WO2023200139A1 - 금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클 - Google Patents

금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클 Download PDF

Info

Publication number
WO2023200139A1
WO2023200139A1 PCT/KR2023/003950 KR2023003950W WO2023200139A1 WO 2023200139 A1 WO2023200139 A1 WO 2023200139A1 KR 2023003950 W KR2023003950 W KR 2023003950W WO 2023200139 A1 WO2023200139 A1 WO 2023200139A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
layer
metal
manufacturing
capping layer
Prior art date
Application number
PCT/KR2023/003950
Other languages
English (en)
French (fr)
Inventor
전상용
변태석
권용희
이상찬
임영재
이상익
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Publication of WO2023200139A1 publication Critical patent/WO2023200139A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Definitions

  • the wavelength of the light source is important in order to realize a finer and clearer mask circuit.
  • the light source used in the exposure process has developed to EUV (Extreme Ultraviolet) with a wavelength of 13.5 nm.
  • the mask circuit In the case of an exposure process using an EUV light source, the mask circuit is drawn in a reduced size on the wafer, so if the mask is contaminated with impurities such as dust or foreign substances, these impurities may cause light to be absorbed or reflected, damaging the transferred pattern and damaging the semiconductor product.
  • the production yield is significantly lowered.
  • a thin film called a pellicle is placed on the mask to protect it. The need for such pellicles is increasing because they are essential in terms of yield and at the same time serve to extend the life of the mask.
  • the light source passes through the pellicle twice. Therefore, in order to reduce the loss of the light source passing through the pellicle, a pellicle material with a transmittance of more than 90% is required, and much research is currently underway. Additionally, when the EUV light source passes through the pellicle, it is instantaneously heated to 600 ⁇ 1200°C and then cooled to room temperature, so a material with sufficient thermal emissivity must be applied to withstand such thermal shock. Therefore, research on pellicles with better transmittance and thermal emissivity is needed.
  • the purpose of the present invention is to provide a method of manufacturing a pellicle for extreme ultraviolet (EUV) exposure by forming a metal silicide capping layer in the center layer using a silicon precursor and a metal precursor.
  • EUV extreme ultraviolet
  • Another object of the present invention is to provide a pellicle that exhibits excellent transmittance and thermal emissivity including a metal silicide capping layer manufactured by the above manufacturing method.
  • X is halogen
  • the reaction gases include oxygen (O 2 ), ozone (O 3 ), distilled water (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen monoxide (NO), nitrous oxide (N 2 O), and nitrogen dioxide (NO 2 ). , ammonia (NH 3 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), amine, diamine, carbon monoxide (CO), carbon dioxide (CO 2 ), C1 to C12 saturated or unsaturated hydrocarbons, hydrogen (H 2 ), argon (Ar), and helium (He).
  • the present invention provides a pellicle including a central layer and a metal silicide capping layer on the central layer manufactured using a silicon precursor and a metal precursor represented by the following formula (1).
  • X is halogen
  • the metal silicide capping layer may have a metal:silicon molar ratio of 1:0.2 to 6.
  • the present invention provides a method for manufacturing a pellicle for extreme ultraviolet (EUV) exposure that forms a metal silicide capping layer using a silicon precursor and a metal precursor, and a pellicle manufactured by the manufacturing method, wherein the pellicle has excellent performance in transparency and heat. It represents the emissivity.
  • EUV extreme ultraviolet
  • Figure 1 is a schematic diagram showing the structure and manufacturing process of the pellicle of the present invention.
  • the numerical range used in the present invention includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • halogen means fluorine, chlorine, bromine or iodine.
  • the present invention provides a method for manufacturing a pellicle including forming a metal silicide capping layer on the center layer using a silicon precursor and a metal precursor represented by the following formula (1).
  • the central layer may be Si, SiN x , SiC x , or a mixture thereof, and may have a two-layer structure in which a layer made of Si and a layer made of SiN
  • Si constituting the central layer may be formed of silicon containing one or more of the states of single crystal, polycrystal, and amorphous.
  • SiN x material has higher mechanical strength and higher chemical stability than Si material, so the mechanical strength and chemical stability of the center layer can be secured by forming the upper layer of Si material with SiN x material.
  • the central layer preferably has a transmittance of 85% or more to extreme ultraviolet ray exposure light.
  • the capping layer may be formed at various thicknesses in consideration of the mechanical strength and optical properties of the pellicle.
  • the capping layer may be formed to a thickness that minimizes reflectance with respect to extreme ultraviolet ray exposure light of the pellicle.
  • the silicon precursor forming the capping layer may be SiH 2
  • X in Formula 1 representing the silicon precursor may be chlorine, bromine, or iodine, and more specifically,
  • the metal silicide capping layer manufactured by the above manufacturing method according to an embodiment of the present invention is a material with excellent light transmittance and thermal emissivity with improved thermal and mechanical durability by producing a uniform thin film with a certain ratio of components according to the purpose. It can be very suitable as a pellicle used for extreme ultraviolet ray exposure.
  • the pellicle according to an embodiment of the present invention is between the layers in contact with the center layer and the capping layer, under the center layer, or both in B
  • One or more protective layers composed of one or two or more selected materials may be interposed.
  • the protective layer may function to protect against chemical reactions that occur in an extreme ultraviolet lithography environment.
  • a large amount of hydrogen radicals exist, and these hydrogen radicals may react with the capping layer and deteriorate the function of the capping layer.
  • the protective layer can play a role in preventing hydrogen radicals from coming into contact with the capping layer, and can further serve to strengthen the mechanical strength of the pellicle.
  • the metal of the metal precursor according to an embodiment of the present invention may be Mo, Ni, Ru, Pt, Cu, Ti, Zr, Nb, Hf, Ta, W or Cr, specifically Mo, Ni, Ti, Zr. , Nb, Hf or W, and more specifically, Mo, Ti or W, and the metal precursor may be a metal halide, but is not limited thereto.
  • the metal:silicon molar ratio of the silicon precursor and metal precursor according to an embodiment of the present invention may be 1:0.2 to 6, preferably 1:0.5 to 5.0, and more preferably 1:1.0 to 3.0. You can.
  • the method of forming the metal silicide capping layer is a common method used in the art, specifically atomic layer deposition (ALD), chemical vapor deposition (CVD), and organic metal chemical vapor deposition ( MOCVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or plasma enhanced atomic layer deposition (PEALD), and preferably performed by atomic layer deposition (ALD) or chemical vapor deposition (CVD). It can be done, and more preferably, it can be atomic layer deposition (ALD).
  • the method of forming the metal silicide capping layer includes the steps of a) raising the temperature of the central layer mounted in the chamber; b) adsorbing a silicon precursor and a metal precursor to the central layer; and c) manufacturing a metal silicide capping layer by injecting a reaction gas into the core layer where the silicon precursor and the metal precursor are adsorbed.
  • the method of forming the metal silicide capping layer according to one embodiment may further include a purge step with a transfer gas after step b) and after step c), and the steps b) to c) are performed as one cycle. can be performed repeatedly.
  • Non-limiting examples of these conditions include the input flow rate of the silicon precursor and metal precursor being 1 to 1000 sccm, the transport gas being 1 to 5000 sccm, the flow rate of the reaction gas being 10 to 5000 sccm, the pressure being 0.1 to 10 torr, and the RF power. Can be adjusted in the range of 10 to 1000 W, but is not limited thereto.
  • the reaction gases include oxygen (O 2 ), ozone (O 3 ), distilled water (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen monoxide (NO), nitrous oxide (N 2 O), and nitrogen dioxide (NO 2 ). , ammonia (NH 3 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), amine, diamine, carbon monoxide (CO), carbon dioxide (CO 2 ), C1 to C12 saturated or unsaturated hydrocarbons, hydrogen (H 2 ), argon (Ar), and helium (He).
  • the transport gas is an inert gas and may be any one or two or more selected from argon (Ar), helium (He), and nitrogen (N 2 ), and may specifically be argon (Ar). It is not limited to this.
  • a purge step may be performed in which reaction by-products and residual reaction gas are removed using the transfer gas.
  • the silicon precursor injection step, purge, metal precursor injection step, purge, reaction gas injection step, and purge process may be performed repeatedly in one cycle. .
  • the growth thickness of the capping layer per cycle of the process according to an embodiment of the present invention may be 1 to 4 ⁇ , specifically 1.3 to 3.7 ⁇ , and more specifically 1.6 to 3.3 ⁇ .
  • the present invention provides a pellicle including a central layer and a metal silicide capping layer on the central layer manufactured using a silicon precursor and a metal precursor represented by the following formula (1).
  • X is halogen
  • n is an integer from 1 to 3.
  • the central layer may have a two-layer structure in which a layer made of Si and a layer made of SiN and preferably 1:0.5 to 5.0, more preferably 1:1.0 to 3.0.
  • a pellicle containing a metal silicide capping layer in the center layer using a silicon precursor and a metal precursor according to an embodiment of the present invention has significantly improved transmittance and thermal emissivity and can be used as a better pellicle for extreme ultraviolet ray exposure.
  • a molybdenum silicide capping layer was formed by atomic layer deposition.
  • the silicon wafer on which the silicon nitride on which the molybdenum silicide capping was to be formed was transferred into a deposition chamber and maintained at 450°C.
  • Diiodosilane (SiH 2 I 2 ) filled in a stainless steel container was adsorbed by transferring 50 sccm of argon gas as a transport gas for 1 to 7 seconds, and then removing unreacted compounds using 2000 sccm of argon gas for 3 seconds.
  • molybdenum pentachloride (MoCl 5 ) filled in a stainless steel container was adsorbed by transferring 50 sccm of argon gas as a transport gas for 1 second, and then removing unreacted compounds using 2000 sccm of argon gas for 3 seconds. Afterwards, a molybdenum silicide capping layer was formed using 2000 sccm of hydrogen gas and 100 W plasma. Finally, unreacted compounds were removed using argon gas at 2000 sccm for 3 seconds. The above process was repeated for 200 cycles as one cycle to form a molybdenum silicide capping layer.
  • a molybdenum silicide capping layer was formed by atomic layer deposition.
  • the silicon wafer on which the silicon nitride on which the molybdenum silicide capping layer was to be formed was transferred into a deposition chamber and maintained at 450°C.
  • Dichlorosilane (SiH 2 Cl 2 ) filled in a stainless steel container was adsorbed by transferring it through an MFC for 1 to 7 seconds, and then unreacted compounds were removed using 2000 sccm of argon gas for 3 seconds.
  • molybdenum pentachloride (MoCl 5 ) filled in a stainless steel container was adsorbed by transferring 50 sccm of argon gas as a transport gas for 1 second, and then removing unreacted compounds using 2000 sccm of argon gas for 3 seconds.
  • a molybdenum silicide capping layer was formed using 2000 sccm of hydrogen gas and 100 W plasma.
  • unreacted compounds were removed using argon gas at 2000 sccm for 3 seconds.
  • the silicon wafer on which the silicon nitride on which the tungsten silicide capping layer was to be formed was transferred into a deposition chamber and maintained at 450°C.
  • Diiodosilane (SiH 2 I 2 ) filled in a stainless steel container was adsorbed by transferring 50 sccm of argon gas as a transport gas for 1 to 7 seconds, and then removing unreacted compounds using 2000 sccm of argon gas for 3 seconds.
  • tungsten pentachloride (WCl 5 ) filled in a stainless steel container was adsorbed by transferring 50 sccm of argon gas as a transport gas for 1 second, and then removing unreacted compounds using 2000 sccm of argon gas for 3 seconds. Afterwards, a tungsten silicide capping layer was formed using 2000 sccm of hydrogen gas and 100 W plasma. Finally, unreacted compounds were removed using argon gas at 2000 sccm for 3 seconds.

Abstract

본 발명은 실리콘 전구체 및 금속 전구체를 이용하여 금속 규화물 캡핑층을 형성시키는 단계를 포함하는 펠리클의 제조방법 및 상기 제조방법으로 제조되는 극자외선 노광용 펠리클을 제공하는 것으로, 상기 펠리클은 우수한 성능의 투과성과 열 방사율을 나타낼 수 있다.

Description

금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클
본 발명은 실리콘 전구체 및 금속 전구체를 이용하여 금속 규화물 캡핑층을 형성시키는 펠리클의 제조방법 및 이로부터 제조된 극자외선(EUV) 노광용 펠리클에 관한 것이다.
반도체 제조의 주요 공정에 속하는 주요 공정 중 하나인 노광 공정에서 마스크 회로를 더 미세하고 선명하게 구현하기 위해서는 광원의 파장이 중요하며, 파장이 작을수록 해상도가 높아지게 되어 보다 미세한 회로 패턴을 그려내고, 소형의 반도체 소자를 생산할 수 있다. 최근 노광 공정에 사용하는 광원은 13.5nm의 파장을 갖는 EUV(Extreme Ultraviolet, 극자외선)까지 발전해 왔다.
EUV 광원을 이용한 노광 공정의 경우 마스크의 회로가 웨이퍼에 축소되어 그려지기 때문에 마스크가 먼지나 이물질과 같은 불순물이 부착되어 오염되면 이러한 불순물로 인하여 빛이 흡수되거나 반사되어 전사한 패턴이 손상되고 반도체 제품의 생산 수율이 현저하게 낮아지게 된다. 마스크 표면에 불순물이 부착하는 것을 방지하기 위하여 펠리클(Pellicle)이라는 얇은 박막을 마스크 위에 씌워서 보호하게 된다. 이러한 펠리클은 수율의 측면에서 반드시 필요하며 동시에 마스크의 수명을 연장하는 역할을 하기 때문에 그 필요성이 증대되고 있다.
EUV(Extreme Ultraviolet) 공정에서는 광원이 펠리클을 두 번 통과하게 된다. 따라서 펠리클을 통과하는 광원의 손실을 줄이기 위하여 투과율이 90%이상의 펠리클의 소재가 요구되고 있으며 현재 많은 연구가 진행되는 상황이다. 또한, EUV 광원이 펠리클을 통과할 때 순간적으로 600~1200℃까지 가열된 후 실온으로 냉각되기 때문에 이러한 열 충격에도 견딜 수 있도록 충분한 열 방사율을 가진 소재가 적용되어야 한다. 따라서 보다 우수한 투과율 및 열 방사율을 가진 펠리클에 대한 연구가 필요한 실정이다.
본 발명의 목적은 실리콘 전구체 및 금속 전구체를 이용하여 중심층에 금속 규화물 캡핑층을 형성시키는 극자외선(EUV) 노광용 펠리클의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 제조방법으로 제조된 금속 규화물 캡핑층을 포함하는 우수한 투과성과 열 방사율을 나타내는 펠리클을 제공하는 것이다.
본 발명은 하기 화학식 1로 표시되는 실리콘 전구체 및 금속 전구체를 이용하여 중심층에 금속 규화물 캡핑층을 형성시키는 단계를 포함하는 펠리클의 제조방법을 제공한다.
[화학식 1]
SiHnX4-n
[상기 화학식 1에서,
X는 할로겐이며;
n은 1 내지 3의 정수이다.]
상기 중심층은 Si, SiNx, SiCx 또는 이들의 혼합막일 수 있으며, Si 재질의 층과 SiNx 재질의 층이 순차 적층된 2층막 구조일 수 있다.
본 발명의 일 실시예에 따른 펠리클은 상기 중심층과 캡핑층이 접한 층의 사이, 중심층의 하부 또는 이들 모두에 BxN, B, Zr, Zn, BxC, SiCx 또는 SiNx에서 선택되는 하나 또는 둘 이상의 물질로 구성되는 한 층 이상의 보호층이 개재되는 것일 수 있다.
일 실시예에 있어서, 상기 금속 전구체의 금속은 Mo, Ni, Ru, Pt, Cu, Ti, Zr, Nb, Hf, Ta, W 또는 Cr일 수 있으며, 상기 실리콘 전구체 및 금속 전구체의 금속 : 실리콘의 몰비가 1 : 0.2 내지 6일 수 있다.
또한 일 실시예에 따른 상기 금속 규화물 캡핑층 형성은 원자층 증착법(ALD) 또는 화학기상 증착법(CVD)으로 수행되는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 금속 규화물 캡핑층 형성은,
a) 챔버 내에 장착된 중심층을 승온시키는 단계;
b) 상기 중심층에 실리콘 전구체 및 금속 전구체를 흡착시키는 단계; 및
c) 상기 실리콘 전구체 및 금속 전구체가 흡착된 증심층에 반응가스를 주입하여 금속 규화물 캡핑층을 제조하는 단계;
를 포함할 수 있다.
상기 반응가스는 산소(O2), 오존(O3), 증류수(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진 (N2H4), 아민, 다이아민, 일산화탄소(CO), 이산화탄소(CO2), C1 내지 C12 포화 또는 불포화 탄화 수소, 수소(H2), 아르곤(Ar) 및 헬륨(He)에서 선택되는 어느 하나 또는 둘 이상의 것일 수 있다.
본 발명은 중심층 및 상기 중심층상에 하기 화학식 1로 표시되는 실리콘 전구체 및 금속 전구체를 이용하여 제조된 금속 규화물 캡핑층을 포함하는 펠리클을 제공한다.
[화학식 1]
SiHnX4-n
[상기 화학식 1에서,
X는 할로겐이며;
n은 1 내지 3의 정수이다.]
일 실시예에 있어서 상기 금속 규화물 캡핑층은 금속 : 실리콘의 몰비가 1 : 0.2 내지 6일 수 있다.
본 발명은 실리콘 전구체 및 금속 전구체를 이용하여 금속 규화물 캡핑층을 형성하는 극자외선(EUV) 노광용 펠리클의 제조방법 및 상기 제조방법으로 제조된 펠리클을 제공하는 것으로, 상기 펠리클은 우수한 성능의 투과성과 열 방사율을 나타낸다.
도 1은 본 발명의 펠리클의 구조 및 제조과정을 나타내는 모식도이다.
도 2는 본 발명의 실시예 1에 따른 금속 규화물 캡핑층의 증착속도를 나타낸 도이다.
도 3은 본 발명의 실시예 1에 따른 금속 규화물 캡핑층의 금속 대비 실리콘의 몰비를 나타낸 도이다.
본 발명은 실리콘 전구체 및 금속 전구체를 이용하여 제조된 금속 규화물 캡핑층을 포함하는 극자외선 노광용 펠리클의 제조방법 및 이로부터 제조된 펠리클을 제공한다.
본 발명에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
또한, 본 발명에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.
본 발명에 기재된, "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.
본 발명에 기재된 "할로겐"은 플루오린, 클로린, 브로민 또는 아이오딘을 의미한다.
이하, 본 발명에 대하여 구체적으로 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명은 하기 화학식 1로 표시되는 실리콘 전구체 및 금속 전구체를 이용하여 중심층에 금속 규화물 캡핑층을 형성시키는 단계를 포함하는 펠리클의 제조방법을 제공한다.
[화학식 1]
SiHnX4-n
[상기 화학식 1에서,
X는 할로겐이며;
n은 1 내지 3의 정수이다.]
상기 중심층은 Si, SiNx, SiCx 또는 이들의 혼합막일 수 있으며, Si 재질의 층과 SiNx 재질의 층이 순차 적층된 2층막 구조일 수 있다.
펠리클은 도 1의 모식도에 나타낸 바와 같이, 중심층, 캡핑층, 보호층을 포함하여 구성될 수 있다. 펠리클은 극자외선 노광광에 대하여 85 % 이상의 투과율을 가지며, 반사율은 0.04% 이내가 바람직하다.
중심층을 구성하는 Si는 단결정, 다결정 및 무결정 중 하나 이상의 상태를 포함하는 실리콘으로 형성될 수 있다. SiNx 재질은 Si 재질에 비하여 기계적 강도가 높고 화학적 안정성이 높아 Si 재질의 상층을 SiNx 재질로 형성함으로써 중심층의 기계적 강도와 화학적 안정성을 확보할 수 있다.
상기 중심층은 극자외선 노광광에 대하여 85 % 이상의 투과율을 가지는 것이 바람직하다. 또한 상기 캡핑층은 펠리클의 기계적 강도 및 광학적 특성을 고려하여 다양한 두께로 형성될 수 있다. 바람직하게 캡핑층은 펠리클의 극자외선 노광광에 대하여 반사율이 최소가 되는 두께로 형성될 수 있다.
바람직하게 상기 캡핑층을 형성하는 실리콘 전구체는 SiH2X2 또는 SiHX3일 수 있으며, 보다 구체적으로 SiH2X2일 수 있다. 구체적으로 상기 실리콘 전구체를 나타내는 화학식 1의 X는 클로린, 브로민 또는 아이오딘일 수 있으며, 보다 구체적으로 상기 화학식 1의 X는 클로린 또는 아이오딘일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 상기 제조방법으로 제조되는 금속 규화물 캡핑층은 목적에 따른 일정성분의 비율을 가지는 균일한 박막이 제조되어, 열적, 기계적 내구성이 향상되어 빛 투과성 및 열 방사율이 우수한 소재로 극자외선 노광에 이용되는 펠리클로 매우 적합할 수 있다.
본 발명의 일 실시예에 따른 펠리클은 상기 중심층과 캡핑층이 접한 층의 사이, 중심층의 하부 또는 이들 모두에 BxN, B, Zr, Zn, BxC, SiCx 또는 SiNx에서 선택되는 하나 또는 둘 이상의 물질로 구성되는 한 층 이상의 보호층이 개재되는 것일 수 있다.
상기 보호층은 극자외선 리소그래피 환경에서 일어나는 화학적 반응으로부터 보호하는 기능을 할 수 있다. 펠리클이 사용되는 환경에서는 수소 라디칼이 다량 존재하며, 이 수소 라디칼은 캡핑층과 반응하여 캡핑층의 기능이 저하될 수 있다. 이에 따라 보호층이 캡핑층과 수소 라디칼이 접촉되지 않도록 보호하여 주는 역할을 수행할 수 있으며, 나아가 펠리클의 기계적 강도를 강화하는 기능을 할 수 있다.
본 발명의 일 실시예에 따른 상기 금속 전구체의 금속은 Mo, Ni, Ru, Pt, Cu, Ti, Zr, Nb, Hf, Ta, W 또는 Cr일 수 있으며, 구체적으로 Mo, Ni, Ti, Zr, Nb, Hf 또는 W일 수 있고, 보다 구체적으로 Mo, Ti 또는 W일 수 있으며, 상기 금속 전구체는 금속할로겐화물일 수 있으나, 이제 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 상기 실리콘 전구체 및 금속 전구체의 금속 : 실리콘의 몰비가 1 : 0.2 내지 6일 수 있으며, 바람직하게 1 : 0.5 내지 5.0일 수 있으며, 보다 바람직하게 1 : 1.0 내지 3.0일 수 있다.
본 발명의 일 실시예에 있어서, 상기 금속 규화물 캡핑층의 형성방법은 당업계에서 사용되는 통상적인 방법, 구체적으로는 원자층 증착법(ALD), 화학기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 화학기상 증착법(LPCVD), 플라즈마강화 화학기상 증착법(PECVD) 또는 플라즈마강화 원자층 증착법(PEALD)일 수 있으며, 바람직하게 원자층 증착법(ALD) 또는 화학기상 증착법(CVD)으로 수행될 수 있고, 보다 바람직하게 원자층 증착법(ALD)일 수 있다.
본 발명의 일 실시예에 따른 상기 금속 규화물 캡핑층의 형성방법은, a) 챔버 내에 장착된 중심층을 승온시키는 단계; b) 상기 중심층에 실리콘 전구체 및 금속 전구체를 흡착시키는 단계; 및 c) 상기 실리콘 전구체 및 금속 전구체가 흡착된 증심층에 반응가스를 주입하여 금속 규화물 캡핑층을 제조하는 단계;를 포함할 수 있다.
또한 일 실시예에 따른 상기 금속 규화물 캡핑층의 형성방법은, b)단계 후 및 c)단계 후 이송가스로 퍼지단계를 더 포함할 수 있으며, 상기 b) 내지 c)단계를 한 주기로 하여 상기 주기가 반복 수행될 수 있다.
일 실시예에 있어서, 목적하는 캡핑층의 구조 또는 열적 특성에 따라 상기 형성방법의 조건이 조절될 수 있으며, 실리콘 전구체 투입 유량, 금속 전구체의 투입 유량, 반응가스 및 이송가스의 투입 유량, 압력, RF 파워 등이 예시될 수 있다.
이러한 조건의 비한정적인 일예로는 실리콘 전구체 및 금속 전구체의 투입 유량은 1 내지 1000 sccm, 이송 가스는 1 내지 5000 sccm, 반응가스의 유량은 10 내지 5000 sccm, 압력은 0.1 내지 10 torr, RF 파워는 10 내지 1000 W 범위에서 조절될 수 있으나 이에 한정이 있는 것은 아니다.
일 실시예에 있어서, 상기 a)단계에서 챔버 내에 장착된 중심층을 승온시키는 온도는 200 ℃ 내지 700 ℃일 수 있고, 구체적으로 300 ℃ 내지 500 ℃일 수 있으나, 이에 한정이 있는 것은 아니다.
상기 반응가스는 산소(O2), 오존(O3), 증류수(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진 (N2H4), 아민, 다이아민, 일산화탄소(CO), 이산화탄소(CO2), C1 내지 C12 포화 또는 불포화 탄화 수소, 수소(H2), 아르곤(Ar) 및 헬륨(He)에서 선택되는 어느 하나 또는 둘 이상의 것일 수 있다.
구체적으로 상기 반응가스는 산소(O2), 과산화수소(H2O2), 아산화질소(N2O), 암모니아(NH3), 질소(N2) 및 수소(H2)에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 보다 상세하게는 아산화질소(N2O), 암모니아(NH3) 또는 질소(N2)에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에 있어서, 상기 이송가스는 불활성 가스로, 아르곤(Ar), 헬륨(He) 및 질소(N2)에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 구체적으로 아르곤(Ar)일 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에 있어서, 상기 챔버 내로 이송가스와 상기 실리콘 전구체를 주입한 후, 미흡착된 실리콘 전구체를 상기 이송가스를 이용하여 제거하는 퍼지(purge)단계를 수행할 수 있다. 이어서 상기 챔버 내로 이송가스와 상기 금속 전구체를 주입한 후, 미흡착된 금속 전구체를 상기 이송가스를 이용하여 제거하는 퍼지(purge)단계를 수행할 수 있다.
일 실시예에 있어서, 상기 챔버 내로 반응가스를 주입한 후, 반응부산물 및 잔류 반응가스를 상기 이송가스를 이용하여 제거하는 퍼지(purge)단계를 수행할 수 있다.
일 실시예에 있어서, 상기 실리콘 전구체의 주입단계, 퍼지(purge), 금속 전구체의 주입단계, 퍼지(purge), 반응가스의 주입단계 및 퍼지(purge) 공정을 1주기로 하여 반복적으로 수행될 수 있다.
본 발명의 일 실시예에 따른 상기 공정 1주기당 캡핑층의 성장 두께는 1 내지 4 Å일 수 있으며, 구체적으로 1.3 내지 3.7 Å일 수 있고, 보다 구체적으로 1.6 내지 3.3 Å일 수 있다.
본 발명은 중심층 및 상기 중심층상에 하기 화학식 1로 표시되는 실리콘 전구체 및 금속 전구체를 이용하여 제조된 금속 규화물 캡핑층을 포함하는 펠리클을 제공한다.
[화학식 1]
SiHnX4-n
[상기 화학식 1에서,
X는 할로겐이며;
n은 1 내지 3의 정수이다.]
일 실시예에 있어서, 상기 중심층은 Si 재질의 층과 SiNx 재질의 층이 순차 적층된 2층막 구조일 수 있으며, 상기 금속 규화물 캡핑층은 금속 : 실리콘의 몰비가 1 : 0.2 내지 6일 수 있으며, 바람직하게 1 : 0.5 내지 5.0일 수 있으며, 보다 바람직하게 1 : 1.0 내지 3.0일 수 있다.
본 발명의 일 실시예에 따른 실리콘 전구체 및 금속 전구체를 이용하여 중심층에 금속 규화물 캡핑층을 포함하는 펠리클은 투과율 및 열 방사율이 현저하게 향상되어 보다 우수한 극자외선 노광용 펠리클로 이용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명에 따른 실리콘 전구체 및 금속 전구체를 이용하여 금속 규화물 캡핑층을 형성하는 펠리클의 제조방법 및 이로부터 제조된 극자외선 노광용 펠리클에 대하여 더욱 상세히 설명한다.
다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. 또한 본 발명에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.
[실시예 1]
원자층 증착법(Atomic Layer Deposition)에 의해 몰리브데넘 규화물 캡핑층을 형성시켰다.
몰리브데넘 규화물 캡핑이 형성될 질화실리콘이 형성된 실리콘웨이퍼는 증착 챔버내로 이송하여 450 ℃로 유지시켰다. 스테인레스 용기에 충진된 디요오드실란(SiH2I2)과 이송가스로 아르곤가스 50 sccm을 1 내지 7 초간 이송하여 흡착시킨 뒤, 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다.
다음으로 스테인레스 용기에 충진된 오염화몰리브데넘(MoCl5)과 이송가스로 아르곤가스 50 sccm을 1 초간 이송하여 흡착시킨 뒤, 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다. 이후, 수소가스 2000 sccm와 100 W의 플라즈마를 이용하여 몰리브데넘 규화물 캡핑층을 형성하였다. 마지막으로 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다. 위와 같은 공정을 1주기로 하여 200주기를 반복하여 몰리브데넘 규화물 캡핑층을 형성하였다.
형성된 몰리브데넘 규화물 캡핑층의 두께는 전자주사현미경을 통하여 측정되었으며 디요오드실란의 주입시간에 따른 1 주기당 성장 두께는 도 2와 같이 1.85 내지 3.05 Å 으로 확인되었다.
증착된 캡핑층에 대하여 X선 광전자 분석결과 디요오드실란의 주입시간에 따른 몰리브데넘 대비 실리콘의 비율은 도 3과 같이 디요오드실란의 주입시간에 따라 1.68 내지 2.41로 확인되었다.
몰리브데넘 대비 실리콘의 비율이 2로 형성된 몰리브데넘 규화물 캡핑층의 결정상을 X선 회절 분석법으로 분석하였다. 열처리 전에는 Hexagonal 상로 확인되나 열처리후에는 Tetragonal 상으로 상 변이가 일어나는 것을 알 수 있었다.
질화실리콘 박막을 중심층으로 하는 구조에서 몰리브데넘 대비 실리콘의 비율이 2로 형성된 몰리브데넘 규화물 캡핑증을 적용한 펠리클에 대한 분석 결과 92%의 투과도를 보이며 반사율은 0.036으로 확인되었다.
[실시예 2]
원자층 증착법(Atomic Layer Deposition)에 의해 몰리브데넘 규화물 캡핑층을 형성시켰다.
몰리브데넘 규화물 캡핑층이 형성될 질화실리콘이 형성된 실리콘웨이퍼는 증착 챔버내로 이송하여 450 ℃로 유지시켰다. 스테인레스 용기에 충진된 디클로로실란(SiH2Cl2)을 MFC를 통하여 1 내지 7 초간 이송하여 흡착시킨 뒤, 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다.
다음으로 스테인레스 용기에 충진된 오염화몰리브데넘(MoCl5)과 이송가스로 아르곤가스 50 sccm을 1 초간 이송하여 흡착시킨 뒤, 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다. 이후, 수소가스 2000 sccm와 100 W의 플라즈마를 이용하여 몰리브데넘 규화물 캡핑층을 형성하였다. 마지막으로 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다.
위와 같은 공정을 1주기로 하여 200주기를 반복하여 몰리브데넘 규화물 캡핑층을 형성하였다.
증착된 캡핑층에 대하여 X선 광전자 분석결과 디클로로실란의 주입시간을 조절하여 몰리브데넘 대비 실리콘의 몰비가 2인 캡핑층을 얻을 수 있었다.
[실시예 3]
원자층 증착법(Atomic Layer Deposition)에 의해 텅스텐 규화물 캡핑층을 형성시켰다.
텅스텐 규화물 캡핑층이 형성될 질화실리콘이 형성된 실리콘웨이퍼는 증착 챔버내로 이송하여 450 ℃로 유지시켰다. 스테인레스 용기에 충진된 디요오드실란(SiH2I2)과 이송가스로 아르곤가스 50 sccm을 1 내지 7 초간 이송하여 흡착시킨 뒤, 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다.
다음으로 스테인레스 용기에 충진된 오염화텅스텐(WCl5)과 이송가스로 아르곤가스 50 sccm을 1 초간 이송하여 흡착시킨 뒤, 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다. 이후, 수소가스 2000 sccm와 100 W의 플라즈마를 이용하여 텅스텐 규화물 캡핑층을 형성하였다. 마지막으로 아르곤 가스 2000 sccm을 이용하여 3 초간 미반응 화합물을 제거시켰다.
위와 같은 공정을 1주기로 하여 200주기를 반복하여 텅스텐 규화물 캡핑층을 형성하였다.
증착된 캡핑층에 대하여 X선 광전자 분석결과 텅스텐 규화물 캡핑층이 형성되었음을 확인하였다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 비교예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (11)

  1. 하기 화학식 1로 표시되는 실리콘 전구체 및 금속 전구체를 이용하여 중심층에 금속 규화물 캡핑층을 형성시키는 단계를 포함하는 펠리클의 제조방법.
    [화학식 1]
    SiHnX4-n
    [상기 화학식 1에서,
    X는 할로겐이며;
    n은 1 내지 3의 정수이다.]
  2. 제1항에 있어서,
    상기 중심층은 Si, SiNx, SiCx 또는 이들의 혼합막인 펠리클의 제조방법.
  3. 제1항에 있어서,
    상기 중심층은 Si 재질의 층과 SiNx 재질의 층이 순차 적층된 2층막 구조인, 펠리클의 제조방법.
  4. 제2항에 있어서,
    상기 펠리클은 상기 중심층과 캡핑층이 접한 층의 사이, 중심층의 하부 또는 이들 모두에 BxN, B, Zr, Zn, BxC, SiCx 또는 SiNx에서 선택되는 하나 또는 둘 이상의 물질로 구성되는 한 층 이상의 보호층이 개재되는 것인, 펠리클의 제조방법.
  5. 제1항에 있어서,
    상기 금속 전구체의 금속은 Mo, Ni, Ru, Pt, Cu, Ti, Zr, Nb, Hf, Ta, W 또는 Cr인, 펠리클의 제조방법.
  6. 제1항에 있어서,
    상기 실리콘 전구체 및 금속 전구체의 금속 : 실리콘의 몰비가 1 : 0.2 내지 6인, 펠리클의 제조방법.
  7. 제1항에 있어서,
    상기 금속 규화물 캡핑층 형성은 원자층 증착법(ALD) 또는 화학기상 증착법(CVD)으로 수행되는 것인, 펠리클의 제조방법.
  8. 제1항에 있어서,
    상기 금속 규화물 캡핑층 형성은,
    a) 챔버 내에 장착된 중심층을 승온시키는 단계;
    b) 상기 중심층에 실리콘 전구체 및 금속 전구체를 흡착시키는 단계; 및
    c) 상기 실리콘 전구체 및 금속 전구체가 흡착된 증심층에 반응가스를 주입하여 금속 규화물 캡핑층을 제조하는 단계;
    를 포함하는, 펠리클의 제조방법.
  9. 제8항에 있어서,
    상기 반응가스는 산소(O2), 오존(O3), 증류수(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진 (N2H4), 아민, 다이아민, 일산화탄소(CO), 이산화탄소(CO2), C1 내지 C12 포화 또는 불포화 탄화 수소, 수소(H2), 아르곤(Ar) 및 헬륨(He)에서 선택되는 어느 하나 또는 둘 이상의 것인, 펠리클의 제조방법.
  10. 중심층 및 상기 중심층상에 하기 화학식 1로 표시되는 실리콘 전구체 및 금속 전구체를 이용하여 제조된 금속 규화물 캡핑층을 포함하는 펠리클.
    [화학식 1]
    SiHnX4-n
    [상기 화학식 1에서,
    X는 할로겐이며;
    n은 1 내지 3의 정수이다.]
  11. 제10항에 있어서,
    상기 금속 규화물 캡핑층은 금속 : 실리콘의 몰비가 1 : 0.2 내지 6인 펠리클.
PCT/KR2023/003950 2022-04-14 2023-03-24 금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클 WO2023200139A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220046141A KR20230147306A (ko) 2022-04-14 2022-04-14 금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클
KR10-2022-0046141 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023200139A1 true WO2023200139A1 (ko) 2023-10-19

Family

ID=88329824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003950 WO2023200139A1 (ko) 2022-04-14 2023-03-24 금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클

Country Status (3)

Country Link
KR (1) KR20230147306A (ko)
TW (1) TW202349103A (ko)
WO (1) WO2023200139A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696957B1 (ko) * 2009-09-11 2017-01-16 도쿄엘렉트론가부시키가이샤 금속-실리콘 함유 막의 펄스형 화학 기상 증착
KR102229118B1 (ko) * 2020-07-08 2021-03-18 솔브레인 주식회사 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크
KR20210095111A (ko) * 2019-09-26 2021-07-30 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR102331211B1 (ko) * 2019-11-05 2021-11-26 주식회사 에스앤에스텍 외부 충격을 감쇠 할 수 있는 펠리클 및 그의 제조방법
KR20220017137A (ko) * 2020-08-04 2022-02-11 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9824884B1 (en) 2016-10-06 2017-11-21 Lam Research Corporation Method for depositing metals free ald silicon nitride films using halide-based precursors
US11822230B2 (en) 2020-07-24 2023-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. EUV pellicle and mounting method thereof on photo mask

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696957B1 (ko) * 2009-09-11 2017-01-16 도쿄엘렉트론가부시키가이샤 금속-실리콘 함유 막의 펄스형 화학 기상 증착
KR20210095111A (ko) * 2019-09-26 2021-07-30 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR102331211B1 (ko) * 2019-11-05 2021-11-26 주식회사 에스앤에스텍 외부 충격을 감쇠 할 수 있는 펠리클 및 그의 제조방법
KR102229118B1 (ko) * 2020-07-08 2021-03-18 솔브레인 주식회사 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크
KR20220017137A (ko) * 2020-08-04 2022-02-11 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그 제조방법

Also Published As

Publication number Publication date
KR20230147306A (ko) 2023-10-23
TW202349103A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
WO2012018210A2 (ko) 사이클릭 박막 증착 방법
WO2021096326A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2020101336A1 (ko) 몰리브덴 함유 박막의 제조방법 및 이로부터 제조된 몰리브덴 함유 박막
WO2015030297A1 (ko) 유무기 혼성 박막 및 이의 제조 방법
JP2020530199A (ja) 高純度酸化スズの堆積のための有機金属化合物及び方法
KR100463633B1 (ko) 하프늄 화합물을 이용한 박막증착방법
KR20000076134A (ko) 금속성분들을 갖는 반응기내의 반도체 처리공정중에 금속 오염물을 감소시키는 방법
WO2019103500A1 (ko) 실리콘 함유 박막 증착용 조성물 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2021060860A1 (ko) 박막 제조 방법
WO2021194032A1 (ko) 그래핀을 포함하는 그래핀-금속복합 펠리클 및 그의 제조방법
WO2022010201A1 (ko) 극자외선 리소그라피용 펠리클의 제조방법
WO2022010214A1 (ko) 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
WO2023200139A1 (ko) 금속 규화물 캡핑층이 형성된 펠리클의 제조방법 및 이로부터 제조된 펠리클
WO2018021654A1 (ko) 박막 증착 방법
WO2022055103A1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
WO2023195677A1 (ko) 펠리클 제조방법 및 이에 의해 제조된 펠리클
WO2021080294A1 (ko) 질화붕소 나노튜브를 사용하는 극자외선 리소그래피용 펠리클 및 이의 제조방법
WO2021141324A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2017082695A2 (ko) 탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법
WO2022169170A2 (ko) 카르빈 층을 포함하는 극자외선 리소그라피용 펠리클 막 및 그 제조방법
WO2022139535A1 (ko) 상부 표면 개질제를 이용하는 박막 형성 방법
WO2017188546A1 (ko) 박막 증착 방법
WO2018139746A1 (ko) 이종원소 합금화를 통한 고품질 사중패터닝 물질의 제조방법
WO2014073892A1 (ko) 실리콘-함유 박막의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788491

Country of ref document: EP

Kind code of ref document: A1