WO2023201810A1 - Tamis moléculaire coeur-enveloppe et sa méthode de préparation, matériau absorbant le son et haut-parleur - Google Patents

Tamis moléculaire coeur-enveloppe et sa méthode de préparation, matériau absorbant le son et haut-parleur Download PDF

Info

Publication number
WO2023201810A1
WO2023201810A1 PCT/CN2022/093428 CN2022093428W WO2023201810A1 WO 2023201810 A1 WO2023201810 A1 WO 2023201810A1 CN 2022093428 W CN2022093428 W CN 2022093428W WO 2023201810 A1 WO2023201810 A1 WO 2023201810A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
core
sound
shell structure
shell
Prior art date
Application number
PCT/CN2022/093428
Other languages
English (en)
Chinese (zh)
Inventor
张捷
王和志
汪中洋
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声光电科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2023201810A1 publication Critical patent/WO2023201810A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials

Definitions

  • the present invention relates to the field of sound-absorbing materials, and in particular, to a sound-absorbing material containing a core-shell structure molecular sieve used in a speaker.
  • molecular sieve As a material with a high specific surface area, molecular sieve can continuously adsorb and desorb the air in the rear cavity of the speaker when it vibrates, thereby indirectly increasing the volume of the rear cavity. It is a commonly used sound absorption material in the rear cavity of the speaker. Material. However, molecular sieves with higher aluminum content are prone to aluminum removal in high-humidity environments, destroying the skeleton structure of the molecular sieve, resulting in a decrease in the performance of the sound-absorbing material; in addition, the speaker system will emit a small amount of various VOCs when working for a long time.
  • Entering the pores of the molecular sieve can easily cause blockage of the pores, or be adsorbed on the surface of the molecular sieve, occupying effective adsorption sites, and some VOCs are not easy to desorb after adsorption, resulting in irreversible deactivation of the molecular sieve and a decrease in sound absorption performance.
  • one object of the present invention is to provide a highly active core-shell structure molecular sieve and a preparation method thereof.
  • Another object of the present invention is to provide a sound-absorbing material containing the above-mentioned highly active core-shell structure molecular sieve and a speaker filled with the sound-absorbing material.
  • the present invention provides a core-shell structure molecular sieve, the silicon-aluminum mass ratio of the core-shell structure molecular sieve is 1-500; the core-shell structure molecular sieve uses ZSM-5 molecular sieve with mesoporous structure as the core. phase, the mass ratio of silicon to aluminum in the core phase is 50-150; the core-shell structure molecular sieve uses rare earth metal modified ZSM-5 molecular sieve with a microporous structure as the shell layer, and the mass ratio of silicon to aluminum in the shell layer is 300-800, the shell layer contains 1-5wt% rare earth metals.
  • the grain size of the core phase is 200-1000 nm, and the thickness of the shell layer is 20-200 nm.
  • the rare earth metal includes La or Ce.
  • the invention also provides a preparation method of core-shell molecular sieve, which includes the following steps:
  • the precursor mixed liquid and the ZSM-5 molecular sieve with mesoporous structure are mixed and stirred evenly, and then hydrothermal crystallization is performed to obtain a prefabricated mixed liquid;
  • the prefabricated mixed liquid is cooled, filtered, rinsed with deionized water until the pH is neutral, and then dried and roasted to obtain a core-shell structure molecular sieve.
  • the aluminum source includes one or more of aluminum nitrate, aluminum sulfate, and aluminate
  • the silicon source includes one or more of silica sol, white carbon black, and orthosilicate.
  • the template agent includes tetrapropylammonium hydroxide or tetrapropylammonium bromide
  • the rare earth metal M includes La or Ce.
  • the aluminum source contains Al 2 O 3
  • the silicon source contains SiO 2
  • the precursor mixture contains sodium hydroxide, Al 2 O 3 , SiO 2 , template agent, rare earth metal M compound, and water.
  • the molar ratios are [50-100]:[0.5-1.5]:800:[50-200]:[5-20]:[10000-20000].
  • the mass ratio of SiO 2 in the ZSM-5 molecular sieve with mesoporous structure and the precursor mixture is [1-10]:1.
  • the present invention also provides a sound-absorbing material, which includes the core-shell structure molecular sieve and a binder as described above.
  • the binder includes one or more of polyacrylate, polystyrene acrylate, polystyrene butadiene, and polystyrene acetate; the sound-absorbing material contains 2-10 wt% The adhesive.
  • the present invention also provides a speaker, which has a casing and a sound-emitting unit contained in the casing.
  • the sound-emitting unit and the casing are enclosed to form a back cavity, and the back cavity is filled with the above-mentioned sound-absorbing materials.
  • the core-shell structure molecular sieve, sound-absorbing materials and speakers provided by the present invention have the following beneficial effects: the shell layer of the core-shell structure molecular sieve has a higher silicon-to-aluminum ratio, and has improved water resistance after modification with rare earth metals.
  • the microporous structure of the shell layer can effectively restrict VOCs from entering the core phase of the core-shell structure molecular sieve, so that the core-phase molecular sieve can maintain good activity and improve the sound-absorbing material containing the core-shell structure molecular sieve. Water resistance and VOCs performance make the speaker have stable acoustic performance.
  • Figure 1 is a schematic structural diagram of a speaker provided by the present invention.
  • Figure 2 is a flow chart for the preparation of the core-shell structure molecular sieve provided by the present invention.
  • the speaker 100 of the present invention includes a housing 1 and a sound-emitting unit 2 contained in the housing 1.
  • the sound-emitting unit 2 and the housing 1 are enclosed to form a back cavity 3, and the back cavity is filled with There is a sound-absorbing material 4 to increase the virtual space of the rear cavity 3, thereby improving the low-frequency performance of the speaker 100.
  • the sound-absorbing material 4 includes a core-shell structure molecular sieve and a binder.
  • the mass ratio of silicon to aluminum of the core-shell structure molecular sieve is 1-500; the core-shell structure molecular sieve uses ZSM-5 molecular sieve with mesoporous structure as the core phase, and the silicon-aluminum mass ratio of the core phase is 50-150;
  • the core-shell structure molecular sieve uses rare earth metal-modified ZSM-5 molecular sieve with microporous structure as the shell layer.
  • the mass ratio of silicon to aluminum in the shell layer is 300-800.
  • the shell layer contains 1-5wt% of rare earth metals. . Specifically, the grain size of the core phase is 200-1000 nm, and the thickness of the shell layer is 20-200 nm.
  • the ZSM-5 molecular sieve with mesoporous structure as the core phase is covered with a shell layer of rare earth metal-modified ZSM-5 molecular sieve with microporous structure, and the shell layer has a high silicon-to-aluminum ratio. , and after modification with rare earth metals, the water resistance is effectively improved.
  • the microporous structure on the shell layer can effectively restrict VOCs from entering the core phase of the core-shell structure molecular sieve, so that the molecular sieve as the core phase maintains good activity.
  • the preparation method of the core-shell structure molecular sieve provided by the invention mainly includes the following steps:
  • step (3) Mix the precursor mixed solution obtained in step (1) and the ZSM-5 molecular sieve solution with mesoporous structure in step (2), and stir evenly at 50-70°C to obtain a mixed solution;
  • step (3) Put the mixed solution obtained in step (3) into a reaction kettle, and hydrothermally crystallize it at 90-100°C for 1 to 3 days to obtain a premade mixed solution;
  • step (4) After cooling and filtering the prefabricated mixture obtained in step (4), rinse repeatedly with deionized water until the pH becomes neutral, then dry and roast to obtain a core-shell structure molecular sieve.
  • the aluminum source includes one or more of aluminum nitrate, aluminum sulfate, and aluminate;
  • the silicon source includes one or more of silica sol, white carbon black, and orthosilicate.
  • the template agent includes tetrapropylammonium hydroxide or tetrapropylammonium bromide;
  • the rare earth metal M includes La or Ce; it can be understood that the aluminum source contains Al 2 O 3 , which mainly serves as the source of Al 2 O 3 ; similarly, the silicon source contains SiO 2 , which mainly serves as the source of SiO 2 .
  • the molar ratios of sodium hydroxide, Al 2 O 3 , SiO 2 , template agent, rare earth metal M compound, and water are in order [50-100]: [0.5-1.5]:800:[50-200]:[5-20]:[10000-20000].
  • step (3) the mass ratio of SiO2 in the ZSM-5 molecular sieve with mesoporous structure and the precursor mixture is [1-10]:1.
  • the core-shell structure molecular sieve prepared by the above method can be used as a raw material together with a binder to prepare the sound-absorbing material 4 for filling in the rear cavity 3 of the speaker 100.
  • the specific preparation scheme is as follows:
  • the binder includes one or more of polyacrylate, polystyrene acrylate, polystyrene butadiene, and polystyrene acetate; and the sound-absorbing material contains 2-10wt% of all The adhesive.
  • a corresponding molding method can be reasonably selected according to specific use requirements to process the sound-absorbing material stock liquid to obtain the final form of the sound-absorbing material.
  • the molding methods include but are not limited to the following four:
  • step (1) Weigh the ZSM-5 molecular sieve with a mesoporous structure and a grain size of 800 ⁇ m with a SiO 2 mass ratio of 10:1 in step (1), and add it to deionized water to prepare ZSM-5 with a mesoporous structure. After the molecular sieve solution is mixed with the precursor mixture in step 1, stir it evenly in a 60°C water bath to obtain a mixture;
  • step (3) Cool and filter the premade mixture obtained in step (3) to obtain a filter cake, and repeatedly rinse the filter cake with deionized water until the pH becomes neutral to obtain a solid;
  • step (4) The solid obtained in step (4) is put into a muffle furnace and calcined at 550°C for 2 hours to obtain a core-shell structure molecular sieve;
  • Example 1 The difference between this control group and Example 1 is that the molecular sieve used in step (6) is a conventional ZSM-5 molecular sieve, and its silicon-to-aluminum ratio and grain size are the same as the core-shell structure molecular sieve described in Example 1. Subsequent sound-absorbing materials The molding steps are the same as in Example 1.
  • Example 1 The sound-absorbing materials prepared in Example 1 and Control 1 were tested as follows.
  • the resonant frequency of a loudspeaker is determined by measuring the frequency-dependent resistance and its phase, as well as its corresponding zero-crossing point.
  • a speaker with a 0.5ml rear cavity and a 11mm*15mm*3mm sound-emitting unit was connected to the impedance analyzer. Sound-absorbing materials with a diameter of 200-300 ⁇ m were selected from Example 1 and Control Group 1 to fill the rear cavity of the speaker. , calculate the offset value of F0 compared with the empty cavity, that is, ⁇ F0.
  • Example 1 and Control Group 1 of the present invention were placed in a high temperature and high humidity chamber of 85°C/85% rh and worked under load for 200 hours, and the ⁇ F0 before and after the test was measured.
  • Example 1 of the present invention The sound-absorbing materials prepared in Example 1 of the present invention and the control group 1 were respectively placed in the rear cavity of the speaker, worked in a VOCs atmosphere for 48 hours, and tested for ⁇ F0 before and after the coexistence of VOCs.
  • the VOCs can be isooctyl acrylate, One or more of trimethylolpropane, triacrylate, phenethyl ester, etc. The test results obtained are shown in Table 1.
  • the shell layer of the core-shell structure molecular sieve provided by the present invention has a higher silicon-to-aluminum ratio, and its water resistance is greatly improved after modification with rare earth metals.
  • the microporous structure of the shell layer can effectively limit VOCs enter the core phase of the core-shell structure molecular sieve, so that the core-phase molecular sieve can maintain good activity, improve the water resistance and VOCs performance of the sound-absorbing material containing the core-shell structure molecular sieve, and make the speaker have stable acoustic performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

L'invention concerne un tamis moléculaire à structure cœur-enveloppe, prenant un tamis moléculaire ZSM-5 avec une structure mésoporeuse en tant que phase de cœur, le rapport massique silicium-aluminium du silicium à l'aluminium de la phase de cœur étant de 50 à 150. Le tamis moléculaire à structure cœur-enveloppe prend un tamis moléculaire ZSM-5 modifié par un métal des terres rares avec une structure microporeuse en tant que couche d'enveloppe, le rapport en masse du silicium à l'aluminium de la couche d'enveloppe étant de 300 à 800, et la couche d'enveloppe contenant de 1 à 5 % en poids d'un métal des terres rares. La couche d'enveloppe du tamis moléculaire à structure cœur-enveloppe a un rapport silicium sur aluminium élevé, et après avoir été modifiée avec le métal des terres rares, a une résistance à l'eau considérablement améliorée. Parallèlement, la structure microporeuse de la couche d'enveloppe peut limiter efficacement l'entrée de COV dans la phase de cœur du tamis moléculaire à structure cœur-enveloppe, de telle sorte que le tamis moléculaire dans la phase de cœur peut maintenir une bonne activité, améliorant la résistance à l'eau et la performance de COV d'un matériau absorbant le son préparé à partir du tamis moléculaire avec la structure cœur-enveloppe, et dotant ainsi un haut-parleur rempli du matériau absorbant le son d'une performance acoustique stable.
PCT/CN2022/093428 2022-04-18 2022-05-18 Tamis moléculaire coeur-enveloppe et sa méthode de préparation, matériau absorbant le son et haut-parleur WO2023201810A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210405104.5 2022-04-18
CN202210405104.5A CN114684832A (zh) 2022-04-18 2022-04-18 一种核壳分子筛及其制备方法、吸声材料和扬声器

Publications (1)

Publication Number Publication Date
WO2023201810A1 true WO2023201810A1 (fr) 2023-10-26

Family

ID=82142348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093428 WO2023201810A1 (fr) 2022-04-18 2022-05-18 Tamis moléculaire coeur-enveloppe et sa méthode de préparation, matériau absorbant le son et haut-parleur

Country Status (3)

Country Link
JP (1) JP7432697B2 (fr)
CN (1) CN114684832A (fr)
WO (1) WO2023201810A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547284A (zh) * 2022-09-02 2022-12-30 瑞声科技(南京)有限公司 一种多孔复合吸声材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199574A (ja) * 2010-03-19 2011-10-06 Panasonic Corp 音響スピーカー装置
CN103803580A (zh) * 2012-11-07 2014-05-21 中国石油化工股份有限公司 一种核壳结构的同晶zsm-5复合分子筛及其制备方法
CN104138741A (zh) * 2014-08-20 2014-11-12 洛阳市建龙化工有限公司 一种稀土改性锂低硅分子筛吸附剂及其制备方法
CN104445259A (zh) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 多层结构zsm-5分子筛及其制备方法
CN108298559A (zh) * 2018-01-03 2018-07-20 瑞声光电科技(常州)有限公司 分子筛及应用该分子筛的吸音材料和扬声器
CN108975347A (zh) * 2018-07-28 2018-12-11 瑞声科技(南京)有限公司 吸音材料及其制备方法和应用该吸音材料的扬声器箱
US20190202706A1 (en) * 2018-01-04 2019-07-04 AAC Technologies Pte. Ltd. Molecular sieve, preparation thereof and acoustic absorption material and speaker containing the same
CN113044852A (zh) * 2019-12-26 2021-06-29 镇江贝斯特新材料有限公司 一种多级孔zsm-5分子筛及其制备方法和应用
CN113184876A (zh) * 2021-07-05 2021-07-30 山东国瓷功能材料股份有限公司 用于吸音材料的zsm-5分子筛、其制备方法及所得产品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531821B (zh) * 2010-12-28 2015-03-25 中国科学院大连化学物理研究所 采用改性zsm-5分子筛催化剂催化甲醇耦合石脑油催化裂解反应的方法
CN102910645A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种同晶相复合分子筛及其制备方法
CN102674390A (zh) 2011-11-21 2012-09-19 浙江大学 一种直接合成杂原子取代的多级有序介孔分子筛的方法
JP6185598B2 (ja) 2012-12-07 2017-08-23 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company 改善された形態を有するzsm−5結晶の合成
RU2018135265A (ru) 2016-03-09 2020-04-09 Басф Корпорейшн Катализатор типа ядро/оболочка для улавливания углеводородов и способ его получения
CN111762795B (zh) * 2020-07-13 2022-10-14 包头稀土研究院 含有稀土元素的分子筛及其生产方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199574A (ja) * 2010-03-19 2011-10-06 Panasonic Corp 音響スピーカー装置
CN103803580A (zh) * 2012-11-07 2014-05-21 中国石油化工股份有限公司 一种核壳结构的同晶zsm-5复合分子筛及其制备方法
CN104445259A (zh) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 多层结构zsm-5分子筛及其制备方法
CN104138741A (zh) * 2014-08-20 2014-11-12 洛阳市建龙化工有限公司 一种稀土改性锂低硅分子筛吸附剂及其制备方法
CN108298559A (zh) * 2018-01-03 2018-07-20 瑞声光电科技(常州)有限公司 分子筛及应用该分子筛的吸音材料和扬声器
US20190202706A1 (en) * 2018-01-04 2019-07-04 AAC Technologies Pte. Ltd. Molecular sieve, preparation thereof and acoustic absorption material and speaker containing the same
CN108975347A (zh) * 2018-07-28 2018-12-11 瑞声科技(南京)有限公司 吸音材料及其制备方法和应用该吸音材料的扬声器箱
CN113044852A (zh) * 2019-12-26 2021-06-29 镇江贝斯特新材料有限公司 一种多级孔zsm-5分子筛及其制备方法和应用
CN113184876A (zh) * 2021-07-05 2021-07-30 山东国瓷功能材料股份有限公司 用于吸音材料的zsm-5分子筛、其制备方法及所得产品

Also Published As

Publication number Publication date
JP2023158627A (ja) 2023-10-30
CN114684832A (zh) 2022-07-01
JP7432697B2 (ja) 2024-02-16

Similar Documents

Publication Publication Date Title
CN107500604B (zh) 一种改进型的吸音材料
WO2023201810A1 (fr) Tamis moléculaire coeur-enveloppe et sa méthode de préparation, matériau absorbant le son et haut-parleur
US20200031678A1 (en) Low-frequency improvement material and speaker system using same
EP4082969A1 (fr) Tamis moléculaire hiérarchique poreux de zsm-5, son procédé de préparation, tamis moléculaire de hzsm-5 préparé à partir de celui-ci, et utilisation du tamis moléculaire
CN108696807A (zh) 吸音材料及应用该吸音材料的扬声器箱
JP2023108600A (ja) 吸音材料ブロック及びその製造方法とこの吸音材料ブロックを用いたスピーカボックス
CN111586550B (zh) 一种吸音微球材料、扬声器壳体以及扬声器
CN105621436B (zh) 沸石分子筛的制备方法及扬声器
WO2024103561A1 (fr) Matériau absorbant le son, appareil de production de son et dispositif électronique
WO2024103562A1 (fr) Matériau d'absorption de son, appareil de production de son et dispositif électronique
CN109133093A (zh) 一种吸音材料及应用该吸音材料的扬声器
US11140475B2 (en) Sound absorbing material, method for process same and speaker using same
TWI788013B (zh) 用於吸音材料的zsm-5分子篩、其製備方法及所得產品
CN108975350A (zh) 吸音材料及其制备方法和应用该吸音材料的扬声器箱
WO2024114724A1 (fr) Matériau d'augmentation de volume acoustique poreux et son procédé de préparation, haut-parleur et dispositif électronique
WO2022217808A1 (fr) Dispositif de production sonore
CN115460531B (zh) 沸石颗粒、发声装置和电子设备
CN115703640A (zh) 一种分子筛微球材料、制备方法及一种扬声器
CN114863901A (zh) 一种改性沸石吸音材料
CN108566593A (zh) 一种吸音材料及其制备方法和应用该吸音材料的扬声器
CN219752179U (zh) 吸音材料、发声装置和电子设备
CN108249451B (zh) 一种虚拟声学材料的原位合成制备方法
CN116253331B (zh) 一种磷铝分子筛声学增强材料和其制备方法及扬声器、电子设备
US11843928B2 (en) Acoustic block manufacturing method and acoustic device
WO2024050899A1 (fr) Bloc de matériau absorbant acoustique, son procédé de préparation et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938044

Country of ref document: EP

Kind code of ref document: A1