WO2023202175A1 - 循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法 - Google Patents

循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法 Download PDF

Info

Publication number
WO2023202175A1
WO2023202175A1 PCT/CN2023/072493 CN2023072493W WO2023202175A1 WO 2023202175 A1 WO2023202175 A1 WO 2023202175A1 CN 2023072493 W CN2023072493 W CN 2023072493W WO 2023202175 A1 WO2023202175 A1 WO 2023202175A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
circulating
circulating cooling
water system
acid
Prior art date
Application number
PCT/CN2023/072493
Other languages
English (en)
French (fr)
Inventor
吴新国
王乃琳
肖知
蔡朝阳
李放
王潇
姜宝安
刘家节
顿士超
马景辉
Original Assignee
天津正达科技有限责任公司
中海油天津化工研究设计院有限公司
中海油能源发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津正达科技有限责任公司, 中海油天津化工研究设计院有限公司, 中海油能源发展股份有限公司 filed Critical 天津正达科技有限责任公司
Publication of WO2023202175A1 publication Critical patent/WO2023202175A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/105Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • C02F5/125Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone

Definitions

  • the invention belongs to the technical field of circulating cooling water treatment, and specifically relates to a naturally balanced ultra-high concentration multiple and zero-discharge control method of a circulating cooling water system.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the existing high concentration multiple control methods of industrial cooling water systems and develop a control method that can achieve natural balance ultra-high concentration and zero emissions of circulating cooling water systems without adding acid.
  • the invention provides a method for naturally balanced ultra-high concentration ratio and zero-discharge control of a circulating cooling water system.
  • the method includes: in the initial stage of operation of the circulating water system, continuously adding dosing to the dosing port of the circulating cooling pool of the circulating cooling water system through a metering pump. Add efficient scale and corrosion inhibition functional chemistry The concentration of the chemical in the circulating water is maintained at 100-200mg/L. After 20-30 days of circulation, the concentration is maintained at 50-100mg/L. The chemical reaches the heat exchanger with the circulating water circulation, and part of the water is filtered through the side filter. Then return to the circulating cooling pool;
  • micro-foam evaporation pre-sedimentation functional chemicals are added to the circulating cooling pool through the metering pump, either continuously or in an impact manner.
  • the dosage concentration is 10-100mg/L, and microfoam evaporation pre-sedimentation and softening treatment is carried out.
  • the circulating water can be fully evaporated in the cooling tower, and the scaling factors in the water partially reach supersaturation due to excessive concentration.
  • the crystallization is precipitated and crystallized in an amorphous state in the circulating pool under the action of lattice distortion of the scale inhibitor;
  • the microfoam evaporation pre-sedimentation functional chemical is acrylic acid-acrylate-propylene sulfonate copolymer 5 -10%; alkyl betaine 10-20%; the remainder is water;
  • the turbidity of the circulating water ⁇ (4 ⁇ 10) NTU or the total iron ⁇ (0.5 ⁇ 1) mg/L in the circulating cooling pool near the water supply port, start adding the enhanced filtration function type through the metering pump according to the amount of filtered water.
  • the dosage concentration is 0.5 ⁇ 10 mg/L.
  • the dirt is discharged with the backwash water of the side filter, the backwash water then enters the filter press equipment for water slag separation, the separated water returns to the circulating water system, and the separated filter residue is discharged, thereby avoiding the total iron in traditional operation , replacement and discharge operation when turbidity exceeds the standard and material leaks, to achieve zero discharge of water;
  • the enhanced filtration functional chemicals are composed of the following components by weight percentage: sodium polyacrylate 5-10%; polyacrylic acid 5 -10%; alkyl glycosides 10-15%; sodium alginate 5-10%; the rest is water.
  • the high-efficiency corrosion and scale inhibition chemicals are composed of the following components in weight percentage: polyepoxysuccinic acid 10-40%; tracer scale inhibitor and dispersant 1-5%; organic carboxylic acid 10-20%; zinc Salt 0.5-2%; imidazolines 1-10%; azoles 0.1-1%; the rest is water.
  • the polyepoxysuccinic acid in the highly efficient corrosion and scale inhibition chemicals is preferably a commercially available liquid preparation with a solid content of 40% and a molecular formula of HO(C 4 H 2 O 5 M 2 ) n H, The degree of polymerization n is an integer from 6 to 20;
  • the tracer scale inhibitor and dispersant is preferably one or a mixture of two of fluorescent group-containing polyacrylic acid (salt) and hydrolyzed polypropylene in any proportion;
  • the organic carboxylic acid is preferably one or more mixtures of tartaric acid, citric acid, lauric acid, and benzoic acid in any proportion;
  • the zinc salt is preferably zinc chloride or zinc sulfate
  • the imidazolines are 2-imidazoline, 3-imidazoline and 4-imidazoline;
  • the azole is preferably triazole, benzotriazole or mercaptobenzotriazole.
  • the molecular formula of sodium polyacrylate is (C 3 H 3 NaO 2 )n, and the molecular weight is preferably 800,000-2.1 million;
  • the molecular formula of the polyacrylic acid is (C 3 H 4 O 2 )n, and the molecular weight is preferably 20,000-30,000;
  • the alkyl glycoside is a commercially available liquid preparation with a solid content of 50% and a degree of polymerization n of 1.1-3.
  • the natural balance ultra-high concentration ratio and zero-emission control method of the circulating cooling water system includes: in the early stage of operation of the circulating cooling water system, continuously add high-efficiency scale and corrosion inhibitor functional chemicals to the dosing port of the circulating cooling water pool to make it circulate The concentration in the water is maintained at 100-200mg/L. After circulating for 20-30 days, the system enters the daily operation stage, and the concentration of highly efficient scale and corrosion inhibition functional chemicals is controlled to be maintained at 50-100mg/L. The chemicals are circulated with the circulating water until heat exchange device, part of the water is filtered and returned to the circulating cooling pool;
  • micro-foam evaporation pre-sedimentation and softening treatment is carried out.
  • part of the water in the circulating water can be fully evaporated in the cooling tower above the circulating cooling pool.
  • the scaling factors in the water are partially concentrated due to over-concentration. It reaches supersaturation and crystallizes out.
  • lattice distortion of high-efficiency micro-foam evaporation and pre-sedimentation functional chemicals it crystallizes and deposits in an amorphous state in the circulating pool;
  • the turbidity of the circulating water ⁇ (4 ⁇ 10) NTU or the total iron ⁇ (0.5 ⁇ 1) mg/L in the circulating cooling pool near the water supply port, start adding the enhanced filtration function type through the metering pump according to the amount of filtered water.
  • the concentration of chemicals added to the side filter water is 0.5 to 10 mg/L.
  • enhanced filtration is performed in the side filter of the circulating cooling water system, and the filtered water is returned directly to It is used in the circulating water system.
  • the dirt is discharged with the backwash water of the side filter.
  • the backwash water then enters the filter press equipment to separate the water residue.
  • the separated water returns to the circulating water system and the separated filter residue is discharged.
  • the chemical reaches the heat exchanger with the circulating water circulation, and oxidizes, precipitates, and adsorbs with the metal surface of the heat exchanger, forming a dense composite protective film on the metal surface of the heat exchanger.
  • the circulating water is heated by the heat exchanger and the cooling material. After the exchange, it flows back to the circulating cooling pool, and part of the water is filtered by the side filter and then returned to the circulating cooling pool.
  • the highly efficient scale and corrosion inhibition functional chemicals are composed of the following components in weight percentage: polyepoxysuccinic acid 10-40%; tracer scale inhibitor and dispersant 1-5%; organic carboxylic acid 10 -20%; zinc salt 0.5-2%; imidazolines 1-10%; azoles 0.1-1%; the rest is water;
  • the polyepoxysuccinic acid is a liquid preparation with a solid content of 40%, the molecular formula is HO(C 4 H 2 O 5 M 2 )nH, and the degree of polymerization n is an integer from 6 to 20;
  • the tracer type scale inhibitor and dispersant is one or a mixture of two of fluorescent group-containing polyacrylic acid (salt) and hydrolyzed polypropylene in any proportion;
  • the organic carboxylic acid is one or a mixture of tartaric acid, citric acid, lauric acid, and benzoic acid;
  • the zinc salt is zinc chloride or zinc sulfate
  • the imidazolines are 2-imidazoline, 3-imidazoline and 4-imidazoline;
  • the azoles are triazole, benzotriazole or mercaptobenzotriazole.
  • the high-efficiency microfoam evaporation pre-sedimentation functional chemical is acrylic acid-acrylate-propylene sulfonate copolymer 5-10%; alkyl betaine 10-20%; the rest is water;
  • acrylic acid-acrylate-propylene sulfonate copolymer and alkyl betaine are both liquid preparations.
  • the enhanced filtration functional chemicals are composed of the following components in weight percentage: sodium polyacrylate 5-10%; polyacrylic acid 5-10%; alkyl glycosides 10-15%; sodium alginate 5 -10%; the rest is water;
  • the molecular formula of the sodium polyacrylate is (C 3 H 3 NaO 2 )n, and the molecular weight is 800,000-2.1 million; the molecular formula of the polyacrylic acid is (C 3 H 4 O 2 )n, and the molecular weight is 20,000-2. 30,000; the alkyl glycoside is a liquid preparation with a degree of polymerization n of 1.1-3.
  • this invention Compared with traditional high concentration multiple operation control technology, this invention has the following advantages:
  • the method of the invention avoids the infinite increase in hardness and alkalinity of the circulating water system when operating at ultra-high concentration multiples or zero-discharge operation and the acid addition operation to control water quality, and solves the problem of natural balance of industrial cooling water systems at ultra-high concentration multiples. and zero-discharge operation, as well as when reusing high-salt gray water
  • the severe corrosion and scaling of the system caused by supercritical high salt content ensures good corrosion and scale inhibition effects of industrial cooling water systems.
  • it solves the technical problem that crystallized precipitates and enriched iron ions, suspended solids, colloids, etc. cannot be discharged from the system, enabling the circulating water system to achieve ultra-high concentration times or zero-discharge operation.
  • the method of the invention is suitable for circulating cooling water systems in petrochemical, chemical, metallurgical, electric power and other industries.
  • Figure 1 is a schematic process flow diagram of the natural balance ultra-high concentration ratio and zero emission control method of the circulating cooling water system of the present invention.
  • Figure 2 is a schematic diagram of the process technology route of the natural balance ultra-high concentration ratio and zero emission control method of the circulating cooling water system of the present invention.
  • 1 is the circulating cooling pool
  • 2 is the cooling tower
  • 3 is the heat exchanger
  • 4 is the side filter
  • 5 is the filter press equipment.
  • the natural-balanced ultra-high concentration multiple and zero-discharge control method of the present invention includes: in the early stage of operation of the circulating water system, through metering The pump continuously adds high-efficiency scale and corrosion inhibitor functional chemicals to the dosing port of the circulating cooling pool 1 of the circulating cooling water system to maintain the concentration in the circulating water at 100-200mg/L. After circulating for 20-30 days, control The concentration is maintained at 50-100 mg/L, and the chemical reaches the heat exchanger 3 with the circulating water circulation. Part of the water is filtered by the side filter 4 and then returns to the circulating cooling pool 1;
  • the dosage concentration is 10-100mg/L
  • the micro-foam evaporation pre-sedimentation and softening treatment is carried out.
  • the circulating water can be fully evaporated in the cooling tower 2, and the scaling factor in the water is partially reached due to excessive concentration. It is supersaturated and crystallizes out. Under the action of lattice distortion of the scale inhibitor, it crystallizes and precipitates in an amorphous state in the circulating pool;
  • the enhanced filtration function When the turbidity of the circulating water ⁇ (4 ⁇ 10) NTU or the total iron ⁇ (0.5 ⁇ 1) mg/L, at the position 4 of the circulating cooling pool near the water supply port, the enhanced filtration function will be started through the metering pump according to the amount of filtered water. Chemicals with enhanced filtration function are added at a concentration of 0.5 to 10 mg/L.
  • the chemicals with enhanced filtration functions are fully combined with the dirt in the water, enhanced filtration is performed in the filter next to the circulating cooling water system, and the filtered water is directly reused for circulating water. System, the dirt is discharged with the backwash water of the side filter, and the backwash water then enters the filter press equipment 5 for water residue separation. The separated water returns to the circulating water system, and the separated filter residue is discharged, thereby avoiding the problems in traditional operation. Replacement and discharge operation when total iron, turbidity exceeds the standard and material leaks to achieve zero discharge of water.
  • a schematic diagram of the process technology route of the natural balance ultra-high concentration multiple and zero-discharge control method of the circulating cooling water system of the present invention includes: the initial stage of operation of the circulating water system, that is, Entire system or more than 50% heat exchange The device has just been put into operation and includes a period in which the heat load gradually increases and the water quality gradually becomes concentrated. High-efficiency scale and corrosion inhibition functional chemicals are continuously added to the dosing port of the circulating cooling pool 1 of the circulating cooling water system through a metering pump. , so that the concentration in the circulating water is maintained at 100-200mg/L.
  • the system After 20-30 days of circulation, the system enters the daily operation stage, and the concentration of highly efficient scale and corrosion inhibition functional chemicals is controlled to be maintained at 50-100mg/L.
  • the water circulates to the heat exchanger 3 and undergoes oxidation, precipitation, and adsorption with the metal surface of the heat exchanger 3 to form a dense composite protective film on the metal surface of the heat exchanger 3.
  • the circulating water passes through the heat exchanger 3 and interacts with the cooling material. After heat exchange, it flows back to the circulating cooling pool 1, and part of the water is filtered by the side filter 4 and then returns to the circulating cooling pool 1;
  • the dosing concentration is 10-100mg/L; when calcium When the sum of hardness and total alkalinity exceeds 1400 mg/L, impact dosing is performed.
  • the dosage concentration is 50-100 mg/L for micro-foam evaporation pre-sedimentation and softening treatment.
  • the circulating water is Part of the water is fully evaporated in the cooling tower 2 above the circulating cooling pool 1.
  • the scaling factors in the water are over-concentrated and locally supersaturated and crystallize out. Under the action of the lattice distortion of the high-efficiency micro-foam evaporation pre-sedimentation functional chemicals, Crystals are deposited in an amorphous state in the circulating pool;
  • the enhanced filtration function When the turbidity of the circulating water ⁇ (4 ⁇ 10) NTU or the total iron ⁇ (0.5 ⁇ 1) mg/L, at the position 4 of the circulating cooling pool near the water supply port, the enhanced filtration function will be started through the metering pump according to the amount of filtered water. Chemicals with enhanced filtration function are added at a concentration of 0.5 to 10 mg/L in the side filter water. When the chemicals with enhanced filtration functions are fully combined with the dirt in the water, enhanced filtration is performed in the side filter of the circulating cooling water system, and the filtered water is directly It is reused in the circulating water system, and the dirt is discharged with the backwash water of the side filter. The backwash water then enters the filter press equipment 5 for water residue separation. The separated water returns to the circulating water system, and the separated filter residue is discharged. Avoid the replacement discharge operation when the total iron, turbidity exceeds the standard and material leakage in traditional operation, and achieve zero discharge of water.
  • the natural balance ultra-high concentration ratio and zero-emission control methods are applied to the circulating cooling water system of a steel plant.
  • high-efficiency corrosion and scale inhibition functional chemicals are continuously added, with a ratio of 40% polyepoxy succinic acid.
  • polyepoxysuccinic acid is a commercially available liquid preparation with a solid content of 40%, a molecular formula of HO(C 4 H 2 O 5 M 2 )nH, and a degree of polymerization n of 6 An integer of -20.
  • the turbidity of the circulating water is ⁇ 4NTU or the total iron is ⁇ 0.5mg/L
  • add enhanced filtration functional chemicals at the outlet of the circulating water add enhanced filtration functional chemicals at the outlet of the circulating water.
  • the ratio is 10% sodium polyacrylate, 5% polyacrylic acid, and 10% alkyl glycosides. ;
  • Sodium alginate 10%; the rest is water, the dosage is 10mg/L;
  • the molecular formula of sodium polyacrylate is (C 3 H 3 NaO 2 )n, and the molecular weight is 800,000-1.5 million;
  • the molecular formula of polyacrylic acid is (C 3 H 4 O 2 )n, molecular weight 20,000-25,000;
  • alkyl glycoside is a commercially available liquid preparation with a solid content of 50%.
  • Corrosion and scale inhibition effect The corrosion rate of carbon steel is 0.011-0.016mm/a, the corrosion rate of copper and stainless steel is 0.0003-0.0007mm/a, which are all much better than the national design specifications for carbon steel corrosion rate ⁇ 0.075mm/a, copper and stainless steel corrosion The speed is ⁇ 0.005mm/a.
  • the thermal resistance of dirt is 0.12 ⁇ 10 -4 -0.16 ⁇ 10 -4 m 2 .k/w, which is far better than the national design specification’s requirement of thermal resistance of dirt ⁇ 3.44 ⁇ 10 - 4 m 2 .k/w; the dirt adhesion rate is 1.4 -1.7mcm, which is far better than the management index of general user's dirt adhesion rate ⁇ 15.0mcm.
  • the natural balance ultra-high concentration ratio and zero-emission control methods were applied to the circulating cooling water system of a petrochemical plant.
  • high-efficiency corrosion and scale inhibition functional chemicals were continuously added, and the ratio was polyepoxy amber. 20% acid, 2% tracer scale inhibitor and dispersant, 10% tartaric acid, 2% zinc chloride, 5% 4-imidazoline, 1% mercaptobenzotriazole, the rest is water, the dosage is 120mg/ L, the dosage will be reduced to 60mg/L after the system has been running for 30 days;
  • the turbidity of the circulating water is ⁇ 10NTU or the total iron is ⁇ 1mg/L
  • add enhanced filtration functional chemicals at the outlet of the circulating water When the turbidity of the circulating water is ⁇ 10NTU or the total iron is ⁇ 1mg/L, add enhanced filtration functional chemicals at the outlet of the circulating water.
  • the proportion is sodium polyacrylate 10%, polyacrylic acid 10%, alkyl glycoside 15%, 5% sodium alginate, the rest is water, the dosage is 2 mg/L;
  • the molecular formula of sodium polyacrylate is (C 3 H 3 NaO 2 )n, and the molecular weight is 1.5 million-2.1 million;
  • the molecular formula of polyacrylic acid is (C 3 H 4 O 2 )n, molecular weight 25,000-30,000;
  • Corrosion and scale inhibition effect The corrosion rate of carbon steel is 0.013-0.029mm/a, the corrosion rate of copper and stainless steel is 0.0005-0.0008mm/a, which are all much better than the national design specifications for carbon steel corrosion rate ⁇ 0.075mm/a, copper and stainless steel corrosion The speed is ⁇ 0.005mm/a.
  • the thermal resistance of dirt is 0.12 ⁇ 10 -4 -0.18 ⁇ 10 -4 m 2 .k/w, which is far better than the national design specification’s requirement of thermal resistance of dirt ⁇ 3.44 ⁇ 10 - 4 m 2 .k/w; the dirt adhesion rate is 1.1 -1.8mcm, which is far better than the management index of general user's dirt adhesion rate ⁇ 15.0mcm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明公开了循环水系统自然平衡超高浓缩倍数及零排放控制方法,属于循环冷却水处理技术领域,包括:在运行初期,在循环冷却水池连续投加高效阻垢缓蚀功能型化学品,使其浓度维持在100-200mg/L,循环20-30天后,控制浓度维持在50-100mg/L;当循环水中的钙硬度与总碱度的总和超过1200mg/L后,在循环冷却水池中投加高效微沫蒸发预沉功能型化学品,投加浓度在10-100mg/L;当循环水的浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,在循环冷却水池投加强化过滤功能型化学品,投加浓度为0.5~10mg/L,进行强化过滤,滤出水直接回用于循环水系统,污物随反洗水排出,反洗水再进行水渣分离,分离后的水回到循环水系统,分离后的滤渣外排。本发明可以实现循环冷却水系统无需加酸的自然平衡超高浓缩及零排放。

Description

循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法 技术领域
本发明属于循环冷却水处理技术领域,具体涉及一种循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法。
背景技术
随着可饮用水资源匮乏和环保法规日益严格,越来越多的地区和企业对水资源消耗和污水排放提出了严格限制,节水减排、中(废)水资源化利用、实现绿色发展成为越来越多企业可持续发展的重要战略之一。
多年来,工业冷却水处理技术一直围绕提高浓缩倍数、开发适用于高浓缩倍数水处理功能型化学品及运行工艺等方面持续迭代进步。为保证良好的水处理效果,不同时代所开发的功能型化学品的技术水平,决定了冷却水系统浓缩倍数呈现不同的水平,从2-3倍提升到4-5倍,近年来,一些行业和地区的工业冷却水系统浓缩倍数提升到近10倍,实现了近零排放运行,但仍存在“需要加酸”和“无法零排”两大问题。因此,亟待开发无需加酸且可实现零排放的工业冷却水处理技术。
发明内容
本发明的目的是克服现有工业冷却水系统高浓缩倍数控制方法的上述不足,开发一种可以实现循环冷却水系统无需加酸的自然平衡超高浓缩及零排放的控制方法。
本发明具体通过以下技术方案予以实现:
本发明提供了一种循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,该方法包括:循环水系统运行初期,通过计量泵在循环冷却水系统的循环冷却水池的加药口连续投加高效阻垢缓蚀功能型化学 品,使其在循环水中的浓度维持在100-200mg/L,循环20-30天后,控制浓度维持在50-100mg/L,药剂随循环水循环抵达至换热器,部分水经过旁滤器进行过滤后回到循环冷却水池;
当循环水中的钙硬度与总碱度的总和超过1200mg/L后,开始通过计量泵在循环冷却水池中投加高效微沫蒸发预沉功能型化学品,连续性投加或冲击性投加,投加浓度在10-100mg/L,进行微沫蒸发预沉软化处理,通过化学品的表面活性作用下,使循环水在冷却塔得以充分蒸发,水中结垢因子因过度浓缩而局部达到过饱和而结晶析出,在阻垢剂晶格畸变作用下在循环水池中以无定形状态结晶沉积出来;其中所述微沫蒸发预沉功能型化学品为丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物5-10%;烷基甜菜碱10-20%;其余为水;
当循环水的浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,在循环冷却水池靠近送水口部位,通过计量泵按旁滤水量开始投加强化过滤功能型化学品,投加浓度为0.5~10mg/L,当所述强化过滤功能型化学品与水中污物充分结合后,在循环冷却水系统旁滤器进行强化过滤,滤出水直接回用于循环水系统,污物随旁滤器的反洗水排出,反洗水再进入压滤设备进行水渣分离,分离后的水回到循环水系统,分离后的滤渣外排,从而避免传统运行中的总铁、浊度超标和物料泄漏时的置换排放操作,实现水的零排放;其中所述强化过滤功能型化学品为按重量百分比由以下组分组成:聚丙稀酸钠5-10%;聚丙烯酸5-10%;烷基糖苷10-15%;藻蛋白酸钠5-10%;其余为水。
其中所述高效缓蚀阻垢化学品按重量百分比由以下组分组成:聚环氧琥珀酸10-40%;示踪型阻垢分散剂1-5%;有机羧酸10-20%;锌盐0.5-2%;咪唑啉类1-10%;唑类0.1-1%;其余为水。
进一步优选,所述的高效缓蚀阻垢化学品中所述聚环氧琥珀酸优选为市售液体制剂,固含量为40%,分子式为HO(C4H2O5M2)nH,聚合度n为6-20的整数;
所述示踪型阻垢分散剂优选为含荧光基团的聚丙烯酸(盐)、水解聚马的一种或两种的任意比例混合物;
所述有机羧酸优选为酒石酸、柠檬酸、月桂酸、苯甲酸的一种或几种任意的任意比例混合物;
所述锌盐优选为氯化锌或硫酸锌;
所述咪唑啉类为2-咪唑啉、3-咪唑啉和4-咪唑啉;
所述唑类优选为三氮唑、苯并三氮唑或巯基苯并三氮唑。
上述强化过滤功能型化学品中,所述其中所述聚丙烯酸钠分子式为(C3H3NaO2)n,分子量优选为80万-210万;
所述聚丙烯酸分子式为(C3H4O2)n,分子量优选为2万-3万;
所述烷基糖苷为市售液体制剂,固含量为50%,聚合度n为1.1-3。
循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,包括:循环冷却水系统运行初期,在循环冷却水池的加药口连续投加高效阻垢缓蚀功能型化学品,使其在循环水中的浓度维持在100-200mg/L,循环20-30天后,系统进入日常运行阶段,控制高效阻垢缓蚀功能型化学品浓度维持在50-100mg/L,药剂随循环水循环抵达至换热器,部分水过滤后回到循环冷却水池;
当循环水中的钙硬度与总碱度的总和超过1200mg/L后,开始在循环冷水池中投加高效微沫蒸发预沉功能型化学品,投加浓度在10- 100mg/L,进行微沫蒸发预沉软化处理,通过化学品的表面活性作用下,使循环水中的部分水分在处于循环冷却水池上方的冷却塔得以充分蒸发,水中结垢因子因过度浓缩而局部达到过饱和而结晶析出,在高效微沫蒸发预沉功能型化学品晶格畸变作用下在循环水池中以无定形状态结晶沉积出来;
当循环水的浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,在循环冷却水池靠近送水口部位,通过计量泵按旁滤水量开始投加强化过滤功能型化学品,在旁滤水中的投加浓度为0.5~10mg/L,当所述强化过滤功能型化学品与水中污物充分结合后,在循环冷却水系统旁滤器进行强化过滤,滤出水直接回用于循环水系统,污物随旁滤器的反洗水排出,反洗水再进入压滤设备进行水渣分离,分离后的水回到循环水系统,分离后的滤渣外排。
药剂随循环水循环抵达至换热器,与换热器金属表面发生氧化、沉淀、吸附,在换热器金属表面形成一层致密的复合保护膜,循环水则通过换热器与冷却物料进行热交换后回流至循环冷却水池,而部分水经过旁滤器进行过滤后回到循环冷却水池。
进一步优选,当循环水中的钙硬度与总碱度的总和超过1200mg/L时,采用连续性投加高效微沫蒸发预沉功能型化学品,投加浓度在10-100mg/L;当钙硬度与总碱度的总和超过1400mg/L时,采用冲击式投加高效微沫蒸发预沉功能型化学品,投加浓度在50-100mg/L。
进一步优选,所述的高效阻垢缓蚀功能型化学品按重量百分比由以下组分组成:聚环氧琥珀酸10-40%;示踪型阻垢分散剂1-5%;有机羧酸10-20%;锌盐0.5-2%;咪唑啉类1-10%;唑类0.1-1%;其余为水;
其中,所述聚环氧琥珀酸为固含量为40%的液体制剂,分子式为HO(C4H2O5M2)nH,聚合度n为6-20的整数;
所述示踪型阻垢分散剂为含荧光基团的聚丙烯酸(盐)、水解聚马的一种或两种的任意比例混合物;
所述有机羧酸为酒石酸、柠檬酸、月桂酸、苯甲酸的一种或几种的混合物;
所述锌盐为氯化锌或硫酸锌;
所述咪唑啉类为2-咪唑啉、3-咪唑啉和4-咪唑啉;
所述唑类为三氮唑、苯并三氮唑或巯基苯并三氮唑。
进一步优选,所述高效微沫蒸发预沉功能型化学品为丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物5-10%;烷基甜菜碱10-20%;其余为水;
其中,所述丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物和烷基甜菜碱均为液体制剂。
进一步优选,所述强化过滤功能型化学品为按重量百分比由以下组分组成:聚丙稀酸钠5-10%;聚丙烯酸5-10%;烷基糖苷10-15%;藻蛋白酸钠5-10%;其余为水;
其中,所述聚丙烯酸钠的分子式为(C3H3NaO2)n,分子量为80万-210万;所述聚丙烯酸的分子式为(C3H4O2)n,分子量为2万-3万;所述烷基糖苷为聚合度n为1.1-3的液体制剂。
本发明与传统高浓缩倍数运行控制技术相比具有如下优势:
本发明方法避免了循环水系统在超高浓缩倍数或零排放运行时硬度、碱度的无限升高和为控制水质而进行的加酸操作,解决了工业冷却水系统在自然平衡超高浓缩倍数及零排放运行下,以及高盐中水回用时 超临界高含盐所导致的系统严重腐蚀和结垢,保证了工业冷却水系统的良好缓蚀阻垢效果。同时,解决了结晶析出物以及富集的铁离子、悬浮物、胶体等无法排出系统的技术难题,使循环水系统实现超高浓缩倍或零排放运行。
与现有技术相比,本发明方法的有益效果如下:
1)采用自然平衡处理运行工艺,避免了加酸操作,对操作员工和循环水系统的安全性大大提高,危险性降低。
2)采用零排放运行工艺,既降低了新鲜水消耗,也不会产生污水排放,对环境危害降低。
3)采用环保型水处理化学品,避免水处理化学品对环境的二次污染,对环境的危害性降低。
4)降低了循环水对水质的限制,增大了可回用中水的范围。
本发明方法适用于石化、化工、冶金、电力等循环冷却水系统。
附图说明
图1是本发明循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法的工艺流程示意图。
图2是本发明循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法的工艺技术路线示意图。
图中:1为循环冷却水池,2为冷却塔,3为换热器,4为旁滤器,5为压滤设备
具体实施方式
下面结合具体实施例及附图对本发明技术方案作进一步说明。
如图1本发明循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法的工艺流程示意图所示,本发明自然平衡超高浓缩倍数及零排放控制方法包括:循环水系统运行初期,通过计量泵在循环冷却水系统的循环冷却水池1的加药口连续投加高效阻垢缓蚀功能型化学品,使其在循环水中的浓度维持在100-200mg/L,循环20-30天后,控制浓度维持在50-100mg/L,药剂随循环水循环抵达至换热器3,部分水经过旁滤器4进行过滤后回到循环冷却水池1;
当循环水中的钙硬度与总碱度的总和超过1200mg/L后,开始通过计量泵在循环冷水池1中投加高效微沫蒸发预沉功能型化学品,连续性投加或冲击性投加,投加浓度在10-100mg/L,进行微沫蒸发预沉软化处理,通过化学品的表面活性作用下,使循环水在冷却塔2得以充分蒸发,水中结垢因子因过度浓缩而局部达到过饱和而结晶析出,在阻垢剂晶格畸变作用下在循环水池中以无定形状态结晶沉积出来;
当循环水的浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,在循环冷却水池靠近送水口部位4,通过计量泵按旁滤水量开始投加强化过滤功能型化学品,投加浓度为0.5~10mg/L,当所述强化过滤功能型化学品与水中污物充分结合后,在循环冷却水系统旁滤器进行强化过滤,滤出水直接回用于循环水系统,污物随旁滤器的反洗水排出,反洗水再进入压滤设备5进行水渣分离,分离后的水回到循环水系统,分离后的滤渣外排,从而避免传统运行中的总铁、浊度超标和物料泄漏时的置换排放操作,实现水的零排放。
如图2本发明循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法的工艺技术路线示意图所示,本发明自然平衡超高浓缩倍数及零排放控制方法包括:循环水系统运行初期,即整个系统或50%以上的换热 器刚刚投入运转,且包含一段热负荷呈现逐步升高、水质逐步浓缩的周期,通过计量泵在循环冷却水系统的循环冷却水池1的加药口连续投加高效阻垢缓蚀功能型化学品,使其在循环水中的浓度维持在100-200mg/L,循环20-30天后,系统进入日常运行阶段,控制高效阻垢缓蚀功能型化学品浓度维持在50-100mg/L,药剂随循环水循环抵达至换热器3,与换热器3金属表面发生氧化、沉淀、吸附,在换热器3金属表面形成一层致密的复合保护膜,循环水则通过换热器3与冷却物料进行热交换后回流至循环冷却水池1,而部分水经过旁滤器4进行过滤后回到循环冷却水池1;
通过日常定期的水质人工取样分析,按照国家标准进行监测,或通过监测数据准确度超过90%以上的在线监测设备监测,当循环水中的钙硬度与总碱度的总和超过1200mg/L后,开始通过计量泵在循环冷水池1中投加高效微沫蒸发预沉功能型化学品,连续性投加或冲击性投加,投加浓度在10-100mg/L,进行微沫蒸发预沉软化处理,计量泵为现有基础,具体地,当循环水中的钙硬度与总碱度的总和超过1200mg/L后,此时可采用连续性投加,投加浓度在10-100mg/L;当钙硬度与总碱度的总和超过1400mg/L时,进行冲击式投加,投加浓度在50-100mg/L进行微沫蒸发预沉软化处理,通过化学品的表面活性作用下,使循环水中的部分水分在处于循环冷却水池1上方的冷却塔2得以充分蒸发,水中结垢因子因过度浓缩而局部达到过饱和而结晶析出,在高效微沫蒸发预沉功能型化学品晶格畸变作用下在循环水池中以无定形状态结晶沉积出来;
此处需要说明的是:在日常运行阶段,当钙硬度与总碱度的总和超过1200mg/L后,才开始连续性投加或冲击性投加高效微沫蒸发预沉功 能型化学品;如果钙硬度与总碱度的总和不超过1200mg/L的话,则不需要投加高效微沫蒸发预沉功能型化学品,只需要控制高效阻垢缓蚀功能型化学品浓度维持在50-100mg/L即可。
当循环水的浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,在循环冷却水池靠近送水口部位4,通过计量泵按旁滤水量开始投加强化过滤功能型化学品,在旁滤水中的投加浓度为0.5~10mg/L,当所述强化过滤功能型化学品与水中污物充分结合后,在循环冷却水系统旁滤器进行强化过滤,滤出水直接回用于循环水系统,污物随旁滤器的反洗水排出,反洗水再进入压滤设备5进行水渣分离,分离后的水回到循环水系统,分离后的滤渣外排,从而避免传统运行中的总铁、浊度超标和物料泄漏时的置换排放操作,实现水的零排放。
实施例1
在某钢厂循环冷却水系统应用自然平衡超高浓缩倍数及零排放控制方法,该系统正常运行初期开始连续投加高效缓蚀阻垢功能型化学品,配比为聚环氧琥珀酸40%、示踪型阻垢分散剂5%、柠檬酸10%、硫酸锌1%、4-咪唑啉3%、苯并三氮唑0.5%、其余为水,投加量为200mg/L,系统运行30天后可将投加量降至100mg/L;聚环氧琥珀酸为市售液体制剂,固含量为40%,分子式为HO(C4H2O5M2)nH,聚合度n为6-20的整数。
当循环水中的钙硬度与总碱度的总和抵达1200mg/L时,开始投加高效微沫蒸发预沉功能型化学品,配比为丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物10%;烷基甜菜碱15%;其余为水,投加量为10mg/L;丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物、烷基甜菜碱均采用市售液体制剂,固含量为30%;
当循环水中浊度≥4NTU或总铁≥0.5mg/L,在循环水出水处投加强化过滤功能型化学品,配比为聚丙稀酸钠10%、聚丙烯酸5%、烷基糖苷10%;藻蛋白酸钠10%;其余为水,投加量为10mg/L;其中聚丙烯酸钠分子式为(C3H3NaO2)n,分子量80万-150万;聚丙烯酸分子式为(C3H4O2)n,分子量2万-2.5万;烷基糖苷为市售液体制剂,固含量为50%。
日常工业冷却水中钙硬度+碱度上限不做控制,含盐量上限不做控制;Cl-:≤2500mg/L,远高于国家设计规范Cl-≤700mg/L的限值。
缓蚀阻垢效果:碳钢腐蚀速率0.011-0.016mm/a、铜和不锈钢腐蚀速率0.0003-0.0007mm/a,均大大优于国家设计规范碳钢腐蚀速率≤0.075mm/a、铜和不锈钢腐蚀速率均≤0.005mm/a的要求。污垢热阻0.12×10-4-0.16×10-4m2.k/w,远优于国家设计规范的污垢热阻≤3.44×10- 4m2.k/w的要求;污垢黏附速率1.4-1.7mcm,远优于一般用户污垢黏附速率≤15.0mcm的管理指标。
强化过滤后免排效果:循环水浊度1.3-3.5NTU,总铁0.2-0.5mg/L,浓缩倍数达由原来的5倍增加到9-11倍,较往年同期减排水量40%。
实施例2
在某石化厂循环冷却水系统应用自然平衡超高浓缩倍数及零排放控制方法,该系统正常运行初期前30天内开始连续投加高效缓蚀阻垢功能型化学品,配比为聚环氧琥珀酸20%、示踪型阻垢分散剂2%、酒石酸10%、氯化锌2%、4-咪唑啉5%、巯基苯并三氮唑1%、其余为水,投加量为120mg/L,系统运行30天后将投加量降至60mg/L;
当循环水中的钙硬度与总碱度的总和抵达1200mg/L时,开始投加高效微沫蒸发预沉功能型化学品,配比为丙烯酸-丙烯酸酯-丙烯磺酸盐 共聚物8%;烷基甜菜碱10%;其余为水,投加量为100mg/L;丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物、烷基甜菜碱均采用市售液体制剂,固含量为30%;
当循环水中浊度≥10NTU或总铁≥1mg/L,在循环水出水处投加强化过滤功能型化学品,配比为聚丙稀酸钠10%、聚丙烯酸10%、烷基糖苷15%、藻蛋白酸钠5%、其余为水,投加量为2mg/L;其中聚丙烯酸钠分子式为(C3H3NaO2)n,分子量150万-210万;聚丙烯酸分子式为(C3H4O2)n,分子量2.5万-3万;
日常工业冷却水中钙硬度+碱度上限不做控制,含盐量上限不做控制;Cl-:1810-2234mg/L,远高于国家设计规范Cl-≤700mg/L的限值。
缓蚀阻垢效果:碳钢腐蚀速率0.013-0.029mm/a、铜和不锈钢腐蚀速率0.0005-0.0008mm/a,均大大优于国家设计规范碳钢腐蚀速率≤0.075mm/a、铜和不锈钢腐蚀速率均≤0.005mm/a的要求。污垢热阻0.12×10-4-0.18×10-4m2.k/w,远优于国家设计规范的污垢热阻≤3.44×10- 4m2.k/w的要求;污垢黏附速率1.1-1.8mcm,远优于一般用户污垢黏附速率≤15.0mcm的管理指标。
强化过滤后免排效果:循环水浊度0.8-1.5NTU,总铁0.1-0.3mg/L,浓缩倍数达由原来的5-7倍增加到13-15倍,实现不强制排污,较往年同期减排水量60%以上。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于:包括:
    循环冷却水系统运行初期,维持高效阻垢缓蚀功能型化学品浓度100-200mg/L,循环运行20-30天后,降低浓度至50-100mg/L,转入日常运行;
    当循环水中的钙硬度与总碱度的总和超过1200mg/L后,开始投加高效微沫蒸发预沉功能型化学品维持其浓度在10-100mg/L,进行微沫蒸发预沉软化处理,通过化学品的表面活性作用,使循环冷却水在冷却塔得以充分蒸发,水中结垢因子因过度浓缩而局部达到过饱和而结晶析出,在阻垢剂晶格畸变作用下在循环冷却水池中以无定形状态结晶沉积出来;其中所述微沫蒸发预沉功能型化学品为丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物5-10%;烷基甜菜碱10-20%;其余为水;
    当循环水浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,开始投加强化过滤功能型化学品,投加浓度为0.5~10mg/L,当所述强化过滤功能型化学品与水中污物充分结合后,在循环冷却水系统旁滤器进行强化过滤,滤出水直接回用于循环冷却水系统,污物随旁滤器的反洗水排出,反洗水再进入压滤设备进行水渣分离,分离后的水回到循环冷却水系统,分离后的滤渣外排;所述强化过滤功能型化学品为按重量百分比由以下组分组成:聚丙稀酸钠5-10%;聚丙烯酸5-10%;烷基糖苷10-15%;藻蛋白酸钠5-10%;其余为水。
  2. 根据权利要求1所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于,所述的高效阻垢缓蚀功能型化学品按重量百分比由以下组分组成:聚环氧琥珀酸10-40%;示踪型阻垢分散剂1-5%;有机羧酸10-20%;锌盐0.5-2%;咪唑啉类1-10%;唑类0.1-1%; 其余为水;
    所述的高效阻垢缓蚀功能型化学品中,所述聚环氧琥珀酸为固含量为40%的液体制剂,分子式为HO(C4H2O5M2)nH,聚合度n为6-20的整数;
    所述示踪型阻垢分散剂为含荧光基团的聚丙烯酸(盐)、水解聚马的一种或两种的任意比例混合物;
    所述有机羧酸为酒石酸、柠檬酸、月桂酸、苯甲酸的一种或几种的混合物;
    所述锌盐为氯化锌或硫酸锌;
    所述咪唑啉类为2-咪唑啉、3-咪唑啉和4-咪唑啉;
    所述唑类为三氮唑、苯并三氮唑或巯基苯并三氮唑。
  3. 根据权利要求1所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于,所述的丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物和烷基甜菜碱为液体制剂。
  4. 根据权利要求1所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于,所述强化过滤功能型化学品中,所述聚丙烯酸钠的分子量为80万-210万;所述聚丙烯酸的分子量为2万-3万;所述烷基糖苷为聚合度n为1.1-3的液体制剂。
  5. 循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于,包括:循环冷却水系统运行初期,在循环冷却水池的加药口连续投加高效阻垢缓蚀功能型化学品,使其在循环水中的浓度维持在100-200mg/L,循环20-30天后,系统进入日常运行阶段,控制高效阻垢缓蚀功能型化学品浓度维持在50-100mg/L,药剂随循环水循环抵达至换热器,部分水过滤后回到循环冷却水池;
    当循环水中的钙硬度与总碱度的总和超过1200mg/L后,开始在循环冷水池中投加高效微沫蒸发预沉功能型化学品,投加浓度在10-100mg/L,进行微沫蒸发预沉软化处理,通过化学品的表面活性作用下,使循环水中的部分水分在处于循环冷却水池上方的冷却塔得以充分蒸发,水中结垢因子因过度浓缩而局部达到过饱和而结晶析出,在高效微沫蒸发预沉功能型化学品晶格畸变作用下在循环水池中以无定形状态结晶沉积出来;
    当循环水的浊度≥(4~10)NTU或总铁≥(0.5~1)mg/L时,在循环冷却水池靠近送水口部位,通过计量泵按旁滤水量开始投加强化过滤功能型化学品,在旁滤水中的投加浓度为0.5~10mg/L,当所述强化过滤功能型化学品与水中污物充分结合后,在循环冷却水系统旁滤器进行强化过滤,滤出水直接回用于循环水系统,污物随旁滤器的反洗水排出,反洗水再进入压滤设备进行水渣分离,分离后的水回到循环水系统,分离后的滤渣外排。
  6. 根据权利要求5所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于:药剂随循环水循环抵达至换热器,与换热器金属表面发生氧化、沉淀、吸附,在换热器金属表面形成一层致密的复合保护膜,循环水则通过换热器与冷却物料进行热交换后回流至循环冷却水池,而部分水经过旁滤器进行过滤后回到循环冷却水池。
  7. 根据权利要求6所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于:当循环水中的钙硬度与总碱度的总和超过1200mg/L时,采用连续性投加高效微沫蒸发预沉功能型化学品,投加浓度在10-100mg/L;当钙硬度与总碱度的总和超过1400mg/L时,采用冲击式投加高效微沫蒸发预沉功能型化学品,投加浓度在50-100mg/L。
  8. 根据权利要求5所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于:所述的高效阻垢缓蚀功能型化学品按重量百分比由以下组分组成:聚环氧琥珀酸10-40%;示踪型阻垢分散剂1-5%;有机羧酸10-20%;锌盐0.5-2%;咪唑啉类1-10%;唑类0.1-1%;其余为水;
    其中,所述聚环氧琥珀酸为固含量为40%的液体制剂,分子式为HO(C4H2O5M2)nH,聚合度n为6-20的整数;
    所述示踪型阻垢分散剂为含荧光基团的聚丙烯酸(盐)、水解聚马的一种或两种的任意比例混合物;
    所述有机羧酸为酒石酸、柠檬酸、月桂酸、苯甲酸的一种或几种的混合物;
    所述锌盐为氯化锌或硫酸锌;
    所述咪唑啉类为2-咪唑啉、3-咪唑啉和4-咪唑啉;
    所述唑类为三氮唑、苯并三氮唑或巯基苯并三氮唑。
  9. 根据权利要求7所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于:所述高效微沫蒸发预沉功能型化学品为丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物5-10%;烷基甜菜碱10-20%;其余为水;
    其中,所述丙烯酸-丙烯酸酯-丙烯磺酸盐共聚物和烷基甜菜碱均为液体制剂。
  10. 根据权利要求5所述的循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法,其特征在于:所述强化过滤功能型化学品为按重量百分比由以下组分组成:聚丙稀酸钠5-10%;聚丙烯酸5-10%;烷基糖苷10-15%;藻蛋白酸钠5-10%;其余为水;
    其中,所述聚丙烯酸钠的分子式为(C3H3NaO2)n,分子量为80万-210万;所述聚丙烯酸的分子式为(C3H4O2)n,分子量为2万-3万;所述烷基糖苷为聚合度n为1.1-3的液体制剂。
PCT/CN2023/072493 2022-04-21 2023-01-17 循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法 WO2023202175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210420354.6A CN114853240B (zh) 2022-04-21 2022-04-21 一种循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法
CN202210420354.6 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023202175A1 true WO2023202175A1 (zh) 2023-10-26

Family

ID=82632535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072493 WO2023202175A1 (zh) 2022-04-21 2023-01-17 循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法

Country Status (2)

Country Link
CN (1) CN114853240B (zh)
WO (1) WO2023202175A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853240B (zh) * 2022-04-21 2023-08-01 天津正达科技有限责任公司 一种循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994598A (ja) * 1995-09-29 1997-04-08 Kurita Water Ind Ltd 開放循環冷却水系の防食・防スケール方法
CN103523935A (zh) * 2013-10-23 2014-01-22 中国海洋石油总公司 一种示踪型无磷缓蚀阻垢剂的制备方法
CN104355418A (zh) * 2014-10-24 2015-02-18 中国海洋石油总公司 一种无磷缓蚀阻垢剂的制备方法
CN107119281A (zh) * 2017-05-09 2017-09-01 天津正达科技有限责任公司 一种循环水系统一步法清洗预膜处理方法
CN111592121A (zh) * 2020-05-13 2020-08-28 欣格瑞(山东)环境科技有限公司 丙烯酸共聚物和新型环保缓蚀阻垢剂组合物及应用
CN114853240A (zh) * 2022-04-21 2022-08-05 天津正达科技有限责任公司 一种循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929749B2 (en) * 2004-01-09 2005-08-16 Water & Enviro Tech Company, Inc. Cooling water scale and corrosion inhibition
CN102050526B (zh) * 2010-11-18 2012-05-23 中国海洋石油总公司 一种低磷高浓缩倍数循环水处理工艺方法
US20130001171A1 (en) * 2011-06-28 2013-01-03 Rick Harve Maxey Process for controlling hardness in open recirculating systems
CN104355467A (zh) * 2014-11-11 2015-02-18 杭州安耐杰科技有限公司 一种循环冷却水补水净化处理系统
JP6589286B2 (ja) * 2015-02-13 2019-10-16 栗田工業株式会社 循環冷却水用初期処理剤及び循環冷却水系の初期処理方法
JP5901831B1 (ja) * 2015-11-20 2016-04-13 伯東株式会社 スケール防止剤の製造方法及びスケール防止方法
CN206580684U (zh) * 2017-01-24 2017-10-24 汪传发 一种超高浓缩倍数循环冷却水处理系统
CN110436687A (zh) * 2018-05-04 2019-11-12 芜湖佳泽利环境资源科技有限公司北京分公司 一种适合工业循环水的零排放系统和方法
CN109095695A (zh) * 2018-08-07 2018-12-28 江苏润聚环保科技有限公司 环保型循环水整体处理方法
CN110183012A (zh) * 2019-06-25 2019-08-30 河北省科学院能源研究所 一种循环冷却水处理方法
CN214735150U (zh) * 2021-03-02 2021-11-16 厦门绿信环保科技有限公司 一种循环水的近零排放处理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994598A (ja) * 1995-09-29 1997-04-08 Kurita Water Ind Ltd 開放循環冷却水系の防食・防スケール方法
CN103523935A (zh) * 2013-10-23 2014-01-22 中国海洋石油总公司 一种示踪型无磷缓蚀阻垢剂的制备方法
CN104355418A (zh) * 2014-10-24 2015-02-18 中国海洋石油总公司 一种无磷缓蚀阻垢剂的制备方法
CN107119281A (zh) * 2017-05-09 2017-09-01 天津正达科技有限责任公司 一种循环水系统一步法清洗预膜处理方法
CN111592121A (zh) * 2020-05-13 2020-08-28 欣格瑞(山东)环境科技有限公司 丙烯酸共聚物和新型环保缓蚀阻垢剂组合物及应用
CN114853240A (zh) * 2022-04-21 2022-08-05 天津正达科技有限责任公司 一种循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法

Also Published As

Publication number Publication date
CN114853240B (zh) 2023-08-01
CN114853240A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023202175A1 (zh) 循环冷却水系统自然平衡超高浓缩倍数及零排放控制方法
CN105481116A (zh) 一种循环冷却水缓蚀阻垢剂及其制备方法
CN101302060A (zh) 一种工业循环冷却水的缓蚀阻垢剂
CN103739025A (zh) 一种高效节能的多效蒸发器系统
CN103304045A (zh) 一种阻垢缓蚀剂及其制备方法
CN105254066A (zh) 大水量电厂废水零排放处理装置及方法
CN110143675B (zh) 工业循环冷却水系统用无磷预膜剂及其制备方法
JP2014210232A (ja) カルシウム溶出粒子を含むアルカリ排水の処理方法
CN105645610A (zh) 一种循环水缓蚀阻垢剂及其制备方法
CN103265126B (zh) 一种无磷环保型软水缓蚀剂
CN102701471A (zh) 一种高硬水缓蚀阻垢剂
CN110104803A (zh) 一种环保型复合缓蚀阻垢剂、制备及使用方法
CN204607769U (zh) 一种除盐零排放系统
CN105668817A (zh) 一种阻垢缓蚀剂
JP2004211137A (ja) 防食剤組成物
CN109987725A (zh) 一种利用工业废水作为循环水补充水的零排放控制剂
CN113087170B (zh) 一种低磷缓蚀复合阻垢剂及其应用
CN212559784U (zh) 一种工业用循环冷却水零排放处理系统
AU2020102218A4 (en) A scale inhibition method for a physicochemical-superconducting HGMS coupled process clean circulating water system
CN209368046U (zh) 循环水处理装置
CN111235580A (zh) 一种复合型密闭式循环水无磷缓蚀剂及其制备方法
CN110357310A (zh) 一种处理钢铁行业循环水排污水电吸附浓水的方法
CN113185007B (zh) 一种汽包锅炉炉内水处理用复合药剂及其制备方法
CN115094406B (zh) 无磷预膜剂及其制备方法和应用
CN116040820A (zh) 一种复合无磷阻垢剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790839

Country of ref document: EP

Kind code of ref document: A1