対しては、基板挿入高さ211が設けられており、基板挿入高さ211に位置するスロット25に対して、半導体基板Wの挿入および引き出しを実行することができる。したがって、Z軸駆動機構27によって基板収容カセット21をZ方向に移動させて、複数のスロット25のうち基板挿入高さ211に位置するスロット25を変更することで、半導体基板Wの挿入および引き出しを実行するスロット25を変更できる。
 これに対して、レーザ加工装置1は、基板挿入高さ211のスロット25と基板受渡領域Awとの間でY方向にリングフレームFrを運搬するY軸運搬機構4を備える。Y軸運搬機構4は、リフトハンド41と、リフトハンド41を支持するY軸スライダ43と、Y軸スライダ43をY方向に駆動するY軸駆動機構45とを有する。Y軸駆動機構45は、付図示のフレームによってベースプレート11に取り付けられた単軸ロボットであり、Y軸スライダ43をY方向に移動可能に支持するY軸駆動伝達部451と、Y軸駆動伝達部451に支持されるY軸スライダ43をY方向に駆動するY軸リフトハンドモータ452とを有する。Y軸駆動伝達部451は、Y軸リフトハンドモータ452によって駆動されるボールネジを有し、当該ボールネジのナットにY軸スライダ43が取り付けられている。ただし、Y軸駆動機構45の具体的構成はこの例に限られず、例えばリニアモータでもよい。かかるY軸駆動機構45は、Y軸駆動伝達部451により支持されるY軸スライダ43をY軸リフトハンドモータ452により駆動することで、Y軸スライダ43に支持されるリフトハンド41をY方向に移動させる。
 リフトハンド41は、Y軸スライダ43に支持されるベース部411と、ベース部411から(+Y)側に突出するフォーク412とを有する。フォーク412は、基板挿入高さ211に位置し、リングフレームFrを下側から保持することができる。Y軸運搬機構4は、後述するように、Y軸駆動機構45によってリフトハンド41をY方向に駆動することで、リフトハンド41のフォーク412に保持されるリングフレームFrを、基板収容カセット21と基板受渡領域Awとの間で移動させる。
 また、レーザ加工装置1は、基板受渡領域Awに位置するリフトハンド41と、チャックステージ3との間でX方向にリングフレームFrを運搬するXZ軸運搬機構5を備える。XZ軸運搬機構5は、吸着ハンド51と、吸着ハンド51を支持するX軸スライダ53と、X軸スライダ53をX方向に駆動するX軸駆動部55とを有する。X軸駆動部55は、付図示のフレームによってベースプレート11に取り付けられた単軸ロボットであり、X軸スライダ53をX方向に移動可能に支持するX軸駆動伝達部551と、X軸駆動伝達部551に支持されるX軸スライダ53をX方向に駆動するX軸吸着ハンドモータ552とを有する。X軸駆動伝達部551は、X軸吸着ハンドモータ552によって駆動されるボールネジを有し、当該ボールネジのナットにX軸スライダ53が取り付けられている。ただし、X軸駆動部55の具体的構成はこの例に限られず、例えばリニアモータでもよい。かかるX軸駆動部55は、X軸駆動伝達部551に支持されるX軸スライダ53をX軸吸着ハンドモータ552によって駆動することで、X軸スライダ53に支持される吸着ハンド51をX方向に移動させる。
 また、XZ軸運搬機構5は、吸着ハンド51に取り付けられたZ軸スライダ56と、Z軸スライダ56をX軸スライダ53に対してZ方向に駆動するZ軸駆動部58とを有する。つまり、吸着ハンド51は、Z軸スライダ56およびZ軸駆動部58を介してX軸スライダ53によって支持される。Z軸駆動部58は、X軸スライダ53に取り付けられた単軸ロボットであり、Z軸スライダ56をZ方向に移動可能に支持するZ軸駆動伝達部581と、Z軸駆動伝達部581に支持されるZ軸スライダ56をZ方向に駆動するZ軸吸着ハンドモータ582とを有する。Z軸駆動伝達部581は、Z軸吸着ハンドモータ582により駆動されるボールネジを有し、当該ボールネジのナットにZ軸スライダ56が取り付けられている。ただし、Z軸駆動部58の具体的構成はこの例に限られず、例えばリニアモータでも良い。Z軸スライダ56は、Z軸駆動部58からX軸駆動伝達部551の下側まで延設されて、Z軸スライダ56の下端に吸着ハンド51が取り付けられている。かかるZ軸駆動部58は、Z軸駆動伝達部581に支持されるZ軸スライダ56をZ軸吸着ハンドモータ582によって駆動することで、Z軸スライダ56に支持される吸着ハンド51をZ方向に移動させる。
 吸着ハンド51は、Z軸スライダ56に支持されるベース部511と、ベース部511から(+Y)側に突出した環状吸着部材512とを有する。環状吸着部材512は、円環形状を有して、環状吸着部材512の底面513には、複数の吸着孔が開口している。この環状吸着部材512の底面513をリングフレームFrに上側から当接しつつ当該底面513の各吸着孔に発生させた負圧によりリングフレームFrを吸引することで、吸着ハンド51によってリングフレームFrを上側から保持することができる。XZ軸運搬機構5は、後述するように、X軸駆動部55によって吸着ハンド51をX方向に駆動するとともにZ軸駆動部58によって吸着ハンド51をZ方向に駆動することで、吸着ハンド51の環状吸着部材512に保持されるリングフレームFrを基板受渡領域Awとチャックステージ3との間で移動させる。
 チャックステージ3は、テープEを介して半導体基板Wを支持するリングフレームFrが載置される吸着プレート31を有する。吸着プレート31は円形を有し、吸着プレート31の上面311には複数の吸着孔が開口する。そして、吸着プレート31の上面311の各吸着孔に発生させた負圧によって当該上面311に接触するテープEを吸引することで、吸着プレート31にテープEを固定することができる。さらに、チャックステージ3は、吸着プレート31の周縁に設けられた複数のクランパ32を有する。このチャックステージ3は、吸着プレート31に載置されたリングフレームFrに対してクランパ32を上側から対向させて、クランパ32と吸着プレート31との間にリングフレームFrを挟み込むことで、リングフレームFrを吸着プレート31に固定する。また、チャックステージ3は、リングフレームFrからクランパ32を側方に退避させることで、リングフレームFrの吸着プレート31への固定を解除する。
 このように、チャックステージ3は、吸着プレート31によるテープEの吸引と、クランパ32によるリングフレームFrの固定とによって、テープEを介してリングフレームFrに支持された半導体基板Wを保持する。このようにクランパ32を併用することで、吸着プレート31によるテープEの吸引のみによって半導体基板Wを保持する場合と比べて、吸着プレート31へのテープEの吸引を弱い吸引力で実行することができ、テープEの吸引が半導体基板Wに与える影響を緩和できる。
 また、レーザ加工装置1は、チャックステージ3を支持するXYθ駆動テーブル6を備える。XYθ駆動テーブル6は、ベースプレート11上に配置されて、ベースプレート11に対してチャックステージ3をX方向、Y方向およびθ方向に駆動する。ここで、θ方向は、Z方向に平行な回転軸を中心とする回転方向である。つまり、XYθ駆動テーブル6は、Y方向に平行にベースプレート11に取り付けられたY軸ガイド61と、Y軸ガイド61によってY方向に移動可能に支持されるY軸スライダ62と、Y軸スライダ62をY方向に駆動するY軸駆動部63とを有する。Y軸駆動部63は、ベースプレート11に取り付けられた単軸ロボットであり、Y軸スライダ62をY方向に移動可能に支持するY軸駆動伝達部631と、Y軸駆動伝達部631に支持されるY軸スライダ62をY方向に駆動するY軸テーブルモータ632とを有する。Y軸駆動伝達部631は、Y軸テーブルモータ632によって駆動されるボールネジを有し、当該ボールネジのナットにY軸スライダ62が取り付けられている。ただし、Y軸駆動部63の具体的構成はこの例に限られず、例えばリニアモータでも良い。
 また、XYθ駆動テーブル6は、X軸スライダ64と、X軸スライダ64をY軸スライダ62に対してX方向に駆動するX軸駆動部65とを有する。X軸駆動部65は、Y軸スライダ62に取り付けられた単軸ロボットであり、X軸スライダ64をX方向に移動可能に支持するX軸駆動伝達部651と、X軸駆動伝達部651に支持されるX軸スライダ64をX方向に駆動するX軸テーブルモータ652とを有する。X軸駆動伝達部651は、X軸テーブルモータ652によって駆動されるボールネジを有し、当該ボールネジのナットにX軸スライダ64が取り付けられている。ただし、X軸駆動部65の具体的構成はこの例に限られず、例えばリニアモータでも良い。
 さらに、XYθ駆動テーブル6は、X軸スライダ64に取り付けられたθ軸テーブルモータ66を有する。このθ軸テーブルモータ66は、X軸スライダ64に対してチャックステージ3をθ方向に駆動する。
 このようなXYθ駆動テーブル6は、Y軸テーブルモータ632によってチャックステージ3をY方向に駆動し、X軸テーブルモータ652によってチャックステージ3をX方向に駆動し、θ軸テーブルモータ66によってチャックステージ3をθ方向に駆動することができる。
 また、レーザ加工装置1は、チャックステージ3に保持される半導体基板Wに対してレーザ加工を実行するレーザ加工部7を備える。レーザ加工部7は、チャックステージ3に保持される半導体基板Wに上側から対向する加工ヘッド71を有する。加工ヘッド71は所定の振動数のレーザ光Bを発生するレーザ光源72と、レーザ光源72から射出されたレーザ光Bを半導体基板Wに照射する光学系73(レンズおよび絞り等)とを有する。この加工ヘッド71は、所定のレーザ照射位置Lbを有して、当該レーザ照射位置LbにZ方向の上側から対向する。そして、加工ヘッド71は、レーザ光源72から射出されたレーザ光Bを光学系73によってレーザ照射位置Lbに集光することで、半導体基板Wのうちレーザ照射位置Lbに重複する部分に改質層を形成する。
 また、レーザ加工部7は、加工ヘッド71を支持するZ軸スライダ78と、Z軸スライダ78をZ方向に駆動するZ軸駆動部79とを有する。Z軸駆動部79はベースプレートに取り付けられた単軸ロボットであり、Z軸スライダ78をZ方向に移動可能に支持するZ軸駆動伝達部791と、Z軸駆動伝達部791に支持されるZ軸スライダ78をZ方向に駆動するZ軸ヘッドモータ792とを有する。Z軸駆動伝達部791は、Z軸ヘッドモータ792によって駆動されるボールネジを有し、当該ボールネジのナットにZ軸スライダ78が取り付けられている。ただし、Z軸駆動部79の具体的構成はこの例に限られず、例えばリニアモータでも良い。かかるZ軸駆動部79は、Z軸駆動伝達部791に支持されるZ軸スライダ78をZ軸ヘッドモータ792によって駆動することで、Z軸スライダ78に支持される加工ヘッド71をZ方向に移動させて、赤外線カメラ81のレーザ照射位置LbをZ方向に移動させる。
 また、レーザ加工装置1は、チャックステージ3に保持される半導体基板Wを撮像する撮像部8を備える。特に、X方向においてレーザ加工部7を挟むように配置された2台の撮像部8が設けられている。これら2台の撮像部8を区別する際には、レーザ加工部7の(+X)側の撮像部8を撮像部8Aと称し、レーザ加工部7の(-X)側の撮像部8を撮像部8Bと称することとする。このように撮像部8A、レーザ加工部7および撮像部8BがX方向に配列されている。なお、撮像部8Aおよび撮像部8Bそれぞれの基本的な構成は共通する。したがって、撮像部8A、8Bで共通する構成はこれらを区別せずに説明を行うこととする。
 撮像部8は、チャックステージ3に保持される半導体基板Wに上側から対向する赤外線カメラ81を有する。この赤外線カメラ81は、所定の撮像範囲Ri(換言すれば、視野)を有して、当該撮像範囲Riに対してZ方向の上側から対向する。そして、赤外線カメラ81は、撮像範囲Riから射出される赤外線を検出することで、撮像範囲Riを撮像して、撮像範囲Riの画像を取得する。
 また、撮像部8は、赤外線カメラ81を支持するZ軸スライダ88と、Z軸スライダ88をZ方向に駆動するZ軸駆動部89とを有する。Z軸駆動部89はベースプレートに取り付けられた単軸ロボットであり、Z軸スライダ88をZ方向に移動可能に支持するZ軸駆動伝達部891と、Z軸駆動伝達部891に支持されるZ軸スライダ88をZ方向に駆動するZ軸カメラモータ892とを有する。Z軸駆動伝達部891は、Z軸カメラモータ892によって駆動されるボールネジを有し、当該ボールネジのナットにZ軸スライダ88が取り付けられている。ただし、Z軸駆動部89の具体的構成はこの例に限られず、例えばリニアモータでも良い。かかるZ軸駆動部89は、Z軸駆動伝達部891に支持されるZ軸スライダ88をZ軸カメラモータ892によって駆動することで、Z軸スライダ88に支持される赤外線カメラ81をZ方向に移動させて、赤外線カメラ81の撮像範囲RiをZ方向に移動させる。
 なお、撮像部8Aの赤外線カメラ81と、撮像部8Bの赤外線カメラ81とは互いに異なる解像度を有する。具体的には、撮像部8Aの赤外線カメラ81は、撮像部8Bの赤外線カメラ81よりも高い解像度を有し、換言すれば狭い視野を有する。ただし、撮像部8Aと撮像部8Bとで赤外線カメラ81の解像度が異なる必要はなく、これらの赤外線カメラ81が同一の解像度を有していてもよい。また、ここの例では、撮像部8Aの撮像範囲Ri、加工ヘッド71のレーザ照射位置Lbおよび撮像部8Bの撮像範囲Riそれぞれの中心がX方向に平行に並ぶ。ただし、これらがX方向に平行である必要は必ずしもなく、加工ヘッド71のレーザ照射位置Lbに対して、撮像部8Aの撮像範囲Riが(+X)側に位置し、撮像部8Bの撮像範囲Riが(-X)側に位置していればよい。
 図3は図1のレーザ加工装置が備える電気的構成を示すブロック図である。図3に示すように、レーザ加工装置1は、図1および図2に示した構成を制御する制御部100を備える。制御部100は、レーザ加工装置1内で、半導体基板Wの運搬に関わる基板運搬系(基板収容部2、Y軸運搬機構4およびXZ軸運搬機構5)の制御を担当するハンドリング制御演算部110と、半導体基板Wへのレーザ加工に関わるレーザ加工系(チャックステージ3、XYθ駆動テーブル6、レーザ加工部7および撮像部8)の制御を担当するレーザ加工制御演算部120とを有する。
 また、制御部100は、ハンドリング制御演算部110からの指令に応じて、基板収容カセット21に対する半導体基板Wの挿脱動作を制御するカセット制御部111を有する。このカセット制御部111は、Z軸カセットモータ272を制御することで基板収容カセット21のZ方向の位置を調整し、Y軸リフトハンドモータ452を制御することでリフトハンド41のY方向の位置を調整する。
 さらに、制御部100は、ハンドリング制御演算部110からの指令に応じて、吸着ハンド51による半導体基板Wの運搬動作を制御するハンド制御部112を有する。ハンド制御部112は、X軸吸着ハンドモータ552を制御することで吸着ハンド51のX方向の位置を調整し、ハンド制御部112は、Z軸吸着ハンドモータ582を制御することで吸着ハンド51のZ方向の位置を調整する。さらに、ハンド制御部112は、吸着ハンド51の環状吸着部材512の底面513に開口する吸着孔を吸引する吸引ポンプ591を制御する。つまり、ハンド制御部112は、吸引ポンプ591によって吸着孔へ負圧を供給することで吸着ハンド51によってリングフレームFrを吸着し、吸引ポンプ591による吸着孔への負圧の供給を停止することで吸着ハンド51からリングフレームFrを離す。
 また、制御部100は、レーザ加工制御演算部120からの指令に応じて、チャックステージ3による基板固定動作やチャックステージ3の駆動を制御するステージ制御部121を有する。ステージ制御部121は、X軸テーブルモータ652、Y軸テーブルモータ632およびθ軸テーブルモータ66をそれぞれ制御することで、チャックステージ3のX方向、Y方向およびθ方向への位置を調整する。さらに、ステージ制御部121は、クランパ32を駆動するクランパ駆動部691を制御することで、クランパ駆動部691による吸着プレート31へのリングフレームFrの固定や、当該固定の解除を実行する。さらに、ステージ制御部121は、吸着プレート31の上面311に開口する吸着孔を吸引する吸引ポンプ692を制御する。つまり、ステージ制御部121は、吸引ポンプ692によって吸着孔へ負圧を供給することで吸着プレート31によってテープEを吸着し、吸引ポンプ692による吸着孔への負圧の供給を停止することで吸着プレート31によるテープEの吸着を解除する。
 また、制御部100は、撮像部8Aを制御するカメラ制御部122Aと、撮像部8Bを制御するカメラ制御部122Bとを有する。これらハンド制御部112A、112Bは、それぞれの対象である撮像部8A、8Bの赤外線カメラ81およびZ軸カメラモータ892に対して次の制御を実行する。つまり、カメラ制御部122A、122Bのそれぞれは、赤外線カメラ81に半導体基板Wを撮像させて半導体基板Wの画像を取得し、Z軸カメラモータ892によって赤外線カメラ81をZ方向に駆動することで赤外線カメラ81から半導体基板Wまでの距離をZ方向に調整する。
 さらに、制御部100は、レーザ加工部7を制御する加工ヘッド制御部123を有する。加工ヘッド制御部123は、レーザ光源72を駆動して、レーザ光源72からレーザ光Bを射出させ、Z軸ヘッドモータ792によって加工ヘッド71をZ方向に駆動することで、加工ヘッド71から半導体基板Wまでの距離をZ方向に調整する。また、加工ヘッド71は、半導体基板Wからの高さ(Z方向への距離)を検出する高さ検出部74を有する。この高さ検出部74は、いわゆる距離センサである。さらに、加工ヘッド71の光学系73はフォーカス調整機構75を有する。フォーカス調整機構75は、光学系73の焦点をZ方向に変位させることで、レーザ光Bを集光する位置を調整する。特に、加工ヘッド制御部123は、高さ検出部74が検出した半導体基板Wから加工ヘッド71までの高さに基づきフォーカス調整機構75を制御することで、半導体基板Wの内部の所定位置にレーザ光Bを集光する。
 なお、上述した制御部100の各機能は、CPU(Central Processing Unit)といったプロセッサやFPGA(Field
Programable Gate Array)等によって実現することができる。
 さらに、制御部100は、HDD(Hard Disk Drive)あるいはSDD(Solid State Drive)といった記憶装置である記憶部190を有する。この記憶部190には、半導体基板Wのレーザ加工のためにレーザ加工装置1で実行される後述の動作を規定するレーザ加工プログラム191が保存されている。つまり、制御部100は、レーザ加工プログラム191を実行することで、図4~図22Cを用いて後述する各制御を実行する。なお、レーザ加工プログラム191は、レーザ加工装置1の外部の記録媒体192によって提供され、制御部100(コンピュータ)は、記録媒体192に記録されたレーザ加工プログラム191を読み出して記憶部190に保存する。かかる記録媒体192としては、例えばUSB(Universal Serial Bus)メモリや、外部のコンピュータの記憶装置等が挙げられる。
 図4はレーザ加工が実行済みのレーザ加工基板を生産する方法の一例を示すフローチャートである。図4のフローチャートは、レーザ加工プログラム191に基づく制御部100の制御に従って実行される。ステップS101では、リフトハンド41がリングフレームFrを基板収容カセット21から基板受渡領域Awに取り出し、ステップS102では、基板受渡領域Awの吸着ハンド51がリフトハンド41からチャックステージ3にリングフレームFrを移載する。これによって、リングフレームFrに保持される半導体基板Wが、基板収容カセット21から基板受渡領域Awに取り出されてから、基板受渡領域Awからチャックステージ3に移載される。具体的には、ステップS101では、図5のリングフレームの取り出しが実行され、ステップS102では、図6のリングフレームの移載が実行される。
 図5はリングフレームの取り出しの一例を示すフローチャートであり、図6はリングフレームの移載の一例を示すフローチャートであり、図7A~図7Eは図5および図6のフローチャートに従って実行される動作の一例を模式的に示す平面図である。
 図5のステップS201では、制御部100は、リフトハンド41が空であるか、すなわちリフトハンド41にリングフレームFrが載置されていないかを確認する。リフトハンド41が空であるかの確認は、例えばリフトハンド41に実行させた動作の履歴等に基づき実行することができる。リフトハンド41が空でない場合(ステップS201で「NO」の場合)には、図5のフローチャートを終了する一方、リフトハンド41が空である場合(ステップS201で「YES」の場合)には、ステップS201に進む。
 ステップS202では、制御部100は、リフトハンド41の少なくとも一部が基板収容カセット21内に位置するか、換言すれば基板収容カセット21の開口23よりも基板収容カセット21の内側(すなわち、(+Y)側)に位置するかを確認する。リフトハンド41の一部が基板収容カセット21内に位置するかの確認は、例えばリフトハンド41をY方向に駆動するY軸リフトハンドモータ452のエンコーダの出力が示すリフトハンド41の位置に基づき実行することができる。リフトハンド41が基板収容カセット21から(-Y)側に退避している場合(ステップS202で「NO」の場合)には、ステップS203を実行せずにステップS204に進む一方、リフトハンド41の一部が基板収容カセット21内に位置する場合(ステップS202で「YES」の場合)には、ステップS203に進む。ステップS203では、制御部100は、Y軸リフトハンドモータ452によってリフトハンド41を(-Y)側に駆動することで、リフトハンド41を基板収容カセット21から(-Y)側に引き出して、基板収容カセット21の(-Y)側に退避させる。
 ステップS204では、制御部100はZ軸カセットモータ272によって基板収容カセット21をZ方向に駆動することで、取り出し対象となるリングフレームFrを収容するスロット25を、基板挿入高さ211から所定高さだけ高い位置に位置決めする。この所定高さは、Z方向において隣接するスロット25の間隔より短い。これによって、取り出し対象となるリングフレームFrの底面が、リフトハンド41から所定高さだけ高い位置に調整される。
 ステップS205では、図7Aに示すように、制御部100は、Y軸リフトハンドモータ452によってリフトハンド41を(+Y)側に駆動することで、リフトハンド41を基板収容カセット21の内側に挿入する。これによって、リフトハンド41は、取り出し対象となるリングフレームFrに下側から隙間を空けて対向する。
 ステップS206では、制御部100は、Z軸カセットモータ272によって基板収容カセット21をZ方向に下降させる。これによって、取り出し対象となるリングフレームFrが、リフトハンド41の上に載置されるとともに、スロット25(すなわち、スロット25を規定する一対の支持突起24)に対して上昇する。
 ステップS207では、制御部100は、Y軸リフトハンドモータ452によってリフトハンド41を(-Y)側に駆動することで、リフトハンド41を基板収容カセット21の外側に設けられた基板受渡領域Awまで引き出す。これによって、図7Bに示すように、リフトハンド41に載置されたリングフレームFrが基板受渡領域Awに位置する。
 図6のステップS301では、制御部100は、図7Cに示すように、X軸吸着ハンドモータ552によって吸着ハンド51のX方向の位置を調整することで、基板受渡領域Awでリフトハンド41に支持されるリングフレームFrに対して、吸着ハンド51を上側から対向させる。この際、制御部100は、Z軸吸着ハンドモータ582によって吸着ハンド51の高さを調整することで、リングフレームFrより高い位置に吸着ハンド51を調整する。したがって、吸着ハンド51は、リングフレームFrに対して間隔を空けて対向する。
 ステップS302では、制御部100は、リングフレームFrに対向する吸着ハンド51をZ軸駆動伝達部581によって下降させて、吸着ハンド51の底面513をリングフレームFrの上面に当接させる。ステップS303では、制御部100は、吸着ハンド51の底面513に設けられた吸着孔に吸引ポンプ591によって負圧を発生させ、吸着ハンド51は、この負圧によってリングフレームFrを吸着する。こうして、吸着ハンド51によってリングフレームFrが保持される。ステップS304では、制御部100は、Z軸吸着ハンドモータ582によって吸着ハンド51を上昇させる。これによって、吸着ハンド51がリフトハンド41からリングフレームFrを持ち上げる。
 ステップS305では、制御部100は、図7Dに示すように、X軸吸着ハンドモータ552によって吸着ハンド51を(+X)側に駆動することで、リングフレームFrの移載先であるチャックステージ3に対して、吸着ハンド51を上側から対向させる。この際、制御部100は、Z軸吸着ハンドモータ582によって吸着ハンド51の高さを調整することで、吸着ハンド51に保持されるリングフレームFrをチャックステージ3より高い位置に調整する。したがって、吸着ハンド51に保持されるリングフレームFrは、チャックステージ3に対して間隔を空けて対向する。
 ステップS306では、制御部100は、Z軸吸着ハンドモータ582によって吸着ハンド51を下降させることで、吸着ハンド51により保持されるリングフレームFr(およびテープE)をチャックステージ3の吸着プレート31に載置する。ステップS307では、制御部100は、吸引ポンプ591を停止させて、吸着ハンド51によるリングフレームFrの吸着を解除する。
 ステップS308では、制御部100は、リングフレームFrの移載先がチャックステージ3であるか否かを確認する。例えば後述するステップS104のようにリングフレームFrの移載先がリフトハンド41である場合には、ステップS308で「NO」と判断されて、図6のフローチャートが終了する。ここでは、リングフレームFrの移載先はチャックステージ3であるため、ステップS308で「YES」と判断されて、ステップS309に進む。
 ステップS309では、制御部100は、クランパ駆動部691によってクランパ32を駆動することで、チャックステージ3の吸着プレート31に載置されたリングフレームFrを、クランパ32と吸着プレート31との間に挟み込んで、リングフレームFrをクランプする。また、ステップS310では、制御部100は、吸着プレート31の上面311に設けられた吸着孔に吸引ポンプ692によって負圧を発生させ、吸着プレート31は、リングフレームFrに張り付けられたテープEをこの負圧によって吸着する。こうして、チャックステージ3によってリングフレームFrが保持される。ステップS311では、制御部100は、Z軸吸着ハンドモータ582によって吸着ハンド51を上昇させる。これによって、吸着ハンド51がチャックステージ3に保持されたリングフレームFrから上方に退避する。こうして、図7Eに示すように、基板収容カセット21からチャックステージ3へのリングフレームFrの移載が完了する(図4のステップS101、S102)。
 図4のステップS103では、チャックステージ3に保持される半導体基板Wをレーザ光Bによって加工する基板加工が実行されて、半導体基板Wに設けられた複数の分割予定ラインにレーザ光Bが照射される。この基板加工の詳細は後述する。
 基板加工が完了すると、ステップS104、S105が実行される。ステップS104では、吸着ハンド51がチャックステージ3から基板受渡領域Awのリフトハンド41にリングフレームFrを移載し、ステップS105では、リフトハンド41が基板受渡領域Awから基板収容カセット21にリングフレームFrを収納する。これによって、リングフレームFrに保持される半導体基板Wが、チャックステージ3から基板受渡領域Awに移載されてから、基板受渡領域Awから基板収容カセット21に収納される。具体的には、ステップS104では、図6のリングフレームの移載が実行され、ステップS105では、図8のリングフレームの収納が実行されて、上述の図7A~図7Eと逆の動作が実行される。ここで、図8はリングフレームの収納の一例を示すフローチャートである。
 ステップS104で実行される図6の動作は、ステップS102で実行される図6の上述の動作と同様であるので、ここでは、上述の動作との差を中心に説明し、共通する動作については適宜説明を省略する。図6のステップS301では、制御部100は、X軸吸着ハンドモータ552によって吸着ハンド51のX方向の位置を調整することで、チャックステージ3に載置されるリングフレームFrに対して、吸着ハンド51を上側から対向させる。そして、制御部100は、吸着ハンド51をリングフレームFrまで下降させて(ステップS302)、吸着ハンド51にリングフレームFrを吸着させる(ステップS303)。続いて、制御部100は吸着ハンド51を上昇させる(ステップS304)。これによって、吸着ハンド51がチャックステージ3からリングフレームFrを持ち上げる。
 ステップS305では、制御部100は、X軸吸着ハンドモータ552によって吸着ハンド51を(-X)側に駆動する。この際、リフトハンド41は、基板受渡領域Awで待機している、これによって、リングフレームFrの移載先である基板受渡領域Awのリフトハンド41に対して、吸着ハンド51が上側から対向する。そして、制御部100は、Z軸吸着ハンドモータ582によって吸着ハンド51を下降させることで、吸着ハンド51により保持されるリングフレームFrをリフトハンド41に載置する(ステップS306)。そして、制御部100は、吸引ポンプ591を停止させて、吸着ハンド51によるリングフレームFrの吸着を解除する(ステップS307)。ステップS308では、制御部100は、リングフレームFrの移載先がチャックステージ3であるか否かを確認する。ここでは、リングフレームFrの移載先がリフトハンド41であってチャックステージ3ではないので、ステップS308で「NO」と判断されて、図6のフローチャートが終了する。
 図8のステップ401では、制御部100は、リングフレームFrがリフトハンド41に載置されたかを確認する。リフトハンド41へのリングフレームFrの載置の確認は、例えばリングフレームFrの載置を実行する吸着ハンド51の動作履歴に基づき実行できる。リフトハンド41へのリングフレームFrの載置が確認されると(ステップS401で「YES」)、制御部100は、上述のステップS202と同様にして、リフトハンド41の少なくとも一部が基板収容カセット21内に位置するかを確認する(ステップS402)。リフトハンド41が基板収容カセット21から(-Y)側に退避している場合(ステップS402で「NO」の場合)には、ステップS403を実行せずにステップS404に進む一方、リフトハンド41の一部が基板収容カセット21内に位置する場合(ステップS402で「YES」の場合)には、ステップS403に進む。ステップS403では、制御部100は、Y軸リフトハンドモータ452によってリフトハンド41を(-Y)側に駆動することで、リフトハンド41を基板収容カセット21から(-Y)側に引き出して、基板収容カセット21の(-Y)側に退避させる。
 ステップS404では、制御部100はZ軸カセットモータ272によって基板収容カセット21をZ方向に駆動することで、リングフレームFrの収納対象となるスロット25(換言すれば、スロット25を規定する一対の支持突起24)を、基板挿入高さ211から所定高さだけ低い位置に位置決めする。これによって、収納対象となるスロット25が、リフトハンド41に支持されるリングフレームFrの底面より所定高さだけ低い位置に調整される。
 ステップS405では、制御部100は、Y軸リフトハンドモータ452によってリフトハンド41を(+Y)側に駆動することで、リフトハンド41を基板収容カセット21の内側に挿入する。これによって、収納対象となるスロット25を規定する一対の支持突起24は、リフトハンド41に支持されるリングフレームFrに下側から隙間を空けて対向する。
 ステップS406では、制御部100は、Z軸カセットモータ272によって基板収容カセット21をZ方向に上昇させる。これによって、リングフレームFrが収納対象となるスロット25を規定する一対の支持突起24の上に載置されるとともに、リフトハンド41に対して上昇する。ステップS407では、制御部100は、Y軸リフトハンドモータ452によってリフトハンド41を(-Y)側に駆動することで、リフトハンド41を基板収容カセット21の外側に引き出す。
 なお、基板収容カセット21に対するリングフレームFrの取り出しあるいは収納を実行する際には、リフトハンド41に対してリングフレームFrを位置合わせするリングフレームアライメントを適宜実行できる。図9はリングフレームアライメントの一例を示すフローチャートであり、図10はリングフレームアライメントで実行される動作の一例を模式的に示す平面図である。なお、図9のフローチャートは、制御部100の制御によって実行される。
 図10では、吸着ハンド51を透かして吸着ハンド51の下側の部材(アライメント突起413等)を示している。つまり、ここの例では、リフトハンド41は、ベース部411から上方に突出する複数のアライメント突起413を有する。これら複数のアライメント突起413は、リングフレームFrの複数のスリットFsに対応する。そして、アライメント突起413とスリットFsとを用いて、リングフレームアライメントが実行される。
 このリングフレームアライメントでは、リフトハンド41上のリングフレームFrを吸着ハンド51が吸着する(ステップS501)。そして、リングフレームFrを保持する吸着ハンド51が上昇して、リングフレームFrをリフトハンド41から上側に離間させる(ステップS502)。この際、Z方向においてアライメント突起413の下端と上端との間の高さにリングフレームFrが位置するように、リングフレームFrがリフトハンド41から離間する高さは調整されている。
 ステップS503では、Z軸スライダ56に内蔵されているXYθフローティング機構561がオンにされる。このXYθフローティング機構561は、吸着ハンド51をフローティング支持するフローティング状態と、吸着ハンド51を固定支持するロック状態とを選択的にとる。ここで、フローティング支持とは、吸着ハンド51がXYθフローティング機構561に対してX方向、Y方向およびθ方向に移動可能な状態で吸着ハンド51を支持すること意味し、固定支持とは、吸着ハンド51がXYθフローティング機構561に対して固定された状態で吸着ハンド51を支持することを意味する。ステップS503でXYθフローティング機構561がオンとなると、XYθフローティング機構561は吸着ハンド51をフローティング支持し、吸着ハンド51はXYθフローティング機構561に対してX方向、Y方向およびθ方向に移動可能となる。
 ステップS504では、リフトハンド41がY方向に移動して、吸着ハンド51に保持されるリングフレームFrの周縁にリフトハンド41のアライメント突起413を当接させる。この際、アライメント突起413がリングフレームFrの周縁に追従するように吸着ハンド51がXYθフローティング機構561に対して移動する。その結果、図10のステップS504の欄に示すように、リフトハンド41の各アライメント突起413がリングフレームFrの各スリットFsに係合して、リフトハンド41に対してリングフレームFrが位置決めされる。
 ステップS505では、XYθフローティング機構561がロックされる。これによって、吸着ハンド51がXYθフローティング機構561に固定支持される。そして、ステップS506では、吸着ハンド51によるリングフレームFrの吸着が解除されて、リングフレームFrがリフトハンド41上に載置される。ステップS507では、XYθフローティング機構561がオフにされて、吸着ハンド51はZ軸スライダ56に固定された状態で、Z軸スライダ56により支持される。こうして、リフトハンド41に対してリングフレームFrを位置決めすることができる(リングフレームアライメント)。
 続いては、基板加工の詳細について説明する。図11は基板加工の一例を示すフローチャートであり、図12は図11のフローチャートに従って実行される動作の一例を模式的に示す平面図である。図11のフローチャートは、制御部100の制御によって実行される。
 図11の基板加工のステップS601では、加工対象である半導体基板Wの上面(裏面)が有する平面を求めるキャリブレーションが実行される。図13Aはキャリブレーションの一例を示すフローチャートであり、図13Bは図13Aのキャリブレーションで実行されるステージ平面特定の一例を示すフローチャートであり、図13Cは図13Aのキャリブレーションで実行される基板平面特定の一例を示すフローチャートである。なお、図13Aのキャリブレーションでは、吸着プレート31あるいは半導体基板Wの撮像が適宜行われる。ここの説明では、撮像部8Bによって撮像が実行されるものとする。ただし、撮像部8Aによって撮像を行っても、以下の動作を同様に実行できる。
 図13AのキャリブレーションのステップS701では、ステージ平面特定(図13B)が実行される。図13Bに示すように、ステージ平面特定では、チャックステージ3の吸着プレート31の上面311に設けられた複数(3個)の撮像点Ps(I)を識別するためのカウント値Iがゼロにリセットされて(ステップS801)、カウント値Iが1だけインクリメントされる(ステップS802)。撮像点Ps(I)は、例えば所定パターンを有するマークである。
 ステップS803では、制御部100は、XYθ駆動テーブル6によってチャックステージ3の位置を調整することで、撮像点Ps(I)を赤外線カメラ81に対して下側から対向させる。これによって、撮像点Ps(I)が赤外線カメラ81の視野に収まる。ステップS803では、赤外線カメラ81は、この撮像点Ps(I)を撮像して、撮像点Ps(I)を示す画像を取得する。ステップS804では、制御部100は、撮像点Ps(I)が有する所定パターンが当該画像から検知できるかを、パターンマッチング等の画像処理によって確認する。
 赤外線カメラ81のピントが撮像点Ps(I)からずれており、画像から所定パターンを検知できない場合(ステップS804で「NO」の場合)には、制御部100は、Z軸カメラモータ892によって赤外線カメラ81をZ方向に駆動することで、撮像点Ps(I)に対する赤外線カメラ81のZ方向への距離を変更する(ステップS805)。これによって、赤外線カメラ81のピントがZ方向に変更される。赤外線カメラ81のピントが撮像点Ps(I)に合って、所定パターンが検知されるまで(ステップS804で「YES」)、ステップS803~S805が繰り返される。
 ステップS806では、制御部100は、撮像点Ps(I)を撮像することで取得した画像から検知された所定パターンに基づき、撮像点Ps(I)の位置(X、Y、Z)を算出する。撮像点Ps(I)のX座標およびY座標は、画像に含まれる所定パターンの位置に基づき算出される。撮像点Ps(I)のZ座標は、所定パターンが検知できた画像を撮像した際の赤外線カメラ81のZ方向への位置に基づき算出される。
 ステップS807では、カウント値Iが2に到達したか、すなわち2個の撮像点Ps(1)、Ps(2)の位置(X、Y、Z)を取得したかが確認される。カウント値Iが2未満である場合(ステップS807で「NO」の場合)には、ステップS802に戻って、ステップS802~S806が実行される。カウント値Iが2である場合(ステップS807で「YES」の場合)には、ステップS808に進む。
 ステップS808では、2点の撮像点Ps(1)、Ps(2)を通る直線が水平となるように、θ方向にチャックステージ3を回転させるための回転角θaが算出される。そして、現在の吸着プレート31の回転角(実回転角と回転角θa)との差がゼロでない場合(ステップS809で「NO」の場合)には、チャックステージ3が回転角θaだけ回転されて(ステップS810)、ステップS801に戻る。こうして、ステップS801~S809が実行される。
 現在の吸着プレート31の回転角(実回転角と回転角θa)との差がゼロである場合(ステップS809で「YES」の場合)には、ステップS811に進む。ステップS811では、制御部100は、ステップS803と同じ要領で、赤外線カメラ81によって撮像点Ps(3)を撮像して、撮像点Ps(3)を示す画像を取得する。そして、ステップS812では、制御部100は、撮像点Ps(3)が有する所定パターンが当該画像から検知できるかを、パターンマッチング等の画像処理によって確認する。
 画像から所定パターンを検知できない場合(ステップS812で「NO」の場合)には、制御部100は、Z軸カメラモータ892によって赤外線カメラ81をZ方向に駆動することで、撮像点Ps(3)に対する赤外線カメラ81のZ方向への距離を変更する(ステップS813)。そして、所定パターンが検知されるまで(ステップS812で「YES」)、ステップS811~S813が繰り返される。
 ステップS812で所定パターンを検知できると(YES)、制御部100は、撮像点Ps(3)を撮像することで取得した画像から検知された所定パターンに基づき、撮像点Ps(3)の位置(X、Y、Z)を算出する(ステップS814)。これによって、3個の撮像点Ps(1)、Ps(2)、Ps(3)それぞれの位置(X、Y、Z)が取得される。ステップS815では、これら3個の位置(X、Y、Z)を通る平面が、チャックステージ3の平面、具体的には、吸着プレート31の上面311を表す平面として特定される。
 図13AのキャリブレーションのステップS702では、基板平面特定(図13C)が実行される。図13Cに示すように、基板平面特定では、半導体基板Wが有する複数(3個)の撮像点Pw(I)を識別するためのカウント値Iがゼロにリセットされて(ステップS901)、カウント値Iが1だけインクリメントされる(ステップS902)。撮像点Pw(I)は、例えば所定パターンを有する領域である。
 具体的には、図12に示すように、半導体基板Wは互いに直交する分割予定ラインS(Sa、Sb)によって格子状に区分けされている。つまり、半導体基板Wには、互いに平行な複数の分割予定ラインSaと、互いに平行な複数の分割予定ラインSbとが設けられており、分割予定ラインSaと分割予定ラインSbとは互いに直交する。こうして、分割予定ラインSa、Sbを挟んで複数の半導体チップCが格子状に配列されている。これに対して、分割予定ラインSaと分割予定ラインSbとの交差点(換言すれば、四隅に配置された半導体チップCで囲まれた点)を含む領域が撮像点Pw(I)に設定される。なお、上述の通り、半導体基板Wの裏面が上側を向いているため、赤外線カメラ81は半導体基板Wの表面に形成された分割予定ラインSa、Sbや半導体チップCを、半導体基板Wの裏面を介して、赤外線によって撮像する。
 ステップS903では、制御部100は、XYθ駆動テーブル6によってチャックステージ3の位置を調整することで、撮像点Pw(I)を赤外線カメラ81に対して下側から対向させる。これによって、撮像点Pw(I)が赤外線カメラ81の視野に収まる。ステップS903では、赤外線カメラ81は、この撮像点Pw(I)を撮像して、撮像点Pw(I)を示す画像を取得する。ステップS904では、制御部100は、撮像点Pw(I)が有する所定パターン(例えば、分割予定ラインSaと分割予定ラインSbとが交差するパターン)が当該画像から検知できるかを、パターンマッチング等の画像処理によって確認する。
 赤外線カメラ81のピントが撮像点Pw(I)からずれており、画像から所定パターンを検知できない場合(ステップS904で「NO」の場合)には、制御部100は、Z軸カメラモータ892によって赤外線カメラ81をZ方向に駆動することで、撮像点Pw(I)に対する赤外線カメラ81のZ方向への距離を変更する(ステップS905)。これによって、赤外線カメラ81のピントがZ方向に変更される。赤外線カメラ81のピントが撮像点Pw(I)に合って、所定パターンが検知されるまで(ステップS904で「YES」)、ステップS903~S905が繰り返される。
 なお、先に実行されたステージ平面特定(図13B)によって、吸着プレート31の上面311を表す平面(ステージ平面)は特定されている。したがって、吸着プレート31に載置される半導体基板Wが有する撮像点Pw(I)が存在する高さの範囲は、このステージ平面に基づき推測できる。したがって、ステップS805では、ステージ平面から推測される撮像点Pw(I)の存在範囲に赤外線カメラ81のピントが収まるように、赤外線カメラ81の高さが変更される。
 ステップS906では、制御部100は、撮像点Pw(I)を撮像することで取得した画像から検知された所定パターンに基づき、撮像点Pw(I)の位置(X、Y、Z)を算出する。撮像点Pw(I)のX座標およびY座標は、画像に含まれる所定パターンの位置に基づき算出される。撮像点Pw(I)のZ座標は、所定パターンが検知できた画像を撮像した際の赤外線カメラ81のZ方向への位置に基づき算出される。
 ステップS907では、カウント値Iが2に到達したか、すなわち2個の撮像点Pw(1)、Pw(2)の位置(X、Y、Z)を取得したかが確認される。カウント値Iが2未満である場合(ステップS907で「NO」の場合)には、ステップS902に戻って、ステップS902~S906が実行される。カウント値Iが2である場合(ステップS907で「YES」の場合)には、ステップS908に進む。
 ステップS908では、分割予定ラインSaがX方向(加工方向)に平行となるように、θ方向にチャックステージ3を回転させるための回転角θbが、2点の撮像点Pw(1)、Pw(2)に基づき算出される。そして、現在の吸着プレート31の回転角(実回転角と回転角θb)との差がゼロでない場合(ステップS909で「NO」の場合)には、チャックステージ3が回転角θbだけ回転されて(ステップS910)、ステップS901に戻る。こうして、ステップS901~S909が実行される。
 現在の吸着プレート31の回転角(実回転角と回転角θb)との差がゼロである場合(ステップS909で「YES」の場合)には、ステップS911に進む。ステップS911では、制御部100は、ステップS903と同じ要領で、赤外線カメラ81によって撮像点Pw(3)を撮像して、撮像点Pw(3)を示す画像を取得する。そして、ステップS912では、制御部100は、撮像点Pw(3)が有する所定パターンが当該画像から検知できるかを、パターンマッチング等の画像処理によって確認する。
 画像から所定パターンを検知できない場合(ステップS912で「NO」の場合)には、制御部100は、Z軸カメラモータ892によって赤外線カメラ81をZ方向に駆動することで、撮像点Pw(3)に対する赤外線カメラ81のZ方向への距離を変更する(ステップS913)。そして、所定パターンが検知されるまで(ステップS912で「YES」)、ステップS911~S913が繰り返される。この際、赤外線カメラ81の高さを変更する範囲は、上述と同様に、ステージ平面に基づき設定される。
 ステップS912で所定パターンを検知できると(YES)、制御部100は、撮像点Pw(3)を撮像することで取得した画像から検知された所定パターンに基づき、撮像点Pw(3)の位置(X、Y、Z)を算出する(ステップS914)。これによって、3個の撮像点Pw(1)、Pw(2)、Pw(3)それぞれの位置(X、Y、Z)が取得される。ステップS915では、これら3個の位置(X、Y、Z)を通る平面が、半導体基板Wを表す平面として特定される。
 図11に戻って説明を続ける。上記のキャリブレーションの実行により、分割予定ラインSaがX方向に平行となるように半導体基板Wが位置決めされて、半導体基板Wを表す平面が特定されると(ステップS601)、各分割予定ラインSaへのライン加工処理(ステップS602)が実行される。つまり、対象の分割予定ラインSaに沿ってレーザ照射位置LbをX方向に移動させつつレーザ照射位置Lbにレーザ光Bを照射するライン加工処理を、複数の分割予定ラインSaのうちで対象の分割予定ラインSaを変更しつつ実行することで、複数の分割予定ラインSaのそれぞれにレーザ光Bによる加工が実行される。特に図12のステップS602の欄に示すように、X方向の(+X)側にレーザ照射位置Lbを移動させるライン加工処理と、X方向の(-X)側にレーザ照射位置Lbを移動させるライン加工処理とが交互に実行される。
 この際、分割予定ラインSaに対するレーザ光Bの(+X)側への移動は、半導体基板Wを保持するチャックステージ3をX軸駆動部65によって(-X)側に駆動することで実行され、分割予定ラインSaに対するレーザ光Bの(-X)側への移動は、半導体基板Wを保持するチャックステージ3をX軸駆動部65によって(+X)側に駆動することで実行される。また、ライン加工処理の対象の分割予定ラインSaの変更は、半導体基板Wを保持するチャックステージ3をY軸駆動部63によってY方向に駆動することで実行される。また、ステップS601のキャリブレーションで特定された半導体基板Wを表す平面に基づき、Z軸ヘッドモータ792によって加工ヘッド71のZ方向の位置を調整する制御が制御部100によって実行される。これによって、レーザ光Bの集光位置が半導体基板Wの内部に調整されて、分割予定ラインSaに沿って半導体基板Wの内部に改質層が形成される。
 こうして、複数の分割予定ラインSaのそれぞれへのライン加工処理が完了すると(ステップS602)、半導体基板Wを保持するチャックステージ3がθ軸テーブルモータ66によってθ方向に90度だけ回転される。これによって、レーザ加工が実行された複数の分割予定ラインSaがX方向に平行に位置決めされた状態(図12の「S602_e」の欄)から、複数の分割予定ラインSbがX方向に平行に位置決めされた状態(図12の「S603」の欄)へと切り換わる。
 ステップS604では、上記のステップS601と同様にして、キャリブレーションが実行される。また、ステップS605では、上記のステップS602と同様にして、複数の分割予定ラインSbのそれぞれに対してライン加工処理が実行される。
 図14は各分割予定ラインへのライン加工処理の基本工程を示すフローチャートであり、図15Aは図14のフローチャートに従って実行される動作の第1例を模式的に示す図である。図15Aでは、半導体基板Wに対して相対的に移動するレーザ照射位置Lbの軌跡が点線で示されるとともに、分割予定ラインS1、S2、S3に沿って分割予定ラインS1、S2、S3の両外側の間でX方向に平行に延設された仮想直線Sv1、Sv2、Sv3が一点鎖線で示される。なお、レーザ照射位置Lbの軌跡と仮想直線Sv1、Sv2、Sv3とが重複する部分では、レーザ照射位置Lbの軌跡を示す点線が優先して示される。
 図15Aに示す例では、X方向において半導体基板Wの(-X)側の位置Pb1にレーザ照射位置Lbが停止している状態から、図14のフローチャートが開始される。この位置Pb1は、分割予定ラインS1に沿った仮想直線Sv1上に設けられ、換言すれば、X方向から分割予定ラインS1に対向する位置である。ただし、図14のフローチャートを開始する際のレーザ照射位置Lbの位置は、ここの例に限られず、適宜変更できる。
 ステップS1001では、位置Pb1に停止するレーザ照射位置Lbが、X方向の(+X)側に向けて加速を開始して、X方向に平行に移動する。これによって、レーザ照射位置Lbが仮想直線Sv1に沿って(+X)側に移動する。そして、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(+X)側へ等速移動する(ステップS1002)。
 さらに、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が点灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が開始される(ステップS1003)。また、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が消灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が終了する(ステップS1004)。こうして、ステップS1003~S1004までの期間では、レーザ照射位置Lbが分割予定ラインS1に沿って(+X)側に移動しつつ、レーザ照射位置Lbにレーザ光Bが照射されて、分割予定ラインS1に対してレーザ加工が実行される(ライン加工処理)。
 レーザ照射位置Lbが分割予定ラインS1を(+X)側に通過すると、レーザ照射位置LbがX方向の(+X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(+X)側の位置Pb2にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb2は、Y方向において仮想直線Sv1に隣接する仮想直線Sv2上に設けられ、換言すれば、X方向から分割予定ラインS2に対向する位置である。つまり、ステップS1005~S1006では、レーザ照射位置LbはX方向への減速と並行して、仮想直線Sv1から仮想直線Sv2までY方向へ移動する。
 ところで、撮像部8A、8Bの撮像範囲Ri(図1)と加工ヘッド71のレーザ照射位置Lbとの位置関係は固定されている。そのため、ステップS1001~S1006において、レーザ照射位置Lbが半導体基板Wに対して相対的に移動するのに伴って、撮像範囲Riも半導体基板Wに対して相対的に移動する。そして、レーザ照射位置Lbが位置Pb2に停止した状態では、撮像部8Bの撮像範囲Riが撮像点Pw(S2)を少なくとも含む位置で停止する。この撮像点Pw(S2)は、半導体基板Wにおいて分割予定ラインS2とこれに直交する分割予定ラインSとが交差する交差点である。そこで、ステップS1006では、制御部100は、撮像部8Bに撮像範囲Riを撮像させて、撮像点Pw(S2)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS2の位置を示す画像を取得できる。
 ステップS1007では、X方向に平行な複数の分割予定ラインSに対してレーザ加工を完了したか否かが確認される。これらの分割予定ラインSのうち、未加工の分割予定ラインSがある場合(ステップS1007で「NO」の場合)には、ステップS1001に戻る。
 図15Aの例では、ステップS1001において、位置Pb2に停止するレーザ照射位置Lbが、X方向の(-X)側に向けて加速を開始して、X方向に平行に移動する。これによって、レーザ照射位置Lbが仮想直線Sv2に沿って(-X)側に移動する。そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(-X)側へ等速移動する(ステップS1002)。
 ここで、X方向において、分割予定ラインS1を(+X)側に通過したレーザ照射位置Lbが減速を開始する位置(換言すれば、(+X)側への等速移動を終了するX座標)と、分割予定ラインSに向かって(-X)側に加速するレーザ照射位置Lbが加速を終了する位置(換言すれば、(-X)側への等速移動を開始するX座標)とは、一致する。つまり、n番目にライン加工処理が実行される分割予定ラインSnを通過したレーザ照射位置Lbが等速移動を終了するとともに減速を開始するX座標と、n+1番目にライン加工処理が実行される分割予定ラインSn+1に向かうレーザ照射位置Lbが加速を終了して等速移動を開始するX方向とは一致する。
 さらに、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が点灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が開始される(ステップS1003)。また、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が消灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が終了する(ステップS1004)。こうして、ステップS1003~S1004までの期間では、レーザ照射位置Lbが分割予定ラインS2に沿って(-X)側に移動しつつ、レーザ照射位置Lbにレーザ光Bが照射されて、分割予定ラインS2に対してレーザ加工が実行される(ライン加工処理)。
 レーザ照射位置Lbが分割予定ラインS2を(-X)側に通過すると、レーザ照射位置LbがX方向の(-X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(-X)側の位置Pb3にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb3は、Y方向において仮想直線Sv2に隣接する仮想直線Sv3上に設けられ、換言すれば、X方向から分割予定ラインS3に対向する位置である。つまり、ステップS1005~S1006では、レーザ照射位置LbはX方向への減速と並行して、仮想直線Sv2から仮想直線Sv3までY方向へ移動する。
 また、レーザ照射位置Lbが位置Pb3に停止した状態では、撮像部8Aの撮像範囲Riが撮像点Pw(S3)を少なくとも含む位置で停止する。この撮像点Pw(S3)は、半導体基板Wにおいて分割予定ラインS3とこれに直交する分割予定ラインSとが交差する交差点である。そこで、ステップS1006では、制御部100は、撮像部8Aに撮像範囲Riを撮像させて、撮像点Pw(S3)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS3の位置を示す画像を取得できる。
 そして、X方向に平行な複数の分割予定ラインS(S1、S2、S3、…)に対してレーザ加工を完了したと確認されるまで(ステップS1007で「YES」)、ステップS1001~S1007が繰り返される。
 続いては、図15Aの「X方向への速度変化」および「Y方向への速度変化」を参照しつつ、レーザ照射位置Lbの速度変化について説明する。ここで、速度Vxは、半導体基板Wに対してレーザ照射位置LbがX方向に移動する速度を示し、速度Vyは、半導体基板Wに対してレーザ照射位置LbがY方向に移動する速度を示す。また、加工速度Vxdは、レーザ照射位置Lbが分割予定ラインSに沿ってX方向に等速移動する速度(すなわち、速度Vx)を示し、(+X)側への移動あるいは(-X)側への移動によらずに絶対値で表される。
 分割予定ラインS1に沿ってレーザ光Bを(+X)側に移動させるライン加工処理を実行するライン加工期間Ts1(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。また、分割予定ラインS2に沿ってレーザ光Bを(-X)側に移動させるライン加工処理を実行するライン加工期間Ts2(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。
 また、ライン加工期間Ts1からライン加工期間Ts2に切り換わる切換期間Tc(ステップS1005、S1006、S1001)では、次の動作が実行される。つまり、X軸駆動部65(加工軸駆動部)は、X方向(加工方向)において、分割予定ラインS1(第1の加工ライン)を(+X)側(第1の側)に通過したレーザ照射位置Lbを(+X)側に向けて減速させて停止させてから(ステップS1005)、(-X)側に向けて加速することで(ステップS1001)、レーザ照射位置Lbを分割予定ラインS2(第2の加工ライン)へ到達させる反転駆動を実行する。この反転駆動と並行して、Y軸駆動部63(送り軸駆動部)は、分割予定ラインS1に沿って分割予定ラインS1の外側までX方向に延設された仮想直線Sv1(第1の仮想直線)から、分割予定ラインS2(第2の加工ライン)に沿って分割予定ラインS2の外側までX方向に延設された仮想直線Sv2(第2の仮想直線)まで、レーザ照射位置LbをY方向(送り方向)へ移動させる。
 特に、切換期間Tcは、X方向にレーザ照射位置Lbを減速させる減速期間Td(ステップS1005)と、X方向にレーザ照射位置Lbを加速させる加速期間Ta(ステップS1001)とを含み、レーザ照射位置LbのY方向への移動は、減速期間Tdおよび加速期間Taのうち、減速期間Tdの間に実行される。具体的には、減速期間Tdが開始した後にレーザ照射位置LbのY方向への移動が開始し、減速期間Tdが終了する前にレーザ照射位置LbのY方向への移動が終了する。さらに言えば、加速期間Taにおいてレーザ照射位置LbはY方向に移動しない。
 ここで、減速期間Tdの開始時点は、X方向へのレーザ照射位置Lbの減速(換言すれば、速度Vxの絶対値の加工速度Vxdからの減少)が開始した時点を示し、減速期間Tdの終了時点は、X方向へのレーザ照射位置Lbの速度(換言すれば、速度Vx)がゼロになった時点を示す。加速期間Taの開始時点は、X方向へのレーザ照射位置Lbの加速(換言すれば、速度Vxの絶対値のゼロからの増加)が開始した時点を示し、加速期間Taの終了時点は、X方向へのレーザ照射位置Lbの加速が終了した時点(換言すれば、速度Vxの絶対値が加工速度Vxdになった時点)を示す。
 また、加速期間Taから減速期間Tdへ移行する途中に設けられた停止期間Ttでは、レーザ照射位置LbのX方向への速度VxおよびY方向への速度Vyの両方がゼロとなり、レーザ照射位置Lbは位置Pb2において半導体基板Wに対して停止している。この停止期間Ttでは、撮像部8A、8Bの撮像範囲Riも半導体基板Wに対して停止しており、特に撮像部8Bの撮像範囲Riは、半導体基板Wの(+X)側に位置するレーザ照射位置Lbの(-X)側に位置して、半導体基板Wに重複する。そこで、停止期間Ttにおいては、撮像部8Bの赤外線カメラ81が半導体基板Wのうち撮像範囲Riに重複する部分を撮像する(ステップS1006)。
 図15Bは図14のフローチャートに従って実行される動作の第2例を模式的に示す図である。図15Bでの表記は図15Aのそれと同様である。図15Bにおいても、図15Aと同様に図14のフローチャートに従って、分割予定ラインS1、S2、S3に対してレーザ加工処理が順番に実行される。ただし、レーザ加工処理の対象となる分割予定ラインSを変更する切換期間Tcでの動作が図15Bと図15Aとで異なる。そこで、図15Aとの差を中心に説明し、共通する動作については相当符号を付して適宜説明を省略する。
 分割予定ラインS1へのレーザ加工の終了に伴って、レーザ照射位置Lbが分割予定ラインS1を(+X)側に通過すると、レーザ照射位置LbがX方向の(+X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(+X)側の位置Pb2にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb2は、仮想直線Sv1上に設けられる。また、レーザ照射位置Lbが位置Pb2に停止した状態では、撮像部8Bの撮像範囲Riが撮像点Pw(S2)を少なくとも含む位置で停止する。そこで、ステップS1006では、制御部100は、撮像部8Bに撮像範囲Riを撮像させて、撮像点Pw(S2)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS2の位置を示す画像を取得できる。
 続いて、位置Pb2に停止するレーザ照射位置Lbが、X方向の(-X)側に向けて加速を開始する(ステップS1001)。そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(-X)側へ等速移動する(ステップS1002)。また、レーザ照射位置Lbが加速を開始してから加工速度Vxdでの等速移動を開始するまでの期間において、レーザ照射位置Lbは、仮想直線Sv1から仮想直線Sv2へY方向に移動する。つまり、ステップS1001~S1002では、レーザ照射位置LbはX方向への加速と並行して、仮想直線Sv1から仮想直線Sv2までY方向へ移動する。これによって、レーザ照射位置Lbが分割予定ラインS2に到達して、分割予定ラインS2へのライン加工を開始することができる。
 分割予定ラインS2へのレーザ加工の終了に伴って、レーザ照射位置Lbが分割予定ラインS2を(-X)側に通過すると、レーザ照射位置LbがX方向の(-X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(-X)側の位置Pb3にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb3は、仮想直線Sv2上に設けられる。また、レーザ照射位置Lbが位置Pb3に停止した状態では、撮像部8Aの撮像範囲Riが撮像点Pw(S3)を少なくとも含む位置で停止する。そこで、ステップS1006では、制御部100は、撮像部8Aに撮像範囲Riを撮像させて、撮像点Pw(S3)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS3の位置を示す画像を取得できる。
 続いては、図15Bの「X方向への速度変化」および「Y方向への速度変化」を参照しつつ、レーザ照射位置Lbの速度変化について説明する。分割予定ラインS1に沿ってレーザ光Bを(+X)側に移動させるライン加工処理を実行するライン加工期間Ts1(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。また、分割予定ラインS2に沿ってレーザ光Bを(-X)側に移動させるライン加工処理を実行するライン加工期間Ts2(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。
 また、ライン加工期間Ts1からライン加工期間Ts2に切り換わる切換期間Tc(ステップS1005、S1006、S1001)では、上述と同様にX方向において反転駆動を行うのと並行して、仮想直線Sv1から仮想直線Sv2までレーザ照射位置LbをY方向(送り方向)へ移動させる。特に、切換期間Tcに含まれる減速期間Tdおよび加速期間Taのうち、レーザ照射位置LbのY方向への移動は、加速期間Taの間に実行される。具体的には、加速期間Taが開始した後にレーザ照射位置LbのY方向への移動が開始し、加速期間Taが終了する前にレーザ照射位置LbのY方向への移動が終了する。さらに言えば、減速期間Tdにおいてレーザ照射位置LbはY方向に移動しない。
 また、加速期間Taから減速期間Tdへ移行する途中に設けられた停止期間Ttでは、レーザ照射位置LbのX方向への速度VxおよびY方向への速度Vyの両方がゼロとなり、レーザ照射位置Lbは位置Pb2において半導体基板Wに対して停止している。この停止期間Ttでは、撮像部8A、8Bの撮像範囲Riも半導体基板Wに対して停止しており、特に撮像部8Bの撮像範囲Riは、半導体基板Wの(+X)側に位置するレーザ照射位置Lbの(-X)側に位置して、半導体基板Wに重複する。そこで、停止期間Ttにおいては、撮像部8Bの赤外線カメラ81が半導体基板Wのうち撮像範囲Riに重複する部分を撮像する(ステップS1006)。
 図15Cは図14のフローチャートに従って実行される動作の第3例を模式的に示す図である。図15Cでの表記は図15Aのそれと同様である。図15Cにおいても、図15Aと同様に図14のフローチャートに従って、分割予定ラインS1、S2、S3に対してレーザ加工処理が順番に実行される。ただし、レーザ加工処理の対象となる分割予定ラインSを変更する切換期間Tcでの動作が図15Cと図15Aとで異なる。そこで、図15Aとの差を中心に説明し、共通する動作については相当符号を付して適宜説明を省略する。
 分割予定ラインS1へのレーザ加工の終了に伴って、レーザ照射位置Lbが分割予定ラインS1を(+X)側に通過すると、レーザ照射位置LbがX方向の(+X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(+X)側の位置Pb2にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb2は、Y方向において、仮想直線Sv1と仮想直線Sv2との間に設けられる。つまり、ステップS1005~S1006では、レーザ照射位置LbはX方向への減速と並行して、仮想直線Sv1から位置Pb2までY方向へ移動する。また、レーザ照射位置Lbが位置Pb2に停止した状態では、撮像部8Bの撮像範囲Riが撮像点Pw(S2)を少なくとも含む位置で停止する。そこで、ステップS1006では、制御部100は、撮像部8Bに撮像範囲Riを撮像させて、撮像点Pw(S2)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS2の位置を示す画像を取得できる。
 続いて、位置Pb2に停止するレーザ照射位置Lbが、X方向の(-X)側に向けて加速を開始する(ステップS1001)。そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(-X)側へ等速移動する(ステップS1002)。また、レーザ照射位置Lbが加速を開始してから加工速度Vxdでの等速移動を開始するまでの期間において、レーザ照射位置Lbは、位置Pb2から仮想直線Sv2へY方向に移動する。つまり、ステップS1001~S1002では、レーザ照射位置LbはX方向への加速と並行して、位置Pb2から仮想直線Sv2までY方向へ移動する。これによって、レーザ照射位置Lbが分割予定ラインS2に到達して、分割予定ラインS2へのライン加工を開始することができる。
 分割予定ラインS2へのレーザ加工の終了に伴って、レーザ照射位置Lbが分割予定ラインS2を(-X)側に通過すると、レーザ照射位置LbがX方向の(-X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(-X)側の位置Pb3にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb3は、Y方向において仮想直線Sv2と仮想直線Sv3との間に設けられる。つまり、ステップS1005~S1006では、レーザ照射位置LbはX方向への減速と並行して、仮想直線Sv2から位置Pb3までY方向へ移動する。また、レーザ照射位置Lbが位置Pb3に停止した状態では、撮像部8Aの撮像範囲Riが撮像点Pw(S3)を少なくとも含む位置で停止する。そこで、ステップS1006では、制御部100は、撮像部8Aに撮像範囲Riを撮像させて、撮像点Pw(S3)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS3の位置を示す画像を取得できる。
 続いては、図15Cの「X方向への速度変化」および「Y方向への速度変化」を参照しつつ、レーザ照射位置Lbの速度変化について説明する。分割予定ラインS1に沿ってレーザ光Bを(+X)側に移動させるライン加工処理を実行するライン加工期間Ts1(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。また、分割予定ラインS2に沿ってレーザ光Bを(-X)側に移動させるライン加工処理を実行するライン加工期間Ts2(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。
 また、ライン加工期間Ts1からライン加工期間Ts2に切り換わる切換期間Tc(ステップS1005、S1006、S1001)では、上述と同様にX方向において反転駆動を行うのと並行して、仮想直線Sv1から仮想直線Sv2までレーザ照射位置LbをY方向(送り方向)へ移動させる。特に、このレーザ照射位置Lbの移動は位置Pb2を経由して実行される。つまり、切換期間Tcに含まれる減速期間Tdおよび加速期間Taのうち、減速期間Tdにおいてレーザ照射位置Lbは仮想直線Sv1から位置Pb2までY方向に移動し、加速期間Taにおいてレーザ照射位置Lbは位置Pb2から仮想直線Sv2までY方向に移動する。具体的には、減速期間Tdが開始するのと同時にレーザ照射位置Lbが仮想直線Sv1から位置Pb2への移動を開始し、減速期間Tdが終了するのと同時にレーザ照射位置Lbが位置Pb2に到達する。また、加速期間Taが開始するのと同時にレーザ照射位置Lbが位置Pb2から仮想直線Sv2への移動を開始し、加速期間Taが終了するのと同時にレーザ照射位置Lbが仮想直線Sv2に到達する。
 また、加速期間Taから減速期間Tdへ移行する途中に設けられた停止期間Ttでは、レーザ照射位置LbのX方向への速度VxおよびY方向への速度Vyの両方がゼロとなり、レーザ照射位置Lbは位置Pb2において半導体基板Wに対して停止している。この停止期間Ttでは、撮像部8A、8Bの撮像範囲Riも半導体基板Wに対して停止しており、特に撮像部8Bの撮像範囲Riは、半導体基板Wの(+X)側に位置するレーザ照射位置Lbの(-X)側に位置して、半導体基板Wに重複する。そこで、停止期間Ttにおいては、撮像部8Bの赤外線カメラ81が半導体基板Wのうち撮像範囲Riに重複する部分を撮像する(ステップS1006)。
 なお、切換期間Tcにおいて、仮想直線Sv1から位置Pb2までY方向に移動させてから、位置Pb2から仮想直線Sv2までY方向に移動させる具体的な態様は、図15Cの例に限られず、例えば図15D、図15Eおよび図15Fに示す態様でこの移動を実行してもよい。
 図15Dは図14のフローチャートに従って実行される動作の第4例を模式的に示す図であり、図15Eは図14のフローチャートに従って実行される動作の第5例を模式的に示す図であり、図15Fは図14のフローチャートに従って実行される動作の第6例を模式的に示す図である。図15D~図15Fでの表記は図15Cのそれと同様である。図15D~図15Fと図15Cとの差は、切換期間Tcにおけるレーザ照射位置Lbの移動態様である。そこで、図15Cとの差を中心に説明し、共通する動作については相当符号を付して適宜説明を省略する。
 図15Dに示す第4例では、減速期間Tdが開始するのと同時にレーザ照射位置Lbが仮想直線Sv1から位置Pb2へのY方向への移動を開始し、減速期間Tdが終了するより前に、Y方向においてレーザ照射位置Lbが位置Pb2に到達して当該位置Pb2で停止する(すなわち、速度Vyがゼロ)。ただし、Y方向においてレーザ照射位置Lbが位置Pb2に到達した後、減速期間Tdは継続しており、レーザ照射位置LbはX方向への移動を継続する。また、加速期間Taが開始した後にレーザ照射位置Lbが位置Pb2から仮想直線Sv2へのY方向への移動を開始し、加速期間Taが終了するのと同時にレーザ照射位置Lbが仮想直線Sv2に到達する。つまり、減速期間Tdの途中から加速期間Taの途中までの期間ΔTyにおいて、レーザ照射位置LbはY方向において停止する(すなわち、速度Vyがゼロ)。
 図15Eに示す第5例では、減速期間Tdが開始するのと同時にレーザ照射位置Lbが仮想直線Sv1から位置Pb2へのY方向への移動を開始し、減速期間Tdが終了するより前に、Y方向においてレーザ照射位置Lbが位置Pb2に到達して当該位置Pb2で停止する(すなわち、速度Vyがゼロ)。ただし、Y方向においてレーザ照射位置Lbが位置Pb2に到達した後、減速期間Tdは継続しており、レーザ照射位置LbはX方向への移動を継続する。また、加速期間Taが開始するのと同時にレーザ照射位置Lbが位置Pb2から仮想直線Sv2へのY方向への移動を開始し、加速期間Taが終了するのと同時にレーザ照射位置Lbが仮想直線Sv2に到達する。つまり、減速期間Tdの途中から加速期間Taの開始までの期間ΔTyにおいて、レーザ照射位置LbはY方向において停止する(すなわち、速度Vyがゼロ)。
 図15Fに示す第5例では、減速期間Tdが開始するのと同時にレーザ照射位置Lbが仮想直線Sv1から位置Pb2へのY方向への移動を開始する。ただし、減速期間Tdの終了時点では、Y方向においてレーザ照射位置Lbが位置Pb2に到達しない。なお、減速期間Tdの終了時点で、X方向においてはレーザ照射位置Lbの位置(すなわち、X座標)と位置Pb2の位置(すなわち、X座標)とは一致している。したがって、レーザ照射位置Lbは、減速期間Tdの終了後も位置Pb2に向けてY方向へ移動を継続する。また、減速期間Tdの終了からレーザ照射位置Lbが位置Pb2に向かってY方向に移動する間は、レーザ照射位置LbはX方向において停止している(すなわち、速度Vxがゼロ)。そして、レーザ照射位置Lbが位置Pb2に到達すると同時に、加速期間Taが開始されるとともに、レーザ照射位置Lbが位置Pb2から仮想直線Sv2へのY方向への移動を開始する。また、加速期間Taが終了すると同時にレーザ照射位置Lbが仮想直線Sv2に到達する。
 図15Gは図14のフローチャートに従って実行される動作の第7例を模式的に示す図である。図15Gでの表記は図15Aのそれと同様である。図15Gにおいても、図15Aと同様に図14のフローチャートに従って、分割予定ラインS1、S2、S3に対してレーザ加工処理が順番に実行される。ただし、レーザ加工処理の対象となる分割予定ラインSを変更する切換期間Tcでの動作が図15Gと図15Aとで異なる。そこで、図15Aとの差を中心に説明し、共通する動作については相当符号を付して適宜説明を省略する。
 分割予定ラインS1へのレーザ加工の終了に伴って、レーザ照射位置Lbが分割予定ラインS1を(+X)側に通過すると、レーザ照射位置LbがX方向の(+X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(+X)側の位置Pb2にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb2は、Y方向において、仮想直線Sv1と仮想直線Sv2との間の区間の外側(仮想直線Sv2に対して仮想直線Sv1の逆側)に設けられる。つまり、ステップS1005~S1006では、レーザ照射位置LbはX方向への減速と並行して、仮想直線Sv1から仮想直線Sv2を超えて位置Pb2までY方向へ移動する。また、レーザ照射位置Lbが位置Pb2に停止した状態では、撮像部8Bの撮像範囲Riが撮像点Pw(S3)を少なくとも含む位置で停止する。そこで、ステップS1006では、制御部100は、撮像部8Bに撮像範囲Riを撮像させて、撮像点Pw(S3)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS3の位置を示す画像を取得できる。
 続いて、位置Pb2に停止するレーザ照射位置Lbが、X方向の(-X)側に向けて加速を開始する(ステップS1001)。そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(-X)側へ等速移動する(ステップS1002)。また、レーザ照射位置Lbが加速を開始してから加工速度Vxdでの等速移動を開始するまでの期間において、レーザ照射位置Lbは、位置Pb2から仮想直線Sv2までY方向に移動する。つまり、ステップS1001~S1002では、レーザ照射位置LbはX方向への加速と並行して、位置Pb2から仮想直線Sv2までY方向へ移動する。これによって、レーザ照射位置Lbが分割予定ラインS2に到達して、分割予定ラインS2へのライン加工を開始することができる。
 分割予定ラインS2へのレーザ加工の終了に伴って、レーザ照射位置Lbが分割予定ラインS2を(-X)側に通過すると、レーザ照射位置LbがX方向の(-X)側に向けて減速を開始し(ステップS1005)、X方向において半導体基板Wの(-X)側の位置Pb3にレーザ照射位置Lbが停止する(ステップS1006)。この位置Pb3は、Y方向において、仮想直線Sv2と仮想直線Sv3との間の区間の外側(仮想直線Sv3に対して仮想直線Sv2の逆側)に設けられる。つまり、ステップS1005~S1006では、レーザ照射位置LbはX方向への減速と並行して、仮想直線Sv2から仮想直線Sv3を超えて位置Pb2までY方向へ移動する。また、レーザ照射位置Lbが位置Pb3に停止した状態では、撮像部8Aの撮像範囲Riが撮像点Pw(S4)を少なくとも含む位置で停止する。そこで、ステップS1006では、制御部100は、撮像部8Aに撮像範囲Riを撮像させて、撮像点Pw(S4)を含む画像を取得する。これによって、制御部100は、未加工の分割予定ラインS4の位置を示す画像を取得できる。
 続いては、図15Gの「X方向への速度変化」および「Y方向への速度変化」を参照しつつ、レーザ照射位置Lbの速度変化について説明する。分割予定ラインS1に沿ってレーザ光Bを(+X)側に移動させるライン加工処理を実行するライン加工期間Ts1(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。また、分割予定ラインS2に沿ってレーザ光Bを(-X)側に移動させるライン加工処理を実行するライン加工期間Ts2(ステップS1002~S1004)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。
 また、ライン加工期間Ts1からライン加工期間Ts2に切り換わる切換期間Tc(ステップS1005、S1006、S1001)では、上述と同様にX方向において反転駆動を行うのと並行して、仮想直線Sv1から仮想直線Sv2までレーザ照射位置LbをY方向(送り方向)へ移動させる。特に、このレーザ照射位置Lbの移動は、Y方向において仮想直線Sv1と仮想直線Sv2との間の区間の外側に設けられた位置Pb2を経由して実行される。つまり、切換期間Tcに含まれる減速期間Tdおよび加速期間Taのうち、減速期間Tdにおいてレーザ照射位置Lbは仮想直線Sv1から仮想直線Sv2を超えて位置Pb2までY方向に移動し、加速期間Taにおいてレーザ照射位置Lbは位置Pb2から仮想直線Sv2までY方向に移動する。具体的には、減速期間Tdが開始するのと同時にレーザ照射位置Lbが仮想直線Sv1から位置Pb2への移動を開始し、減速期間Tdが終了するのと同時にレーザ照射位置Lbが位置Pb2に到達する。また、加速期間Taが開始するのと同時にレーザ照射位置Lbが位置Pb2から仮想直線Sv2への移動を開始し、加速期間Taが終了するのと同時にレーザ照射位置Lbが仮想直線Sv2に到達する。
 また、加速期間Taから減速期間Tdへ移行する途中に設けられた停止期間Ttでは、レーザ照射位置LbのX方向への速度VxおよびY方向への速度Vyの両方がゼロとなり、レーザ照射位置Lbは位置Pb2において半導体基板Wに対して停止している。この停止期間Ttでは、撮像部8A、8Bの撮像範囲Riも半導体基板Wに対して停止しており、特に撮像部8Bの撮像範囲Riは、半導体基板Wの(+X)側に位置するレーザ照射位置Lbの(-X)側に位置して、半導体基板Wに重複する。そこで、停止期間Ttにおいては、撮像部8Bの赤外線カメラ81が半導体基板Wのうち撮像範囲Riに重複する部分を撮像する(ステップS1006)。
 ところで、上記の例では、位置Pb2は、Y方向において仮想直線Sv2に対して仮想直線Sv1の逆側に設けられている。しかしながら、Y方向において仮想直線Sv1に対して仮想直線Sv2の逆側に位置Pb2を設けてもよい。この場合、減速期間Tdにおいて、レーザ照射位置Lbは、仮想直線Sv1から位置Pb2にY方向へ移動し、加速期間Taにおいて、レーザ照射位置Lbは位置Pb2から仮想直線Sv1を超えて仮想直線Sv2にY方向へ移動する。位置Pb3に対しても同様の変更が可能である。
 図16は各分割予定ラインへのライン加工処理の第1応用例を示すフローチャートであり、図17は図16のフローチャートに従って実行される動作の一例を模式的に示す図である。図17での表記は図15A~図15Gの表記と同様である。図16の例と図14の例とは、ライン加工処理の実行中に半導体基板Wを撮像するステップS1008の有無において異なり、他のステップS1001~S1007において共通する。したがって、図16の例においては、図15A~図15Gに示す各動作(第1例~第7例)のいずれかが実行される。なお、図17では、切換期間Tcにおけるレーザ照射位置Lbの軌跡を示していないが、図15A~図15Gのいずれかに示す軌跡をレーザ照射位置Lbが移動することができる。
 図16のステップS1008は次のように実行される。つまり、分割予定ラインS1に沿ったレーザ照射位置Lbの移動中に半導体基板Wが撮像される(ステップS1008)。具体的には、(+X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(+X)側)に位置する撮像範囲Ri(すなわち、撮像部8Aの撮像範囲Ri)が撮像される。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の撮像点Pw(S11)を含む画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS1のうち、未加工部分の位置を示す画像を取得できる。
 つまり、ステップS1003、S1108、S1104の実行期間では、分割予定ラインS1に対してライン加工処理が実行されるのと並行して、当該ライン加工処理の対象である分割予定ラインS1のうちの未加工部分の画像が撮像される。
 また、分割予定ラインS2に沿ったレーザ照射位置Lbの移動中に半導体基板Wが撮像される(ステップS1008)。具体的には、(-X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(-X)側)に位置する撮像範囲Ri(すなわち、撮像部8Bの撮像範囲Ri)が撮像される。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の撮像点Pw(S21)を含む画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS2のうち、未加工部分の位置を示す画像を取得できる。
 つまり、ステップS1003、S1108、S1104の実行期間では、分割予定ラインS2に対してライン加工処理が実行されるのと並行して、当該ライン加工処理の対象である分割予定ラインS2のうちの未加工部分の画像が撮像される。
 さらに、分割予定ラインS3に沿ったレーザ照射位置Lbの移動中に半導体基板Wが撮像される(ステップS1008)。具体的には、(+X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(+X)側)に位置する撮像範囲Ri(すなわち、撮像部8Aの撮像範囲Ri)が撮像される。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の撮像点Pw(S31)を含む画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS3のうち、未加工部分の位置を示す画像を取得できる。
 つまり、ステップS1003、S1108、S1104の実行期間では、分割予定ラインS3に対してライン加工処理が実行されるのと並行して、当該ライン加工処理の対象である分割予定ラインS3のうちの未加工部分の画像が撮像される。
 そして、X方向に平行な複数の分割予定ラインS(S1、S2、S3、…)に対してレーザ加工を完了したと確認されるまで(ステップS1007で「YES」)、ステップS1001~S1007が繰り返される。
 図18は各分割予定ラインへのライン加工処理の第2応用例を示すフローチャートであり、図19Aは図18のフローチャートに従って実行される動作の第1例を模式的に示す図である。図19Aでは、半導体基板Wに対して相対的に移動するレーザ照射位置Lbの軌跡が点線で示されるとともに、分割予定ラインS1、S2、S3に沿って分割予定ラインS1、S2、S3の両外側の間でX方向に平行に延設された仮想直線Sv1、Sv2、Sv3が一点鎖線で示される。なお、レーザ照射位置Lbの軌跡と仮想直線Sv1、Sv2、Sv3とが重複する部分では、レーザ照射位置Lbの軌跡を示す点線が優先して示される。
 図19Aに示す例では、X方向において半導体基板Wの(-X)側の位置Pb1にレーザ照射位置Lbが停止している状態から、図18のフローチャートが開始される。この位置Pb1は、分割予定ラインS1に沿った仮想直線Sv1上に設けられ、換言すれば、X方向から分割予定ラインS1に対向する位置である。ただし、図18のフローチャートを開始する際のレーザ照射位置Lbの位置は、ここの例に限られず、適宜変更できる。
 ステップS1101では、位置Pb1に停止するレーザ照射位置Lbが、X方向の(+X)側に向けて加速を開始して、X方向に平行に移動する。これによって、レーザ照射位置Lbが仮想直線Sv1に沿って(+X)側に移動する。そして、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(+X)側へ等速移動する(ステップS1102)。
 さらに、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が点灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が開始される(ステップS1103)。これによって、分割予定ラインS1に沿ってX方向の(+X)側に移動するレーザ照射位置Lbに対してレーザ光Bが照射されて、分割予定ラインS1が加工される(ライン加工処理)。
 また、この例では、分割予定ラインS1に沿ったレーザ照射位置Lbの移動中に半導体基板Wが撮像される(ステップS1104)。具体的には、(+X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(+X)側)に位置する撮像範囲Ri(すなわち、撮像部8Aの撮像範囲Ri)が撮像される。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の撮像点Pw(S11)を含む画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS1のうち、未加工部分の位置を示す画像を取得できる。
 そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が消灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が終了する(ステップS1105)。こうして、ステップS1103~S1105までの期間では、分割予定ラインS1に対してライン加工処理が実行されるのと並行して、当該ライン加工処理の対象である分割予定ラインS1のうちの未加工部分の画像が撮像される。
 レーザ照射位置Lbが分割予定ラインS1を(+X)側に通過すると、レーザ照射位置LbがX方向の(+X)側に向けて減速を開始する(ステップS1106)。ステップS1107では、X方向に平行な複数の分割予定ラインSに対してレーザ加工を完了したかが確認される。そして、これらの分割予定ラインSのうち、未加工の分割予定ラインSがある場合(ステップS1107で「NO」の場合)には、ステップS1101に戻る。
 その結果、X方向の(+X)側に減速したレーザ照射位置LbのX方向への速度Vxがゼロになるのに続いて、レーザ照射位置LbがX方向の(-X)側に加速する(ステップS1101)。そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(-X)側へ等速移動する(ステップS1102)。
 このように、図18および図19Aの例においても、上述と同様にX方向に反転駆動が実行される。また、この反転駆動と並行して、レーザ照射位置Lbが仮想直線Sv1から仮想直線Sv2までY方向に移動する。これによって、X方向においてレーザ照射位置Lbの速度Vxが加工速度Vxdに増加するまでに、Y方向においてレーザ照射位置Lbが仮想直線Sv2まで移動して、レーザ照射位置Lbが分割予定ラインS2に到達する。
 ただし、ここの例では、レーザ照射位置LbのY方向への移動態様が上述と異なる。つまり、レーザ照射位置LbがX方向において減速、停止および加速を行う反転駆動と並行して、レーザ照射位置Lbは、分割予定ラインSb1から分割予定ラインSb2へのY方向への移動を継続的に実行する(継続送り駆動)。特に、反転駆動によってX方向へのレーザ照射位置Lbの速度Vxがゼロになる時点の前後に渡って、レーザ照射位置LbのY方向への継続送り駆動が実行される。したがって、レーザ照射位置LbのX方向への速度VxおよびY方向への速度Vyの両方がゼロになるタイミングは、この例では存在しない。
 レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が点灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が開始される(ステップS1103)。これによって、分割予定ラインS2に沿ってX方向の(-X)側に移動するレーザ照射位置Lbに対してレーザ光Bが照射されて、分割予定ラインS2が加工される(ライン加工処理)。
 また、この例では、分割予定ラインS2に沿ったレーザ照射位置Lbの移動中に半導体基板Wが撮像される(ステップS1104)。具体的には、(-X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(-X)側)に位置する撮像範囲Ri(すなわち、撮像部8Bの撮像範囲Ri)が撮像される。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の撮像点Pw(S21)を含む画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS2のうち、未加工部分の位置を示す画像を取得できる。
 そして、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が消灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が終了する(ステップS1105)。こうして、ステップS1103~S1105までの期間では、分割予定ラインS2に対してライン加工処理が実行されるのと並行して、当該ライン加工処理の対象である分割予定ラインS2のうちの未加工部分の画像が撮像される。
 レーザ照射位置Lbが分割予定ラインS2を(-X)側に通過すると、レーザ照射位置LbがX方向の(-X)側に向けて減速を開始する(ステップS1106)。ステップS1107では、X方向に平行な複数の分割予定ラインSに対してレーザ加工を完了したかが確認される。そして、これらの分割予定ラインSのうち、未加工の分割予定ラインSがある場合(ステップS1107で「NO」の場合)には、ステップS1101に戻る。
 その結果、X方向の(-X)側に減速したレーザ照射位置LbのX方向への速度Vxがゼロになるのに続いて、レーザ照射位置LbがX方向の(+X)側に加速する(ステップS1101)。そして、レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するまでに、レーザ照射位置Lbの速度Vxが加工速度Vxdまで増加すると、レーザ照射位置Lbは加工速度VxdでX方向の(+X)側へ等速移動する(ステップS1102)。
 この際、上述と同様に、X方向への反転駆動と並行してY方向の継続送り駆動がレーザ照射位置Lbに対して実行される。これによって、X方向においてレーザ照射位置Lbの速度Vxが加工速度Vxdまで増加するまでに、Y方向においてレーザ照射位置Lbが仮想直線Sv3まで移動して、レーザ照射位置Lbが分割予定ラインS3に到達する。
 レーザ照射位置Lbが(-X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が点灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が開始される(ステップS1103)。これによって、分割予定ラインS3に沿ってX方向の(+X)側に移動するレーザ照射位置Lbに対してレーザ光Bが照射されて、分割予定ラインS3が加工される(ライン加工処理)。
 また、この例では、分割予定ラインS3に沿ったレーザ照射位置Lbの移動中に半導体基板Wが撮像される(ステップS1104)。具体的には、(+X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(+X)側)に位置する撮像範囲Ri(すなわち、撮像部8Aの撮像範囲Ri)が撮像される。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の撮像点Pw(S31)を含む画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS3のうち、未加工部分の位置を示す画像を取得できる。
 そして、レーザ照射位置Lbが(+X)側の半導体基板Wの端に到達するタイミングに合わせて、レーザ光源72が消灯して、加工ヘッド71からレーザ照射位置Lbへのレーザ光Bの照射が終了する(ステップS1105)。こうして、ステップS1103~S1105までの期間では、分割予定ラインS3に対してライン加工処理が実行されるのと並行して、当該ライン加工処理の対象である分割予定ラインS3のうちの未加工部分の画像が撮像される。
 続いては、図19Aの「X方向への速度変化」および「Y方向への速度変化」を参照しつつ、レーザ照射位置Lbの速度変化について説明する。分割予定ラインS1に沿ってレーザ光Bを(+X)側に移動させるライン加工処理を実行するライン加工期間Ts1(ステップS1103~S1105)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。また、分割予定ラインS2に沿ってレーザ光Bを(-X)側に移動させるライン加工処理を実行するライン加工期間Ts2(ステップS1103~S1105)では、レーザ照射位置Lbは、一定の加工速度VxdでX方向に移動しつつ、Y方向には移動しない。
 また、ライン加工期間Ts1からライン加工期間Ts2に切り換わる切換期間Tc(ステップS1106、S1101)では、次の動作が実行される。つまり、X軸駆動部65(加工軸駆動部)は、X方向(加工方向)において、分割予定ラインS1(第1の加工ライン)を(+X)側(第1の側)に通過したレーザ照射位置Lbを(+X)側に向けて減速させて停止させてから(ステップS1106)、(-X)側に向けて加速することで(ステップS1101)、レーザ照射位置Lbを分割予定ラインS2(第2の加工ライン)へ到達させる反転駆動を実行する。この反転駆動と並行して、Y軸駆動部63(送り軸駆動部)は、分割予定ラインS1に沿って分割予定ラインS1の外側までX方向に延設された仮想直線Sv1(第1の仮想直線)上から、分割予定ラインS2に沿って分割予定ラインS2の外側までX方向に延設された仮想直線Sv2(第2の仮想直線)上まで、レーザ照射位置LbをY方向(送り方向)へ継続的に移動させる継続送り駆動を実行する。
 特に、制御部100は、X軸駆動部65が反転駆動でレーザ照射位置LbをX方向に停止させるより前にY軸駆動部63が継続送り駆動を開始し、X軸駆動部65が反転駆動でレーザ照射位置LbをX方向に停止させた後にY軸駆動部63が継続送り駆動を終了するように、X軸駆動部65およびY軸駆動部63を制御する。このように、X軸駆動部65が反転駆動でレーザ照射位置LbをX方向において停止させる期間においてY軸駆動部63がレーザ照射位置LbをY方向に移動させる。
 換言すれば、切換期間Tcは、X方向にレーザ照射位置Lbを減速させる減速期間Td(ステップS1006)と、X方向にレーザ照射位置Lbを加速させる加速期間Ta(ステップS1001)とを含む。これに対して、Y軸駆動部63は、レーザ照射位置LbのY方向への移動を、減速期間Tdから加速期間Taへ移行する移行期間Txの前後に渡って継続的に実行する(すなわち、Y方向においてレーザ照射位置Lbを停止させることなく実行する)。なお、移行期間Txの間、X方向においてはレーザ照射位置Lbが停止している(すなわち、速度Vxがゼロ)。
 図19Bは図18のフローチャートに従って実行される動作の第2例を模式的に示す図である。図19Bが図19Aと異なるのは、ライン加工処理と並行して半導体基板Wを撮像する回数である。つまり、図19Bの例では、分割予定ラインS1へのライン加工処理の実行のために、(+X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(+X)側)に位置する撮像範囲Ri(すなわち、撮像部8Aの撮像範囲Ri)の撮像が複数回(ここの例では2回)実行される(ステップS1104)。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の2個の撮像点Pw(S11)、Pw(S12)をそれぞれ含む2枚の画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS1のうち、未加工部分の位置を示す画像を取得できる。
 同様に、分割予定ラインS2へのライン加工処理の実行のために、(-X)側に移動するレーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側(すなわち、(-X)側)に位置する撮像範囲Ri(すなわち、撮像部8Bの撮像範囲Ri)の撮像が複数回(ここの例では2回)実行される(ステップS1104)。これによって、レーザ照射位置Lbよりも当該レーザ照射位置Lbの移動側の2個の撮像点Pw(S21)、Pw(S22)をそれぞれ含む2枚の画像が取得される。こうして、ライン加工処理を実行中の分割予定ラインS2のうち、未加工部分の位置を示す画像を取得できる。また、分割予定ラインS3へのライン加工処理においても、同様に複数回の撮像が実行される(ステップS1104)。
 図20は図16のステップS1008あるいは図18のステップS1104で取得される半導体基板の画像の一例を模式的に示す図である。上記の例では、互いに直交する2本の分割予定ラインSの交差点を含む領域が撮像されて画像IMが取得される。この際、撮像範囲Riが半導体基板Wに対してX方向に移動しつつ、画像IMが取得されるため、画像IMでは、輝度がX方向に平均化されて表れる。その結果、分割予定ラインSに対応してX方向に平行に延びる高輝度な高輝度領域と、半導体チップCに対応してX方向に平行に延びる高輝度領域より低輝度な低輝度領域とが表れる。特に、Y方向において、2個の低輝度領域に高輝度領域が挟まれる。したがって、制御部100は、分割予定ラインSに対応する高輝度領域に基づき、分割予定ラインSのY方向への位置を確認することができる。
 以上に説明する実施形態では、レーザ照射位置Lbに対して、X方向(加工方向)の(+X)側(第1の側)に位置する撮像範囲Ri(第1の撮像範囲)を撮像する撮像部8A(第1の撮像部)と、X方向の(-X)側(第2の側)に位置する撮像範囲Ri(第2の撮像範囲)を撮像する撮像部8B(第2の撮像部)とが設けられている。そして、撮像部8Aおよび撮像部8Bは、半導体基板Wのうちそれぞれの撮像範囲Riに重複する部分を撮像する(ステップS1006、S1008、S1104)。これによって、X方向においてレーザ照射位置Lbの両側における半導体基板Wの状態を認識することが可能となっている。
 また、制御部100は、X方向の(+X)側にレーザ照射位置Lbを移動させて分割予定ラインS1(第1の加工ライン)を加工するライン加工処理(第1のライン加工処理)と、X方向の(-X)側にレーザ照射位置Lbを移動させて分割予定ラインS2(第2の加工ライン)を加工するライン加工処理(第2のライン加工処理)とを、順番に実行する。
 また、分割予定ラインS1へのライン加工処理を終了してから分割予定ラインS2へのライン加工処理を開始するまでの切換期間Tc(第1の切換期間)において、X軸駆動部65は、X方向において、分割予定ラインS1を(+X)側に通過したレーザ照射位置Lbを(+X)側に向けて減速させて停止させてから(-X)側に向けて加速することで、レーザ照射位置Lbを分割予定ラインS2へ到達させる反転駆動(第1の反転駆動)を実行する(ステップS1005、S1001)。また、当該切換期間Tcにおいて、Y軸駆動部63は、分割予定ラインS1に沿って分割予定ラインS1の外側までX方向に延設された仮想直線Sv1(第1の仮想直線)上から、分割予定ラインS2に沿って分割予定ラインS2の外側までX方向に延設された仮想直線Sv2(第2の仮想直線)上まで、レーザ照射位置LbをY方向(送り方向)へ移動させる。さらに、当該切換期間Tcにおいて、撮像部8Bは、半導体基板Wのうち撮像部8Bの撮像範囲Riに重複する部分を撮像する(ステップS1006)。かかる構成では、分割予定ラインS1を通過したレーザ照射位置Lbを分割予定ラインS2に向かわせる切換期間Tcを有効活用して、レーザ照射位置Lbの(-X)側における半導体基板Wの状態を示す画像を撮像部8Bにより撮像することができる。
 また、制御部100は、分割予定ラインS1へのライン加工処理から分割予定ラインS2へのライン加工処理への切換期間Tcにおいて、X軸駆動部65が反転駆動でレーザ照射位置Lbを停止させるタイミングに重複して、Y軸駆動部63にレーザ照射位置Lbを停止させることで、X方向およびY方向の両方においてレーザ照射位置Lbが停止する停止期間Tt(第1の停止期間)を設ける。そして、撮像部8Bは、当該停止期間Ttにおいて、半導体基板Wのうち撮像部8Bの撮像範囲Riに重複する部分を撮像する。かかる構成では、分割予定ラインS1を通過したレーザ照射位置Lbを分割予定ラインS2に向かわせる切換期間Tcを有効活用して、レーザ照射位置Lbの(-X)側における半導体基板Wの状態を示す静止画像を撮像部8Bにより撮像することができる。
 また、制御部100は、X方向の(-X)側にレーザ照射位置Lbを移動させて分割予定ラインS2(第3の加工ライン)を加工するライン加工処理(第3のライン加工処理)と、X方向の(+X)側にレーザ照射位置Lbを移動させて分割予定ラインS3(第4の加工ライン)を加工するライン加工処理(第4のライン加工処理)とを、順番に実行する。そして、分割予定ラインS2へのライン加工処理を終了してから分割予定ラインS3へのライン加工処理を開始するまでの切換期間Tc(第2の切換期間)において、X軸駆動部65は、X方向において、分割予定ラインS2を(-X)側に通過したレーザ照射位置Lbを(-X)側に向けて減速させて停止させてから(+X)側に向けて加速することで、レーザ照射位置Lbを分割予定ラインS3へ到達させる反転駆動(第2の反転駆動)を実行する(ステップS1005、S1001)。また、当該切換期間Tcにおいて、Y軸駆動部63は、分割予定ラインS2に沿って分割予定ラインS2の外側までX方向に延設された仮想直線Sv2(第3の仮想直線)上から、分割予定ラインS3に沿って分割予定ラインS3の外側までX方向に延設された仮想直線Sv3(第4の仮想直線)上まで、レーザ照射位置LbをY方向へ移動させる。さらに、当該切換期間Tcにおいて、撮像部8Aは、半導体基板Wのうち撮像部8Aの撮像範囲Riに重複する部分を撮像する(ステップS1006)。かかる構成では、分割予定ラインS2を通過したレーザ照射位置Lbを分割予定ラインS3に向かわせる切換期間Tcを有効活用して、レーザ照射位置Lbの(+X)側における半導体基板Wの状態を示す画像を撮像部8Aにより撮像することができる。
 また、制御部100は、分割予定ラインS2へのライン加工処理から分割予定ラインS3へのライン加工処理への切換期間Tcにおいて、X軸駆動部65が反転駆動でレーザ照射位置Lbを停止させるタイミングに重複して、Y軸駆動部63にレーザ照射位置Lbを停止させることで、X方向およびY方向の両方においてレーザ照射位置Lbが停止する停止期間Tt(第2の停止期間)を設ける。そして、撮像部8Aは、当該停止期間Ttにおいて、半導体基板Wのうち撮像部8Aの撮像範囲Riに重複する部分を撮像する(ステップS1006)。かかる構成では、分割予定ラインS2を通過したレーザ照射位置Lbを分割予定ラインS3に向かわせる切換期間Tcを有効活用して、レーザ照射位置Lbの(+X)側における半導体基板Wの状態を示す静止画像を撮像部8Aにより撮像することができる。
 また、撮像部8Aは、分割予定ラインS1へのライン加工処理の実行中に、半導体基板Wのうち撮像部8Aの撮像範囲Riに重複する部分を撮像し(ステップS1008、S1104)、撮像部8Bは、分割予定ラインS2へのライン加工処理の実行中に、半導体基板Wのうち撮像部8Bの撮像範囲Riに重複する部分を撮像する(ステップS1008、S1104)。かかる構成では、分割予定ラインS1へのライン加工処理の実行期間を利用して、レーザ照射位置Lbの(+X)側における半導体基板Wの状態を示す画像を撮像部8Aにより撮像できるとともに、分割予定ラインS2へのライン加工処理の実行期間を利用して、レーザ照射位置Lbの(-X)側における半導体基板Wの状態を示す画像を撮像部8Bにより撮像できる。
 図21はライン加工処理でのレーザ加工条件の決定方法の一例を示すフローチャートであり、図22Aはレーザ加工条件の決定に関わるパラメータを示す図であり、図22Bはレーザ加工条件の時間的影響を示す図であり、図22Cは図21のレーザ加工条件の決定で参照するテーブルの一例を示す図である。このテーブルは記憶部190に予め記憶されている。
 図22Aでは、ライン加工処理において、レーザ照射位置LbがX方向に移動する速度Vxと時間との関係を表す上のグラフと、レーザ照射位置LbがX方向に移動する速度Vxとレーザ照射位置LbのX方向への位置(すなわち、X座標)との関係を表す下のグラフとが示されている。
 下のグラフに示されるように、分割予定ラインSに対してライン加工処理を実行するためには、分割予定ラインSの一方側の開始地点Xsから他方側(一方側の逆)の終了地点Xeまでレーザ照射位置LbをX方向に移動させつつ、分割予定ラインSに重複するレーザ照射位置Lbにレーザ光Bを照射する照射位置走査が実行される。つまり、照射位置走査は、X軸駆動部65によってレーザ照射位置Lbを開始地点Xsから終了地点XeまでX方向に移動させつつ、分割予定ラインSに重複するレーザ照射位置Lbに加工ヘッド71からレーザ光Bを照射する。こうして、上述のライン加工処理は、照射位置走査に伴って実行される。
 この照射位置走査では、分割予定ラインSに対して等速度区間SCが設定される。この等速度区間SCは、X方向において、開始地点Xsと終了地点Xeとの間に位置して、分割予定ラインSを含むように設定される。ここの例では、X方向において等速度区間SCの両端が分割予定ラインSの両端と一致しており、換言すれば、等速度区間SCは分割予定ラインSと一致する。ただし、等速度区間SCの設定態様はここの例に限られず、分割予定ラインSの両端から外側にオフセットを加えて等速度区間SCを設定してもよい。この場合、等速度区間SCは分割予定ラインSより長くなる。オフセットの長さは、所定の一定値でもよいし、分割予定ラインSの長さに所定の倍率(例えば1%)を乗じた値でもよい。かかる等速度区間SCの長さは分割予定ラインSの長さに応じて設定され、具体的には、分割予定ラインSが長くなるほど等速度区間SCが長くなる(換言すれば、分割予定ラインSが短くなるほど等速度区間SCが短くなる)。
 この照射位置走査では、X方向において、等速度区間SCの一方側に設けられた開始地点Xsから等速度区間SCの他方側に設けられた終了地点Xeまでレーザ照射位置Lbが移動する。また、X方向において、レーザ照射位置Lbが開始地点Xsから等速度区間SCの一方側の端Xssに移動する加速期間Taでは、レーザ照射位置LbはX方向において加速度Aで加速して、レーザ照射位置LbのX方向の速度Vxはゼロから加工速度Vxdまで増加する。また、X方向において、レーザ照射位置Lbが等速度区間SCの一方側の端Xssから他方側の端Xseまで移動する等速度期間Tsc(ここの例では、ライン加工期間Tsに一致)では、レーザ照射位置LbはX方向に一定の加工速度Vxdで移動する。さらに、X方向において、レーザ照射位置Lbが等速度区間SCの他方側の端Xseから終了地点Xeまで移動する減速期間Tdでは、レーザ照射位置LbはX方向に加速度Aで減速し、レーザ照射位置LbのX方向の速度Vxは加工速度Vxdからゼロまで減少する。
 この際、加速期間Taは、速度Vxが加速度Aでゼロから加工速度Vxdまで増加するのに要する期間(Vxd/A)となり、等速度期間Tscは、等速度区間SCの長さである等速度距離Lscを加工速度Vxdで移動するのに要する期間(Lsc/Vxd)となり、減速期間Tdは、速度Vxが加速度Aで加工速度Vxdからゼロまで減少するのに要する期間(Vxd/A)となる。したがって、照射位置走査に要する走査時間tは、
 t=2×Vxd/A+Lsc/Vxd
となる。そのため、加工速度Vxdと走査時間tとの間には、図22Bに示す関係が成立する。つまり、加工速度VxdがVxd_min(=(Lsc×A/2)1/2)のとき、走査時間tが最小値となる。したがって、等速度区間SCの長さ(等速度距離Lsc)に応じて加工速度Vxdを設定することで、ライン加工処理を効率的に実行できる。
 ただし、加工速度Vxdを変更した場合には、レーザ光源72から射出するレーザ光Bの周波数を変更する必要がある。具体的には、加工速度Vxdを速くするほど、レーザ光Bの周波数を高くする必要がある。これに対して、レーザ光Bの周波数は、段階的に変えることしかできず、連続的には変えられない。そこで、図22Cのテーブルが用いられる。このテーブルは、等速度距離Lsc(ここの例では、分割予定ラインSの長さ)と、加工速度Vxdと、レーザ光Bの周波数fcとの関係を規定する。具体的には、等速度距離LscがLsc(1)以下である場合には、加工速度VxdがVxd(1)に設定され、レーザ光Bの周波数がfc(1)に設定され、等速度距離LscがLsc(1)より大きくLsc(2)以下である場合には、加工速度VxdがVxd(2)に設定され、レーザ光Bの周波数がfc(2)に設定されるといったレーザ加工条件がテーブルに規定される。
 つまり、図21のレーザ加工条件決定では、ライン加工処理の対象となる分割予定ラインSに対して設定される等速度区間SCの長さ(等速度距離Lsc)が取得される(ステップS1201)。そして、ステップS1201で取得された等速度距離Lscと図22Cのテーブルとに基づき、加工速度Vxdが決定されるとともに(ステップS1202)、レーザ光Bの周波数fcが決定される(ステップS1203)。こうして図21によって決定されたレーザ加工条件(加工速度Vxdおよび周波数fc)に従って、照射位置走査が実行される。
 ところで、照射位置走査は、X方向に平行な複数の分割予定ラインSに対して順番に実行される。換言すれば、互いに異なる分割予定ラインSを対象とする複数の照射位置走査が実行される。これに対して、図21のレーザ加工条件決定は、複数の照射位置走査のそれぞれに対して実行され、各照射位置走査は、それを対象として決定されたレーザ加工条件に従ってレーザ照射位置Lbの移動とレーザ光Bの照射とを実行する。
 特に、上記の例のようにX方向に平行な複数の分割予定ラインSが形成された半導体基板Wが円形である場合には、円の中心からY方向に遠ざかるほど分割予定ラインSが短くなり、当該分割予定ラインSに設定される等速度距離Lscも短くなる。つまり、照射位置走査で設定される等速度距離Lscは、当該照射位置走査が対象とする分割予定ラインSのY方向の位置に応じて異なる。そこで、複数の分割予定ラインSに対して順番に実行される照射位置走査のそれぞれに対して、レーザ加工条件決定を実行することが適当となる。
 なお、レーザ加工条件決定は、当該レーザ加工条件決定が対象とする照射位置走査の開始前の任意のタイミングで実行できる。例えば、X方向に平行な複数の分割予定ラインSにそれぞれ対応する複数の照射位置走査を開始する前に、当該複数の照射位置走査の全てに対してレーザ加工条件決定を実行してもよい。あるいは、一の照射位置走査を行うのに続いて次の照射位置走査を行う場合に、一の照射位置走査の実行中に、次の照射位置走査に対するレーザ加工条件決定を実行してもよい。
 なお、図22Cに示すように、加工速度Vxdの調整は、複数の離散的な加工速度Vxd(1)、Vxd(2)、Vxd(3)、Vxd(4)のうちから1つを選択することで実行され、発信周波数fcの調整は、複数の離散的な発信周波数fc(1)、Vxd(2)、Vxd(3)、Vxd(4)のうちから1つを選択することで実行される。つまり、レーザ加工条件決定では、等速度距離Lscが図22Cに示す複数(4個)の範囲のいずれに属するかに応じて、加工速度Vxdおよび発信周波数fcが選択される。この際、複数の照射位置走査のそれぞれに対してレーザ加工条件決定を実行して加工速度Vxdおよび発信周波数fcを調整した際に、連続して実行される2回のレーザ照射位置走査の間で等速度距離Lscの属する範囲が同じ場合には、加工速度Vxdおよび発信周波数fcは維持される。一方、連続して実行される2回のレーザ照射位置走査の間で等速度距離Lscの属する範囲が異なる場合には、加工速度Vxdおよび発信周波数fcとは変更される(換言すれば、切り換えられる)。つまり、加工速度Vxdの調整には、加工速度Vxdの維持と、加工速度Vxdの変更(切換)とが含まれ、発信周波数fcの調整には、発信周波数fcの維持と、発信周波数fcの変更(切換)とが含まれる。
 このように上記の実施形態では、レーザ加工装置1が本発明の「レーザ加工装置」の一例に相当し、チャックステージ3が本発明の「支持部材」の一例に相当し、Y軸駆動部63が本発明の「送り軸駆動部」の一例に相当し、X軸駆動部65が本発明の「加工軸駆動部」の一例に相当し、加工ヘッド71が本発明の「加工ヘッド」の一例に相当し、撮像部8Aが本発明の「第1の撮像部」の一例に相当し、撮像部8Aの撮像範囲Riが本発明の「第1の撮像範囲」の一例に相当し、撮像部8Bが本発明の「第2の撮像部」の一例に相当し、撮像部8Bの撮像範囲Riが本発明の「第2の撮像範囲」の一例に相当し、制御部100が本発明の「制御部」の一例に相当し、制御部100が本発明の「コンピュータ」の一例に相当し、レーザ加工プログラム191が本発明の「レーザ加工プログラム」の一例に相当し、記録媒体192が本発明の「記録媒体」の一例に相当し、レーザ光Bが本発明の「レーザ光」の一例に相当し、レーザ照射位置Lbが本発明の「レーザ照射位置」の一例に相当し、分割予定ラインSが本発明の「加工ライン」の一例に相当し、分割予定ラインS1が本発明の「第1の加工ライン」の一例に相当し、分割予定ラインS2が本発明の「第2の加工ライン」の一例に相当し、仮想直線Sv1が本発明の「第1の仮想直線」の一例に相当し、仮想直線Sv2が本発明の「第2の仮想直線」の一例に相当し、分割予定ラインS2が本発明の「第3の加工ライン」の一例に相当し、分割予定ラインS3が本発明の「第4の加工ライン」の一例に相当し、仮想直線Sv2が本発明の「第3の仮想直線」の一例に相当し、仮想直線Sv3が本発明の「第4の仮想直線」の一例に相当し、半導体基板Wが本発明の「加工対象物」の一例に相当し、X方向が本発明の「加工方向」の一例に相当し、Y方向が本発明の「送り方向」の一例に相当し、(+X)側が本発明の「第1の側」の一例に相当し、(-X)側が本発明の「第2の側」の一例に相当する。
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、上記の実施例では、撮像した画像の用途は特に説明していない。ただし、かかる画像は種々の用途に用いることができる。例えば、分割予定ラインSへのレーザ加工に伴って、未加工の分割予定ラインSがY方向に変位する場合がある。そこで、制御部100は、半導体基板Wを撮像した画像に基づき、未加工の分割予定ラインSのY方向への変位量を算出して、ライン加工処理の対象となる分割予定ラインSとレーザ照射位置Lbとの位置合わせを、当該変位量に基づき行うことができる。
 また、上記の例では、撮像部8は互いに直交する2本の分割予定ラインSの交差点を撮像するが、撮像部8の撮像対象はこれに限られず、例えば半導体チップCに付されたアライメントマーク等でも良い。
 また、レーザ照射位置Lbを半導体基板Wに対して相対的に移動させる具体的構成は、上記のXYθ駆動テーブル6に限られず、例えば加工ヘッド71をX方向およびY方向に駆動する駆動機構でも構わない。
 また、上記に示したレーザ加工方法(図11の基板加工等)によって、個々に分離された半導体チップCを製造してもよい(半導体チップ製造方法)。この半導体チップ製造方法では、上記のレーザ加工方法によって半導体基板Wの分割予定ラインSに対してライン加工処理を行って、改質層が形成される(レーザ加工工程)。続いて、半導体基板Wを保持するテープEを引き延ばして、当該テープEを拡張することで、複数の半導体チップCのそれぞれが分離される(エキスパンド工程)。
 1…レーザ加工装置
 3…チャックステージ(支持部材)
 63…Y軸駆動部(送り軸駆動部)
 65…X軸駆動部(加工軸駆動部)
 71…加工ヘッド
 8A…撮像部(第1の撮像部)
 8B…撮像部(第2の撮像部)
 100…制御部(コンピュータ)
 191…レーザ加工プログラム
 192…記録媒体
 
 

Claims (12)

  1.  互いに平行な複数の加工ラインを有する加工対象物を、前記加工ラインが所定の加工方向に平行となるように支持する支持部材と、
     所定のレーザ照射位置にレーザ光を照射する加工ヘッドと、
     前記支持部材および前記加工ヘッドの少なくとも一方を前記加工方向に駆動することで、前記加工対象物に対して前記レーザ照射位置を前記加工方向に相対的に移動させる加工軸駆動部と、
     前記支持部材および前記加工ヘッドの少なくとも一方を前記加工方向に直交する送り方向に駆動することで、前記加工対象物に対して前記レーザ照射位置を前記送り方向に相対的に移動させる送り軸駆動部と、
     前記加工ヘッドに対して前記加工方向の第1の側に配置されて、前記レーザ照射位置の前記第1の側に位置する第1の撮像範囲を撮像する第1の撮像部と、
     前記加工ヘッドに対して前記加工方向の前記第1の側の逆の第2の側に配置されて、前記レーザ照射位置の前記第2の側に位置する第2の撮像範囲を撮像する第2の撮像部と、
     前記送り軸駆動部により前記レーザ照射位置を前記加工ラインに合わせた状態で前記加工ヘッドから前記レーザ照射位置にレーザ光を照射しつつ、前記加工軸駆動部により前記レーザ照射位置を前記加工対象物に対して前記加工方向へ移動させるライン加工処理を実行することで、前記加工ラインを加工する制御部と
    を備え、
     前記第1の撮像範囲および前記第2の撮像範囲は、前記レーザ照射位置が移動するのに伴って前記レーザ照射位置と一体的に前記加工対象物に対して相対的に移動し、
     前記制御部は、前記加工対象物のうち、前記第1の撮像範囲に重複する部分を前記第1の撮像部に撮像させ、前記加工対象物のうち、前記第2の撮像範囲に重複する部分を前記第2の撮像部に撮像させるレーザ加工装置。
  2.  前記制御部は、前記加工方向の前記第1の側に前記レーザ照射位置を移動させる前記ライン加工処理によって、前記複数の加工ラインのうち第1の加工ラインを加工する第1のライン加工処理と、前記加工方向の前記第2の側に前記レーザ照射位置を移動させる前記ライン加工処理によって、前記複数の加工ラインのうち前記第1の加工ラインと異なる第2の加工ラインを加工する第2のライン加工処理とを、順番に実行する請求項1に記載のレーザ加工装置。
  3.  前記第1のライン加工処理を終了してから前記第2のライン加工処理を開始するまでの第1の切換期間において、前記加工軸駆動部は、前記加工方向において、前記第1の加工ラインを前記第1の側に通過した前記レーザ照射位置を前記第1の側に向けて減速させて停止させてから前記第2の側に向けて加速することで、前記レーザ照射位置を前記第2の加工ラインへ到達させる第1の反転駆動を実行し、前記送り軸駆動部は、前記第1の加工ラインに沿って前記第1の加工ラインの外側まで前記加工方向に延設された第1の仮想直線上から、前記第2の加工ラインに沿って前記第2の加工ラインの外側まで前記加工方向に延設された第2の仮想直線上まで、前記レーザ照射位置を前記送り方向へ移動させ、
     前記第2の撮像部は、前記第1の切換期間において前記加工対象物のうち前記第2の撮像範囲に重複する部分を撮像する請求項2に記載のレーザ加工装置。
  4.  前記制御部は、前記第1の切換期間において、前記加工軸駆動部が前記第1の反転駆動で前記レーザ照射位置を停止させるタイミングに重複して、前記送り軸駆動部に前記レーザ照射位置を停止させることで、前記加工方向および前記送り方向の両方において前記レーザ照射位置が停止する第1の停止期間を設け、
     前記第2の撮像部は、前記第1の停止期間において、前記加工対象物のうち前記第2の撮像範囲に重複する部分を撮像する請求項3に記載のレーザ加工装置。
  5.  前記制御部は、前記加工方向の前記第2の側に前記レーザ照射位置を移動させる前記ライン加工処理によって、前記複数の加工ラインのうち第3の加工ラインを加工する第3のライン加工処理と、前記加工方向の前記第1の側に前記レーザ照射位置を移動させる前記ライン加工処理によって、前記複数の加工ラインのうち前記第3の加工ラインと異なる第4の加工ラインを加工する第4のライン加工処理とを、順番に実行し、
     前記第3のライン加工処理を終了してから前記第4のライン加工処理を開始するまでの第2の切換期間において、前記加工軸駆動部は、前記加工方向において、前記第3の加工ラインを前記第2の側に通過した前記レーザ照射位置を前記第2の側に向けて減速させて停止させてから前記第1の側に向けて加速することで、前記レーザ照射位置を前記第4の加工ラインへ到達させる第2の反転駆動を実行し、前記送り軸駆動部は、前記第3の加工ラインに沿って前記第3の加工ラインの外側まで前記加工方向に延設された第3の仮想直線上から、前記第4の加工ラインに沿って前記第4の加工ラインの外側まで前記加工方向に延設された第4の仮想直線上まで、前記レーザ照射位置を前記送り方向へ移動させ、
     前記第1の撮像部は、前記第2の切換期間において前記加工対象物のうち前記第1の撮像範囲に重複する部分を撮像する請求項3または4に記載のレーザ加工装置。
  6.  前記制御部は、前記第2の切換期間において、前記加工軸駆動部が前記第2の反転駆動で前記レーザ照射位置を停止させるタイミングに重複して、前記送り軸駆動部に前記レーザ照射位置を停止させることで、前記加工方向および前記送り方向の両方において前記レーザ照射位置が停止する第2の停止期間を設け、
     前記第1の撮像部は、前記第2の停止期間において、前記加工対象物のうち前記第1の撮像範囲に重複する部分を撮像する請求項5に記載のレーザ加工装置。
  7.  前記第1の撮像部は、前記第1のライン加工処理の実行中に、前記加工対象物のうち前記第1の撮像範囲に重複する部分を撮像し、
     前記第2の撮像部は、前記第2のライン加工処理の実行中に、前記加工対象物のうち前記第2の撮像範囲に重複する部分を撮像する請求項2ないし6のいずれか1項に記載のレーザ加工装置。
  8.  互いに平行な複数の加工ラインを有する加工対象物の前記加工ラインに加工を行うレーザ加工方法であって、
     前記加工ラインが所定の加工方向に平行となるように前記加工対象物を支持部材により支持する工程と、
     所定のレーザ照射位置にレーザ光を照射する加工ヘッドおよび前記支持部材の少なくとも一方を前記加工方向に直交する送り方向に駆動する送り軸駆動部によって前記レーザ照射位置を前記加工ラインに合わせた状態で前記加工ヘッドから前記レーザ照射位置にレーザ光を照射しつつ、前記加工ヘッドおよび前記支持部材の少なくとも一方を前記加工方向に駆動する加工軸駆動部によって前記レーザ照射位置を前記加工対象物に対して前記加工方向へ移動させる工程と、
     前記加工ヘッドに対して前記加工方向の第1の側に配置された第1の撮像部によって、前記レーザ照射位置の前記第1の側に位置する第1の撮像範囲を撮像する工程と、
     前記加工ヘッドに対して前記加工方向の第1の側と逆の第2の側に配置された第2の撮像部によって、前記レーザ照射位置の前記第2の側に位置する第2の撮像範囲を撮像する工程と
    を備え、
     前記第1の撮像範囲および前記第2の撮像範囲は、前記レーザ照射位置が移動するのに伴って前記レーザ照射位置と一体的に前記加工対象物に対して相対的に移動し、
     前記第1の撮像部は、前記加工対象物のうち、前記第1の撮像範囲に重複する部分を撮像し、
     前記第2の撮像部は、前記加工対象物のうち、前記第1の撮像範囲に重複する部分を撮像するレーザ加工方法。
  9.  請求項8に記載のレーザ加工方法をコンピュータに実行させるレーザ加工プログラム。
  10.  請求項9に記載のレーザ加工プログラムを、コンピュータにより読み出し可能に記録する記録媒体。
  11.  加工ラインによって区分けされた複数の半導体チップが配列された半導体基板を、請求項9に記載のレーザ加工方法によって加工する工程と、
     前記レーザ加工方法によって加工された半導体基板を粘着力によって保持するテープを拡張することで前記複数の半導体チップのそれぞれを分離する工程と
    を備えた半導体チップ製造方法。
  12.  加工ラインによって区分けされた複数の半導体チップが配列された半導体基板を、請求項9に記載のレーザ加工方法によって加工する工程と、
     前記レーザ加工方法によって加工された半導体基板を粘着力によって保持するテープを拡張することで前記複数の半導体チップのそれぞれを分離する工程と
    によって製造された半導体チップ。
PCT/JP2022/018062 2022-04-18 2022-04-18 レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ WO2023203612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/018062 WO2023203612A1 (ja) 2022-04-18 2022-04-18 レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ
TW111122834A TW202342219A (zh) 2022-04-18 2022-06-20 雷射加工裝置、雷射加工方法、雷射加工程式、記錄媒體、半導體晶片製造方法及半導體晶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018062 WO2023203612A1 (ja) 2022-04-18 2022-04-18 レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ

Publications (1)

Publication Number Publication Date
WO2023203612A1 true WO2023203612A1 (ja) 2023-10-26

Family

ID=88419414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018062 WO2023203612A1 (ja) 2022-04-18 2022-04-18 レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ

Country Status (2)

Country Link
TW (1) TW202342219A (ja)
WO (1) WO2023203612A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106340A (ja) * 1997-09-26 2000-04-11 Nikon Corp 露光装置及び走査露光方法、並びにステージ装置
JP2008042032A (ja) * 2006-08-08 2008-02-21 Sumitomo Heavy Ind Ltd ステージ駆動方法及び該方法を用いたレーザ加工装置
JP2012256796A (ja) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd 分割予定ライン検出方法
JP2018152494A (ja) * 2017-03-14 2018-09-27 株式会社ディスコ レーザー加工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106340A (ja) * 1997-09-26 2000-04-11 Nikon Corp 露光装置及び走査露光方法、並びにステージ装置
JP2008042032A (ja) * 2006-08-08 2008-02-21 Sumitomo Heavy Ind Ltd ステージ駆動方法及び該方法を用いたレーザ加工装置
JP2012256796A (ja) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd 分割予定ライン検出方法
JP2018152494A (ja) * 2017-03-14 2018-09-27 株式会社ディスコ レーザー加工装置

Also Published As

Publication number Publication date
TW202342219A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
KR20180105079A (ko) 레이저 가공 장치
CN102950383B (zh) 穿孔方法及激光加工装置
JP4640173B2 (ja) ダイシング装置
JP2018010925A (ja) 接合装置
KR20170108786A (ko) 다이 본더 및 본딩 방법
US20200365430A1 (en) Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
WO2023203612A1 (ja) レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ
WO2023203611A1 (ja) レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ
WO2023203613A1 (ja) レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ
JP2015177110A (ja) ダイボンダ及びボンディング方法
CN111730220A (zh) 激光加工装置和激光加工方法
WO2023203614A1 (ja) レーザ加工装置、レーザ加工方法、レーザ加工プログラム、記録媒体、半導体チップ製造方法および半導体チップ
TWI840841B (zh) 雷射加工裝置、雷射加工方法、雷射加工程式、記錄媒體、半導體晶片製造方法及半導體晶片
JP6742551B2 (ja) 基板処理装置
JP2014179560A (ja) 斜め認識カメラ及びダイボンダ
JP2008130361A (ja) 荷電粒子線装置及び荷電粒子線装置の撮像方法
CN103681267A (zh) 吸气层形成方法
JP2007227703A (ja) 基板分割方法、基板分割装置、電気光学装置、電子機器
JP6942244B2 (ja) レーザー加工装置
CN109848587B (zh) 晶片的加工方法
JP7122822B2 (ja) レーザー加工装置
JP2003243890A (ja) 部品実装装置、部品実装ヘッド干渉回避制御方法、及び部品実装ヘッド干渉回避制御プログラム
JP5439141B2 (ja) 半導体チップの実装装置及び実装方法
JP2006073814A (ja) 半導体チップの実装装置及び実装方法
JP6313148B2 (ja) マーキング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024515754

Country of ref document: JP

Kind code of ref document: A