WO2023200267A1 - 키메릭 항원 수용체 및 hgf 결합 억제 물질의 조합 요법 - Google Patents

키메릭 항원 수용체 및 hgf 결합 억제 물질의 조합 요법 Download PDF

Info

Publication number
WO2023200267A1
WO2023200267A1 PCT/KR2023/004997 KR2023004997W WO2023200267A1 WO 2023200267 A1 WO2023200267 A1 WO 2023200267A1 KR 2023004997 W KR2023004997 W KR 2023004997W WO 2023200267 A1 WO2023200267 A1 WO 2023200267A1
Authority
WO
WIPO (PCT)
Prior art keywords
yyb
cancer
car
cells
hgf
Prior art date
Application number
PCT/KR2023/004997
Other languages
English (en)
French (fr)
Inventor
송성원
이송재
전영하
주안나
이나림
김민구
김민주
Original Assignee
주식회사 셀랩메드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀랩메드 filed Critical 주식회사 셀랩메드
Publication of WO2023200267A1 publication Critical patent/WO2023200267A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1833Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5437IL-13
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to the prevention or treatment of solid cancer using cell therapy, a third-generation anticancer immunotherapy agent.
  • the anti-cancer effect of cell therapy is increased by influencing the interaction between cancer cells and the immune system through the combination of a substance that inhibits the binding of hepatocyte growth factor (HGF) and its receptor in addition to the chimeric antigen receptor. It is characterized by ordering.
  • HGF hepatocyte growth factor
  • the cell therapy agent of the present invention can also be effectively used to treat solid tumors, which are recognized as difficult to utilize as immunotherapy agents.
  • first-generation chemical anticancer drugs to treat cancer, they attack and kill cancer cells with cytotoxic substances, but they have severe side effects because they damage not only cancer cells but also normal cells.
  • the second-generation targeted anti-cancer drugs which are intended to overcome these shortcomings of the first-generation chemical anti-cancer drugs, target and attack specific substances in cancer cells, so they have fewer side effects compared to the first-generation chemical anti-cancer drugs, but they have the major disadvantage of developing resistance.
  • third-generation immunotherapy drugs use our body's immune system, there are fewer toxicity problems with first-generation chemical anticancer drugs and resistance problems with second-generation targeted anticancer drugs, and there are significantly fewer side effects.
  • second-generation targeted anti-cancer drugs show a high survival rate in the early stages, but their durability is low due to resistance issues, while immuno-anti-cancer drugs maintain their anti-cancer effect, so patients who respond well to immuno- anti-cancer drugs are closer to cure.
  • third-generation immunotherapy drugs contribute to improving the quality of life of cancer patients as well as the long-term survival rate of cancer patients due to their excellent efficacy and fewer side effects.
  • a chimeric antigen receptor is composed of an antibody fragment, a hinge region, a transmembrane domain, and an intracellular signaling domain.
  • T cells expressing the chimeric antigen receptor are immunotherapy drugs designed to attack only cancer cells. It is one of the CAR-T cell therapy is a very important cell therapy product in that it significantly increases the aggressiveness of immune T cells that specifically attack cancer cells, reducing damage to normal cells and targeting only cancer cells.
  • immune cell therapy such as CAR-T cell therapy has shown a high cure rate for some blood cancers, but has not been effective in treating solid cancer, which accounts for most cancers, because the body tends to suppress strong immune responses. It is known that this is because the immune cells cannot function sufficiently.
  • Patent Document 1 Republic of Korea Patent No. 10-0556660
  • Patent Document 2 Republic of Korea Patent No. 10-2011789
  • the present inventors studied a treatment method that allows CAR-T cell therapy to be effective even in solid cancers such as ovarian cancer, and as a result, a third-generation treatment with less toxicity problems of first-generation chemical anticancer drugs and less resistance problems of second-generation targeted anticancer drugs was discovered. It was confirmed that combining CAR-T cell therapy, an immunotherapy drug, with a substance that can inhibit the binding of HGF and its receptor (MET) can lead to improved inhibition or reduction of tumor progression compared to CAR-T cell therapy alone. And the present invention was completed. In particular, the present inventors' previous study (Patent Application No.
  • the present invention aims to provide a CAR-T cell therapy for the treatment of solid cancers such as ovarian cancer, and is a CAR-T cell therapy that can treat cancer more efficiently in subjects by inhibiting the binding of HGF and its receptor.
  • the specific solution is to provide .
  • the present invention discloses the following means.
  • the present invention provides an antigen binding domain; hinge area; transmembrane domain; costimulatory domain; and a polynucleotide encoding a chimeric antigen receptor (CAR) comprising a cytoplasmic signaling domain; and an expression cassette containing a polynucleotide coding for a substance that inhibits the binding of hepatocyte growth factor (HGF) and its receptor (MET).
  • CAR chimeric antigen receptor
  • the polynucleotide encoding the HGF and MET binding inhibitor may be linked to the polynucleotide encoding the cytoplasmic signaling domain.
  • a polynucleotide encoding a self-cleaving peptide may exist between the polynucleotide encoding the HGF and MET binding inhibitor and the polynucleotide encoding the cytoplasmic signaling domain.
  • Self-cleaving peptides include 2A peptides such as T2A (Thosea asigna virus), F2A (Foot-and-mouth disease virus), E2A (equine rhinitis A virus), and P2A (porcine teschovirus-1 2A). , preferably T2A.
  • the binding inhibitor may be hepatocyte growth factor isoforms (truncated HGF isoforms). Additionally, the binding inhibitor may be water-soluble MET (soluble MET). Preferably, the binding inhibitor may be an antibody or antigen-binding fragment thereof that specifically binds to hepatocyte growth factor (HGF).
  • HGF hepatocyte growth factor
  • the antigen binding domain of the CAR is CD19, MUC16, MUCl, CAlX, CEA, CDS, CD7, CD10, CD20, CD22, CD30, CD33, CD34, CD38, CD41, CD44, CD49f, CD56, CD74, CD133, CD138, Cyto Megalovirus (CMV) infected cell antigen, EGP-2, EGP-40, EpCAM, erb-B2,3,4, FBP, fetal acetylcholine receptor, folate receptor-a, GD2, GD3, HER-2, hTERT, K-light chain, KDR, LeY, L1 cell adhesion molecule, MAGE-A1, mesothelin, NKG2D ligand, NY-ES0-1, carcinoembryonic antigen (h5T4), PSCA, PSMA, ROR1, TAG-72, VEGF-R2, It may comprise an antigen binding domain that binds an antigen selected from WT-1, CD276 or
  • the transmembrane domain of the CAR includes the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, and a transmembrane domain selected from CD137 or CD154.
  • the costimulatory domain of the CAR includes MHC class I molecules, TNF receptor protein, immunoglobulin-like protein, cytokine receptor, integrin, signaling lymphocytic activation molecule (SLAM), activating NK cell receptor, BTLA ( B an T lymphocyte attenuator), Tolllike ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8 alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4,
  • the cytoplasmic signaling domain of the CAR may include a signaling domain selected from the functional signaling domain of 4-1BB, CD28, OX40, CD3 ⁇ , or a combination thereof.
  • the expression cassette of the present invention includes an antigen binding domain that binds IL13R ⁇ 2; hinge area; transmembrane domain; costimulatory domain; and a polynucleotide encoding a chimeric antigen receptor (CAR) comprising a cytoplasmic signaling domain; And it may include a polynucleotide encoding an antibody that specifically binds to HGF or an antigen-binding fragment thereof.
  • CAR chimeric antigen receptor
  • the chimeric antigen receptor may be represented by the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 10, and the HGF antibody or antigen-binding fragment thereof may be represented by the amino acid sequence of SEQ ID NO: 23.
  • the expression cassette of the present invention may include a polynucleotide encoding the amino acid sequence of SEQ ID NO: 26.
  • the invention discloses a recombinant expression vector comprising an expression cassette.
  • the invention discloses an effector cell transduced with the above recombinant expression vector.
  • the effector cells may be dendritic cells, killer dendritic cells, mast cells, natural killer cells, B lymphocytes, T lymphocytes, macrophages or their progenitor cells, or a combination thereof.
  • the T lymphocytes may be inflammatory T lymphocytes, cytotoxic T lymphocytes, regulatory T lymphocytes, helper T lymphocytes, or a combination thereof.
  • the present invention discloses a pharmaceutical composition for treating cancer comprising the effector cells.
  • the above cancers include ovarian cancer, breast cancer, stomach cancer, lung cancer, liver cancer, biliary tract cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, kidney cancer, colon cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, head and neck cancer, It may be skin cancer, thyroid cancer, parathyroid cancer, or ureteral cancer.
  • “Expression cassette” includes an antigen-binding domain that recognizes an antigen; A hinge region (or spacer) connecting the antigen-binding domain and the transmembrane domain; transmembrane domain; costimulatory domain; and a polynucleotide encoding a substance that inhibits the binding of HGF and its receptor (MET) in addition to a second-generation CAR structure consisting of a cytoplasmic signaling domain.
  • the effector cells of the present invention are cells that simultaneously express a receptor that recognizes cancer cells as antigens and a substance that inhibits the binding of HGF to the receptor.
  • the antigen-binding domain is the site where the main signal is transmitted and is located outside the cell membrane and recognizes cancer cells expressing a specific antigen. Therefore, in cancer treatment using the CAR structure, the specific treatment target is determined by the antigen-binding domain.
  • the antigen that binds to this antigen-binding domain is CD19, MUC16, MUCl, CAlX, CEA, CDS, and CD7.
  • CMV cytomegalovirus
  • the sequence of the antigen-binding domain that binds to IL13R ⁇ 2 is the same as SEQ ID NO: 2, and positions 11, 64, 67, and 107 of the antigen-binding wild type IL-13 sequence that binds to IL13R ⁇ 2 are respectively It is a mutation with substitution E11K.R64D.S67D.R107K.
  • the amino acid substituted at the position may be replaced with an amino acid with similar properties to the amino acid specified above.
  • the CAR structure according to the present invention introduces three additional glycines between the antigen-binding domain and the hinge region to increase the solubility of the CAR protein and increase the expression of the chimeric antigen receptor.
  • the above three glycines (G) can be replaced with amino acids with similar properties: alanine (A), valine (V), leucine (L), or isoleucine (I).
  • the costimulatory domain of the CAR structure according to the present invention is a site where a costimulatory signal is transmitted, and effector cells, such as T cells, expressing CAR that recognize a specific antigen bound to the antigen-binding domain trigger an immune response and help self-proliferation. , it serves to transmit signals to increase the time it remains in the body.
  • the costimulatory domain of SEQ ID NO: 6 is used.
  • the cytoplasmic signaling domain of the CAR structure according to the present invention used the CD3 ⁇ signaling domain of a normal person containing additional glutamine, rather than the CD3 ⁇ signaling domain of Jurkat T cells, and the additional glutamine has the following sequence It refers to glutamine (Q) at position 50 in number 7.
  • CD3 ⁇ has a total of three immunoreceptor tyrosine-based activation motif (ITAM- YxxL/Ix6-8YxxL/I) sequences, the second and third of the three YxxL/Ix6-8YxxL/I. It can be used by mutating tyrosine (Y) to phenylalanine (F) (SEQ ID NO: 8).
  • ITAM- YxxL/Ix6-8YxxL/I immunoreceptor tyrosine-based activation motif
  • Nucleic acid sequences of polypeptides constituting the domains disclosed herein can be obtained using recombinant methods known in the art, for example, by screening libraries from cells expressing the genes using standard techniques. , can be obtained by inducing a gene from a vector known to contain the same gene, or by isolating it directly from cells and tissues containing the same gene. Alternatively, the gene of interest can be generated synthetically rather than cloning.
  • Expression vectors can be rapidly introduced into host cells by any method known in the art.
  • CAR-T cells can be produced by conjugating the finally constructed CAR gene fragment to an MFG retroviral expression vector cleaved with BamH/NotI. It should be understood that the present invention includes any number of variants for each component of the construct.
  • an antigen binding domain that binds to IL13R ⁇ 2 of the CAR structure according to the present invention may be represented by the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 10, and was constructed by reflecting the content disclosed in International Patent Publication WO2017/023138, the entire text of which is incorporated by reference.
  • the polynucleotide encoding a substance that inhibits the binding of HGF to its receptor added to the polynucleotide encoding the CAR structure is hepatocyte growth factor isoforms (truncated HGF isoforms), soluble MET (soluble MET), or It encodes an HGF antibody or an antigen-binding fragment thereof, and preferably encodes an HGF antibody or an antigen-binding fragment thereof.
  • the HGF antibody or antigen-binding fragment thereof exhibits the activity of neutralizing HGF by binding to a neutralizable epitope of HGF, and includes an antibody or antigen-binding fragment thereof that specifically binds to HGF.
  • the antibody or antigen-binding fragment thereof that specifically binds to HGF has a V H region represented by the amino acid sequence of SEQ ID NO: 11 and a V L region represented by the amino acid sequence of SEQ ID NO: 12, and has four frameworks There is a framework region (FR) and three antigen binding regions (complementarity determining region (CDR)) (SEQ ID NOs: 15 to 20).
  • the heavy chain of the antibody that specifically binds to HGF of the present invention can be represented by the amino acid sequence of SEQ ID NO: 13, and the light chain can be represented by the amino acid sequence of SEQ ID NO: 14, and were produced according to the contents disclosed in Korean Patent No. 556660, the full text of which is incorporated by reference.
  • the antigen-binding fragment that specifically binds to HGF of the present invention is the single-chain variable domain fragment (ScFv) of SEQ ID NO: 23.
  • Cancers that can be prevented or treated by the pharmaceutical composition comprising the effector cells of the present invention include various cancers known in the art, such as ovarian cancer, breast cancer, stomach cancer, lung cancer, liver cancer, biliary tract cancer, and bronchial cancer. Cancer, including, but not limited to, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, kidney cancer, colon cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, head and neck cancer, skin cancer, thyroid cancer, parathyroid cancer, or ureteral cancer. .
  • cancer that can be prevented or treated by the pharmaceutical composition containing the effector cells of the present invention is cancer that expresses IL13Ra2 and secretes HGF, and more specifically, ovarian cancer that expresses IL13Ra2 and secretes HGF.
  • the pharmaceutical composition containing the effector cells of the present invention undergoes several steps before being injected into a cancer patient. For example, after extracting T cells from the patient's blood through a white blood cell collection process, injecting the CAR-designed gene into the T cells using an expression vector, proliferating these CAR-T cells, and then distributing them to the patient. It is injected.
  • the suitable dosage of the pharmaceutical composition comprising the effector cells of the present invention varies depending on factors such as the mode of administration, the patient's age, body weight, sex, pathological condition, diet, time of administration, route of administration, rate of excretion and responsiveness. In general, a skilled doctor can easily determine and prescribe an effective dosage for desired treatment or prevention. According to a specific embodiment of the present invention, a single dose of the pharmaceutical composition containing T cells in the present invention is 1 x 10 7 ⁇ 10 8 cells/kg.
  • the pharmaceutical composition containing the effector cells of the present invention exhibits an effect in preventing or treating various solid cancers, such as ovarian cancer. More specifically, by inhibiting the binding of HGF and its receptor, the anti-cancer effect of cell therapy is increased by increasing the therapeutic effect in the interaction between cancer cells and the immune system, making it useful as a preventive or therapeutic agent for various solid cancers such as ovarian cancer. You can. In particular, there is a special effect in that CAR-T cell therapy, a third-generation immunotherapy that has fewer toxicity problems of first-generation chemical anticancer drugs and less resistance problems of second-generation targeted anticancer drugs, can be used for solid cancer.
  • Figure 1 shows the results of flow cytometry analysis showing the expression rate of IL13Ra2 (human interleukin 13 receptor alpha 2) in an ovarian cancer cell line (A2780).
  • IL13Ra2 human interleukin 13 receptor alpha 2
  • FIG. 2 shows the results of hepatocyte growth factor (HGF) ELISA analysis in an ovarian cancer cell line (A2780).
  • HGF hepatocyte growth factor
  • Figure 3 is a diagram showing the structures of YYB-103 and YYB-103-1XX.
  • Figure 4 shows the results of flow cytometry analysis confirming the IL13 expression rate of YYB-103 CAR-T and YYB-103-1XX CAR-T cells.
  • Figure 5 shows a structure in which the Single Chain Variable Fragment (scFv) of YYB-101 is combined with the YYB-103-1XX structure
  • Figure 6 shows a recombinant vector having the YYB-103-1XX+YYB-101 scFv gene expression cassette.
  • Figure 7 shows the results of stable cell line production for YYB-103-1XX+YYB-101 scFv virus production.
  • Figure 8 shows the population doubling level results of T cells expressing YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes.
  • Figure 9 shows the results of flow cytometry analysis confirming the IL13 expression rate in the first donor (YY83).
  • Figure 10 shows the results of flow cytometry analysis confirming the IL13 expression rate in the second donor (YY89).
  • Figure 11 shows the results of flow cytometry analysis confirming the IL13 expression rate in the third donor (YY94).
  • Figure 12 shows the results confirming YYB-101 scFv secretion from T cells expressing YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes.
  • Figure 13 shows the results of measuring the apoptotic capacity (LDH) of T cells expressing YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes against the ovarian cancer cell line (A2780) in the first donor (YY83).
  • LDH apoptotic capacity
  • Figure 14 shows the apoptotic capacity (LDH) measurement results of T cells expressing YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes against the ovarian cancer cell line (A2780) from a third donor (YY94).
  • LDH apoptotic capacity
  • Figure 15 shows the results of confirming the amount of cytokine (IFN-gamma) in T cells expressing the YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes for the ovarian cancer cell line (A2780).
  • IFN-gamma cytokine
  • Figure 16 shows the results of confirming target cell death (Crystal violet) of T cells expressing the YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes for the ovarian cancer cell line (A2780).
  • Figure 17 shows the results confirming the anticancer effect of the CAR-T cell therapy of the present invention on ovarian cancer cell line (A2780).
  • Figure 18 shows the survival confirmation results for the ovarian cancer cell line (A2780) of the CAR-T cell therapy of the present invention.
  • Figure 19 shows the sequences of YYB-101, YYB-103, YYB-103-1XX and YYB-103-1XX + YYB-101 scFv of the present application.
  • Example 1 Confirmation of IL13Ra2 (human interleukin 13 receptor alpha 2) expression in ovarian cancer cell line (A2780)
  • IL13Ra2 monoclonal antibody
  • FITC-conjugated anti-human IL13Ra2 monoclonal antibody R&D, Cat. No., FAB614F
  • the cells were washed once, and the expression rate of IL13Ra2 was checked in the ovarian cancer cell line (A2780).
  • an isotype control sample R&D, Cat. No., IC108F was included.
  • Table 1 and Figure 1 show the results of confirming the IL13Ra2 expression rate using the ovarian cancer cell line (A2780) according to the experimental method.
  • the expression rate of IL13Ra2 in the ovarian cancer cell line (A2780) was 69.1%, and in the case of the isotype control used as a control, it was confirmed to be 0.9%.
  • Ovarian cancer cell line (A2780) IL13Ra2 expression rate Unstained 0.7% Isotype control 0.9% Anti-IL13Ra2 69.1%
  • HGF Hepatocyte growth factor
  • HGF hepatocyte growth factor
  • RPMI medium containing 2% fetal bovine serum (FBS, Gibco, 10082-147) was used.
  • FBS fetal bovine serum
  • A2780 was cultured for 2 days at 32°C and 6% CO 2 conditions. After 2 days, the culture medium was centrifuged at 1,500 rpm for 5 minutes, and the supernatant was transferred to a new 1.5 mL tube.
  • human HGF Quantikine ELISA kit R&D system, DHG00B
  • RPMI a culture medium for ovarian cancer cell line (A2780) was included as a control for the ELISA analysis results.
  • the ELISA analysis results are shown in Figure 2.
  • the culture medium of the ovarian cancer cell line (A2780) used as a control the amount of HGF was confirmed at a concentration of 4 ng/mL, and in the case of the ovarian cancer cell line (A2780), the amount of HGF was confirmed at a concentration of 164 ng/mL, which is approximately 41 times higher. It has been done.
  • Example 2 Combining the results of Example 1 and Example 2, the ovarian cancer cell line (A2780) expressing IL13Ra2 and secreting HGF was used as a CAR-T cell therapy to which an antibody or antigen fragment thereof that specifically binds to HGF of the present invention was added. was selected for testing.
  • YYB-103 a second-generation (IL13.E11K.R64D.S67D.R107K.TNFRSF9.CD3 ⁇ ) chimeric antigen receptor that specifically binds to IL13Ra2, has three additional glycines (G) between the antigen-binding domain and the hinge region. It is introduced, and the antigen-binding domain binds to IL13R ⁇ 2, but as shown in SEQ ID NO: 2, positions 11, 64, 67, and 107 of the antigen-binding wild type IL-13 sequence that binds to IL13R ⁇ 2 are lysine (K), respectively. Aspartic acid (D), aspartic acid (D) and lysine (K) were substituted (SEQ ID NO: 9). YYB-103 expressing T cells were produced according to the disclosure in International Patent Publication WO2017/023138 (FIG. 3), the entire text of which is incorporated by reference.
  • G glycines
  • CD3 ⁇ a component of T cells, has a total of three immunoreceptor tyrosine-based activation motif (ITAM-YxxL/Ix6-8YxxL/I) sequences, and YYB-103-1XX is the sequence of YYB-103.
  • ITAM-YxxL/Ix6-8YxxL/I immunoreceptor tyrosine-based activation motif
  • YYB-103-1XX is the sequence of YYB-103.
  • the second and third were mutated from tyrosine (Y) to phenylalanine (F) (SEQ ID NO: 10).
  • YYB-103-1XX was produced according to the contents disclosed in International Publication Patent WO 2019/133969 (FIG. 3)
  • YYB-103-1XX expressing T cells were produced according to the contents disclosed in International Publication Patent WO2017/023138, the full text of which is referenced. is integrated into
  • YYB-103 CAR-T and YYB-103-1XX CAR-T (donor number, YY93) 1 x 10 6 cells cultured in T cell culture medium were centrifuged. Afterwards, the supernatant was removed, and YYB-103 CAR-T and YYB-103-1XX CAR-T cells were washed twice using PBS containing 2% bovine serum albumin. After washing was completed, the expression of transduced T cells was checked through flow cytometry for surface IL13 expression of YYB-103 CAR-T and YYB-103-1XX CAR-T through IL13. The results are shown in Table 2 and Figure 4. shown in As a control for the flow cytometry results, samples that were not transduced with YYB-103 CAR or YYB-103-1XX CAR virus (Untransduced T cells) were included.
  • Flow cytometry was performed to confirm the expression of YYB-103 CAR-T or YYB-103-1XX CAR-T cells (donor number, YY93), and the results showed that YYB-103 CAR or YYB-103-1XX CAR was not transduced.
  • the expression of IL13 in untransduced T cells was less than 0.3% on DAY 11, indicating no IL13 expression, whereas the expression rate of IL13 in YYB-103 CAR-T or YYB-103-1XX CAR-T cells was 0.3% or less on DAY 11.
  • -T showed 60.6%, YYB-103-1XX CAR-T showed 54.9%.
  • Example 4 Construction of a neutralizing antibody (YYB-101) that binds to a HGF (hepatocyte growth factor) neutralizing epitope.
  • YYB-101 that binds to a HGF (hepatocyte growth factor) neutralizing epitope.
  • YYB-101 (SEQ ID NO: 13 and SEQ ID NO: 14), an HGF-neutralizing antibody that interferes with the binding between HGF and its receptor, was produced according to the disclosure in Republic of Korea Patent No. 556660, the entire contents of which are incorporated by reference.
  • Example 5 Construction of a recombinant vector having an antibody and antigen-binding fragment expression cassette that specifically binds to a second-generation chimeric antigen receptor and HGF
  • YYB-103-1XX+YYB-101 scFv chimeric antigen receptor (SEQ ID NO: 26) was created by inserting the Single Chain Variable Fragment (scFv) of YYB-101 of SEQ ID NO: 23 into the YYB-103-1XX structure produced in Example 3. was produced ( Figures 5 and 6).
  • retroviral vector PG13-IL13-BBZ consists of Moloney murine leukemia virus 5' long terminal repeat (MMLV 5' LTR), packaging signal including splice donor and splice acceptor sites, YYB-103-1XX+YYB- It consists of a polynucleotide encoding 101 scFv and the Moloney murine leukemia virus 3' long terminal repeat (MMLV 3' LTR) region and is delivered to autologous T cells through CAR-designed gene introduction, resulting in YYB-103-1XX+YYB. -101 scFv is expressed as protein.
  • MMLV 5' LTR Moloney murine leukemia virus 5' long terminal repeat
  • packaging signal including splice donor and splice acceptor sites
  • YYB-103-1XX+YYB- It consists of a polynucleotide encoding 101 scFv and the Moloney murine leukemia virus 3
  • Example 6 Preparation of T cells transformed with a second-generation chimeric antigen receptor and a recombinant expression vector having an antibody specifically binding to HGF and an antigen-binding fragment gene expression cassette
  • Phoenix-Ampho (Cat No. CRL-3213, ATCC) and Phoenix-Eco (Cat No. CRL-3214, ATCC) cells (5 x 10 5 cells each) were cultured in DMEM (Gibco, 10569-101) containing 10% FBS. ) were added to 2 mL of medium (final cell number, 1 After 24 hours of incubation, the DMEM culture medium was removed, and the 6-well plate in which Phoenix-Ampho and Phoenix-Eco cells were cultured was washed twice using PBS (Gibco, 10010-023).
  • lipofectamine ® 2000 Transfection Reagent (Invitrogen, 11668-019) was added to Opti-MEMTM Reduced Serum Medium (Gibco, 31985-070) and reacted at room temperature for 5 minutes. After 5 minutes, Opti-MEM containing YYB-103-1XX+YYB-101 scFv DNA was mixed with Opti-MEM containing lipofectamine and reacted at room temperature for 20 minutes. After 20 minutes, Phoenix-Ampho and Phoenix-Eco cells were treated with YYB-103-1XX+YYB-101 scFv DNA and reacted. After 6 hours of reaction, the medium was replaced with new DMEM and cultured for 2 days at 32°C and 6% CO 2 conditions.
  • the culture medium was collected and filtered using a syringe filter (PALL, 4614).
  • the filtered virus was used to prepare the YYB-103-1XX+YYB-101 scFv gene into PG-13 cells.
  • Peripheral blood mononuclear cells were obtained from whole blood obtained from a healthy donor using Ficoll-Paque premium (GE healthcare, 17-5442-03) to obtain only mononuclear cells of the mononuclear cell layer (buffy coat).
  • Isolated PBMCs were mixed with 100 ng/mL of anti-CD3 monoclonal antibody (OKT3, eBioscience, Cat No. 16-0037-81) in the presence of 500 IU/mL of Human IL2 (NOVARTIS) in 1 x 10 6 cells.
  • NOVARTIS Human IL2
  • T cell fraction was activated by culturing in CTSTM T-Cell Expansion Basal Medium (Gibco, A10221-01) (hereinafter referred to as T cell culture medium) containing GlutaMAXTM-I CTSTM (100 . After 3 days of activation, T cells were transduced once using filtered PG-13/YYB-103-1XX+YYB-101 scFv supernatant.
  • Activated T cells were added to the T cell culture medium at 2 ⁇ 10 6 cells per well and centrifuged at 1,000 xg for 10 minutes to deliver YYB-103-1XX+YYB-101 scFv retrovirus to the T cells.
  • YYB-103-1XX+YYB-101 scFv retrovirus delivery to activated T cells was performed once.
  • YYB-103-1XX+YYB-101 scFv cells were grown in a 75 T flask for 12 days using T cell culture medium containing 500 IU/mL of IL-2. T cells expressing YYB-103-1XX+YYB-101 scFv propagated in this way were used in various analysis experiments.
  • Example 7 Confirmation of population doubling level of YYB-103-1XX and YYB-103-1XX+YYB-101 scFv expressing CAR-T cells
  • the cell number was measured every 2 days, 5 x 10 5 YYB-103-1XX or YYB-103-1XX+YYB-101 scFv-expressing CAR-T cells were cultured based on the number of cells /mL.
  • Example 8 Checking the IL13 expression rate of CAR-T cells expressing YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes
  • YYB-103-1XX expressing T and YYB-103-1XX+YYB-101 scFv expressing T cells (1 x 10 6 ) cultured in T cell culture medium (culture days, 10 and 12 days) were centrifuged. After centrifugation, the supernatant was removed, and YYB-103-1XX expressing T and YYB-103-1XX+YYB-101 scFv expressing T cells were washed twice using PBS containing 2% bovine serum albumin.
  • transduced T cells After washing was completed, the expression of transduced T cells was checked for surface IL13 expression of YYB-103-1XX expressing T and YYB-103-1XX+YYB-101 scFv expressing T through flow cytometry. As a control for the flow cytometry results, samples that were not transduced with the CAR virus (Untransduced T cells) were included.
  • IL13 expression in untransduced T cells not transduced with CAR virus from the first donor (YY83) was less than 0.2% on DAY 10 and 12, whereas in T cells transduced with the YYB-103-1XX CAR gene, it was below 0.2% on DAY 10.
  • Expression rates were 62.3% and 58.6% on DAY 12, and in the case of T cells to which the YYB-103-1XX+YYB-101 scFv gene was transferred, expression rates were 52.5% on DAY 10 and 54.7% on DAY 12 (Table 4 and Figure 9).
  • IL13 expression in untransduced T cells that were not transduced with the CAR virus in the second donor (YY89) was less than 0.2% on DAY 10 and 12, whereas for T cells transferred with the YYB-103-1XX CAR gene, DAY The expression rate was 30.5% at DAY 10 and 26.4% at DAY 12, and in the case of T cells to which the YYB-103-1XX+YYB-101 scFv CAR gene was transferred, the expression rate was 46.4% at DAY 10 and 46.7% at DAY 12. (Table 5 and Figure 10).
  • IL13 expression in untransduced T cells that were not transduced with the CAR virus was less than 0.2% on DAY 10 and 12, whereas for T cells transferred with the YYB-103-1XX CAR gene, DAY The expression rate was 63.9% at DAY 10 and 54.4% at DAY 12, and in the case of T cells to which the YYB-103-1XX+YYB-101 scFv CAR gene was transferred, the expression rate was 66.6% at DAY 10 and 66.8% at DAY 12. (Table 6 and Figure 11).
  • Example 9 Confirmation of YYB-101 scFv secretion by T cells expressing YYB-103-1XX and YYB-103-1XX+YYB-101 scFv genes
  • the T cell culture medium was centrifuged at 1,500 rpm for 5 minutes. Afterwards, the supernatant was stored at 4°C.
  • HGF protein was placed in an uncoated 96-well plate and coated at 4°C for 24 hours. After 24 hours, the 96-well plate was washed using PBS. After completion of washing, the supernatant, which was stored at 4°C, was reacted with HGF protein coated in a 96-well plate. After the reaction was completed, DuoSet ELISA Ancillary Reagent Kit2 (R&D systems, DY008) was used according to the test method. Finally, absorbance was measured at 450 nm using a microtiter plate reader. YYB-101 (1ug/mL) sample was included as a positive control for the ELISA test, and a sample that was not transduced with CAR virus (Untransduced T cells) was included as a control.
  • HGF binding (OD, 450 nm) Diluent Buffer 0.07 RPMI (culture medium) 0.07 Untransduced T cells 0.06 YYB-103-1XX CAR-T 0.07 YYB-103-1XX+YYB-101 scFv CAR-T 2.63 YYB-101 (1 ⁇ g/mL) 3.02
  • CytoTox96 Non-radio to measure cytolytic activity of YYB-103-1XX CAR-T and YYB-103-1XX+YYB-101 scFv CAR-T cells against IL13R ⁇ 2-expressing and HGF-secreting ovarian cancer cell line (A2780). Cytotoxicity assay Cell death analysis (Cytotoxicity assay) was performed using the LDH (Promega Cat. No., G1781) kit.
  • YYB-103-1XX CAR-T and YYB-103-1XX+YYB-101 scFv CAR-T cells were used after 12 days of culture and were plated in 96 well plates (effector: Cells were added at target, E:T ratio (2.5:1, 1.25:1 and 0.625:1) and reacted at 37°C for 18 hours.
  • YYB-103-1XX+YYB-101 scFv CAR-T cells were 27.7 against ovarian cancer cell line A2780 according to the E:T ratio (0.625:1, 1.25:1 and 2.5:1) %, 42%, and 51.5%, whereas YYB-103-1XX CAR-T cells without YYB-101 scFv showed E:T ratios (0.625:1, 1.25:1, and 2.5:1). ) showed an apoptotic capacity of 23.5%, 30.1% and 41.8%.
  • YYB-103-1XX+YYB-101 scFv CAR-T cells were 18.4 against ovarian cancer cell line A2780 according to the E:T ratio (0.625:1, 1.25:1 and 2.5:1). %, 28.9%, and 51.4%, whereas the E:T ratio (0.625:1, 1.25:1, and 2.5:1) for YYB-103-1XX CAR-T without YYB-101 scFv ) showed an apoptotic capacity of 17.2%, 28.4%, and 43.3%.
  • Ovarian cancer cell line ( A2780 , 1 proceeded. After co-culture for 48 hours, dead cells were completely removed using PBS, and live ovarian cancer cell lines (A2780) were stained using 0.1% crystal violet solution. After completion of crystal violet staining of live ovarian cancer cell line (A2780), washing once with PBS Death phenomenon was confirmed for cancer cell line (A2780). As a control, samples that were not transduced with the CAR virus (Untransduced T cells) were included.
  • An ovarian cancer cell line (A2780) expressing IL13R ⁇ 2 and secreting HGF was cultured in a CO 2 incubator (Thermo, 371) at 32°C and 6% CO 2 using DMEM medium containing 10% FBS and 1% antibiotics.
  • Ovarian cancer cell line (A2780) tumor transplantation and population construction
  • Engraftment was induced by directly transplanting 8 ul of 1x10 5 A2780 cells and 2 ul of matrigel into the ovaries of NSGA mice. Three days after engraftment, it was confirmed that the tumor size was evenly distributed by measuring the weight of the test animals and using in vivo luciferase imaging.
  • the test group consists of one control group (Vehicle) and four test substance administration groups (Untransduced T cells, YYB-103-1XX CAR-T, YYB-103-1XX CAR-T and YYB-101 combination, and YYB-103-1XX+ YYB-101 scFv CAR-T), and 5 animals were distributed to each group.
  • each untransduced T cell and CAR-T were prepared after being washed twice with PBS and diluted with PBS.
  • YYB-101 is administered simultaneously with YYB-103-1XX CAR-T (1st treatment) and administered one additional time (2nd treatment). The administration was repeated intravenously twice a week (20 mpk).
  • YYB-103-1XX CAR-T and YYB-101 combination treatment group all 5 subjects survived until the 17th day of administration, 1 subject died by the 24th day of administration, and 1 more subject died by the 31st day, with 2 subjects dying by the 31st day. Although they died, no additional deaths occurred until 45 days, so 3 out of 5 survived.
  • the YYB-103-1XX CAR-T cell and YYB-101 combination group showed reduced tumor size compared to the YYB-103-1XX CAR-T administration group.
  • YYB-101 spreads evenly throughout the body, so the concentration of antibodies or antigen-binding fragments thereof that specifically bind to HGF in tumor tissue may be maintained low.
  • the concentration of antibodies or antigen-binding fragments thereof that specifically bind to HGF is maintained high in tumor tissue by combining with a chimeric antigen receptor that recognizes the antigen. It is presumed that this is possible.
  • the effector cells according to the present invention exhibit anti-cancer effects on solid cancers such as ovarian cancer, and therefore can be used as pharmaceuticals such as anti-cancer drugs.

Abstract

본 발명은 키메릭 항원 수용체와 간세포성장인자 (Hepatocyte growth factor, HGF)와그 수용체의 결합을 억제하는 물질을 동시에 발현하는 효과기 세포 및 이를 포함하는 약제학적 조성물에 관한 것으로서, HGF와 그 수용체의 결합이 억제됨에 따라 암세포와 면역계의 상호 작용에 있어서 치료효과를 상승시켜 CAR-T 세포치료제의 항암 효과를 증가시키는 효과가 있어서, 혈액암 뿐만 아니라 고형암 치료에 효과적으로 사용될 수 있다.

Description

키메릭 항원 수용체 및 HGF 결합 억제 물질의 조합 요법
본 발명은 3세대 면역항암제인 세포치료제의 고형암의 예방 또는 치료에 관한 것이다. 구체적으로, 키메릭 항원 수용체에 추가로 간세포성장인자 (Hepatocyte growth factor, HGF)와 그 수용체의 결합을 억제하는 물질을 조합을 통해 암세포와 면역계의 상호 작용에 영향을 줌으로써 세포치료제의 항암 효과를 증가시키는 것을 특징으로 한다.
본 발명의 세포치료제는 면역항암제가 활용되기 어렵다고 인식되어 있는 고형암 치료에도 효과적으로 사용될 수 있다.
수십 년 동안 암을 치료하는 방법들은 꾸준히 변화하고 발전해왔다. 1800년대에서부터 1900년대까지는 외과적인 수술 (Surgery), 화학요법 (Chemotherapy), 그리고 방사선 요법 (Radiation therapy)과 같은 방법들이 주로 이뤄졌지만, 이들에 대한 한계점들이 드러나기 시작하여, 최근 면역세포 요법으로 체내의 면역세포를 꺼내서, 강화시키거나 유전공학적으로 변형시켜 다시 넣어주는 세포치료 방식이 개발되고 있다.
보다 구체적으로, 암을 치료하기 위한 1세대 화학항암제의 경우 세포독성물질로 암세포를 공격해 사멸시키는 방법인데, 암세포 뿐만 아니라 정상세포도 같이 손상을 주기 때문에 부작용이 심한 문제가 있다. 이러한 1세대 화학항암제의 단점을 극복하기 위한 2세대 표적항암제의 경우 암세포의 특정 물질을 목표로 공격하기 때문에 1세대 화학항암제에 비해 부작용은 적지만 내성이 생긴다는 큰 단점을 지니고 있다. 반면, 3세대 면역항암제는 우리 몸의 면역체계를 이용하기 때문에 1세대 화학항암제의 독성 문제와 2세대 표적항암제의 내성 문제가 적고 부작용도 현저히 적다. 또한, 2세대 표적항암제는 초기에 높은 생존율을 보이지만, 내성문제로 지속성이 떨어지는 반면 면역항암제는 항암효과가 유지돼 면역항암제에 대한 반응이 좋은 환자는 완치에 가까워진다. 이처럼 3세대 면역항암제는 탁월한 효능과 적은 부작용으로 인해 암환자의 장기 생존율은 물론 암환자의 삶의 질을 높이는데 기여한다.
키메릭 항원 수용체(chimeric antigen receptor, CAR)는 항체의 단편, 힌지 영역, 막통과 도메인 및 세포 내 신호전달 도메인으로 구성되는데, 상기 키메릭 항원 수용체가 발현된 T 세포는 암세포만 공격하게 설계된 면역항암제 중 하나이다. CAR-T 세포치료제는 암세포를 특이적으로 공격하는 면역 T 세포의 공격성을 크게 높였기 때문에 정상세포의 손상은 줄이고 암세포만을 표적 삼아 공격한다는 점에서 매우 중요한 세포치료제이다.
현재까지 CAR-T 세포치료제와 같은 면역세포치료가 일부 혈액암에서 높은 완치율을 보였지만, 암 대부분을 차지하는 고형암에서는 제대로 치료효과를 발휘하지 못하였는데, 이는 인체가 강한 면역반응을 억제하는 경향이 있어 투여된 면역세포가 충분히 활동할 수 없기 때문으로 알려져 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제10-0556660호
(특허문헌 2) 대한민국 등록특허 제10-2011789호
이에, 본 발명자들은 CAR-T 세포치료제를 난소암 등 고형암에서도 치료 효과가 발휘될 수 있도록 하는 치료 방법을 연구한 결과, 1세대 화학항암제의 독성 문제와 2세대 표적항암제의 내성 문제가 적은 3세대 면역항암제인 CAR-T 세포치료제에 HGF와 그 수용체(MET)의 결합을 억제할 수 있는 물질을 조합할 경우 CAR-T 세포치료제 단독에 비해 종양 진행의 억제 또는 감소의 개선을 초래할 수 있다는 것을 확인하고, 본 발명을 완성하였다. 특히, 본 발명자들의 앞선 연구(특허출원 제10-2022- 0046299호)로부터 CAR-T 세포치료제와 HGF 중화항체를 병용할 경우 CAR-T 세포치료제의 항암 활성이 증가된다는 것을 확인하고, 이에 HGF와 그 수용체의 결합을 억제할 수 있는 물질이 CAR와 동시에 발현될 수 있는 카세트를 제조하여 확인한 결과 CAR-T 세포치료제와 HGF 중화항체의 단순 병용에 비해 항암 활성이 더 우수한 것을 확인하였다.
따라서, 본 발명은 난소암 등 고형암 치료를 위한 CAR-T 세포치료제를 제공하는 것을 해결과제로 하며, HGF와 그 수용체의 결합을 억제함으로써 대상체에서 더 효율적으로 암을 치료할 수 있는 CAR-T 세포치료제를 제공하는 것을 구체적인 해결과제로 한다.
상기 과제를 해결하기 위하여, 본 발명에서는 하기와 같은 수단을 개시한다.
본 발명은 항원 결합 도메인; 힌지 영역; 막관통 도메인; 보조 자극 도메인; 및 세포질 신호 전달 도메인을 포함하는 키메릭 항원 수용체(CAR)를 암호화(coding)하는 폴리뉴클레오티드; 및 간세포성장인자 (Hepatocyte growth factor, HGF)와 그 수용체(MET)의 결합을 억제하는 물질을 암호화(coding)하는 폴리뉴클레오티드를 포함하는 발현 카세트를 개시한다.
상기 HGF와 MET 결합 억제 물질을 암호화하는 폴리뉴클레오티드는 상기 세포질 신호 전달 도메인을 암호화하는 폴리뉴클레오티드에 연결될 수 있다.
상기 HGF와 MET 결합 억제 물질을 암호화하는 폴리뉴클레오티드와 상기 세포질 신호 전달 도메인을 암호화하는 폴리뉴클레오티드 사이에 자기 절단 펩타이드를 암호화하는 폴리뉴클레오티드가 존재할 수 있다. 자기 절단 펩타이드(self-cleaving peptide)로는 T2A (Thosea asigna virus), F2A (Foot-and-mouth disease virus), E2A (equine rhinitis A virus), P2A (porcine teschovirus-1 2A)와 같은 2A 펩타이드가 있으며, 바람직하게는 T2A일 수 있다.
상기 결합 억제 물질이 간세포성장인자 이소폼 (truncated HGF isoforms)일 수 있다. 또한, 상기 결합 억제 물질이 수용성 MET(soluble MET)일 수 있다. 바람직하게는, 상기 결합 억제 물질이 간세포성장인자 (Hepatocyte growth factor, HGF)에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편일 수 있다.
상기 CAR의 항원 결합 도메인은 CD19, MUC16, MUCl, CAlX, CEA, CDS, CD7, CD10, CD20, CD22, CD30, CD33, CD34, CD38, CD41, CD44, CD49f, CD56, CD74, CD133, CD138, 사이토메갈로바이러스(CMV) 감염된 세포 항원, EGP-2, EGP-40, EpCAM, erb-B2,3,4, FBP, 태아 아세틸콜린 수용체, 폴레이트 수용체-a, GD2, GD3, HER-2, hTERT, K-경쇄, KDR, LeY, L1 세포 부착 분자, MAGE-A1, 메소텔린, NKG2D 리간드, NY-ES0-1, 암태아 항원(h5T4), PSCA, PSMA, ROR1, TAG-72, VEGF-R2, WT-1, CD276 또는 IL13Ra2로부터 선택되는 항원과 결합되는 항원 결합 도메인을 포함할 수 있다. 바람직하게는, IL13Rα2와 결합하는 항원 결합 도메인을 포함한다.
상기 CAR의 막관통 도메인은 T-세포 수용체의 알파, 베타 또는 제타 쇄, CD28, CD3엡실론, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 또는 CD154로부터 선택되는 막관통 도메인을 포함할 수 있다.
상기 CAR의 보조 자극 도메인은 MHC 클래스 I 분자, TNF 수용체 단백질, 이뮤노글로불린-유사 단백질, 시토카인 수용체, 인테그린, 신호전달 림프구성 활성화 분자 (signaling lymphocytic activation molecule, SLAM), 활성화 NK 세포 수용체, BTLA(B an T lymphocyte attenuator), 톨-유사 리간드 수용체(Tolllike ligand receptor), OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8알파, CD8베타, IL2R 베타, IL2R 감마, IL7R 알파, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, 또는 CD83과 특이적으로 결합하는 리간드로부터 선택되는 보조 자극 도메인을 포함할 수 있다.
상기 CAR의 세포질 신호 전달 도메인은 4-1BB, CD28, OX40, CD3ζ의 기능적 신호 전달 도메인, 또는 이들의 조합으로부터 선택되는 신호 전달 도메인을 포함할 수 있다.
구체적인 양태에서, 본 발명의 발현 카세트는 IL13Rα2와 결합하는 항원 결합 도메인; 힌지 영역; 막관통 도메인; 보조 자극 도메인; 및 세포질 신호 전달 도메인을 포함하는 키메릭 항원 수용체(CAR)를 암호화(coding)하는 폴리뉴클레오티드; 및 HGF에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편을 암호화(coding)하는 폴리뉴클레오티드를 포함할 수 있다.
이때, 상기 키메릭 항원 수용체는 서열번호 9 또는 서열번호 10의 아미노산 서열로 표시될 수 있으며, 상기 HGF 항체 또는 그의 항원 결합 단편이 서열번호 23의 아미노산 서열로 표시될 수 있다. 또한, 본 발명의 발현 카세트는 서열번호 26의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함할 수 있다.
다른 양태에서, 본 발명은 발현 카세트를 포함하는 재조합 발현 벡터를 개시한다.
또 다른 양태에서, 본 발명은 상기 재조합 발현 벡터가 형질도입된 효과기 세포를 개시한다.
상기 효과기 세포는 수지상 세포, 킬러 수지상 세포, 비만세포, 자연살해 세포, B 림프구, T 림프구, 대식세포 또는 이들의 전구세포, 또는 이들의 조합일 수 있다. 또한, 상기 T 림프구는 염증성 T 림프구, 세포독성 T 림프구, 조절 T 림프구, 헬퍼 T 림프구 또는 이들의 조합일 수 있다.
또 다른 양태에서, 본 발명은 상기 효과기 세포를 포함하는 암 치료용 약제학적 조성물을 개시한다.
상기 암은 난소암, 유방암, 위암, 폐암, 간암, 담도암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 신장암, 대장암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 두경부암, 피부암, 갑상선암, 부갑상선암 또는 요관암일 수 있다.
본 발명에 따른 “발현 카세트”는 항원을 인식하는 항원 결합 도메인; 항원 결합 도메인과 막통과 도메인을 연결하는 힌지 영역(또는 스페이서); 막통과 도메인; 보조 자극 도메인; 및 세포질 신호 도메인으로 구성된 2세대 CAR 구조에 추가로 HGF와 그 수용체(MET)의 결합을 억제하는 물질을 암호화하는 폴리뉴클레오티드를 포함한다. 또한, 본 발명의 효과기 세포는 암세포를 항원으로 인식하는 수용체와 HGF와 그 수용체의 결합을 억제하는 물질을 동시에 발현하는 세포이다.
본 발명의 CAR 구조에서 항원 결합 도메인은 주신호가 전달되는 부위로 세포막 외부에 있으며 특정 항원을 발현하는 암세포를 인식하는 부분이다. 따라서, CAR 구조를 이용한 암 치료에 있어서, 구체적인 치료대상은 항원 결합 도메인에 의하여 결정되는데, 본 발명에서, 이와 같은 항원 결합 도메인에 결합하는 항원은 CD19, MUC16, MUCl, CAlX, CEA, CDS, CD7, CD10, CD20, CD22, CD30, CD33, CD34, CD38, CD41, CD44, CD49f, CD56, CD74, CD133, CD138, 사이토메갈로바이러스(CMV) 감염된 세포 항원, EGP-2, EGP-40, EpCAM, erb-B2,3,4, FBP, 태아 아세틸콜린 수용체, 폴레이트 수용체-a, GD2, GD3, HER-2, hTERT, K-경쇄, KDR, LeY, L1 세포 부착 분자, MAGE-A1, 메소텔린, NKG2D 리간드, NY-ES0-1, 암태아 항원(h5T4), PSCA, PSMA, ROR1, TAG-72, VEGF-R2, WT-1, CD276 또는 IL13Ra2가 포함될 수 있으며, 이에 제한되지 않고, 바람직하게는 IL13Rα2에 특이적으로 결합할 수 있는 키메릭 항원 수용체를 개시한다.
본 발명에 따른 CAR 구조에서 IL13Rα2와 결합하는 항원 결합 도메인의 서열은 서열번호 2와 같은데, IL13Rα2와 결합하는 항원 결합 wild type IL-13 서열의 11번, 64번, 67번 및 107번 위치가 각각 E11K.R64D.S67D.R107K로 치환된 돌연변이다. 해당 위치에서 치환되는 아미노산은 상기 특정된 아미노산과 유사한 성질의 아미노산으로 대체될 수 있다.
또한, 본 발명에 따른 CAR 구조는 CAR 단백질의 용해도를 높여 키메릭 항원 수용체의 발현을 증가시키기 위해서 항원 결합 도메인과 힌지 영역 사이에 3개의 글리신을 추가적으로 도입한 것이다. 위 3개의 글리신(G)은 이와 유사한 성질의 아미노산인 알라닌(A), 발린(V), 류신(L) 또는 이소류신(I)으로 치환될 수 있다.
본 발명에 따른 CAR 구조의 보조 자극 도메인은 보조 자극 신호가 전달되는 부위로서 항원 결합 도메인과 결합한 특정 항원을 인식한 CAR를 발현하는 효과기 세포, 예를 들면 T 세포가 면역반응을 일으키며 자가 증식을 돕고, 체내에 잔존하는 시간을 늘리도록 신호를 전달하는 역할을 한다. 본 발명에서는 서열번호 6의 보조 자극 도메인을 사용한다.
본 발명에 따른 CAR 구조의 세포질 신호 전달 도메인은 Jurkat T세포의 CD3ζ 신호전달 도메인이 아닌, 추가의 글루타민이 포함된 정상 인간(normal person)의 CD3ζ 신호전달 도메인을 사용하였고, 상기 추가의 글루타민은 서열번호 7에 있어서 50번 위치의 글루타민(Q)를 의미한다. 또한, CD3ζ는 총 3개의 면역 수용체 티로신 기반 활성화 모티프 (Immunoreceptor tyrosine-based activation motif, ITAM- YxxL/Ix6-8YxxL/I) 서열을 지니고 있는데, 3개의 YxxL/Ix6-8YxxL/I 중 2번째와 3번째의 tyrosine(Y)를 phenylalanine (F)으로 돌연변이(Mutation) 하여 사용될 수 있다 (서열번호 8). 이와 같은 돌연변이는 WO 2019/133969에 개시된 내용으로 제작되었고, 이 전문은 참고로 통합된다.
본 명세서에서 개시하는 도메인을 구성하는 폴리펩타이드의 핵산 서열은 당해 기술분야에 공지된 재조합 방법을 이용하여 수득될 수 있으며, 예를 들어 표준 기법을 이용하여 상기 유전자를 발현하는 세포로부터 라이브러리를 스크리닝하거나, 상기 동일한 유전자를 포함하도록 공지된 벡터로부터 유전자를 유도하거나, 상기 동일한 유전자를 포함하는 세포 및 조직으로부터 직접 단리함으로써 수득될 수 있다. 대안적으로는, 상기 관심이 있는 유전자는 클로닝이 아닌 합성에 의해 생성될 수 있다.
세포 내로 유전자를 도입하고 발현하는 방법은 당해 기술분야에 공지되어 있다. 발현 벡터는 당해 기술분야에 공지된 임의의 방법에 의해 숙주 세포 내로 신속하게 도입될 수 있다. 예를 들면, 본 발명에서는 최종적으로 제작된 CAR 유전자 단편을 BamH/NotI로 절단된 MFG 레트로바이러스 발현 벡터에 접합시켜 CAR-T 세포를 제조할 수 있다. 본 발명은 구조체의 성분 각각에 대한 다수의 임의의 변이체를 포함하는 것으로 이해되어야 한다.
또한, 본 발명에 따른 CAR 구조의 IL13Rα2와 결합하는 항원 결합 도메인; 힌지 영역; 막관통 도메인; 보조 자극 도메인; 및 세포질 신호 전달 도메인은 서열번호 9 또는 서열번호 10의 아미노산 서열로 표시될 수 있으며, 국제공개특허 WO2017/023138에 개시된 내용을 반영하여 제작되었으며, 이 전문은 참조로 통합된다.
본 발명의 발현 카세트에서 CAR 구조를 암호화하는 폴리뉴클레오티드에 추가된 HGF와 그 수용체의 결합을 억제하는 물질을 암호화하는 폴리뉴클레오티드는 간세포성장인자 이소폼 (truncated HGF isoforms), 수용성 MET(soluble MET) 또는 HGF 항체 또는 그의 항원 결합 단편을 암호화하며, 바람직하게는 HGF 항체 또는 그의 항원 결합 단편을 암호화한다.
상기 HGF 항체 또는 그의 항원 결합 단편은 HGF의 중화가능 에피토프에 결합하여 HGF를 중화시킬 수 있는 활성을 나타내는 것으로, HGF에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편을 포함한다. 또한, 상기 HGF에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편은 서열번호 11의 아미노산 서열로 표시되는 VH 영역 및 서열번호 12의 아미노산 서열로 표시되는 VL 영역을 갖는 것으로, 4개의 프레임워크 영역(framework region; FR)과 3개의 항원결합부위(complementarity determining region; CDR)가 존재(서열번호 15 내지 20)한다.
구체적으로, 본 발명의 HGF에 특이적으로 결합하는 항체의 중쇄는 서열번호 13, 경쇄는 서열번호 14의 아미노산 서열로 표시될 수 있으며, 대한민국 등록특허 제556660호에 개시된 내용으로 제작되었으며, 이 전문은 참조로 통합된다.
보다 구체적으로, 본 발명의 HGF에 특이적으로 결합하는 항원 결합 단편은 서열번호 23의 단일-사슬 가변 절편(single-chain variable domain fragment, ScFv)이다.
본 발명의 효과기 세포를 포함하는 약제학적 조성물에 의해 예방 또는 치료될 수 있는 암은 당업계에 공지된 다양한 암을 포함하며, 예를 들어 난소암, 유방암, 위암, 폐암, 간암, 담도암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 신장암, 대장암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 두경부암, 피부암, 갑상선암, 부갑상선암 또는 요관암을 포함하나, 이에 한정되는 것은 아니다.
구체적으로, 본 발명의 효과기 세포를 포함하는 약제학적 조성물에 의해 예방 또는 치료될 수 있는 암은 IL13Ra2를 발현하면서 HGF를 분비하는 암이고, 보다 구체적으로 IL13Ra2 발현하면서 HGF를 분비하는 난소암이다.
본 발명의 효과기 세포를 포함하는 약제학적 조성물은 암 환자에게 주입하기까지는 여러 단계를 거친다. 예를 들어, 환자의 혈액에서 백혈구성분 분리채집 과정을 거쳐 T 세포를 추출한 뒤, 발현 벡터를 이용하여 CAR로 디자인된 유전자를 T 세포에 주입하고 이 CAR-T 세포를 증식시킨 후, 이를 환자에게 주입하게 된다.
본 발명의 효과기 세포를 포함하는 약제학적 조성물의 적합한 투여량은 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 구체적인 구현예에 따르면, 본 발명에서 T 세포를 포함하는 약제학적 조성물의 1회 투여량은 1 x 107~108 cells/ kg이다.
본 발명의 효과기 세포를 포함하는 약제학적 조성물은 난소암 등 다양한 고형암의 예방 또는 치료 효과를 나타낸다. 보다 특별하게는, HGF와 그 수용체의 결합을 억제함으로써 암세포와 면역계의 상호 작용에 있어서의 치료 효과 상승을 통해 세포 치료제의 항암 효과를 증가시켜 난소암 등 다양한 고형암의 예방 또는 치료제로서 유용하게 활용될 수 있다. 특히, 1세대 화학항암제의 독성 문제와 2세대 표적항암제의 내성 문제가 적은 3세대 면역항암제인 CAR-T 세포치료제를 고형암에 활용할 수 있다는 특별한 효과가 있다.
도 1은 난소암 세포주 (A2780)에서 IL13Ra2 (human interleukin 13 receptor alpha 2) 발현률을 나타내는 유세포 분석 결과이다.
도 2는 난소암 세포주 (A2780)에서 간세포 성장인자 (Hepatocyte growth factor, HGF) ELISA 분석 결과이다.
도 3은 YYB-103 및 YYB-103-1XX의 구조를 나타낸 도면이다.
도 4는 YYB-103 CAR-T 및 YYB-103-1XX CAR-T 세포의 IL13 발현률을 확인한 유세포 분석 결과이다.
도 5는 YYB-103-1XX 구조에 YYB-101의 Single Chain Variable Fragment (scFv)이 결합된 구조이고, 도 6은 YYB-103-1XX+YYB-101 scFv 유전자 발현 카세트를 갖는 재조합 벡터를 나타낸다.
도 7은 YYB-103-1XX+YYB-101 scFv 바이러스 생산을 위한 stable cell line 제작 결과이다.
도 8은 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T세포의 세포수 배가 정도 (population doubling level) 결과이다.
도 9는 제1 공여자(YY83)에서 IL13 발현률을 확인한 유세포 분석 결과이다.
도 10은 제2 공여자(YY89)에서 IL13 발현률을 확인한 유세포 분석 결과이다.
도 11은 제3 공여자(YY94)에서 IL13 발현률을 확인한 유세포 분석 결과이다.
도 12는 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T세포의 YYB-101 scFv 분비를 확인한 결과이다.
도 13은 제1 공여자(YY83)에서 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T 세포의 세포사멸 능력 (LDH) 측정 결과이다.
도 14는 제3 공여자(YY94)에서 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T 세포의 세포사멸 능력 (LDH) 측정 결과이다.
도 15는 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T 세포의 사이토카인 (IFN-gamma) 양을 확인한 결과이다.
도 16은 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T 세포의 표적세포 사멸현상 (Crystal violet) 확인한 결과이다.
도 17은 본 발명의 CAR-T 세포치료제의 난소암 세포주 (A2780)에 대한 항암 효과를 확인한 결과이다.
도 18은 본 발명의 CAR-T 세포치료제의 난소암 세포주 (A2780)에 대한 survival 확인 결과이다.
도 19는 본 출원의 YYB-101, YYB-103, YYB-103-1XX 및 YYB-103-1XX + YYB-101 scFv의 서열에 대한 것이다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1. 난소암 세포주 (A2780)에서 IL13Ra2 (human interleukin 13 receptor alpha 2) 발현 확인
실험 방법
유세포 분석을 위해, FITC-conjugated anti-human IL13Ra2 단일클론 항체 (R&D, Cat. No., FAB614F)를 첨가하기 전 세포를 2% bovine serum albumin을 함유한 PBS에 1회 세척하였다. 세척 후 빛이 차단된 상태에서 4℃, 30 분간 각각의 항체와 반응한 후, 세포를 1회 세정하고, 난소암 세포주 (A2780)에서 IL13Ra2 발현률을 체크하였다. 대조군으로 isotype control 시료 (R&D, Cat. No., IC108F)를 포함시켰다.
실험 결과
실험방법에 따라 난소암 세포주 (A2780)을 이용하여 IL13Ra2 발현률을 확인한 결과를 표 1 및 도 1에 나타내었다. 난소암 세포주 (A2780)의 IL13Ra2의 발현률은 69.1% 이고, 대조군으로 사용한 isotype control의 경우 0.9%로 확인되었다.
난소암 세포주(A2780) IL13Ra2 발현률
Unstained 0.7%
Isotype control 0.9%
Anti-IL13Ra2 69.1%
실시예 2. 난소암 세포주 (A2780)에서 간세포 성장인자 (Hepatocyte growth factor, HGF) 분석
실험 방법
난소암 세포주 (A2780)에서 간세포 성장인자 (Hepatocyte growth factor, HGF)가 분비되는 양을 확인하기 위해서 2% Fetal bovine serum (FBS, Gibco, 10082-147)가 포함된 RPMI 배지를 이용하여 난소암 세포주 (A2780)을 32℃, 6% CO2 조건에서 2일간 배양하였다. 2일후 배양 배지를 1,500 rpm 조건으로 5분간 원심분리 한 후 상층액을 새로운 1.5 mL tube에 옮겼다. 난소암 세포주 (A2780)에서 분비되는 HGF의 양을 확인하기 위해서 human HGF Quantikine ELISA kit (R&D system, DHG00B)을 이용하였다. ELISA 분석 결과에 대한 대조군으로 난소암 세포주 (A2780)의 배양액인 RPMI을 포함시켰다.
실험 결과
ELISA 분석 결과를 도 2에 나타내었다. 대조군으로 사용한 난소암 세포주 (A2780)의 배양액인 RPMI의 경우 4 ng/mL의 농도로 HGF 양이 확인되었으며, 난소암 세포주 (A2780)의 경우 164 ng/mL 농도로 약 41배 높은 HGF 양이 확인되었다.
실시예 1 및 실시예 2의 결과를 종합하여, IL13Ra2 발현 및 HGF를 분비하는 난소암 세포주 (A2780)가 본 발명의 HGF에 특이적으로 결합하는 항체 또는 그의 항원 단편이 추가된 CAR-T 세포 치료제 시험을 위해 선정되었다.
실시예 3. YYB-103 그리고 YYB-103-1XX 유전자 발현 T세포의 제작
YYB-103 발현 T 세포의 제작
IL13Ra2에 특이적으로 결합하는 2세대 (IL13.E11K.R64D.S67D.R107K.TNFRSF9.CD3ζ) 키메릭 항원 수용체인 YYB-103은 항원 결합 도메인과 힌지 영역 사이에 추가로 3개의 글리신(G)이 도입되어 있으며, 항원 결합 도메인은 IL13Rα2와 결합하되, 서열번호 2와 같이 IL13Rα2와 결합하는 항원 결합 wild type IL-13 서열의 11번, 64번, 67번 및 107번 위치가 각각 리신(K), 아스파르트산(D), 아스파르트산(D) 및 리신(K)으로 치환되었다(서열번호 9). YYB-103 발현 T 세포는 국제공개특허 WO2017/023138에 개시된 내용으로 제작되었으며(도 3), 이 전문은 참조로 통합된다.
YYB-103-1XX 발현 T 세포의 제작
T 세포의 구성요소인 CD3ζ는 총 3개의 면역 수용체 티로신 기반 활성화 모티프 (Immunoreceptor tyrosine-based activation motif, ITAM- YxxL/Ix6-8YxxL/I) 서열을 지니고 있는데, YYB-103-1XX는 YYB-103의 3개의 YxxL/Ix6-8YxxL/I 중 2번째와 3번째를 tyrosine(Y)을 phenylalanine (F)로 돌연변이(Mutation) 하였다(서열번호 10). YYB-103-1XX는 국제공개특허 WO 2019/133969에 개시된 내용으로 제작되었고(도 3), YYB-103-1XX 발현 T 세포는 국제공개특허 WO2017/023138에 개시된 내용으로 제작되었으며, 이 전문들은 참고로 통합된다.
실험방법
T 세포 배양 배지에 배양 중인 YYB-103 CAR-T 및 YYB-103-1XX CAR-T (공여자 번호, YY93) 1 x 106 세포를 원심분리 하였다. 그 후 상층액을 제거하고, 2% bovine serum albumin을 함유한 PBS을 이용하여 YYB-103 CAR-T 및 YYB-103-1XX CAR-T 세포를 2회 세척하였다. 세척이 완료된 후 형질 도입된 T 세포의 발현은 IL13을 통해서 YYB-103 CAR-T 및 YYB-103-1XX CAR-T의 surface IL13 발현을 유세포 분석을 통해 체크하였으며, 그 결과는 표 2 및 도 4에 나타내었다. 유세포 분석 결과에 대한 대조군으로 YYB-103 CAR 또는 YYB-103-1XX CAR 바이러스에 형질도입 되지 않은 (Untransduced T 세포) 시료를 포함시켰다.
공여자 번호 (YY93) CAR-T 발현 (%, IL13)
Untransduced T 세포 0.3
YYB-103 CAR-T 60.6
YYB-103-1XX CAR-T 54.9
실험 결과
YYB-103 CAR-T 또는 YYB-103-1XX CAR-T 세포 (공여자 번호, YY93)의 발현을 확인하기 위해서 유세포 분석을 진행한 결과, YYB-103 CAR 또는 YYB-103-1XX CAR가 형질도입 되지 않은 untransduced T 세포의 IL13 발현은 DAY 11에서 0.3% 이하로 IL13이 발현하지 않았는데 반해, YYB-103 CAR-T 또는 YYB-103-1XX CAR-T 세포의 IL13의 발현률은 DAY 11에서 YYB-103 CAR-T는 60.6%, YYB-103-1XX CAR-T는 54.9%을 보였다.
실시예 4. HGF(hepatocyte growth factor; 간세포성장인자) 중화가능 에피토프에 결합하는 중화 항체(YYB-101)의 제작
HGF와 그 수용체간의 결합을 방해하는 HGF 중화 항체인 YYB-101(서열번호 13 및 서열번호 14)은 대한민국 등록특허 제556660호에 개시된 내용으로 제작되었으며, 이 전문은 참조로 통합된다.
실시예 5. 2세대 키메릭 항원 수용체 및 HGF에 특이적으로 결합하는 항체 및 항원 결합 단편 발현 카세트를 갖는 재조합 벡터의 구축
실시예 3에서 제작된 YYB-103-1XX 구조에 서열번호 23의 YYB-101의 Single Chain Variable Fragment (scFv)을 삽입하여 YYB-103-1XX+YYB-101 scFv 키메릭 항원 수용체(서열번호 26)를 제작하였다(도 5 및 도 6).
Retroviral vector PG13-IL13-BBZ의 유전체는 Moloney murine leukemia virus 5' long terminal repeat (MMLV 5' LTR), splice donor와 splice acceptor 부위를 포함하는 포장 시그날 (packaging signal), YYB-103-1XX+YYB-101 scFv를 암호화하는 폴리뉴클레오티드와 Moloney murine leukemia virus 3' long terminal repeat (MMLV 3' LTR) 부위로 구성되어 있으며 CAR로 디자인된 유전자 도입을 통해 자가 유래 T 세포에 전달되어 YYB-103-1XX+YYB-101 scFv가 단백질로 발현하게 된다.
실시예 6. 2세대 키메릭 항원 수용체 및 HGF에 특이적으로 결합하는 항체 및 항원 결합 단편 유전자 발현 카세트를 갖는 재조합 발현 벡터로 형질 변형된 T 세포 제조
Phoenix-Ampho와 Phoenix-Eco로의 YYB-103-1XX+YYB-101 scFv 유전자 도입
Phoenix-Ampho (Cat No. CRL-3213, ATCC)와 Phoenix-Eco (Cat No. CRL-3214, ATCC) 세포(각각 5 x 105 세포)를 10% FBS가 포함된 DMEM (Gibco, 10569-101) 배지 2mL (최종 세포수, 1 x 106/2mL DMEM 배지)에 넣고 6 웰 플레이트 (SPL, Cat, No. 30006)에서 32℃, 6% CO2 조건으로 24 시간 동안 배양하였다. 24 시간 배양 후 DMEM 배양배지를 제거하고, PBS (Gibco, 10010-023)을 이용하여 Phoenix-Ampho와 Phoenix-Eco 세포가 배양 중인 6 웰 플레이트를 2회 세척하였다. Opti-MEM™ Reduced Serum Medium (Gibco, 31985-070)에 lipofectamine® 2000 Transfection Reagent (Invitrogen, 11668-019)을 넣고 5 분간 실온에서 반응시켰다. 5분 경과 후 YYB-103-1XX+YYB-101 scFv DNA를 포함한 Opti-MEM을 lipofectamine이 포함된 Opti-MEM과 Mix 후 20 분 동안 실온에서 반응시켰다. 20분 경과 후 Phoenix-Ampho와 Phoenix-Eco 세포에 YYB-103-1XX+YYB-101 scFv DNA 처리 후 반응시켰다. 반응 6시간 후 새로운 DMEM 배지로 교체하고, 32℃, 6% CO2 조건에서 2일간 배양하였다. 2일 후 배양 배지를 수집하여 syringe filter (PALL, 4614)을 이용하여 배양배지를 여과하였다. 여과 된 바이러스를 이용하여 PG-13 세포에 YYB-103-1XX+YYB-101 scFv 유전자를 도입할 준비를 하였다.
PG-13을 이용한 YYB-103-1XX+YYB-101 scFv 바이러스 도입
코팅되지 않은 6웰 플레이트 (Thermo, Cat No. 150239)에 20 μg/mL 농도로 준비된 레트로넥틴 (Retronectin, TaKaRa, Japan)이 포함된 PBS을 웰당 2 mL 첨가한 후 상온에서 암흑조건으로 2시간 반응하여 6웰 플레이트를 레트로넥틴으로 코팅하였다. 2시간 경과 후 PBS 2mL를 이용하여 웰을 2회 세척 후 Phoenix-Ampho와 Phoenix-Eco로부터 생산한 레트로바이러스 (YYB-103-1XX+YYB-101 scFv 유전자) 4 mL을 레트로넥틴이 코팅된 6웰 플레이트에 넣어주었다. PG-13 (empty) 세포를 0.5 X 105 cells/mL로 YYB-103-1XX+YYB-101 scFv 바이러스가 포함된 6웰 플레이트에 추가한 후 2,500rpm, 32℃ 조건으로 2시간 동안 원심 분리를 진행하였다. 원심 분리 후 6웰 플레이트를 세포 배양기에서 32℃, 6% CO2 조건에서 48 시간 배양하였다.
YYB-103-1XX+YYB-101 scFv 유전자가 도입된 PG-13 (PG-13/YYB-103-1XX+YYB-101 scFv) 세포 중 유세포분석기에 의하여 높은 역가의 클론을 분리하였다. 높은 역가의 PG-13/YYB-103-1XX+YYB-101 scFv은 높은 IL13발현 (99% 이상)을 안정적으로 보여주었으며, 말초혈액 단핵세포 (peripheral blood mononuclear cells, PBMC)에 효율적인 형질 도입 능력을 위하여 선택되었다. PG-13/YYB-103-1XX+YYB-101 scFv 세포의 상층액은 T 세포의 유전적 변형을 위해 syringe filter (PALL, 4614)을 이용하여 필터한 후 말초혈액에 도입할 준비를 하였다.
YYB-103-1XX+YYB-101 scFv 발현 CAR-T 세포 제조
말초 혈액 단핵 세포는 건강한 공여자로부터 얻은 전혈 (whole blood)을 Ficoll-Paque premium (GE healthcare, 17-5442-03)를 이용하여 단핵구층 (buffy coat)의 단핵 세포만을 획득하였다. 분리된 PBMC를 1 x 106 세포에 Human IL2 (NOVARTIS) 500 IU/mL 조건으로 있는 상태에서 항-CD3 단일클론 항체 (OKT3, eBioscience, Cat No. 16-0037-81) 100 ng/mL와 항-CD28 단일클론 항체 (eBioscience, Cat No. 16-0289-85) 100 ng/mL을 첨가하여, OpTmizerTM CTSTM T-Cell Expansion Supplement (Gibco, A10484-02), CTSTM Immune Cell SR (Gibco, A25961-01) 및 GlutaMAXTM-I CTSTM (100X) (Gibco, A12860-01)가 함유된 CTSTM T-Cell Expansion Basal Medium (Gibco, A10221-01) (이하, T 세포 배양 배지)에 배양함으로써 T 세포 분획을 활성화시켰다. 활성화 단계 3일 후, T 세포에 여과된 PG-13/YYB-103-1XX+YYB-101 scFv 상층액을 사용하여 1회 형질도입 진행하였다.
코팅 되지 않은 6웰 플레이트에 20 μg/mL 농도로 준비된 레트로넥틴이 포함된 PBS을 웰당 2 mL 첨가한 후 상온에서 암흑조건으로 2시간 반응하여 6웰 플레이트에 레트로넥틴을 코팅하였다. 반응 후 잔여 레트로넥틴을 PBS을 이용하여 제거한 후 PG-13/YYB-103-1XX+YYB-101 scFv 레트로바이러스를 4 mL 넣고 2500 rpm, 32℃ 조건으로 2시간 동안 원심분리 하였다. 원심분리 후 PBS을 이용하여 잔여 레트로바이러스를 제거하였다. 활성화된 T 세포를 웰당 2 Х 106 세포로 T 세포 배양 배지에 첨가 후 1,000 xg로 10분간 원심분리하여 T 세포에 YYB-103-1XX+YYB-101 scFv 레트로바이러스를 전달하였다. 활성화된 T 세포에 YYB-103-1XX+YYB-101 scFv 레트로바이러스 전달은 1회 진행하였다. YYB-103-1XX+YYB-101 scFv 세포는 75 T 플라스크에서 12일 동안 세포를 IL-2를 500IU/mL이 포함된 T 세포 배양배지를 이용하여 증식하였다. 이러한 방식으로 증식된 YYB-103-1XX+YYB-101 scFv을 발현하는 T 세포는 다양한 분석 실험에 사용하였다.
실시예 7. YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 발현 CAR-T 세포의 세포수 배가 정도 (population doubling level) 확인
실험 방법
YYB-103-1XX 또는 YYB-103-1XX+YYB-101 scFv 발현 CAR-T 세포의 세포수 배가 정도 (population doubling level, PDL)을 확인하기 위해서 2일 마다 세포수를 측정 하였으며, 5 x 105/mL 세포수 기준으로 YYB-103-1XX 또는 YYB-103-1XX+YYB-101 scFv 발현 CAR-T 세포 배양을 진행하였다.
실험 결과
그 결과는 표 3 및 도 8에 나타내었다. 구체적으로, YYB-103-1XX 발현 CAR-T 세포의 세포수 배가 정도는 DAY 6일부터 DAY 12일까지 DAY 6 2.1. DAY 8 3.6, DAY 10 4.79 그리고 Day 12 5.54 이었다. YYB-103-1XX+YYB-101 scFv 발현 CAR-T 세포의 세포수 배가 정도는 DAY 6일부터 DAY 12일까지 DAY 6 1.6. DAY 8 3.8, DAY 10 5.25 그리고 Day 12 5.72 이었다. 이는 YYB-101 scFv 구조를 추가함에 의해서 CAR-T 세포의 성장에는 영향이 없음을 의미한다.
PDL
공여자 번호(YY94)
DAY 0 DAY 6 DAY 8 DAY 10 Day 12
YYB-103-1XX CAR-T 0 2.1 3.6 4.79 5.54
YYB-103-1XX+YYB-101 scFv CAR-T 0 1.6 3.8 5.25 5.72
실시예 8. YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 CAR-T 세포의 IL13 발현률 체크
실험 방법
T 세포 배양 배지에 배양 중 (배양일, 10일 그리고 12일)인 YYB-103-1XX 발현 T 및 YYB-103-1XX+YYB-101 scFv 발현 T 세포(1 x 106)를 원심분리 하였다. 원심분리 후 상층액을 제거하고, 2% bovine serum albumin을 함유한 PBS을 이용하여 YYB-103-1XX 발현 T 및 YYB-103-1XX+YYB-101 scFv 발현 T 세포를 2회 세척하였다. 세척이 완료된 후 형질 도입된 T 세포의 발현은 YYB-103-1XX 발현 T 그리고 YYB-103-1XX+YYB-101 scFv 발현 T의 surface IL13 발현을 유세포 분석을 통해 체크하였다. 유세포 분석 결과에 대한 대조군으로 CAR 바이러스에 형질도입 되지 않은 (Untransduced T 세포) 시료를 포함시켰다.
실험 결과
YYB-103-1XX 발현 T 및 YYB-103-1XX+YYB-101 scFv 발현 T 세포에서 발현을 확인하기 위해서 실험방법에 따라 유세포 분석을 진행하였다.
제1 공여자(YY83)에서 CAR 바이러스에 형질도입 되지 않은 untransduced T 세포의 IL13 발현은 DAY 10 및 12일에 0.2% 이하인데 반해, YYB-103-1XX CAR 유전자가 전달된 T 세포의 경우 DAY 10에서 62.3% 및 DAY 12에서 58.6%의 발현률을 나타내었으며, YYB-103-1XX+YYB-101 scFv 유전자가 전달된 T 세포의 경우 DAY 10에서 52.5% 및 DAY 12에서 54.7%의 발현률을 나타내었다 (표 4 및 도 9).
CAR-T 발현(%, IL13) DAY 10 DAY 12
untransduced T 세포 0.2% 0.2%
YYB-103-1XX CAR-T 62.3% 58.6%
YYB-103-1XX+YYB-101 scFv CAR-T 52.5% 54.7%
또한, 제2 공여자(YY89)에서 CAR 바이러스에 형질도입 되지 않은 untransduced T 세포의 IL13 발현은 DAY 10 및 12일에 0.2% 이하인데 반해, YYB-103-1XX CAR 유전자가 전달된 T 세포의 경우 DAY 10에서 30.5% 및 DAY 12에서 26.4%의 발현률을 나타내었으며, YYB-103-1XX+YYB-101 scFv CAR 유전자가 전달된 T 세포의 경우 DAY 10에서 46.4% 및 DAY 12에서 46.7%의 발현률을 나타내었다 (표 5 및 도 10).
CAR-T 발현(%, IL13) DAY 10 DAY 12
untransduced T 세포 0.1% 0.2%
YYB-103-1XX CAR-T 30.5% 26.4%
YYB-103-1XX+YYB-101 scFv CAR-T 46.4% 46.7%
또한, 제3 공여자(YY94)에서 CAR 바이러스에 형질도입 되지 않은 untransduced T 세포의 IL13 발현은 DAY 10 및 12일에 0.2% 이하인데 반해, YYB-103-1XX CAR 유전자가 전달된 T 세포의 경우 DAY 10에서 63.9% 및 DAY 12에서 54.4%의 발현률을 나타내었으며, YYB-103-1XX+YYB-101 scFv CAR 유전자가 전달된 T 세포의 경우 DAY 10에서 66.6% 및 DAY 12에서 66.8%의 발현률을 나타내었다 (표 6 및 도 11).
CAR-T 발현(%, IL13) DAY 10 DAY 12
untransduced T 세포 0.2% 0.2%
YYB-103-1XX CAR-T 63.9% 54.4%
YYB-103-1XX+YYB-101 scFv CAR-T 66.6% 66.8%
실시예 9. YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv 유전자 발현 T 세포의 YYB-101 scFv 분비 확인
실험 방법
2 x 106 세포의 YYB-103-1XX CAR-T 및 YYB-103-1XX+YYB-101 scFv CAR-T를 10% FBS가 포함된 RPMI 배지를 이용하여 32℃, 6% CO2 조건에서 24시간 배양하였다. 24시간 경과 후 T 세포 배양배지를 1,500 rpm 조건으로 5분간 원심분리 하였다. 그 후 상층액을 4℃에 보관하였다.
HGF 단백질을 코팅 되지 않은 96웰 플레이트에 넣고 4℃ 조건으로 24시간 코팅 하였다. 24시간 경과 후 PBS을 이용하여 96웰 플레이트를 세척하였다. 세척 완료 후 4℃에 보관하였던, 상층액을 96웰 플레이트에 코팅된 HGF 단백질과 반응시켰다. 반응이 완료된 후 DuoSet ELISA Ancillary Reagent Kit2 (R&D systems, DY008)을 시험방법에 따라 진행하였다. 마지막으로 microtiter plate reader를 이용해 450 nm에서 흡광도를 측정하였다. ELISA 시험을 위한 positive control로 YYB-101 (1ug/mL) 시료를 포함시켰으며, 대조군으로 CAR 바이러스에 형질도입 되지 않은 (Untransduced T 세포) 시료를 포함시켰다.
실험 결과
그 결과는 표 7 및 도 12에 나타내었다. 구체적으로, 배양 배지인 RPMI 및 untransduced T 세포의 경우 흡광도가 확인되지 않았으며, YYB-101 scFv을 분비하지 않는 YYB-103-1XX CAR-T의 경우도 흡광도 (0.07)가 확인되지 않았다. HGF에 특이적으로 결합하는 YYB-101 scFv을 포함하는 YYB-103-1XX+YYB-101 scFv CAR-T의 경우 HGF 단백질과 결합을 확인할 수 있는 흡광도 2.63이 확인되었다. ELISA 시험을 위해 positive control인 YYB-101의 경우도 HGF 단백질과 결합을 확인할 수 있는 흡광도 3.02 나타내었다. 이는 YYB-103-1XX+YYB-101 scFv CAR-T의 경우 HGF을 인식하는 YYB-101 scFv을 분비하는 것을 의미한다.
HGF 결합 (OD, 450nm)
Diluent Buffer 0.07
RPMI (배양배지) 0.07
Untransduced T 세포 0.06
YYB-103-1XX CAR-T 0.07
YYB-103-1XX+YYB-101 scFv CAR-T 2.63
YYB-101(1㎍/mL) 3.02
실험예 1. IL13Rα2 발현 및 HGF 분비하는 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv CAR 유전자 발현 T 세포의 세포사멸 능력 (LDH) 측정
실험방법
IL13Rα2 발현 및 HGF을 분비하는 난소암 세포주 (A2780)에 대한 YYB-103-1XX CAR-T 및 YYB-103-1XX+YYB-101 scFv CAR-T 세포의 세포 용해 활성을 측정하기 위해 CytoTox96 Non-radio cytotoxicity assay LDH (Promega Cat. No., G1781) 키트를 사용하여 세포사멸 분석 (Cytotoxicity assay)을 진행하였다. 구체적으로는 YYB-103-1XX CAR-T 및 YYB-103-1XX+YYB-101 scFv CAR-T 세포 (Effector 세포, 공여자 번호 YY83 및 YY94)는 12일 배양 후에 사용하였으며 96 웰 플레이트에 (effector:target, E:T ratio)의 비율 (2.5:1, 1.25:1 그리고 0.625:1)로 세포를 넣고 37℃에서 18시간 동안 반응시켰다.
실험결과
제1 공여자(YY83)의 경우, YYB-103-1XX+YYB-101 scFv CAR-T 세포는 E:T ratio (0.625:1, 1.25:1 및 2.5:1)에 따라 난소암 세포주 A2780에 대해 27.7 %, 42 % 및 51.5 %의 세포사멸 능력을 보였는데 반해, YYB-101 scFv을 포함하지 않은 YYB-103-1XX CAR-T 세포는 E:T ratio (0.625:1, 1.25:1 및 2.5:1)에 따라 23.5 %, 30.1 % 그리고 41.8 %의 세포사멸 능력을 보였다. 대조군으로 CAR 바이러스에 형질도입 되지 않은 Untransduced T 세포는 E:T ratio (0.625:1, 1.25:1 및 2.5:1)에 따라 9.8 %, 9.5 % 및 12.4 %의 LDH 값을 나타내었다 (표 8 및 도 13). 이 결과로부터 YYB-101 scFv을 분비하는 YYB-103-1XX+YYB-101 scFv CAR-T가 YYB-101 scFv을 분비하지 않는 YYB-103-1XX CAR-T 보다 난소암 세포주 A2780에 대한 세포사멸능력이 높음을 확인할 수 있었다.
Specific lysis(%),E:T ratio 0.625:1 1.25:1 2.5:1
Untransduced T 세포 9.8% 9.5% 12.4%
YYB-103-1XX CAR-T 23.5% 30.1% 41.8%
YYB-103-1XX+YYB-101 scFv CAR-T 27.7% 42% 51.5%
제3 공여자(YY94)의 경우, YYB-103-1XX+YYB-101 scFv CAR-T 세포는 E:T ratio (0.625:1, 1.25:1 및 2.5:1)에 따라서 난소암 세포주 A2780에 대해 18.4 %, 28.9 % 및 51.4 %의 세포사멸 능력을 보였는데 반해, YYB-101 scFv을 포함하지 않은 YYB-103-1XX CAR-T의 경우 E:T ratio (0.625:1, 1.25:1 및 2.5:1)에 따라 17.2 %, 28.4 % 및 43.3 %의 세포사멸 능력을 보였다. 대조군으로 CAR 바이러스에 형질도입 되지 않은 Untransduced T 세포는 E:T ratio (0.625:1, 1.25:1 및 2.5:1)에 따라 2.8 %, 5.2 % 및 8 %의 LDH 값을 나타냈다 (표 9 및 도 14). 이 결과로부터 YYB-101 scFv을 분비하는 YYB-103-1XX+YYB-101 scFv CAR-T가 YYB-101 scFv을 분비하지 않는 YYB-103-1XX CAR-T 보다 난소암 세포주 A2780에 대한 세포사멸 능력이 높음을 확인할 수 있었다.
Specific lysis(%),E:T ratio 0.625:1 1.25:1 2.5:1
Untransduced T 세포 2.8% 5.2% 8%
YYB-103-1XX CAR-T 17.2% 28.4% 43.3%
YYB-103-1XX+YYB-101 scFv CAR-T 18.4% 28.9% 51.4%
실험예 2. IL13Rα2 발현 및 HGF 분비하는 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv CAR 유전자 발현 T 세포의 사이토카인 (IFN-gamma) 생성 체크
실험 방법
96웰 플레이트에 난소암 세포주 (A2780)를 4 x 105 넣고, YYB-103-1XX 또는 YYB-103-1XX+YYB-101 scFv CAR-T 세포를 1 x 105 넣고 37℃CO2 incubator에서 18 시간 배양하였다. 대조군으로 CAR 바이러스에 형질도입 되지 않은 Untransduced T 세포 시료를 포함시켰다.
난소암 세포주 (A2780)에 대한 YYB-103-1XX 또는 YYB-103-1XX+YYB-101 scFv CAR-T 세포의 IFN-gamma의 양을 분석하기 위해서 human IFN-gamma immunoassay kit (R&D)을 이용하여 진행하였다.
실험 결과
그 결과는 도 15에 나타내었다. 구체적으로, 난소암 세포주 (A2780)과의 공배양에 따른 IFN-gamma의 양은 YYB-103-1XX CAR-T의 경우 CAR 바이러스에 형질 도입되지 않은 시료에 비해서 높은 IFN-gamma을 분비하였으며, YYB-103-1XX+YYB-101 scFv CAR-T의 경우 YYB-103-1XX CAR-T 세포와 비슷하거나 또는 약 1.2 배 높은 IFN-gamma을 분비하였다.
실험예 3. IL13Rα2 발현 및 HGF 분비하는 난소암 세포주 (A2780)에 대한 YYB-103-1XX 및 YYB-103-1XX+YYB-101 scFv CAR 유전자 발현 T 세포의 표적세포 사멸현상 (Crystal violet) 확인
실험방법
표적 세포에 대한 YYB-103-1XX+YYB-101 scFv CAR-T 세포의 항암 활성능을 다른 방법을 통해 확인하기 위해서 표적세포와 공배양 후 살아 있는 표적세포에만 염색되는 crystal violet 용액 (Sigma, Cat No. V5265)을 처리하여 YYB-103-1XX+YYB-101 scFv CAR-T 세포의 표적세포 사멸현상을 확인하였다.
난소암 세포주 (A2780, 1 x 105 세포)와 YYB-103-1XX CAR-T 또는 YYB-103-1XX+YYB-101 scFv CAR-T 세포 2 x 105를 12웰 플레이트에 48시간 공배양을 진행하였다. 48시간 공배양 후 PBS을 이용하여 죽은 세포를 완벽하게 제거하고 0.1 % crystal violet 용액을 이용하여 살아 있는 난소암 세포주 (A2780)를 염색하였다. 살아 있는 난소암 세포주 (A2780)의 crystal violet 염색이 완료된 후, PBS을 이용하여 1회 세척한 후 YYB-103-1XX CAR-T 또는 YYB-103-1XX+YYB-101 scFv CAR-T 세포의 난소암 세포주 (A2780)에 대한 사멸현상을 확인하였다. 대조군으로 CAR 바이러스에 형질도입 되지 않은 (Untransduced T 세포) 시료를 포함시켰다.
실험결과
제3 공여자(YY94)의 T 세포를 이용한 실험에서, YYB-103-1XX CAR-T 또는 YYB-103-1XX+YYB-101 scFv CAR-T와 공배양의 경우 untransduced T 세포에 비해 crystal violet 용액에 대한 염색이 적게 되었다. 대조군으로 CAR 바이러스에 형질도입 되지 않은 untransduced T 세포 시료의 경우 난소암 세포주 (A2780) 세포의 crystal violet 용액에 대한 염색은 난소암 세포주 (A2780) 세포에 대한 염색이 유지되는 것을 확인할 수 있었다(도 16).
제4 공여자(YY91)의 T 세포를 이용한 실험에서도, YYB-103-1XX CAR-T 또는 YYB-103-1XX+YYB-101 scFv CAR-T와 공배양의 경우 untransduced T 세포에 비해 crystal violet 용액에 대한 염색이 적게 되었다(도 16).
이러한 결과는 YYB-103-1XX CAR-T 또는 YYB-103-1XX+YYB-101 scFv CAR-T 세포의 표적세포주의 사멸현상을 의미한다.
실험예 4. 표적세포 항암 활성 확인
난소암 세포주 (A2780) 준비
IL13Rα2 발현 및 HGF 분비하는 난소암 세포주 (A2780)를 10% FBS와 1% antibiotics가 포함된 DMEM 배지를 사용하여 CO2 incubator (Thermo, 371) 내에서 32℃6% CO2 조건에서 배양하였다.
난소암 세포주 (A2780) 종양이식 및 군구성
NSGA 마우스에 1x105 A2780 세포 8 ul와 matrigel 2 ul를 이용하여 NSGA 마우스의 난소에 직접 이식하여 생착을 유도하였다. 생착 3일 후, 시험동물의 체중 측정 및 in vivo luciferase 이미징을 이용하여 종양의 크기가 고르게 분배되었음을 확인하였다. 시험군은 1개의 대조군 (Vehicle)과 4개의 시험물질의 투여군 (Untransduced T 세포, YYB-103-1XX CAR-T, YYB-103-1XX CAR-T와 YYB-101 병용 및 YYB-103-1XX+YYB-101 scFv CAR-T)으로 구성하였으며, 각 군당 5마리씩 분배하였다.
시험물질 조제
CAR-T 세포치료제에 대하여 PBS을 이용하여 2회 세척 후 각각의 untransduced T 세포 및 CAR-T을 PBS로 희석한 후 준비하였다.
실험 방법
종양이식 후 3일에 CAR 바이러스에 형질도입 되지 않은 T 세포 (Untransduced T 세포), YYB-103-1XX CAR-T 및 YYB-103-1XX+YYB-101 scFv CAR-T 세포를 1.5 x 107 세포 농도로 정맥으로 단회 투여하였다. 또한, YYB-103-1XX CAR-T와 YYB-101 병용군의 경우 YYB-101은 YYB-103-1XX CAR-T와 동시에 투여(1차)를 시작하여 추가(2차)로 1회 더 투여하여 총 주 2회 (20 mpk) 정맥으로 반복 투여하였다.
실험 결과
그 결과는 도 17 및 18에 나타내었다. 구체적으로, 난소암 세포주 (A2780)에 대하여 Vehicle 군과 untransduced T 세포를 처리한 군의 경우 24일에 모든 개체가 사망한 반면, YYB-103-1XX CAR-T을 투여한 군에서는 투여 24일까지 5개체 모두 생존하였으며, 일주일 단위로 1개체 또는 2개체가 사망하여 투여 45일까지 5개체 중 1개체가 생존하였다.
YYB-103-1XX CAR-T와 YYB-101 병용 투여군의 경우 투여 17일까지 5개체가 모두 생존하였고, 투여 24일까지 1개체 사망, 31일까지 1개체가 더 사망하여 31일까지 2개체가 사망하였지만, 45일까지 추가 사망 개체가 발생하지 않아 5개체 중에서 3개체가 생존하였다. 또한, YYB-103-1XX CAR-T 세포와 YYB-101 병용군에서 YYB-103-1XX CAR-T 투여군의 종양 크기에 비해서 감소된 결과를 보여주었다. 이러한 결과로부터 난소암 세포주 (A2780)에 대해서 YYB-103-1XX CAR-T 단독 투여군보다 YYB-101을 병용한 투여군에서 종양 크기가 감소되었고 생존률이 개선되었다는 것을 확인할 수 있었다.
또한, YYB-103-1XX+YYB-101 scFv CAR-T 투여군의 경우 투여 24일까지 모든 개체가 생존하였으며, 31일 까지 1개체가 사망하였지만, 45일까지 추가 사망 개체가 발생하지 않아 5개체 중에서 4개체가 생존하였다. 특히, YYB-103-1XX+YYB-101 scFv CAR-T 투여군의 경우 YYB-103-1XX CAR-T와 YYB-101 병용 투여군에 비해 종양 크기가 더 감소하였으며, 생존률이 더 우수하였음을 확인할 수 있었다. 이는 YYB-103-1XX CAR-T와 YYB-101 병용 투여의 경우 YYB-101가 전신에 고르게 퍼지기 때문에 종양 조직에서의 HGF에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편의 농도가 낮게 유지될 수 밖에 없으나, YYB-103-1XX+YYB-101 scFv CAR-T의 경우 항원을 인식하는 키메릭 항원 수용체에 조합됨으로써 종양 조직에서 HGF에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편의 농도가 높게 유지될 수 있기 때문으로 추정된다.
본 발명에 따른 효과기 세포는 난소암 등 고형암에 대한 항암 효과를 나타내므로, 항암제와 같은 의약품으로 이용 가능하다.

Claims (21)

  1. 항원 결합 도메인; 힌지 영역; 막관통 도메인; 보조 자극 도메인; 및 세포질 신호 전달 도메인을 포함하는 키메릭 항원 수용체(CAR)를 암호화(coding)하는 폴리뉴클레오티드; 및
    간세포성장인자 (Hepatocyte growth factor, HGF)와 그 수용체(MET)의 결합을 억제하는 물질을 암호화(coding)하는 폴리뉴클레오티드를 포함하는 발현 카세트.
  2. 제 1항에 있어서, 상기 HGF와 MET 결합 억제 물질을 암호화하는 폴리뉴클레오티드가 상기 세포질 신호 전달 도메인을 암호화하는 폴리뉴클레오티드에 연결되는 것인 발현 카세트.
  3. 제 2항에 있어서, 상기 HGF와 MET 결합 억제 물질을 암호화하는 폴리뉴클레오티드와 상기 세포질 신호 전달 도메인을 암호화하는 폴리뉴클레오티드 사이에 자기 절단 펩타이드를 암호화하는 폴리뉴클레오티드가 존재하는 것인 발현 카세트.
  4. 제 1항에 있어서, 상기 결합 억제 물질이 간세포성장인자 이소폼 (truncated HGF isoforms)인 발현 카세트.
  5. 제 1항에 있어서, 상기 결합 억제 물질이 간세포성장인자 이소폼 (truncated HGF isoforms)인 발현 카세트.
  6. 제 1항에 있어서, 상기 결합 억제 물질이 간세포성장인자 (Hepatocyte growth factor, HGF)에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편인 발현 카세트.
  7. 제 1항에 있어서, 상기 CAR의 항원 결합 도메인이 CD19, MUC16, MUCl, CAlX, CEA, CDS, CD7, CD10, CD20, CD22, CD30, CD33, CD34, CD38, CD41, CD44, CD49f, CD56, CD74, CD133, CD138, 사이토메갈로바이러스(CMV) 감염된 세포 항원, EGP-2, EGP-40, EpCAM, erb-B2,3,4, FBP, 태아 아세틸콜린 수용체, 폴레이트 수용체-a, GD2, GD3, HER-2, hTERT, K-경쇄, KDR, LeY, L1 세포 부착 분자, MAGE-A1, 메소텔린, NKG2D 리간드, NY-ES0-1, 암태아 항원(h5T4), PSCA, PSMA, ROR1, TAG-72, VEGF-R2, WT-1, CD276 또는 IL13Ra2로부터 선택되는 항원과 결합하는 항원 결합 도메인을 포함하는 발현 카세트.
  8. 제 1항에 있어서, 상기 CAR의 막관통 도메인이 T-세포 수용체의 알파, 베타 또는 제타 쇄, CD28, CD3엡실론, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 또는 CD154로부터 선택되는 막관통 도메인을 포함하는 발현 카세트.
  9. 제 1항에 있어서, 상기 CAR의 보조 자극 도메인이 MHC 클래스 I 분자, TNF 수용체 단백질, 이뮤노글로불린-유사 단백질, 시토카인 수용체, 인테그린, 신호전달 림프구성 활성화 분자 (signaling lymphocytic activation molecule, SLAM), 활성화 NK 세포 수용체, BTLA(B an T lymphocyte attenuator), 톨-유사 리간드 수용체(Tolllike ligand receptor), OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8알파, CD8베타, IL2R 베타, IL2R 감마, IL7R 알파, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, 또는 CD83과 특이적으로 결합하는 리간드로부터 선택되는 보조 자극 도메인을 포함하는 발현 카세트.
  10. 제 1항에 있어서, 상기 CAR의 세포질 신호 전달 도메인이 4-1BB, CD28, OX40, CD3ζ의 기능적 신호 전달 도메인, 또는 이들의 조합으로부터 선택되는 세포질 신호 전달 도메인을 포함하는 발현 카세트.
  11. 제 7항에 있어서, 상기 CAR의 항원 결합 도메인이 IL13Rα2와 결합하는 항원 결합 도메인을 포함하는 발현 카세트.
  12. 제 1항에 있어서, IL13Rα2와 결합하는 항원 결합 도메인; 힌지 영역; 막관통 도메인; 보조 자극 도메인; 및 세포질 신호 전달 도메인을 포함하는 키메릭 항원 수용체(CAR)를 암호화(coding)하는 폴리뉴클레오티드; 및
    HGF에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편을 암호화(coding)하는 폴리뉴클레오티드를 포함하는 발현 카세트.
  13. 제 12항에 있어서, 상기 키메릭 항원 수용체가 서열번호 9 또는 서열번호 10의 아미노산 서열로 표시되는 발현 카세트.
  14. 제 12항에 있어서, 상기 HGF 항체 또는 그의 항원 결합 단편이 서열번호 23의 아미노산 서열로 표시되는 발현 카세트.
  15. 제 1항 내지 제 14항 중 어느 한 항의 발현 카세트가 서열번호 26의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함하는 발현 카세트.
  16. 제 15항의 발현 카세트를 포함하는 재조합 발현 벡터.
  17. 제 16항의 재조합 발현 벡터가 형질 도입된 효과기 세포.
  18. 제 17항에 있어서, 상기 효과기 세포가 수지상 세포, 킬러 수지상 세포, 비만세포, 자연살해 세포, B 림프구, T 림프구, 대식세포 또는 이들의 전구세포, 또는 이들의 조합인 효과기 세포.
  19. 제 18항에 있어서, 상기 T 림프구가 염증성 T 림프구, 세포독성 T 림프구, 조절 T 림프구, 헬퍼 T 림프구 또는 이들의 조합인 효과기 세포.
  20. 제 17항 내지 제 19항 중 어느 한 항의 효과기 세포를 포함하는 암 치료용 약제학적 조성물.
  21. 제 20항에 있어서, 상기 암이 난소암, 유방암, 위암, 폐암, 간암, 담도암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 신장암, 대장암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 두경부암, 피부암, 갑상선암, 부갑상선암 또는 요관암인 약제학적 조성물.
PCT/KR2023/004997 2022-04-14 2023-04-13 키메릭 항원 수용체 및 hgf 결합 억제 물질의 조합 요법 WO2023200267A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220046477A KR20230148435A (ko) 2022-04-14 2022-04-14 키메릭 항원 수용체 및 hgf 결합 억제 물질의 조합 요법
KR10-2022-0046477 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023200267A1 true WO2023200267A1 (ko) 2023-10-19

Family

ID=88330021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004997 WO2023200267A1 (ko) 2022-04-14 2023-04-13 키메릭 항원 수용체 및 hgf 결합 억제 물질의 조합 요법

Country Status (2)

Country Link
KR (1) KR20230148435A (ko)
WO (1) WO2023200267A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556660B1 (ko) * 2003-11-11 2006-03-10 국립암센터 Hgf의 중화가능 에피토프 및 이에 결합하는 중화 항체
KR20170139044A (ko) * 2015-04-23 2017-12-18 해마로직스 피티와이. 리미티드 카파 골수종 항원 키메라 항원 수용체 및 이의 용도
KR20170142995A (ko) * 2015-08-05 2017-12-28 주식회사 유영제약 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
CN109422815A (zh) * 2017-08-28 2019-03-05 复旦大学 双特异性嵌合抗原受体c-Met/PD-1 scFv-CAR-T及其构建方法和应用
KR20200106051A (ko) * 2017-12-29 2020-09-10 메모리얼 슬로안 케터링 캔서 센터 향상된 키메라 항원 수용체 및 그의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556660B1 (ko) * 2003-11-11 2006-03-10 국립암센터 Hgf의 중화가능 에피토프 및 이에 결합하는 중화 항체
KR20170139044A (ko) * 2015-04-23 2017-12-18 해마로직스 피티와이. 리미티드 카파 골수종 항원 키메라 항원 수용체 및 이의 용도
KR20170142995A (ko) * 2015-08-05 2017-12-28 주식회사 유영제약 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
CN109422815A (zh) * 2017-08-28 2019-03-05 复旦大学 双特异性嵌合抗原受体c-Met/PD-1 scFv-CAR-T及其构建方法和应用
KR20200106051A (ko) * 2017-12-29 2020-09-10 메모리얼 슬로안 케터링 캔서 센터 향상된 키메라 항원 수용체 및 그의 용도

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JEON YEONGHA, ANNA JU, NARIM LEE, MIN-GU KIM, MINJOO KIM, SANGEUN LEE, SONG-JAE LEE, SEONG-WON SONG: "674. A Novel CAR-T Cell Therapy Strategy to Inhibit Hepatocyte Growth Factor in Solid Tumor", MOLECULAR THERAPY, vol. 30, no. 4S1, 1 April 2022 (2022-04-01), pages 317, XP093098676 *
KIM SOOHYUN, LEE HYUNHO, NOH JINSUNG, LEE YONGHEE, HAN HAEJUN, YOO DUCK KYUN, KIM HYORI, KWON SUNGHOON, CHUNG JUNHO: "Efficient Selection of Antibodies Reactive to Homologous Epitopes on Human and Mouse Hepatocyte Growth Factors by Next-Generation Sequencing-Based Analysis of the B Cell Repertoire", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 20, no. 2, pages 417, XP093098663, DOI: 10.3390/ijms20020417 *
MANISH CHARAN; PIYUSH DRAVID; MAREN CAM; ANTHONY AUDINO; AMY C. GROSS; MICHAEL A. ARNOLD; RYAN D. ROBERTS; TIMOTHY P. CRIPE; ALEXA: "GD2‐directed CAR‐T cells in combination with HGF‐targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma", INTERNATIONAL JOURNAL OF CANCER, JOHN WILEY & SONS, INC., US, vol. 146, no. 11, 6 November 2019 (2019-11-06), US , pages 3184 - 3195, XP071290684, ISSN: 0020-7136, DOI: 10.1002/ijc.32743 *
YEONGHA JEON, ANNA JU, NARIM LEE: "674. A novel CAR-T cell therapy strategy to inhibit hepatocyte growth factor in solid tumor", 25TH ASGCT ANNUAL MEETING. POSTER SESSION., 16 May 2022 (2022-05-16) - 19 May 2022 (2022-05-19), pages 317, XP009549494 *

Also Published As

Publication number Publication date
KR20230148435A (ko) 2023-10-25

Similar Documents

Publication Publication Date Title
US10144770B2 (en) Chimeric receptors and uses thereof in immune therapy
JP6856188B2 (ja) Cs1特異的キメラ抗原受容体を遺伝子操作した免疫エフェクター細胞
TW201940520A (zh) 攝護腺特異性膜抗原嵌合抗原受體及其用途
JP2017537925A (ja) B細胞成熟抗原を標的化するキメラ抗原受容体およびその使用
EP3848387A1 (en) Chimeric antigen receptor for solid cancer and t cells expressing chimeric antigen receptor
US20170267737A1 (en) Glypican-3-specific T-cell receptors and their uses for immunotherapy of hepatocellular carcinoma
JP2022531911A (ja) Bcmaを標的とする操作された免疫細胞及びその使用
WO2021256724A1 (ko) Bcma를 표적으로 하는 키메라 항원 수용체 및 이의 용도
WO2021232200A1 (en) Il-12 armored immune cell therapy and uses thereof
US20210403885A1 (en) Chimeric adaptor and kinase signaling proteins and their use in immunotherapy
KR20200076732A (ko) Cd38-지시된 키메라 항원 수용체 작제물
CN113271953A (zh) 细胞免疫治疗的组合
JP2022512450A (ja) Gpc3を標的とする免疫エフェクター細胞およびその応用
WO2023200267A1 (ko) 키메릭 항원 수용체 및 hgf 결합 억제 물질의 조합 요법
WO2023200266A1 (ko) 키메릭 항원 수용체 및 hgf 중화항체의 조합 요법
WO2022215919A1 (ko) Cd47에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도
WO2018128486A1 (ko) Ceacam6에 특이적으로 결합하는 항-ceacam6 키메릭 항원 수용체
WO2023191526A1 (ko) Cd30 유래의 세포내 신호전달 도메인을 포함하는 키메라 항원 수용체, 이를 발현하는 면역세포 및 이들의 용도
WO2023182861A1 (ko) 항-hla-g 키메라 항원 수용체 및 이의 용도
WO2022186682A1 (ko) Rank 리간드(rank ligand)에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도
WO2022220433A1 (ko) Programmed death-ligand 1(pd-l1)에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도
WO2019204496A1 (en) Compositions and methods for treating melanoma with a chimeric antigen receptor
WO2022240260A1 (ko) 항-cd300c 항체를 이용한 병용 요법
WO2023027471A1 (ko) 기능이 강화된 신규 키메라 항원 수용체(car)
WO2022182059A1 (ko) Hla class ii에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788616

Country of ref document: EP

Kind code of ref document: A1