WO2023201699A1 - 显示基板及显示装置 - Google Patents

显示基板及显示装置 Download PDF

Info

Publication number
WO2023201699A1
WO2023201699A1 PCT/CN2022/088449 CN2022088449W WO2023201699A1 WO 2023201699 A1 WO2023201699 A1 WO 2023201699A1 CN 2022088449 W CN2022088449 W CN 2022088449W WO 2023201699 A1 WO2023201699 A1 WO 2023201699A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting unit
substrate
emitting
display substrate
Prior art date
Application number
PCT/CN2022/088449
Other languages
English (en)
French (fr)
Inventor
陈振彰
孙文佳
马若玉
金亮亮
杨泽洲
赵乐
张庆凯
李姣
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/088449 priority Critical patent/WO2023201699A1/zh
Priority to CN202280000849.1A priority patent/CN117280482A/zh
Publication of WO2023201699A1 publication Critical patent/WO2023201699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present application relates to the field of display technology, and in particular to a display substrate and a display device.
  • Mini-LED and Micro LED are a new type of LED display technology derived from small-pitch LEDs, also known as sub-millimeter light-emitting diodes. Because of its good display effect and thin and light experience, as well as its advantages such as high contrast and long life, the use trend in the display field is obvious.
  • This application provides a display substrate and a display device.
  • a display substrate including:
  • the light-emitting unit group located on the substrate, the light-emitting unit group including a plurality of light-emitting units;
  • a light adjustment structure located on the substrate is provided with a plurality of chambers, each of the light-emitting unit groups is located in one of the chambers; the chamber where each of the light-emitting unit groups is located is in the The area of the orthographic projection on the substrate is basically the same; the distance between adjacent light-emitting units in the same light-emitting unit group is smaller than the distance between adjacent light-emitting unit groups, and the distance between adjacent light-emitting unit groups is There is at least one of the chambers; the light adjustment structure is configured to converge the light emitted by the light-emitting unit and increase the amount of light from the front viewing angle of the display substrate;
  • a diffusion structure located on the substrate, at least partially located on a side of the light-emitting unit facing away from the substrate, is configured to diffuse light emitted by the light-emitting unit.
  • the gray value of the light adjustment structure is greater than 0 and less than 1.
  • the light adjustment structure includes a reflective blocking wall located in the chamber.
  • the reflective blocking wall divides the chamber into a plurality of sub-chambers, and each of the light-emitting units is located in one of the sub-chambers.
  • the area of the orthographic projection of each sub-chamber on the substrate is basically the same.
  • the display substrate further includes a transparent encapsulation structure at least partially filled in the cavity.
  • the diffusion structure includes scattering particles dispersed in the transparent encapsulation structure.
  • the display substrate includes opposing first and second ends
  • Each of the light-emitting units is covered by one of the transparent packaging structures, the scattering particles are evenly distributed in the transparent packaging structure, and at least part of the transparent packaging structures corresponding to the light-emitting units is away from the surface of the substrate It is an inclined surface, pointing from the first end to the direction of the second end, and the inclined surface is inclined toward the direction of the substrate; or,
  • At least part of the transparent packaging structure corresponding to the light-emitting unit has a density of scattering particles in a portion near the first end that is greater than a density of scattering particles in a portion near the second end.
  • the light-emitting unit group includes a light-emitting unit whose light-emitting color is green, a light-emitting unit whose light-emitting color is red, and a light-emitting unit whose light-emitting color is blue;
  • the corresponding surface of the transparent packaging structure facing away from the substrate is the slope
  • the density of scattering particles in the corresponding part of the transparent packaging structure near the first end of the light-emitting unit whose light-emitting color is green and the light-emitting unit whose light-emitting color is blue is greater than that near the second end.
  • the surface of the corresponding transparent packaging structure facing away from the substrate is the inclined surface of the light-emitting unit whose light-emitting color is green and the light-emitting unit whose light-emitting color is blue
  • the The inclination angle of the inclined surface corresponding to the light-emitting unit with a green light-emitting color is greater than the inclination angle of the inclined surface corresponding to the light-emitting unit with a blue light-emitting color
  • the density of scattering particles in the corresponding part of the transparent packaging structure close to the first end is greater than that of the part close to the second end.
  • the density of scattering particles in the part of the transparent packaging structure close to the first end corresponding to the light-emitting unit with a green light-emitting color is greater than that corresponding to the light-emitting unit with a blue light-emitting color.
  • the diffusion structure includes a microstructure array located on a side of the light adjustment structure facing away from the substrate, and the microstructure array includes a plurality of microstructures arranged at intervals.
  • the display substrate includes an opposite first end and a second end, and in a direction from the first end to the second end, at least part of the microstructure array corresponding to the light-emitting unit
  • the density of microstructures in the portion near the first end is greater than the density of microstructures in the portion near the second end.
  • the light-emitting unit group includes a light-emitting unit whose light-emitting color is green, a light-emitting unit whose light-emitting color is red, and a light-emitting unit whose light-emitting color is red; the light-emitting unit whose light-emitting color is green and the light-emitting color It is a blue light-emitting unit, and the density of microstructures in the corresponding part of the microstructure array near the first end is greater than the density of microstructures in the part near the second end.
  • the density of microstructures in the portion of the microstructure array close to the first end corresponding to the green light-emitting unit is greater than the density of the microstructure corresponding to the blue light-emitting unit.
  • the density of microstructures in the portion of the microstructure array close to the first end is greater than the density of the microstructure corresponding to the blue light-emitting unit.
  • the display substrate further includes a light adjustment layer located on a side of the light adjustment structure facing away from the substrate, and the light adjustment layer is provided with a plurality of through holes;
  • the orthographic projection of each light-emitting unit on the substrate is located within the orthographic projection of one of the through holes on the substrate; or, each of the light-emitting units in each of the light-emitting unit groups is located on the substrate.
  • the orthographic projections on the substrate are located within the orthographic projection of one of the through holes on the substrate.
  • the display substrate further includes a light-transmitting layer located on the side of the light adjustment structure facing away from the substrate, and the orthographic projection of the light-emitting unit on the substrate is located on the side of the light-transmitting layer.
  • the display substrate further includes a transparent encapsulation structure at least partially filled in the cavity;
  • the light transmittance of the light-transmitting layer is greater than the light transmittance of the light adjustment layer and less than the light transmittance of the transparent packaging structure.
  • a display device is provided, and the display device includes the above-mentioned display substrate.
  • the light adjustment structure converges the light emitted by the light-emitting unit, which can increase the amount of light from the front viewing angle of the display substrate and reduce the amount of light from the side viewing angle, so that The amount of light on the display substrate gradually decreases from the front viewing angle to the side viewing angle, which is more in line with the viewing habits of the human eye and helps to improve the user experience;
  • the diffusion structure can ensure the amount of light at large viewing angles, and can increase the brightness of the light from The brightness change from the front viewing angle to the side viewing angle is relatively smooth, which is more in line with the viewing habits of the human eye.
  • the light adjustment structure adjusts the light of each light-emitting unit group to a basically the same degree, which can make the brightness distribution of the display substrate more uniform and improve the display effect; adjacent light-emitting units in the same light-emitting unit group
  • the distance between adjacent light-emitting unit groups is smaller than the distance between adjacent light-emitting unit groups, and there is at least one cavity between adjacent light-emitting unit groups.
  • Figure 1 is a partial cross-sectional view of a display substrate provided by an exemplary embodiment of the present application
  • Figure 2 is a partial cross-sectional view of a display substrate provided by another exemplary embodiment of the present application.
  • Figure 3 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • Figure 4 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • Figure 5 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • Figure 6 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • Figure 7 is a partial structural diagram of a display substrate provided by an exemplary embodiment of the present application.
  • Figure 8 is a partial structural schematic diagram of a display substrate provided by another exemplary embodiment of the present application.
  • Figure 9 is a partial structural schematic diagram of a display substrate provided by yet another exemplary embodiment of the present application.
  • Figure 10 is a graph showing the light brightness of a display substrate and a comparison display substrate according to an embodiment of the present application as a function of viewing angle;
  • Figure 11 is a graph showing the light brightness of a display substrate and a comparison display substrate according to another embodiment of the present application as a function of viewing angle;
  • Figure 12 is a graph showing the light brightness of a display substrate and a comparison display substrate according to yet another embodiment of the present application as a function of viewing angle;
  • Figure 13 is a graph showing the light brightness of a display substrate and a comparison display substrate according to another embodiment of the present application as a function of viewing angle;
  • Figure 14 is a partial structural diagram of a display substrate provided by an embodiment of the present application.
  • Figure 15 is a partial structural diagram of a display substrate provided by another embodiment of the present application.
  • Figure 16 is a partial cross-sectional view of a display substrate provided by yet another exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • Embodiments of the present application provide a display substrate and a display device.
  • the display substrate and display device in the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
  • Features in the embodiments described below may complement each other or be combined with each other unless they conflict.
  • the display substrate includes a substrate 10 , a light emitting unit group 20 located on the substrate 10 , a light adjustment structure 30 located on the substrate 10 , and a light adjustment structure 30 located on the substrate 10 .
  • diffusion structure 40 on.
  • the light-emitting unit group 20 includes a plurality of light-emitting units 21 .
  • the light adjustment structure 30 is provided with a plurality of cavities 31 , and each of the light-emitting unit groups 20 is located in one of the cavities 31 .
  • the area of the orthogonal projection of the cavity 31 in which each of the light-emitting unit groups 20 is located on the substrate 10 is basically the same.
  • the adjacent light-emitting unit groups 20 in the same
  • the distance between the light-emitting units 21 is smaller than the distance between the adjacent light-emitting unit groups 20 , and there is at least one cavity 31 between the adjacent light-emitting unit groups 20 .
  • the light adjustment structure 30 is configured to converge the light emitted by the light emitting unit 21 to increase the amount of light at the front viewing angle of the display substrate.
  • the area of the orthographic projection of the cavity 31 in which each of the light-emitting unit groups 20 is located on the substrate 10 is basically the same means that the area of the cavity 31 in which each of the light-emitting unit groups 20 is located is substantially the same.
  • the area of the orthographic projection on the substrate 10 is the same, or the area difference is very small, within a preset range.
  • the diffusion structure 40 is at least partially located on a side of the light-emitting unit 21 away from the substrate 10 and is configured to diffuse the light emitted by the light-emitting unit 21 .
  • the light adjustment structure 30 converges the light emitted by the light-emitting unit 21, which can increase the amount of light from the front viewing angle of the display substrate and reduce the amount of light from the side viewing angle, making the display
  • the amount of light on the substrate gradually decreases from the front viewing angle to the side viewing angle, which is more in line with the viewing habits of the human eye and helps to improve the user experience;
  • the diffusion structure can ensure the amount of light at large viewing angles and make the brightness of the light change from the front viewing angle to the side viewing angle.
  • the change in brightness from viewing angle to side viewing angle is relatively smooth, which is more in line with the viewing habits of the human eye.
  • the light adjustment structure 30 adjusts the light of each light-emitting unit group 20 to a basically same degree, which can make the brightness distribution of the display substrate more uniform and improve the display effect; the same light-emitting unit group 20
  • the distance between adjacent light-emitting units 21 is smaller than the distance between adjacent light-emitting unit groups 20.
  • the distance between each light-emitting unit 21 and the inner surface of the cavity 31 in which it is located is more consistent, so that the degree of light adjustment of each light-emitting unit group 20 by the light adjustment structure 30 is more consistent. , further improving the display effect of the display substrate.
  • the light adjustment structure 30 includes a plurality of first blocking wall portions 33 extending along the first direction Y and a plurality of second blocking walls extending along the second direction Y. Department 34.
  • first blocking wall portions 33 can be formed first, and then a plurality of second blocking wall portions 34 can be formed.
  • Each first blocking wall portion 33 intersects with a plurality of second blocking wall portions 34.
  • Each second retaining wall portion 34 intersects a plurality of first retaining wall portions 33 , and the first retaining wall portions 33 and the second retaining wall portions 34 enclose a plurality of chambers 31 .
  • first direction Y and the second direction X may be perpendicular to each other.
  • first direction Y may be the row direction
  • second direction X may be the column direction.
  • the first retaining wall part 33 and the second retaining wall part 34 can adopt 3D printing, embossing, dispensing and other processes, but are not limited to these manufacturing methods.
  • the width of the first blocking wall portion 33 and the second blocking wall portion 34 is constant, and the spacing between adjacent light emitting unit groups 20 is also constant. Without changing the preparation process, in order to ensure the spacing between adjacent light-emitting unit groups 20, at least one cavity 31 will be formed between adjacent light-emitting unit groups 20, which will not increase the difficulty of preparing the light adjustment structure 30.
  • the shape of the orthographic projection of the cavity 31 in which each of the light-emitting unit groups 20 is located on the substrate 10 is substantially the same. With this arrangement, the environment of the chamber 31 where each light-emitting unit is located is more consistent, and the light adjustment structure 30 adjusts the light of each light-emitting unit group 20 to a more consistent degree, which can make the brightness distribution of the display substrate more uniform.
  • the substrate 10 may be a flexible substrate or a rigid substrate.
  • the material of the flexible substrate may include one or more of polyimide, polyethylene terephthalate, polycarbonate, and organic resin materials.
  • the organic resin material may include epoxy resin, triazine, silicon Resin or polyimide, etc.
  • Rigid substrates include any one of glass substrates, quartz substrates, sapphire substrates, ceramic substrates, etc.; or semiconductor substrates such as single crystal semiconductor substrates or polycrystalline semiconductors made of silicon or silicon carbide. Any of a substrate, a compound semiconductor substrate such as silicon germanium, an SOI (Silicon On Insulator) substrate, etc.
  • the substrate may be an FR4 type printed circuit board (PCB), or may be a flexible PCB that is easily deformed.
  • the substrate may include a ceramic material such as silicon nitride, AIN, or Al2O3, or a metal or metal compound, or any of a metal core printed circuit board (MCPCB) or a metal copper clad laminate (MCCL). A sort of.
  • the light-emitting unit 21 may be a Mini LED, or the light-emitting unit 21 may be a Micro LED.
  • the light-emitting unit group 20 includes a plurality of light-emitting units 21 with different light-emitting colors.
  • the light-emitting unit group includes a light-emitting unit R with a red light-emitting color, a light-emitting unit G with a green light-emitting color, and a blue light-emitting unit.
  • Light-emitting unit B, the light-emitting unit group 20 can be used as a pixel.
  • some or all of the light-emitting units may have the same light-emitting color.
  • the light emitted from the side of the light-emitting unit 21 is reflected by the inner surface of the chamber 31 and then emitted from the top of the chamber 31, which can improve the light utilization rate of the light-emitting unit 21, improve the display brightness of the display substrate, and help reduce the display Baseboard power consumption.
  • the inner surface of the cavity 31 extends obliquely in the direction away from the light emitting unit 21 .
  • Such an arrangement is more conducive to increasing the amount of reflection of light emitted by the light emitting unit 21 by the inner surface of the cavity 31, improving the utilization rate of the light emitted by the light emitting unit 21, and the preparation process of the light adjustment structure 30 is relatively simple.
  • the chamber 31 has an inverted trapezoidal cross-section in the thickness direction of the substrate 10 .
  • the height of the cavity 31 in the direction perpendicular to the substrate 10 is greater than the height of the light emitting unit 21 in the direction perpendicular to the substrate 10 .
  • the light adjustment structure 30 can reflect at least part of the large-angle light emitted by the light-emitting unit 21 and improve the light efficiency of the display panel.
  • multiple light-emitting units 21 of the same light-emitting unit group 20 are arranged along the first direction Y. Between two adjacent light-emitting unit groups 20 in the first direction Y, There is at least one cavity 31 between two adjacent light-emitting unit groups 20 in the second direction X. There is at least one cavity 31 between two adjacent light-emitting unit groups 20 in the second direction X. In the embodiment shown in FIGS. 7 and 9 , there is one cavity 31 between two adjacent light-emitting unit groups 20 in the first direction Y, and two adjacent light-emitting units 20 in the second direction X. There is one said chamber 31 between the groups 20 . In other embodiments, there may be two or more cavities 31 between two adjacent light-emitting unit groups 20 in the first direction Y, and two adjacent light-emitting unit groups 20 in the second direction X. There may be two or more chambers 31 in between.
  • multiple light-emitting units 21 of the same light-emitting unit group 20 are arranged along the second direction X, and there is a gap between two adjacent light-emitting unit groups 20 in the second direction X.
  • the gray value of the light adjustment structure 30 is greater than 0 and less than 1.
  • the light adjustment structure 30 has a strong reflection effect on light, and the light emitted by the light-emitting unit 21 is reflected by the inner surface of the chamber 31 and emits more light from the chamber 31; and when the display substrate is in a non-display state, The light adjustment structure 30 has good blackness, which can improve the blackness of the display substrate when it is not displayed, and helps improve the user experience.
  • the light adjustment structure 30 may be gray.
  • the material of the light adjustment structure 30 may be white oil, and the white oil may include resin (for example, epoxy resin, polytetrafluoroethylene resin), titanium dioxide (chemical formula TiO 2 ), and organic solvent (for example, Dipropylene glycol methyl ether), etc.
  • the material of the light adjustment structure 30 may also include silicone white glue.
  • the material of the light adjustment structure 30 may also be other materials with high reflectivity.
  • the light-modulating structure may have a low thermal expansion coefficient (eg, lower than the later-mentioned transparent packaging structure located within the chamber) to ensure that it is not adversely affected by temperature changes associated with the operation of the light-emitting unit.
  • the light adjustment structure 30 includes a reflective blocking wall 32 located in the chamber 31, and the reflective blocking wall 32 separates the chamber 31. It is divided into a plurality of sub-cavities 311, and each light-emitting unit 21 is located in one of the sub-cavities 311; the area and shape of the orthographic projection of each sub-cavity 311 on the substrate 10 are basically the same. Wherein, the area of the orthographic projection of each sub-cavity 311 on the substrate 10 is basically the same, which means that the area of the orthographic projection of each sub-cavity 311 on the substrate 10 is the same, or the area difference is small. , within the preset range.
  • the problem of light crosstalk between adjacent light-emitting units 21 of the same light-emitting unit group 20 can be improved, which helps to improve the display effect of the display substrate;
  • the area and shape of the orthographic projection of each sub-cavity 311 on the substrate 10 to be basically the same, the chamber environment of each light-emitting unit 21 is the same, and the light adjustment structure 30 adjusts the light of each light-emitting unit 21 The degree is basically the same, which is more conducive to improving the uniformity of brightness distribution of the display substrate and improving the display effect.
  • the reflective blocking wall 32 is a part of the second blocking wall part 34 ; in the embodiment shown in FIG. 9 , the reflective blocking wall 32 is a part of the first blocking wall part 33 .
  • a reflective blocking wall 32 is also provided in the cavity 31 between adjacent light-emitting unit groups 20 .
  • no reflective blocking wall is provided in the cavity 31 , that is, no reflective barrier is provided between adjacent light-emitting units 21 of the same light-emitting unit group 20 .
  • Reflective retaining wall 32 When the size of the light-emitting units 21 is small and the distance between adjacent light-emitting units 21 is small, no reflective blocking wall may be provided between adjacent light-emitting units 21 in the same chamber 31 .
  • the pattern formed by the inner contour of the orthographic projection of each chamber 31 on the substrate 10 may be a polygon; for example, the polygon may be a rectangle as shown in FIGS. 7 to 9 .
  • the pattern formed by the inner contour of the orthographic projection of each chamber 31 on the substrate 10 may also be an ellipse or a circle.
  • the pattern formed by the inner contour of the orthographic projection of each chamber 31 on the substrate 10 may also be a pattern formed by a combination of a polygon and an arc; for example, a pattern formed by a combination of a rectangle and two semicircles.
  • the light adjustment structure 30 has a mesh structure. It can be understood that the light adjustment structure 30 surrounds the structures of each light-emitting unit group and is connected as a whole; the light adjustment structure 30 includes a reflective When blocking the wall 32, the structure surrounding each light-emitting unit group in the light adjustment structure 30 and the reflective blocking wall 32 are all connected as a whole.
  • the structure surrounding each light-emitting unit group 20 in the light adjustment structure 30 can also be an independent structure, that is, the structures surrounding two adjacent light-emitting unit groups 20 are not connected; when the light adjustment structure 30 includes a reflective blocking wall 32 , the reflective blocking wall 32 and the structure surrounding the light emitting unit group 20 may also be independent structures.
  • the display substrate further includes a transparent packaging structure 50 at least partially filled in the cavity 31 , and the transparent packaging structure 50 covers the light-emitting unit 21 .
  • the display substrate includes a plurality of transparent packaging structures 50.
  • Each cavity 31 of the light adjustment structure 30 is filled with a transparent packaging structure 50, and each light-emitting unit 21 corresponds to a transparent packaging structure 50.
  • the packaging structure 50 corresponding to the light-emitting unit 21 in the same cavity 31 can be an integrated structure.
  • the chamber 31 includes multiple sub-cavities 311, each sub-cavity 311 can be filled with a transparent packaging structure 50 respectively.
  • the part of the transparent packaging structure 50 located in the cavity 31 can reduce the reflectivity of ambient light incident on the display substrate, which helps to improve the display effect of the display substrate.
  • the material of the transparent packaging structure 50 may be transparent resin.
  • the diffusion structure 40 includes scattering particles 41 dispersed in the clear packaging structure 50 .
  • the scattering particles 41 can enhance the scattering degree of the light emitted by the light-emitting unit 21 and increase the viewing angle of the display substrate; and can reduce the color difference of light between the front viewing angle and the wide viewing angle, thereby improving the user experience.
  • the scattering particles 41 may be TiO2 nanoparticles, SiO2 nanoparticles, etc.
  • the display substrate includes an opposite first end 101 and a second end 102 .
  • the scattering particles 41 are evenly distributed in the transparent packaging structure 50 .
  • At least part of the surface of the transparent packaging structure 50 corresponding to the light-emitting unit 21 facing away from the substrate 10 is a slope 51 .
  • the inclined surface 51 is inclined toward the substrate 10 .
  • Such an arrangement can make the transparent packaging structure 50 corresponding to at least part of the light-emitting units 21 have a larger number of scattering particles 41 in the part near the second end 102 , and the scattering particles 41 will affect the light emitted by these light-emitting units 21 near the second end.
  • the scattering effect is stronger, which can reduce the amount of large viewing angle light at the second end of the display substrate, thereby reducing the difference in brightness distribution and color difference between the display substrate at the first end and the second end, helping to improve the user experience. .
  • the light-emitting unit group 20 includes a light-emitting unit G whose light-emitting color is green, a light-emitting unit R whose light-emitting color is red, and a light-emitting unit B whose light-emitting color is blue.
  • Figure 10 is a brightness distribution curve of light in the row direction of a display substrate, in which curve a1, curve a2 and curve a3 are respectively red light and green light of the display substrate of the comparative embodiment (the display substrate is not provided with a light adjustment structure and a diffusion structure). and curves of changes in the brightness of blue light with viewing angles.
  • Curve b1, curve b2 and curve b3 are respectively the brightness of red light, green light and blue light with viewing angle of the display substrate provided by the embodiment shown in Figure 4 of the present application.
  • the position where the viewing angle is less than 0 is the position of the display substrate closer to the second end, and the position where the viewing angle is greater than 0 is the position of the display substrate closer to the first end.
  • the brightness difference and color difference of the light emitted from the display substrate of the comparative embodiment are larger on both sides of the display substrate.
  • the first end and the second end are the opposite ends of the display substrate in the row direction.
  • at least part of the light-emitting unit 21 is provided with a corresponding transparent package.
  • the surface of the structure 50 facing away from the substrate 10 is a slope 51, and is directed from the first end 101 to the second end 102.
  • the slope 51 is inclined toward the substrate 10, so that the corresponding transparent packaging structures 50 of these light-emitting units 21 can be
  • the number of scattering particles is larger in the part near the first end 101, and the scattering effect of the scattering particles on the light emitted by the light-emitting units 21 is stronger near the first end, which can reduce the size of the display substrate at the first end.
  • the amount of viewing angle light thereby reducing the large viewing angle brightness distribution difference of the light emitted by these light-emitting units 21 on the opposite sides in the row direction, and reducing the large viewing angle difference of the display substrate on the opposite sides in the row direction, which helps To improve the user experience.
  • the corresponding surface of the transparent packaging structure 50 facing away from the substrate 10 is The inclined surface 51.
  • the large viewing angle brightness distribution difference between blue light and green light on opposite sides of the display substrate is large, and the color difference is large.
  • the first end and the second end are opposite ends of the display substrate in the row direction.
  • the surface of the transparent packaging structure 50 corresponding to the light-emitting unit B facing away from the substrate 10 is the slope 51, which can effectively improve the large viewing angle brightness difference between blue light and green light on the opposite sides of the display substrate in the row direction. , and can reduce the large visual angle difference between the opposite sides of the display substrate in the row direction, which helps to improve the user experience.
  • the light-emitting unit G whose light-emitting color is green and the light-emitting unit B whose light-emitting color is blue have their corresponding surfaces of the transparent packaging structure 50 facing away from the substrate 10 .
  • the inclination angle of the inclined surface 51 corresponding to the light-emitting unit G whose light-emitting color is green is greater than the inclination angle of the inclined surface 51 corresponding to the light-emitting unit B whose light-emitting color is blue.
  • the tilt angle refers to the angle between the inclined plane and the horizontal plane (a plane parallel to the extension direction of the substrate).
  • the difference in the large viewing angle brightness distribution of the green light on the opposite sides of the display substrate is greater than the large viewing angle brightness distribution of the blue light on the opposite sides of the display substrate. difference.
  • the first end and the second end are opposite ends of the display substrate in the row direction.
  • the angle is larger than the inclination angle of the inclined plane 51 corresponding to the light-emitting unit B with a blue emission color, which can make the green light in the large viewing angle light near the first end receive a stronger scattering effect than the blue light, which is more conducive to reducing the green light.
  • the difference in the large viewing angle brightness distribution of light on the opposite sides of the display substrate makes the large viewing angle brightness distribution of blue light and green light on the opposite sides of the display substrate in the row direction more consistent, reducing the relative difference in the display substrate in the row direction.
  • the large viewing angle brightness distribution difference between two sides of the display substrate can be reduced, and the large viewing angle difference between the opposite sides of the display substrate in the row direction can be reduced.
  • Figure 11 is a brightness distribution curve of light in the column direction of a display substrate, in which curve c1, curve c2 and curve c3 are respectively the red light, green light of the display substrate of the comparative embodiment (the display substrate is not provided with a light adjustment structure and a diffusion structure).
  • the brightness of light and blue light changes with the viewing angle.
  • Curve d1, curve d2 and curve d3 are respectively the change curves of the brightness of red light, green light and blue light with the viewing angle of the display substrate shown in Figure 4.
  • the position where the viewing angle is less than 0 is the position of the display substrate closer to the second end, and the position where the viewing angle is greater than 0 is the position of the display substrate closer to the first end.
  • the large viewing angle brightness distribution of light of different colors on the opposite sides of the display substrate is quite different, and the brightness distribution of the display substrate on the opposite sides of the row direction is quite different.
  • the difference in viewing angle is large.
  • the display substrate provided by the embodiment shown in FIG. 4 of the present application can effectively improve the large viewing angle brightness difference of light of different colors on the opposite sides of the display substrate in the column direction, and improve the brightness of the display substrate on the opposite sides of the row direction.
  • the reduction of large visual angle difference helps improve the user experience.
  • the scattering particles in the transparent packaging structure corresponding to each light-emitting unit 21 are not uniformly distributed, and at least part of the transparent packaging structure corresponding to the light-emitting unit has scattering particles in the portion close to the first end.
  • the density of particles is greater than the density of scattering particles in the portion close to the second end.
  • the first end and the second end are At the opposite ends of the display substrate in the row direction, the light-emitting unit G whose light-emitting color is green and the light-emitting unit B whose light-emitting color is blue have their corresponding parts of the transparent packaging structure 50 close to the first end.
  • the density of the medium scattering particles 41 is greater than the density of the medium scattering particles 41 near the second end 102 .
  • the scattering particles 41 have a stronger scattering effect on the blue light and green light in the large viewing angle light at the first end of the display substrate, which can effectively improve the scattering effect of the blue light and green light on the opposite sides of the display substrate in the row direction.
  • the large viewing angle brightness difference helps improve the user experience.
  • first end and the second end are opposite ends of the display substrate in the row direction, and the green light-emitting unit G corresponding to the transparent packaging structure 50 is scattered in a portion close to the first end 101
  • the density of the particles 41 is greater than the density of the scattering particles 41 in the portion of the transparent packaging structure 50 close to the first end 101 corresponding to the blue light-emitting unit B.
  • Such an arrangement can make the green light in the large viewing angle light near the first end receive a stronger scattering effect than the blue light, which is more conducive to reducing the difference in the large viewing angle brightness distribution of the green light on the opposite sides of the display substrate, so that The brightness distribution of blue light and green light at large viewing angles on opposite sides of the display substrate is more consistent.
  • the diffusion structure 40 includes a microstructure array 42 located on the side of the light adjustment structure 30 facing away from the substrate 10 .
  • the microstructure array 42 includes A plurality of microstructures 421 arranged at intervals.
  • the microstructure array 42 can enhance the scattering degree of the light emitted by the light-emitting unit 21 and increase the viewing angle of the display substrate; and can reduce the color difference of light between the front viewing angle and the wide viewing angle, thereby improving the user experience.
  • the microstructure 421 may be a microlens structure, a pyramid structure, a prism structure, etc.
  • the diameter of the microstructure 421 ranges from 1 ⁇ m to 10 ⁇ m.
  • the distance between the centers of adjacent microstructures 421 ranges from 4 ⁇ m to 20 ⁇ m. Such an arrangement can ensure that the microstructure array 42 has a better light scattering effect.
  • the diameter range of the microstructure 421 is, for example, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 9 ⁇ m, 10 ⁇ m, etc.; the distance between the centers of adjacent microstructures 421 is, for example, 4 ⁇ m, 8 ⁇ m, 12 ⁇ m, 16 ⁇ m, 20 ⁇ m, etc.
  • four adjacent microstructures 421 in the microstructure array 42 may be arranged in a regular rectangular or diamond shape, or the microstructures 421 in the microstructure array 42 may be randomly arranged.
  • the display substrate includes an opposite first end 101 and a second end 102 , and at least part of the microstructure array 42 corresponding to the light-emitting unit 21 is close to the third end.
  • the density of microstructures 421 in a portion of one end 101 is greater than the density of microstructures 421 in a portion close to the second end 102 .
  • Such arrangement can make the microstructure array 42 corresponding to at least part of the light-emitting units 21 have a stronger scattering effect on the light near the first end of the light emitted by these light-emitting units 21, and can reduce the large viewing angle light of the display substrate at the first end. amount, thereby reducing the large viewing angle brightness distribution difference on the opposite sides of the display substrate, helping to improve the user experience.
  • the size of the microstructures 421 in the portion of the microstructure array 42 near the first end 101 is smaller than the size of the microstructures 421 in the portion near the second end 102 .
  • Figure 12 is a brightness distribution curve of light in the row direction of the display substrate, in which curve m1, curve m2 and curve m3 are respectively the red light and the green light of the display substrate of the comparative embodiment (the display substrate is not provided with a light adjustment structure and a diffusion structure) and blue light brightness change curves with viewing angles.
  • Curve n1, curve n2 and curve n3 are respectively the brightness of red light, green light and blue light of the display substrate shown in Figure 6
  • a graph of changes with viewing angle in which the position where the viewing angle is less than 0 is the position of the display substrate closer to the second end, and the position where the viewing angle is greater than 0 is the position of the display substrate closer to the first end.
  • the first end and the second end are the opposite ends of the display substrate in the row direction.
  • the density of the microstructures 421 in the part near the first end 101 is greater than the density of the microstructures 421 in the part near the second end 102 , so that the microstructure array 42 is closer to the light emitted by the light emitting units 21 .
  • the scattering effect of the light at the first end is stronger, reducing the amount of large viewing angle light from the display substrate at the first end, thereby reducing the difference in the large viewing angle brightness distribution of the light emitted by these light emitting units 21 on opposite sides in the row direction. , and the large visual angle difference between the opposite sides of the display substrate in the row direction is reduced, which helps to improve the user experience.
  • the light-emitting unit group 20 includes a light-emitting unit G whose light-emitting color is green, a light-emitting unit R whose light-emitting color is red, and a light-emitting unit B whose light-emitting color is blue, the light-emitting unit G whose light-emitting color is green and The light-emitting unit B whose luminous color is blue has a density of microstructures 421 in the corresponding part of the microstructure array 42 close to the first end 101 that is greater than the density of microstructures 421 in the part close to the second end 102 Density.
  • the large viewing angle brightness distribution difference between blue light and green light on opposite sides of the display substrate is large, and the color difference is large.
  • the first end and the second end are the opposite ends of the display substrate in the row direction.
  • the microstructure array 42 is at the first end of the display substrate. The scattering effect of blue light and green light in the large viewing angle light is stronger, which can effectively improve the large viewing angle brightness difference of blue light and green light on the opposite sides of the display substrate in the row direction, and can make the display substrate in the row direction The large visual angle difference between the opposite sides is reduced, which helps to improve the user experience.
  • the density of the microstructures 421 in the portion of the microstructure array 42 close to the first end 101 corresponding to the green light-emitting unit G is greater than that of the green light-emitting unit G.
  • the first end and the second end are opposite ends of the display substrate in the row direction. It can be seen from FIG. 12 that the display substrate provided by the embodiment shown in FIG. 6 can be close to the first end of the display substrate.
  • the green light in the large viewing angle light at one end is scattered more strongly than the blue light, which is more helpful to reduce the difference in the large viewing angle brightness distribution of the green light on the opposite sides of the display substrate, so that the blue light and green light are
  • the large viewing angle brightness distribution on the opposite sides of the display substrate is more consistent, which reduces the large viewing angle brightness distribution difference on the opposite sides of the display substrate in the row direction, and can reduce the large viewing angle difference on the opposite sides of the display substrate in the row direction.
  • Figure 13 is a brightness distribution curve of light in the column direction of the display substrate, in which curve x1, curve x2 and curve x3 are respectively the red light, green light of the display substrate of the comparative embodiment (the display substrate is not provided with a light adjustment structure and a diffusion structure).
  • the brightness of light and blue light changes with the viewing angle.
  • Curve y1, curve y2 and curve y3 (curve y2 and curve y3 coincide) are respectively the red light, green light and blue light of the display substrate shown in Figure 6.
  • a graph showing changes in brightness with viewing angle, in which the position where the viewing angle is less than 0 is the position of the display substrate closer to the second end, and the position where the viewing angle is greater than 0 is the position where the display substrate is closer to the first end.
  • the display substrate provided by the embodiments of the present application can effectively improve the large viewing angle brightness difference between the two opposite sides of the display substrate in the column direction for light of different colors, and can reduce the large viewing angle difference between the two opposite sides of the display substrate in the row direction. Small, it helps improve the user experience.
  • the refractive index of the transparent packaging structure 50 is smaller than the refractive index of the microstructure 421 . Such an arrangement can ensure that more of the light emitted by the light emitting unit 21 passes through the microstructure 421 . In some embodiments, the difference between the refractive index of the microstructure 421 and the refractive index of the transparent packaging structure 50 ranges from 0.2 to 2.
  • the display substrate further includes a light adjustment layer 70 located on the side of the light adjustment structure 30 facing away from the substrate 10 .
  • Layer 70 is provided with a plurality of through holes 71 .
  • the orthographic projection of each light-emitting unit 21 on the substrate 10 is located within the orthographic projection of one through hole 71 on the substrate 10 .
  • the light adjustment layer 70 may be a black film layer.
  • the light adjustment layer 70 may be coated with a resin material with low transmittance.
  • the light adjustment layer 70 can effectively reduce the reflectivity of ambient light incident on the display substrate and improve the user experience; and the light emitted by the light emitting unit 21 can be emitted through the through hole 71 of the light adjustment layer 70.
  • the light adjustment layer 70 can block the display substrate located on the substrate.
  • the wiring on the display substrate helps to improve the display effect of the display substrate; when the light adjustment layer 70 is obtained by coating it with a digital resin material with a low transmittance, the preparation process of the light adjustment layer 70 is relatively mature, and the thickness deviation of each area is relatively small. Small, can make the blackness difference in each area of the display substrate in the non-display state. In the display screen obtained by splicing multiple display substrates, the thickness difference of the light adjustment layer 70 of different display substrates is small, and the display screen in the non-display state The difference in blackness between different display substrates is small.
  • the orthographic projection of each light-emitting unit 21 on the substrate 10 is located at one of the through holes 71 on the substrate 10 .
  • the light-emitting units 21 and the through holes 71 can correspond one to one, and the orthographic projection of each light-emitting unit 21 on the substrate 10 is located within the orthographic projection of the corresponding through hole 71 on the substrate 10 .
  • the light adjustment layer 70 covers the area between adjacent light-emitting units 21, which helps to avoid crosstalk of light emitted by the adjacent light-emitting units 21, makes the display contrast of the display substrate higher, and helps improve the display effect.
  • the orthographic projection of each light-emitting unit 21 in each light-emitting unit group 20 on the substrate 10 is located at one of the through holes 71 . within the orthographic projection on the substrate 10 .
  • the light-emitting unit groups 20 and the through holes 71 can correspond one to one, and the orthographic projection of each light-emitting unit 21 of each light-emitting unit group 20 on the substrate 10 is located within the orthographic projection of the corresponding through hole 71 on the substrate 10 .
  • the size of the through hole 71 of the light adjustment layer 70 is larger, the transmittance of the light emitted by the light emitting unit 21 is higher, and the preparation accuracy of the light adjustment layer 70 is lower.
  • the display substrate further includes a packaging cover 60 , and the packaging cover 60 is located on a side of the diffusion structure 40 facing away from the substrate 10 .
  • the packaging cover 60 can protect the structure between it and the substrate 10 , such as the light emitting unit 21 , and can prevent the structure between the packaging cover 60 and the substrate 10 from being damaged.
  • the material of the packaging cover 60 may be glass.
  • the light adjustment layer 70 is disposed on the side of the package cover 60 facing the substrate 10 .
  • the display substrate further includes a light-transmitting layer 82 located on the side of the light adjustment structure 30 facing away from the substrate 10 , and the light-emitting unit 21 is located on the side of the light-adjusting structure 30 facing away from the substrate 10 .
  • the orthographic projection on the substrate 10 is located within the orthographic projection of the light-transmitting layer 82 on the substrate 10; the light transmittance of the light-transmitting layer 82 is greater than the light transmittance of the light adjustment layer 70, and is less than The light transmittance of the transparent packaging structure 50 .
  • the light transmittance of the light-transmitting layer 82 is less than the light transmittance of the transparent packaging structure 50 , the reflectivity of the external ambient light when incident on the light-transmitting layer 82 is low, which helps to reduce the reflectivity of the ambient light; and the light-transmitting layer 82
  • the difference between the light transmittance and the light transmittance of the light adjustment layer 70 is small, so that the difference in blackness of different areas of the display substrate in the non-display state is small.
  • the material of the light-transmitting layer 82 may be gray, and the material may be a photoresist material, such as a positive photoresist material or a negative photoresist material.
  • the light-transmitting layer 82 is at least partially filled in the through hole 71 of the light adjustment layer 70 . With this arrangement, the arrangement of the light-transmitting layer 82 does not increase the thickness of the display substrate.
  • the display substrate may not be provided with the light-transmitting layer 82 , and the display substrate may include a transparent glue 81 disposed in the through hole 71 of the light adjustment layer 70 .
  • the transparent glue 81 Bond the packaging cover 60 and the light adjustment structure 30 together.
  • the material of the transparent glue 81 and the transparent packaging structure 50 can be the same.
  • Embodiments of the present application also provide a method for preparing a display substrate.
  • the preparation method of the display substrate will be introduced below.
  • the display substrate is the display substrate as shown in Figure 1 and Figure 2.
  • the preparation method of the display substrate includes the following process:
  • the packaging substrate and the light-emitting substrate are prepared respectively.
  • the process of preparing the packaging substrate is as follows:
  • a packaging cover is provided, and a light adjustment layer is formed on one side of the packaging cover.
  • the process of preparing the light-emitting substrate is as follows:
  • transparent glue is used to fill the gap between the light adjustment structure and the light-emitting unit to obtain a light-emitting substrate.
  • the packaging substrate and the light-emitting substrate are prepared, the side of the packaging substrate with the light adjustment layer is attached to the light-emitting substrate.
  • the light-emitting substrate and the packaging substrate are bonded together through transparent glue to obtain the results shown in Figures 1 and 2 display substrate.
  • the display substrate is the display substrate as shown in FIG. 5 and FIG. 6
  • the preparation method of the display substrate includes the following process:
  • the packaging substrate and the light-emitting substrate are prepared respectively.
  • the process of preparing the packaging substrate is as follows:
  • a microarray structure is formed in the through hole of the light adjustment layer to obtain a packaging substrate.
  • the process of preparing the light-emitting substrate is as follows:
  • transparent glue is used to fill the gap between the light adjustment structure and the light-emitting unit, and a light-emitting substrate can be obtained.
  • the part of the transparent glue located in the cavity of the light adjustment structure is a transparent packaging structure.
  • the packaging substrate and the light-emitting substrate are prepared, the side of the packaging substrate with the light adjustment layer is attached to the light-emitting substrate.
  • the light-emitting substrate and the packaging substrate are bonded together through transparent glue to obtain the results shown in Figures 5 and 6 display substrate.
  • the light adjustment structure 30 includes a convex lens structure 35 covering the light-emitting unit 21 .
  • the light-emitting units 21 correspond to the convex lens structures 35 one-to-one, and each convex lens structure 35 covers the corresponding light-emitting unit 21 .
  • the convex lens structure 35 can converge the light emitted by the light-emitting unit 21, increase the amount of light from the front viewing angle of the display substrate, reduce the amount of light from the side viewing angle, and increase the amount of light from the front viewing angle to the side viewing angle of the display substrate. The amount is gradually reduced, which is more in line with the viewing habits of the human eye and helps to improve the user experience.
  • the diffusion structure includes scattering particles dispersed within the lenticular structure 35 .
  • the scattering particles dispersed in the convex lens structure 35 can ensure the amount of light at a large viewing angle, and can make the change in brightness of the light from the front viewing angle to the side viewing angle smoother, which is more in line with the viewing habits of the human eye, and at the same time can reduce the difference between the front viewing angle and the side viewing angle.
  • the color difference of light from a large viewing angle improves the display effect of the display substrate
  • the display substrate further includes a light adjustment layer 70 located on the substrate 10.
  • the light adjustment layer 70 is provided with a plurality of through holes 71, each of the light emitting
  • the orthographic projection of the unit 21 on the substrate is located within the orthographic projection of the through hole 71 on the substrate 10 ; the light adjustment layer 70 is in contact with the side of each light-emitting unit 21 . That is, the edge of the orthographic projection of the through hole 71 of the light adjustment layer 70 on the substrate 10 coincides with the edge of the orthographic projection of the corresponding light emitting unit 21 on the substrate 10.
  • the light adjustment layer 70 has a larger area, which can make the display substrate have a higher blackness in the non-display state, which is more conducive to improving the user experience.
  • An embodiment of the present application also provides a display device.
  • the display device includes the display substrate described in any of the above embodiments.
  • the display screen of the display device provided by the embodiment of the present application may be a splicing screen, and the splicing screen is spliced by a plurality of the above-mentioned display substrates.
  • the preparation process of the light adjustment layer 70 is relatively mature.
  • the thickness difference of the light adjustment layer 70 of different display substrates is small.
  • the blackness difference of different display substrates is small, which helps to improve the user experience.
  • the display device further includes a housing, and the display substrate is embedded in the housing.
  • the display device provided in the embodiment of the present application can be any appropriate display device, including but not limited to mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, navigators, e-books, and any other products or components with display functions. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种显示基板及显示装置。显示基板包括衬底、位于衬底上的发光单元组、位于衬底上的光线调节结构及位于衬底上的扩散结构。发光单元组包括多个发光单元。光线调节结构设有多个腔室,每一所述发光单元组位于一个所述腔室内;各所述发光单元组所在的腔室在所述衬底上的正投影的面积基本相同;同一所述发光单元组内相邻所述发光单元之间的距离小于相邻所述发光单元组之间的距离,相邻所述发光单元组之间存在至少一个所述腔室;所述光线调节结构被配置为将所述发光单元发出的光线进行汇聚,增大所述显示基板的正视角光线的量。所述扩散结构至少部分位于所述发光单元背离所述衬底的一侧,被配置为将所述发光单元发出的光线进行扩散。

Description

显示基板及显示装置 技术领域
本申请涉及显示技术领域,特别涉及一种显示基板及显示装置。
背景技术
Mini-LED及Micro LED是在小间距LED基础上衍生出来的一种新型LED显示技术,也被称为亚毫米发光二极管。由于其具有较好的显示效果以及轻薄体验,同时具有较高的对比度、寿命长等优势,因此在显示领域使用趋势明显。
发明内容
本申请提供了一种显示基板及显示装置。
根据本申请实施例的第一方面,提供了一种显示基板,所述显示基板包括:
衬底;
位于所述衬底上的发光单元组,所述发光单元组包括多个发光单元;
位于所述衬底上的光线调节结构,所述光线调节结构设有多个腔室,每一所述发光单元组位于一个所述腔室内;各所述发光单元组所在的腔室在所述衬底上的正投影的面积基本相同;同一所述发光单元组内相邻所述发光单元之间的距离小于相邻所述发光单元组之间的距离,相邻所述发光单元组之间存在至少一个所述腔室;所述光线调节结构被配置为将所述发光单元发出的光线进行汇聚,增大所述显示基板的正视角光线的量;
位于所述衬底上的扩散结构,所述扩散结构至少部分位于所述发光单元背离所述衬底的一侧,被配置为将所述发光单元发出的光线进行扩散。
在一个实施例中,所述发光单元的侧表面与所述腔室的内表面之间存在间隙。
在一个实施例中,所述光线调节结构的灰度值大于0,且小于1。
在一个实施例中,所述光线调节结构包括位于所述腔室内的反射挡墙,所述反射挡墙将所述腔室分隔为多个子腔室,每一所述发光单元位于一个所述子腔室内;各所述子腔室在所述衬底上的正投影的面积基本相同。
在一个实施例中,所述显示基板还包括至少部分填充在所述腔室内的透明封装结构。
在一个实施例中,所述扩散结构包括分散在所述透明封装结构中的散射粒子。
在一个实施例中,所述显示基板包括相对的第一端和第二端;
每一所述发光单元被一个所述透明封装结构包覆,所述散射粒子在所述透明封装结构中均匀分布,至少部分所述发光单元对应的所述透明封装结构背离所述衬底的表面为斜面,由所述第一端指向所述第二端的方向上,所述斜面向朝向所述衬底的方向倾斜;或者,
至少部分所述发光单元对应的所述透明封装结构,其靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度。
在一个实施例中,所述发光单元组包括发光颜色为绿色的发光单元、发光颜色为红色的发光单元及发光颜色为蓝色的发光单元;
所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构背离所述衬底的表面为所述斜面;
或者,所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度。
在一个实施例中,所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构背离所述衬底的表面为所述斜面时,所述发光颜色为绿色的发光单元对应的所述斜面的倾斜角,大于所述发光颜色为蓝色的发光单元对应的所述斜面的倾斜角;
所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元, 其对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度时,所述发光颜色为绿色的发光单元对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度,大于所述发光颜色为蓝色的发光单元对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度。
在一个实施例中,所述扩散结构包括位于所述光线调节结构背离所述衬底一侧的微结构阵列,所述微结构阵列包括多个间隔排布的微结构。
在一个实施例中,所述显示基板包括相对的第一端和第二端,在由所述第一端指向所述第二端的方向上,至少部分所述发光单元对应的所述微结构阵列靠近所述第一端的部分中微结构的密度大于靠近所述第二端的部分中微结构的密度。
在一个实施例中,所述发光单元组包括发光颜色为绿色的发光单元、发光颜色为红色的发光单元及发光颜色为红色的发光单元;所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述微结构阵列靠近所述第一端的部分中微结构的密度大于靠近所述第二端的部分中微结构的密度。
在一个实施例中,所述发光颜色为绿色的发光单元对应的所述微结构阵列靠近所述第一端的部分中微结构的密度,大于所述发光颜色为蓝色的发光单元对应的所述微结构阵列靠近所述第一端的部分中微结构的密度。
在一个实施例中,所述显示基板还包括位于所述光线调节结构背离所述衬底一侧的光线调节层,所述光线调节层设有多个通孔;
每一所述发光单元在所述衬底上的正投影位于一个所述通孔在所述衬底上的正投影内;或者,每一所述发光单元组中各所述发光单元在所述衬底上的正投影均位于一个所述通孔在所述衬底上的正投影内。
在一个实施例中,所述显示基板还包括位于所述光线调节结构背离所述衬底一侧的透光层,所述发光单元在所述衬底上的正投影位于所述透光层在所述衬底上的正投影内;所述显示基板还包括至少部分填充在所述腔 室内的透明封装结构;
所述透光层的透光率大于所述光线调节层的透光率,且小于所述透明封装结构的透光率。
根据本申请实施例的第二方面,提供了一种显示装置,所述显示装置包括上述的显示基板。
本申请实施例提供的显示基板及显示装置,光线调节结构将所述发光单元发出的光线进行汇聚,可增大所述显示基板的正视角光线的量,减小侧视角的光线的量,使显示基板从正视角到侧视角的光线的量逐渐减小,更符合人眼的观看习惯,有助于提升用户的使用体验;扩散结构可保证大视角光线的量,且可使光线的亮度从正视角到侧视角的亮度变化比较平滑,更符合人眼的观看习惯,同时可减小正视角与大视角的光线的色差,提升显示基板的显示效果;各发光单元组所在的腔室在衬底上的正投影的面积基本相同,则光线调节结构对各发光单元组的光线的调节程度基本一致,可使得显示基板的亮度分布更均匀,提升显示效果;同一发光单元组内相邻发光单元之间的距离小于相邻发光单元组之间的距离,相邻发光单元组之间存在至少一个腔室,则在制备光线调节结构时,可使得光线调节结构的制备工艺难度较低的前提下,使得各发光单元与其所在的腔室的内表面之间的距离更一致,从而光线调节结构对各发光单元组的光线调节程度更一致,进一步提升显示基板的显示效果。
附图说明
图1是本申请一示例性实施例提供的显示基板的局部剖视图;
图2是本申请另一示例性实施例提供的显示基板的局部剖视图;
图3是本申请再一示例性实施例提供的显示基板的局部剖视图;
图4是本申请又一示例性实施例提供的显示基板的局部剖视图;
图5是本申请又一示例性实施例提供的显示基板的局部剖视图;
图6是本申请又一示例性实施例提供的显示基板的局部剖视图;
图7是本申请一示例性实施例提供的显示基板的局部结构示意图;
图8是本申请另一示例性实施例提供的显示基板的局部结构示意图;
图9是本申请再一示例性实施例提供的显示基板的局部结构示意图;
图10是本申请一实施例提供的显示基板与对比显示基板的光线亮度随视角的曲线图;
图11是本申请另一实施例提供的显示基板与对比显示基板的光线亮度随视角的曲线图;
图12是本申请再一实施例提供的显示基板与对比显示基板的光线亮度随视角的曲线图;
图13是本申请又一实施例提供的显示基板与对比显示基板的光线亮度随视角的曲线图;
图14是本申请一实施例提供的显示基板的局部结构示意图;
图15是本申请另一实施例提供的显示基板的局部结构示意图;
图16是本申请又一示例性实施例提供的显示基板的局部剖视图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各 种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请实施例提供了一种显示基板及显示装置。下面结合附图,对本申请实施例中的显示基板及显示装置进行详细说明。在不冲突的情况下,下述的实施例中的特征可以相互补充或相互组合。
本申请实施例提供了一种显示基板。如图1至图6所示,所述显示基板包括衬底10、位于所述衬底10上的发光单元组20、位于所述衬底10上的光线调节结构30及位于所述衬底10上的扩散结构40。
所述发光单元组20包括多个发光单元21。所述光线调节结构30设有多个腔室31,每一所述发光单元组20位于一个所述腔室31内。如图6至图8所示,各所述发光单元组20所在的所述腔室31在所述衬底10上的正投影的面积基本相同,同一所述发光单元组20内相邻所述发光单元21之间的距离小于相邻所述发光单元组20之间的距离,相邻所述发光单元组20之间存在至少一个所述腔室31。所述光线调节结构30被配置为将所述发光单元21发出的光线进行汇聚,增大所述显示基板的正视角光线的量。其中,各所述发光单元组20所在的所述腔室31在所述衬底10上的正投影的面积基本相同指的是,各所述发光单元组20所在的所述腔室31在所述衬底10上的正投影的面积相同,或者面积差别很小,在预设的范围内。所述扩散结构40至少部分位于所述发光单元21背离所述衬底10的一侧,被配置为将所述发光单元21发出的光线进行扩散。
本申请实施例提供的显示基板,光线调节结构30将所述发光单元21发出的光线进行汇聚,可增大所述显示基板的正视角光线的量,减小侧视角的光线的量,使显示基板从正视角到侧视角的光线的量逐渐减小,更符合人眼的观看习惯,有助于提升用户的使用体验;扩散结构可保证大视角 光线的量,且可使光线的亮度从正视角到侧视角的亮度变化比较平滑,更符合人眼的观看习惯,同时可减小正视角与大视角的光线的色差,提升显示基板的显示效果;各发光单元组20所在的腔室31在衬底10上的正投影的面积基本相同,则光线调节结构30对各发光单元组20的光线的调节程度基本一致,可使得显示基板的亮度分布更均匀,提升显示效果;同一发光单元组20内相邻发光单元21之间的距离小于相邻发光单元组20之间的距离,相邻发光单元组20之间存在至少一个腔室31,则在制备光线调节结构30时,可使得光线调节结构30的制备工艺难度较低的前提下,使得各发光单元21与其所在的腔室31的内表面之间的距离更一致,从而光线调节结构30对各发光单元组20的光线调节程度更一致,进一步提升显示基板的显示效果。
在一个实施例中,如图7至图9所示,所述光线调节结构30包括沿第一方向Y延伸的多个第一挡墙部33和多个沿第二方向延伸的第二挡墙部34。在制备光线调节结构30时,可首先形成多个第一挡墙部33,再形成多个第二挡墙部34,每一第一挡墙部33与多个第二挡墙部34相交,每一第二挡墙部34与多个第一挡墙部33相交,第一挡墙部33与第二挡墙部34围合形成多个腔室31。在一些实施例中,第一方向Y与第二方向X可互相垂直,例如第一方向Y可以是行方向,第二方向X可以是列方向。第一挡墙部33与第二挡墙部34可以采用3D打印、压印、点胶等工艺,但不局限于这几种制作方式。
在制备光线调节结构30的过程中,第一挡墙部33与第二挡墙部34的宽度是一定的,且相邻发光单元组20之间的间距也是一定的,在光线调节结构30的制备工艺不改变的前提下,为了保证相邻发光单元组20之间的间距,相邻发光单元组20之间会形成至少一个腔室31,如此不会增加光线调节结构30制备的难度。
在一个实施例中,各所述发光单元组20所在的所述腔室31在所述衬底10上的正投影的形状基本相同。如此设置,各发光单元所在的腔室31 的环境更加一致,光线调节结构30对各发光单元组20的光线的调节程度更一致,可使得显示基板的亮度分布更均匀。
在一个实施例中,衬底10可以是柔性衬底,也可以是刚性衬底。柔性衬底的材料可以包括聚酰亚胺、聚对苯二甲酸乙二醇酯、聚碳酸酯、有机树脂材料中的一种或多种,有机树脂材料可以包括环氧树脂、三嗪、硅树脂或聚酰亚胺等。刚性衬底包括诸如玻璃衬底、石英衬底、蓝宝石衬底、陶瓷衬底等中的任一种;或者半导体衬底诸如以硅或碳化硅等为材料的单晶半导体衬底或多晶半导体衬底、硅锗等的化合物半导体衬底、SOI(Silicon On Insulator;绝缘体上硅)衬底等中的任一种。在一些示例实施例中,衬底可以是FR4类型印刷电路板(PCB),或者可以是易于变形的柔性PCB。在一些示例实施例中,衬底可以包括诸如氮化硅、AlN或Al2O3的陶瓷材料,或者金属或金属化合物,或者金属芯印刷电路板(MCPCB)或金属覆铜层压板(MCCL)中的任一种。
在一个实施例中,发光单元21可为Mini LED,或者发光单元21为Micro LED。
在一个实施例中,发光单元组20包括多个不同发光颜色的发光单元21,例如发光单元组包括发光颜色为红色的发光单元R、发光颜色为绿色的发光单元G及发光颜色为蓝色的发光单元B,该发光单元组20可作为一个像素。在另一实施例中,发光单元组包括的多个发光单元中,部分发光单元或全部发光单元的发光颜色可相同。
在一个实施例中,所述发光单元21的侧表面与所述腔室31的内表面之间存在间隙。如此设置,发光单元21的侧面发出的光线被腔室31的内表面反射后从腔室31的顶部出射,可提升发光单元21的光线利用率,提升显示基板的显示亮度,有助于降低显示基板的功耗。
在一个实施例中,在背离衬底10的方向上,所述腔室31的内表面向背离发光单元21的方向倾斜延伸。如此设置,更有助于提升腔室31的内表面对发光单元21发射的光线的反射量,提升发光单元21发射的光线的 利用率,且光线调节结构30的制备工艺比较简单。在一些实施例中,如图1至图6所示,在衬底10的厚度方向上,所述腔室31的截面为倒梯形。
在一个实施例中,腔室31沿垂直于衬底10方向上的高度大于发光单元21沿延垂直于衬底10方向上的高度。如此设置,光线调节结构30能够反射发光单元21发出的至少部分大角度光线,提高显示面板的光效。
在一个实施例中,如图7及图9所示,同一发光单元组20的多个发光单元21沿第一方向Y排布,在第一方向Y上相邻的两个发光单元组20之间存在至少一个所述腔室31,在第二方向X上相邻的两个发光单元组20之间存在至少一个腔室31。图7与图9所示的实施例中,在第一方向Y上相邻的两个发光单元组20之间存在一个所述腔室31,在第二方向X上相邻的两个发光单元组20之间存在一个所述腔室31。在其他实施例中,在第一方向Y上相邻的两个发光单元组20之间可存在两个或两个以上腔室31,在第二方向X上相邻的两个发光单元组20之间可存在两个或两个以上腔室31。
在另一实施例中,如图8所示,同一发光单元组20的多个发光单元21沿第二方向X排布,在第二方向X上相邻的两个发光单元组20之间存在至少一个所述腔室31,在第一方向Y上相邻的两个发光单元组20之间存在至少一个腔室31。图8所示的实施例中,在第一方向Y上相邻的两个发光单元组20之间存在一个所述腔室31,在第二方向X上相邻的两个发光单元组20之间存在一个所述腔室31。在其他实施例中,在第一方向Y上相邻的两个发光单元组20之间可存在两个或两个以上腔室31,在第二方向X上相邻的两个发光单元组20之间可存在两个或两个以上腔室31。
在一个实施例中,所述光线调节结构30的灰度值大于0,且小于1。如此设置,光线调节结构30对光线的反射效果较强,发光单元21发射的光线被腔室31的内表面反射后从腔室31出射的量更多;并且在显示基板处于未显示状态时,光线调节结构30的黑度较好,可提升显示基板在未显示状态时的黑度,有助于提升用户的使用体验。
在一些实施例中,所述光线调节结构30可呈灰色。
在一些实施例中,所述光线调节结构30的材料可以是白油,白油可包括树脂(例如,环氧树脂、聚四氟乙烯树脂)、二氧化钛(化学式TiO 2)以及有机溶剂(例如,二丙二醇甲醚)等。光线调节结构30的材料还可包括硅系白胶。或者,光线调节结构30的材料也可以是其他具有高反射率的材料。
在一些实施例中,光线调节结构可以具有低的热膨胀系数(例如低于后续提到的位于腔室内的透明封装结构),以确保其不受与发光单元的操作相关的温度变化的不利影响。
在一个实施例中,如图1、图3至图8所示,所述光线调节结构30包括位于所述腔室31内的反射挡墙32,所述反射挡墙32将所述腔室31分隔为多个子腔室311,每一所述发光单元21位于一个所述子腔室311内;各所述子腔室311在所述衬底10上的正投影的面积及形状基本相同。其中,各所述子腔室311在所述衬底10上的正投影的面积基本相同,指的是,各子腔室311在衬底10上的正投影的面积相同,或者面积相差较小,在预设的范围内。通过在同一发光单元组20的相邻发光单元21之间设置反射挡墙32,可改善同一发光单元组20的相邻发光单元21的光线串扰的问题,有助于提升显示基板的显示效果;通过设置各子腔室311在所述衬底10上的正投影的面积及形状均基本相同,则各发光单元21所处的腔室环境相同,光线调节结构30对各发光单元21的光线调节程度基本一致,更有助于提升显示基板的亮度分布均匀性,提升显示效果。图7所示的实施例中,反射挡墙32为第二挡墙部34的一部分;图9所示的实施例中,反射挡墙32为第一挡墙部33的一部分。图7至图9所示的实施例中,位于相邻发光单元组20之间的腔室31内也设有反射挡墙32。
在另一实施例中,如图2及图9所示,所述腔室31内未设置反射挡墙,也即是同一发光单元组20的相邻发光单元21之间未设置将其隔开的反射挡墙32。发光单元21的尺寸较小,相邻发光单元21之间的间距较小时, 同一腔室31内的相邻发光单元21之间可不设反射挡墙。
在一个实施例中,各腔室31在衬底10上的正投影的内轮廓构成的图形可以为多边形;例如,该多边形可以为如图7至图9所示的矩形。或者,各腔室31在衬底10上的正投影的内轮廓构成的图形还可以为椭圆形或圆形。或者,各腔室31在衬底10上的正投影的内轮廓构成的图形还可以为多边形与弧形组合形成的图形;例如为矩形与两个半圆组合形成的图形。
在一个实施例中,如图7至图9所示,所述光线调节结构30呈网状结构,可以理解,光线调节结构30围绕各发光单元组的结构连接为一体;光线调节结构30包括反射挡墙32时,所述光线调节结构30中围绕各发光单元组的结构及反射挡墙32均连接为一体。当然,所述光线调节结构30中围绕每个发光单元组20的结构还可以为独立的结构,即围绕相邻两个发光单元组20的结构不相连;光线调节结构30包括反射挡墙32时,反射挡墙32与围绕发光单元组20的结构也可以为独立的结构。
在一个实施例中,如图1至图6所示,所述显示基板还包括至少部分填充在所述腔室31内的透明封装结构50,透明封装结构50包覆发光单元21。所述显示基板包括多个透明封装结构50,所述光线调剂节结构30的各腔室31内均填充有透明封装结构50,且每一发光单元21对应一个透明封装结构50,腔室31内未设置反射挡墙32时,同一腔室31内的发光单元21对应的封装结构50可为一体结构。所述腔室31包括多个子腔室311时,每一子腔室311内可分别填充有透明封装结构50。透明封装结构50位于腔室31内的部分可降低入射至显示基板的环境光的反射率,有助于提升显示基板的显示效果。在一些实施例中,透明封装结构50的材料为可以是透明树脂。
在一个实施例中,如图1至图4所示,所述扩散结构40包括分散在所述明封装结构50中的散射粒子41。散射粒子41可增强发光单元21发射的光线的散射程度,增大显示基板的视角;且可减小正视角与大视角的光线色差,提升用户的使用体验。在一些实施例中,散射粒子41可为TiO2 纳米粒子、SiO2纳米粒子等。
在一个实施例中,如图4所示,所述显示基板包括相对的第一端101和第二端102。所述散射粒子41在所述透明封装结构50中均匀分布,至少部分所述发光单元21对应的所述透明封装结构50背离所述衬底10的表面为斜面51,由所述第一端101指向所述第二端102的方向上,所述斜面51向朝向所述衬底10的方向倾斜。如此设置,可使得至少部分发光单元21对应的透明封装结构50在靠近第二端102的部分中散射粒子41的数量较多,散射粒子41对这些发光单元21发射的光线中靠近第二端的光线的散射作用更强,可减小显示基板在第二端的大视角光线的量,进而减小显示基板在第一端与第二端的大视角亮度分布差异及色差,有助于提升用户的使用体验。
在一个实施例中,所述发光单元组20包括发光颜色为绿色的发光单元G、发光颜色为红色的发光单元R及发光颜色为蓝色的发光单元B。
图10为显示基板在行方向上光线的亮度分布曲线图,其中曲线a1、曲线a2及曲线a3分别为对比实施例的显示基板(显示基板未设置光线调节结构及扩散结构)的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,曲线b1、曲线b2及曲线b3分别为本申请图4所示的实施例提供的显示基板的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,其中视角小于0的位置为显示基板更靠近第二端的位置,视角大于0的位置为显示基板更靠近第一端的位置。由图10可以看出,在行方向上,对比实施例的显示基板的光线在显示基板的两侧的亮度差异及色差较大。本申请图4所示的实施例提供的显示基板,第一端和第二端为显示基板在行方向上的相对两端,由图10可以看出,通过设置至少部分发光单元21对应的透明封装结构50背离衬底10的表面为斜面51,且由第一端101指向第二端102的方向上,斜面51向朝向衬底10的方向倾斜,可使得这些发光单元21对应的透明封装结构50在靠近第一端101的部分中散射粒子的数量较多,散射粒子对这些发光单元21发射的光线中靠近第一端的光线 的散射作用更强,可减小显示基板在第一端的大视角光线的量,进而使这些发光单元21发射的光线在行方向上的相对两侧的大视角亮度分布差别减小,且使显示基板在行方向上的相对两侧的大视角色差减小,有助于提升用户的使用体验。
进一步地,如图4所示,所述发光颜色为绿色的发光单元G及所述发光颜色为蓝色的发光单元B,其对应的所述透明封装结构50背离所述衬底10的表面为所述斜面51。由图10可以看出,在行方向上,对比实施例的显示基板中,蓝色光线和绿色光线在显示基板的相对两侧的大视角亮度分布差别较大,色差较大。图4所示的实施例中,第一端和第二端为显示基板在行方向上的相对两端,由图10可以看出,通过设置发光颜色为绿色的发光单元G及发光颜色为蓝色的发光单元B对应的所述透明封装结构50背离所述衬底10的表面为所述斜面51,可有效改善蓝色光线及绿色光线在显示基板在行方向上的相对两侧的大视角亮度差异,且可使显示基板在行方向上的相对两侧的大视角色差减小,有助于提升用户的使用体验。
进一步地,如图4所示,所述发光颜色为绿色的发光单元G及所述发光颜色为蓝色的发光单元B,其对应的所述透明封装结构50背离所述衬底10的表面均为所述斜面51,且所述发光颜色为绿色的发光单元G对应的所述斜面51的倾斜角,大于所述发光颜色为蓝色的发光单元B对应的所述斜面51的倾斜角。其中倾斜角指的是斜面与水平面(平行于衬底的延伸方向的平面)之间的夹角。由图10可以看出,在行方向上,对比实施例的显示基板中,绿色光线在显示基板的相对两侧的大视角亮度分布差异大于蓝色光线在显示基板的相对两侧的大视角亮度分布差异。图4所示的实施例中,第一端和第二端为显示基板在行方向上的相对两端,由图10可以看出,通过设置发光颜色为绿色的发光单元G对应的斜面51的倾斜角大于发光颜色为蓝色的发光单元B对应的斜面51的倾斜角,可使得靠近第一端的大视角光线中绿色光线受到的散射作用比蓝色光线更强,更有助于减小绿色光线在显示基板的相对两侧的大视角亮度分布差异,使蓝色光线及 绿色光线在显示基板在行方向上的相对两侧的大视角亮度分布更一致,减小显示基板在行方向上的相对两侧的大视角亮度分布差异,且可使显示基板在行方向上的相对两侧的大视角色差减小。
图11为显示基板在列方向上光线的亮度分布曲线图,其中曲线c1、曲线c2及曲线c3分别为对比实施例的显示基板(显示基板未设置光线调节结构及扩散结构)的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,曲线d1、曲线d2及曲线d3分别为图4所示的显示基板的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,其中视角小于0的位置为显示基板更靠近第二端的位置,视角大于0的位置为显示基板更靠近第一端的位置。由图11可以看出,在列方向上,对比实施例的显示基板中,不同颜色的光线在显示基板的相对两侧的大视角亮度分布差别较大,显示基板在行方向上的相对两侧的大视角色差较大。本申请图4所示的实施例提供的显示基板,可有效改善不同颜色的光线在显示基板在列方向上的相对两侧的大视角亮度差异,且使显示基板在行方向上的相对两侧的大视角色差减小有助于提升用户的使用体验。
在另一实施例中,每一发光单元21对应的透明封装结构中散射粒子不是均匀分布的,至少部分所述发光单元对应的所述透明封装结构,其靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度。如此设置,可使得至少部分发光单元21对应的透明封装结构50在靠近第一端101的部分中散射粒子的数量较多,散射粒子对这些发光单元21发射的光线中靠近第一端的光线的散射作用更强,可减小显示基板在第一端的大视角光线的量,进而使这些发光单元21在行方向上的两侧亮度分布差别减小,有助于提升用户的使用体验。
在一个实施例中,所述发光单元组20包括发光颜色为绿色的发光单元G、发光颜色为红色的发光单元R及发光颜色为蓝色的发光单元B时,第一端和第二端为显示基板在行方向上的相对两端,所述发光颜色为绿色的发光单元G及所述发光颜色为蓝色的发光单元B,其对应的所述透明封装 结构50靠近所述第一端的部分中散射粒子41的密度大于靠近所述第二端102的部分中散射粒子41的密度。如此设置,散射粒子41对显示基板在第一端的大视角光线中蓝色光线及绿色光线的散射作用更强,可有效改善蓝色光线及绿色光线在显示基板在行方向上的相对两侧的大视角亮度差异,有助于提升用户的使用体验。
进一步地,第一端和第二端为显示基板在行方向上的相对两端,所述发光颜色为绿色的发光单元G对应的所述透明封装结构50靠近所述第一端101的部分中散射粒子41的密度,大于所述发光颜色为蓝色的发光单元B对应的所述透明封装结构50靠近所述第一端101的部分中散射粒子41的密度。如此设置,可使得靠近第一端的大视角光线中绿色光线比蓝色光线受到的散射作用更强,更有助于减小绿色光线在显示基板的相对两侧的大视角亮度分布差异,使蓝色光线及绿色光线在显示基板的相对两侧的大视角亮度分布更一致。
在另一个实施例中,如图5及图6所示,所述扩散结构40包括位于所述光线调节结构30背离所述衬底10一侧的微结构阵列42,所述微结构阵列42包括多个间隔排布的微结构421。微结构阵列42可增强发光单元21发射的光线的散射程度,增大显示基板的视角;且可减小正视角与大视角的光线色差,提升用户的使用体验。
在一些实施例中,所述微结构421可为微透镜结构、棱锥结构、棱柱结构等。所述微结构421的直径范围为1μm~10μm。相邻微结构421的中心之间的距离范围为4μm~20μm。如此设置,可保证微结构阵列42对光线的散射效果较好。所述微结构421的直径范围例如为1μm、3μm、5μm、7μm、9μm、10μm等;相邻微结构421的中心之间的距离例如为4μm、8μm、12μm、16μm、20μm等。
在一些实施例中,微结构阵列42中相邻四个微结构421可排布呈规则的矩形或菱形,或者微结构阵列42中的微结构421可随机排布。
在一个实施例中,如图6所示,所述显示基板包括相对的第一端101 和第二端102,至少部分所述发光单元21对应的所述微结构阵列42中,靠近所述第一端101的部分中微结构421的密度大于靠近所述第二端102的部分中微结构421的密度。如此设置,可使得至少部分发光单元21对应的微结构阵列42对这些发光单元21发射的光线中靠近第一端的光线的散射作用更强,可减小显示基板在第一端的大视角光线的量,进而减小显示基板的相对两侧的大视角亮度分布差别,有助于提升用户的使用体验。
在一些实施例中,微结构阵列42中靠近所述第一端101的部分中微结构421的尺寸小于靠近所述第二端102的部分中微结构421的尺寸。
图12为显示基板在行方向上光线的亮度分布曲线图,其中曲线m1、曲线m2及曲线m3分别为对比实施例的显示基板(显示基板未设置光线调节结构及扩散结构)的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,曲线n1、曲线n2及曲线n3(曲线n2及曲线n3重合)分别为图6所示的显示基板的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,其中视角小于0的位置为显示基板更靠近第二端的位置,视角大于0的位置为显示基板更靠近第一端的位置。由图12可以看出,在行方向上,对比实施例的显示基板光线在显示基板的两侧的亮度分布差异及色差较大。本申请图6所示的实施例提供的显示基板,第一端和第二端为显示基板在行方向上的相对两端,由图12可以看出,通过设置至少部分发光单元21对应的所述微结构阵列42中,靠近第一端101的部分中微结构421的密度大于靠近第二端102的部分中微结构421的密度,可使得微结构阵列42对这些发光单元21发射的光线中靠近第一端的光线的散射作用更强,减小显示基板在第一端的大视角光线的量,进而使这些发光单元21发射的光线在行方向上的相对两侧的大视角亮度分布差别减小,且使显示基板在行方向上的相对两侧的大视角色差减小,有助于提升用户的使用体验。
进一步地,所述发光单元组20包括发光颜色为绿色的发光单元G、发光颜色为红色的发光单元R及发光颜色为蓝色的发光单元B时,所述发光颜色为绿色的发光单元G及所述发光颜色为蓝色的发光单元B,其对应的 所述微结构阵列42靠近所述第一端101的部分中微结构421的密度大于靠近所述第二端102的部分中微结构421的密度。由图12可以看出,在行方向上,对比实施例的显示基板中,蓝色光线和绿色光线在显示基板的相对两侧的大视角亮度分布差别较大,色差较大。本申请图6所示的实施例提供的显示基板,第一端和第二端为显示基板在行方向上的相对两端,由图12可以看出,微结构阵列42对显示基板在第一端的大视角光线中蓝色光线及绿色光线的散射作用更强,可有效改善蓝色光线及绿色光线在显示基板在行方向上的相对两侧的大视角亮度差异,且可使显示基板在行方向上的相对两侧的大视角色差减小,有助于提升用户的使用体验。
进一步地,如图6所示,所述发光颜色为绿色的发光单元G对应的所述微结构阵列42靠近所述第一端101的部分中微结构421的密度,大于所述发光颜色为蓝色的发光单元B对应的所述微结构阵列42靠近所述第一端101的部分中微结构421的密度。由图12可以看出,在行方向上,对比实施例的显示基板中,绿色光线在显示基板的相对两侧的大视角亮度分布差异大于蓝色光线在显示基板的相对两侧的大视角亮度分布差异。图6所示的实施例中,第一端和第二端为显示基板在行方向上的相对两端,由图12可以看出,图6所示的实施例提供的显示基板,可使得靠近第一端的大视角光线中绿色光线受到的散射作用比蓝色光线更强,更有助于减小绿色光线在显示基板的相对两侧的大视角亮度分布差异,使蓝色光线及绿色光线在显示基板的相对两侧的大视角亮度分布更一致,减小显示基板在行方向上的相对两侧的大视角亮度分布差异,且可使显示基板在行方向上的相对两侧的大视角色差减小。
图13为显示基板在列方向上光线的亮度分布曲线图,其中曲线x1、曲线x2及曲线x3分别为对比实施例的显示基板(显示基板未设置光线调节结构及扩散结构)的红色光线、绿色光线及蓝色光线的亮度随视角的变化曲线图,曲线y1、曲线y2及曲线y3(曲线y2与曲线y3重合)分别为图6所示的显示基板的红色光线、绿色光线及蓝色光线的亮度随视角的变 化曲线图,其中视角小于0的位置为显示基板更靠近第二端的位置,视角大于0的位置为显示基板更靠近第一端的位置。由图13可以看出,在列方向上,对比实施例的显示基板的光线在显示基板的两侧的亮度分布差别较大。本申请实施例提供的显示基板,可有效改善显示基板的不同颜色的光线在列方向上的相对两侧的大视角亮度差异,且可使显示基板在行方向上的相对两侧的大视角色差减小,有助于提升用户的使用体验。
在一个实施例中,所述透明封装结构50的折射率小于微结构421的折射率。如此设置,可保证发光单元21发射的光线中较多光线通过微结构421出射。在一些实施例中,微结构421的折射率与所述透明封装结构50的折射率的差值范围为0.2~2。
在一个实施例中,如图1至图6、以及图14所示,所述显示基板还包括位于所述光线调节结构30背离所述衬底10一侧的光线调节层70,所述光线调节层70设有多个通孔71。各发光单元21在衬底10上的正投影位于一个通孔71在衬底10上的正投影内。光线调节层70可以是黑色的膜层,例如光线调节层70可采用透过率较低的树脂材料涂覆得到。光线调节层70可有效降低入射至显示基板的环境光的反射率,提升用户的使用体验;且发光单元21发出的光线可通过光线调节层70的通孔71出射,相对于采用遮光层覆盖发光单元21的方案来说,可避免遮光层透过率低而导致显示基板的工作电流大,进而使得显示基板的功耗高及工作温度高的问题;光线调节层70可遮挡显示基板位于衬底上的走线,有助于提升显示基板的显示效果;采用透过率较低的数脂材料涂覆得到光线调节层70时,光线调节层70的制备工艺比较成熟,各区域的厚度偏差较小,可使得显示基板在未显示状态下各区域的黑度差异,将多个显示基板拼接得到的显示屏中,不同显示基板的光线调剂层70的厚度差异较小,显示屏在未显示状态下不同显示基板的黑度差异较小。
在一个实施例中,如图1、图3至图6所示,每一所述发光单元21在所述衬底10上的正投影位于一个所述通孔71在所述衬底10上的正投影内。 发光单元21与通孔71可一一对应,每一发光单元21在衬底10上的正投影位于对应的通孔71在衬底10上的正投影内。如此设置,光线调节层70覆盖相邻发光单元21之间的区域,有助于避免相邻发光单元21发出的光线发生串扰,可使得显示基板的显示对比度较高,有助于提升显示效果。
在另一实施例中,如图2及图14所示,每一所述发光单元组20中各所述发光单元21在所述衬底10上的正投影均位于一个所述通孔71在所述衬底10上的正投影内。发光单元组20与通孔71可一一对应,每一发光单元组20的各发光单元21在衬底10上的正投影均位于对应的通孔71在衬底10上的正投影内。在该实施例中,光线调节层70的通孔71的尺寸较大,发光单元21发出的光线的透过率较高,且对光线调节层70的制备精度要求较低。
在一个实施例中,如图1至图6所示,所示显示基板还包括封装盖板60,封装盖板60位于扩散结构40背离衬底10的一侧。封装盖板60可保护其与衬底10之间的结构例如发光单元21,且可防止封装盖板60与衬底10之间的结构受到损伤。封装盖板60的材料可以是玻璃。光线调节层70设置在封装盖板60朝向衬底10的一侧。
在一个实施例中,如图3及图14所示,所述显示基板还包括位于所述光线调节结构30背离所述衬底10一侧的透光层82,所述发光单元21在所述衬底10上的正投影位于所述透光层82在所述衬底10上的正投影内;所述透光层82的透光率大于所述光线调节层70的透光率,且小于所述透明封装结构50的透光率。由于透光层82的透光率小于透明封装结构50的透光率,则外部环境光入射至透光层82时反射率较低,有助于降低环境光的反射率;且透光层82与光线调节层70的透光率相差较小,可使得显示基板在未显示状态下不同区域的黑度的差别较小。透光层82的材料可呈灰色,材料可为光阻型材料,例如可为正性光阻材料或负性光阻材料。
在一些实施例中,所示透光层82至少部分填充在光线调节层70的通孔71内。如此设置,透光层82的设置不会增大显示基板的厚度。
在另一实施例中,如图1、图2及图15所示,显示基板可不设置透光层82,显示基板可包括设置在光线调节层70的通孔71内的透明胶81,透明胶81将封装盖板60与光线调节结构30粘结在一起。透明胶81与透明封装结构50的材料可相同。
对比图14及图15可以看出,显示基板包括填充在通孔71内的透光层82时,显示基板在未显示状态下显示基板设置透光层82的区域与设置光线调节层70的区域的黑度差异较小,有助于提升用户的使用体验。
本申请实施例还提供了一种显示基板的制备方法。下面将对显示基板的制备方法进行介绍。
在一个实施例中,显示基板为如图1及图2所示的显示基板,显示基板的制备方法包括如下过程:
首先,分别制备封装基板和发光基板。
在一个实施例中,制备封装基板的过程如下:
提供封装盖板,在封装盖板的一侧形成光线调节层。
在一个实施例中,制备发光基板的过程如下:
提供衬底,在衬底上设置发光单元;
随后,在衬底上形成光线调节结构;
随后,在光线调节结构的腔体内填充掺杂有散射粒子的透明封装结构;
随后,采用透明胶将光线调节结构与发光单元之间的间隙填平,即可得到发光基板。
在制备得到封装基板与发光基板后,将封装基板设有光线调节层的一侧与发光基板贴合,发光基板与封装基板通过透明胶粘结在一起,即可得到图1及图2所示的显示基板。
在另一个实施例中,显示基板为如图5与图6所示的显示基板,显示基板的制备方法包括如下过程:
首先,分别制备封装基板和发光基板。
在一个实施例中,制备封装基板的过程如下:
提供封装盖板,在封装盖板的一侧形成光线调节层;
之后,在光线调节层的通孔内形成微阵列结构,即可得到封装基板。
在一个实施例中,制备发光基板的过程如下:
提供衬底,在衬底上设置发光单元;
随后,在衬底上形成光线调节结构;
随后,采用透明胶将光线调节结构与发光单元之间的间隙填平,即可得到发光基板,其中透明胶位于光线调节结构的腔室内的部分为透明封装结构。
在制备得到封装基板与发光基板后,将封装基板设有光线调节层的一侧与发光基板贴合,发光基板与封装基板通过透明胶粘结在一起,即可得到图5与图6所示的显示基板。
本申请实施例还提供了一种显示基板,如图16所示,所述光线调节结构30包括包覆所述发光单元21的凸透镜结构35。发光单元21与凸透镜结构35一一对应,每一凸透镜结构35包覆对应的发光单元21。凸透镜结构35可将所述发光单元21发出的光线进行汇聚,增大所述显示基板的正视角光线的量,减小侧视角的光线的量,使显示基板从正视角到侧视角的光线的量逐渐减小,更符合人眼的观看习惯,有助于提升用户的使用体验。
在一个实施例中,所述扩散结构包括分散在所述凸透镜结构35内的散射粒子。分散在凸透镜结构35内的散射粒子可保证大视角光线的量,且可使光线的亮度从正视角到侧视角的亮度变化比较平滑,更符合人眼的观看习惯,同时可减小正视角与大视角的光线的色差,提升显示基板的显示效果
在一个实施例中,如图16所示,所述显示基板还包括位于所述衬底10上的光线调节层70,所述光线调节层70设有多个通孔71,每一所述发光单元21在所述衬底上的正投影位于一个所述通孔71在所述衬底10上的正投影内;所述光线调节层70与各所述发光单元21的侧部接触。也即是,光线调节层70的通孔71在衬底10上的正投影的边缘与对应的发光单元 21在衬底10上的正投影的边缘重合。如此设置,光线调节层70的面积较大,可使显示基板在未显示状态下的黑度更高,更有助于提升用户的使用体验。
本申请实施例还提供了一种显示装置。所述显示装置包括上述任一实施例所述的显示基板。
在一个实施例中,本申请实施例提供的显示装置的显示屏可为拼接屏,所述拼接屏由多个上述的显示基板拼接而成。光线调节层70的制备工艺比较成熟,不同显示基板的光线调剂层70的厚度差异较小,拼接屏在未显示状态下不同显示基板的黑度差异较小,有助于提升用户的使用体验。
在一个实施例中,所述显示装置还包括壳体,显示基板嵌设在壳体内。
本申请实施例提供的显示装置可以为任意适当的显示装置,包括但不限于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子书等任何具有显示功能的产品或部件。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅 由所附的权利要求来限制。

Claims (16)

  1. 一种显示基板,其特征在于,所述显示基板包括:
    衬底;
    位于所述衬底上的发光单元组,所述发光单元组包括多个发光单元;
    位于所述衬底上的光线调节结构,所述光线调节结构设有多个腔室,每一所述发光单元组位于一个所述腔室内;各所述发光单元组所在的腔室在所述衬底上的正投影的面积基本相同;同一所述发光单元组内相邻所述发光单元之间的距离小于相邻所述发光单元组之间的距离,相邻所述发光单元组之间存在至少一个所述腔室;所述光线调节结构被配置为将所述发光单元发出的光线进行汇聚,增大所述显示基板的正视角光线的量;
    位于所述衬底上的扩散结构,所述扩散结构至少部分位于所述发光单元背离所述衬底的一侧,被配置为将所述发光单元发出的光线进行扩散。
  2. 根据权利要求1所述的显示基板,其特征在于,所述发光单元的侧表面与所述腔室的内表面之间存在间隙。
  3. 根据权利要求1所述的显示基板,其特征在于,所述光线调节结构的灰度值大于0,且小于1。
  4. 根据权利要求1所述的显示基板,其特征在于,所述光线调节结构包括位于所述腔室内的反射挡墙,所述反射挡墙将所述腔室分隔为多个子腔室,每一所述发光单元位于一个所述子腔室内;各所述子腔室在所述衬底上的正投影的面积基本相同。
  5. 根据权利要求1所述的显示基板,其特征在于,所述显示基板还包括至少部分填充在所述腔室内的透明封装结构。
  6. 根据权利要求5所述的显示基板,其特征在于,所述扩散结构包括分散在所述透明封装结构中的散射粒子。
  7. 根据权利要求6所述的显示基板,其特征在于,所述显示基板包括相对的第一端和第二端;
    每一所述发光单元被一个所述透明封装结构包覆,所述散射粒子在所述透明封装结构中均匀分布,至少部分所述发光单元对应的所述透明封装结构背离所述衬底的表面为斜面,由所述第一端指向所述第二端的方向上,所述斜面向朝向所述衬底的方向倾斜;或者,
    至少部分所述发光单元对应的所述透明封装结构,其靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度。
  8. 根据权利要求7所述的显示基板,其特征在于,所述发光单元组包括发光颜色为绿色的发光单元、发光颜色为红色的发光单元及发光颜色为蓝色的发光单元;
    所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构背离所述衬底的表面为所述斜面;
    或者,所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度。
  9. 根据权利要求8所述的显示基板,其特征在于,所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构背离所述衬底的表面为所述斜面时,所述发光颜色为绿色的发光单元对应的所述斜面的倾斜角,大于所述发光颜色为蓝色的发光单元对应的所述斜面的倾斜角;
    所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度大于靠近所述第二端的部分中散射粒子的密度时,所述发光颜色为绿色的发光单元对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度,大于所述发光颜色为蓝色的发光单元对应的所述透明封装结构靠近所述第一端的部分中散射粒子的密度。
  10. 根据权利要求1所述的显示基板,其特征在于,所述扩散结构包括位于所述光线调节结构背离所述衬底一侧的微结构阵列,所述微结构阵 列包括多个间隔排布的微结构。
  11. 根据权利要求10所述的显示基板,其特征在于,所述显示基板包括相对的第一端和第二端,在由所述第一端指向所述第二端的方向上,至少部分所述发光单元对应的所述微结构阵列靠近所述第一端的部分中微结构的密度大于靠近所述第二端的部分中微结构的密度。
  12. 根据权利要求11所述的显示基板,其特征在于,所述发光单元组包括发光颜色为绿色的发光单元、发光颜色为红色的发光单元及发光颜色为红色的发光单元;所述发光颜色为绿色的发光单元及所述发光颜色为蓝色的发光单元,其对应的所述微结构阵列靠近所述第一端的部分中微结构的密度大于靠近所述第二端的部分中微结构的密度。
  13. 根据权利要求12所述的显示基板,其特征在于,所述发光颜色为绿色的发光单元对应的所述微结构阵列靠近所述第一端的部分中微结构的密度,大于所述发光颜色为蓝色的发光单元对应的所述微结构阵列靠近所述第一端的部分中微结构的密度。
  14. 根据权利要求1所述的显示基板,其特征在于,所述显示基板还包括位于所述光线调节结构背离所述衬底一侧的光线调节层,所述光线调节层设有多个通孔;
    每一所述发光单元在所述衬底上的正投影位于一个所述通孔在所述衬底上的正投影内;或者,每一所述发光单元组中各所述发光单元在所述衬底上的正投影均位于一个所述通孔在所述衬底上的正投影内。
  15. 根据权利要求14所述的显示基板,其特征在于,所述显示基板还包括位于所述光线调节结构背离所述衬底一侧的透光层,所述发光单元在所述衬底上的正投影位于所述透光层在所述衬底上的正投影内;所述显示基板还包括至少部分填充在所述腔室内的透明封装结构;
    所述透光层的透光率大于所述光线调节层的透光率,且小于所述透明封装结构的透光率。
  16. 一种显示装置,其特征在于,所述显示装置包括权利要求1至15 任一项所述的显示基板。
PCT/CN2022/088449 2022-04-22 2022-04-22 显示基板及显示装置 WO2023201699A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088449 WO2023201699A1 (zh) 2022-04-22 2022-04-22 显示基板及显示装置
CN202280000849.1A CN117280482A (zh) 2022-04-22 2022-04-22 显示基板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088449 WO2023201699A1 (zh) 2022-04-22 2022-04-22 显示基板及显示装置

Publications (1)

Publication Number Publication Date
WO2023201699A1 true WO2023201699A1 (zh) 2023-10-26

Family

ID=88418870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088449 WO2023201699A1 (zh) 2022-04-22 2022-04-22 显示基板及显示装置

Country Status (2)

Country Link
CN (1) CN117280482A (zh)
WO (1) WO2023201699A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065854A (en) * 1999-01-07 2000-05-23 Integrated Systems Engineering Inc. LED modular display system
CN103928594A (zh) * 2014-03-21 2014-07-16 京东方科技集团股份有限公司 一种发光装置
CN109148531A (zh) * 2018-08-20 2019-01-04 云谷(固安)科技有限公司 显示面板、显示装置和显示面板的制备方法
CN209785460U (zh) * 2019-05-05 2019-12-13 东莞阿尔泰显示技术有限公司 一种新型led显示灯板
CN110970546A (zh) * 2019-12-19 2020-04-07 京东方科技集团股份有限公司 显示基板及其制作方法、拼接显示装置
CN113540054A (zh) * 2021-07-20 2021-10-22 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
CN114171548A (zh) * 2021-12-09 2022-03-11 錼创显示科技股份有限公司 发光单元及显示装置
CN114242701A (zh) * 2021-12-17 2022-03-25 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065854A (en) * 1999-01-07 2000-05-23 Integrated Systems Engineering Inc. LED modular display system
CN103928594A (zh) * 2014-03-21 2014-07-16 京东方科技集团股份有限公司 一种发光装置
CN109148531A (zh) * 2018-08-20 2019-01-04 云谷(固安)科技有限公司 显示面板、显示装置和显示面板的制备方法
CN209785460U (zh) * 2019-05-05 2019-12-13 东莞阿尔泰显示技术有限公司 一种新型led显示灯板
CN110970546A (zh) * 2019-12-19 2020-04-07 京东方科技集团股份有限公司 显示基板及其制作方法、拼接显示装置
CN113540054A (zh) * 2021-07-20 2021-10-22 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
CN114171548A (zh) * 2021-12-09 2022-03-11 錼创显示科技股份有限公司 发光单元及显示装置
CN114242701A (zh) * 2021-12-17 2022-03-25 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN117280482A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
TWI700533B (zh) 具有直下式背光單元的顯示器
US9134011B2 (en) Apparatus for planar lighting
KR20130061796A (ko) 광학 어셈블리, 백라이트 유닛 및 그를 이용한 디스플레이 장치
JP2015072501A (ja) 背面表面へ光学的に結合されるledを有する薄型エッジバックライト
CN114068843B (zh) 显示面板和显示装置
CN109920936A (zh) 一种显示面板、其制作方法及显示装置
JP2003195058A (ja) 導光板、その製造方法、照明装置、及び液晶表示装置
WO2018223988A1 (zh) 光学模组和包括其的反射式显示器件
JP2023512767A (ja) パターン反射体を含むバックライト
TWI723531B (zh) 顯示用背光裝置
WO2019007068A1 (zh) 背光模组、显示装置
WO2020238178A1 (zh) 一种背光模块、显示屏及移动终端
TW202329479A (zh) 顯示裝置
TWI733185B (zh) 背光裝置用面光源模組及其製作方法
TWI838652B (zh) 發光模組和顯示裝置
KR20200127064A (ko) 광 경로 제어 기능을 갖는 확산판 및 백라이트 장치
WO2021004090A1 (zh) 色彩转换组件、显示面板及制作方法
JP2007172872A (ja) 照明装置及びこれを用いた画像表示装置
KR101880130B1 (ko) 백라이트 유닛 및 그를 이용한 디스플레이 장치
WO2023201699A1 (zh) 显示基板及显示装置
CN108279505B (zh) 一种光学腔体、光学系统及显示装置
KR101827970B1 (ko) 백라이트 유닛 및 그를 이용한 표시장치
JP5184240B2 (ja) 表示装置
KR20220131491A (ko) 디스플레이 기판 및 그 제조 방법 및 디스플레이 디바이스
WO2023184122A1 (zh) 发光基板、发光模组和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000849.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937935

Country of ref document: EP

Kind code of ref document: A1