WO2022010201A1 - 극자외선 리소그라피용 펠리클의 제조방법 - Google Patents

극자외선 리소그라피용 펠리클의 제조방법 Download PDF

Info

Publication number
WO2022010201A1
WO2022010201A1 PCT/KR2021/008492 KR2021008492W WO2022010201A1 WO 2022010201 A1 WO2022010201 A1 WO 2022010201A1 KR 2021008492 W KR2021008492 W KR 2021008492W WO 2022010201 A1 WO2022010201 A1 WO 2022010201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pellicle
extreme ultraviolet
metal catalyst
ultraviolet lithography
Prior art date
Application number
PCT/KR2021/008492
Other languages
English (en)
French (fr)
Inventor
우란
조상진
김경수
서경원
문성용
김지강
유장동
Original Assignee
주식회사 에프에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에프에스티 filed Critical 주식회사 에프에스티
Publication of WO2022010201A1 publication Critical patent/WO2022010201A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Definitions

  • the present invention relates to a method for manufacturing a pellicle for extreme ultraviolet lithography.
  • a method called photolithography is used when patterning a semiconductor wafer or a substrate for liquid crystal in the manufacture of a semiconductor device or a liquid crystal display panel or the like.
  • a mask is used as a patterning original plate, and the pattern on the mask is transferred to a wafer or a substrate for liquid crystal. If dust adheres to the mask, light is absorbed or reflected by the dust, so that the transferred pattern is damaged, resulting in a decrease in performance or yield of semiconductor devices or liquid crystal panels. Therefore, although these operations are usually performed in a clean room, since dust is also present in the clean room, a method of attaching a pellicle is performed in order to prevent the dust from adhering to the mask surface.
  • the dust is not directly attached to the surface of the mask, but is attached to the pellicle film, and in lithography, since the focus is on the pattern of the mask, the dust on the pellicle is not in focus, so there is an advantage in that it is not transferred to the pattern.
  • the required resolution of the exposure apparatus for semiconductor manufacturing is gradually increasing, and the wavelength of the light source is getting shorter in order to realize the resolution.
  • the UV light source has a shorter wavelength from ultraviolet light g-ray 436 , I-ray 365 , KrF excimer laser 248 , and ArF excimer laser 193 to extreme ultraviolet (EUV, extreme UltraViolet, 13.5 nm).
  • EUV extreme UltraViolet
  • the conventional organic pellicle film has a problem in that the physical properties are changed by the exposure light source having high energy and it is difficult to be used for the pellicle for extreme ultraviolet light because the lifespan is short.
  • Various attempts are being made to solve these problems.
  • Korean Patent Publication No. 2009-0088396 discloses a pellicle made of an airgel film.
  • a pellicle for extreme ultraviolet light comprising a pellicle film made of a silicon single crystal film and a base substrate supporting the pellicle film, wherein the base substrate forms an opening of 60% or more. have.
  • a silicon single crystal film In the extreme ultraviolet pellicle disclosed in Korean Patent Application Laid-Open No. 2009-0122114, a silicon single crystal film must be formed as a thin film to transmit extreme ultraviolet rays. Since such a silicon single crystal thin film can be easily damaged even by a small impact, a base substrate for supporting it is used. The reinforcing frame of the base substrate forms a certain pattern, and there is a problem in that the pattern is transferred to the substrate in a lithography process. In addition, there is a problem that the transmittance is very low, about 60%.
  • a method of using a freestanding pellicle without using a separate base substrate for reinforcing the pellicle film is also disclosed.
  • Korean Patent No. 1552940 filed and registered by the present applicant, discloses a method of obtaining a graphite thin film by forming a graphite thin film on a nickel foil and then etching the nickel foil using an aqueous solution containing iron chloride. .
  • a silicon nitride layer is formed on both sides of the silicon substrate, and a single crystal or polycrystalline silicon layer, a silicon nitride layer, and a capping layer, which are core layers with high extreme ultraviolet transmittance, are sequentially formed on the silicon nitride layer on the upper surface of the silicon substrate.
  • a method of manufacturing a pellicle by applying photoresist to the silicon nitride layer formed on the lower surface and then patterning, removing the central portion of the silicon nitride layer by dry etching, and removing the central portion of the silicon substrate by wet etching to form a window through which extreme ultraviolet rays are transmitted is also being used.
  • the graphene layer was formed by injecting a mixed gas containing hydrocarbon into the substrate on which the transition metal catalyst layer was formed and heat-treating it to adsorb carbon and then cooling it. After separating the graphene layer from the substrate, silicon nitride It was transferred to a layered silicon substrate.
  • Patent Document 1 Korea Patent Publication No. 2009-0088396
  • Patent Document 2 Korean Patent Publication No. 2009-0122114
  • Patent Document 3 Korean Patent No. 1552940
  • Patent Document 4 Korean Patent No. 1303795
  • Patent Document 5 Korean Patent No. 1940791
  • Patent Document 6 Korean Patent Publication No. 2016-0086024
  • Patent Document 7 Korean Patent Publication No. 2019-0005911
  • Patent Document 8 Korean Patent Publication No. 2019-0107603
  • An object of the present invention is to improve the above-described problems, and to provide a new method of manufacturing a pellicle for extreme ultraviolet lithography using a graphene core layer.
  • the present invention comprises the steps of: a) forming a silicon carbide layer on one surface of a substrate; b) forming a metal catalyst layer on the silicon carbide layer; c) a solid on the metal catalyst layer forming a carbon source layer; d) heat-treating so that at least a portion of the solid carbon source layer is supersaturated while diffusing into the metal catalyst layer to form a graphene layer between the silicon carbide layer and the metal catalyst layer; , e) provides a method of manufacturing a pellicle for extreme ultraviolet lithography comprising the step of removing the metal catalyst layer.
  • the metal catalyst layer provides a method of manufacturing a pellicle for extreme ultraviolet lithography, which is a metal layer selected from nickel, cobalt, chromium, ruthenium, platinum, molybdenum, or alloys thereof.
  • the metal catalyst layer provides a method of manufacturing a pellicle for extreme ultraviolet lithography, which is a nickel copper alloy layer.
  • the solid carbon source layer provides a method of manufacturing a pellicle for extreme ultraviolet lithography, which is an amorphous carbon layer, a graphite layer, a graphene nanoplate layer, a carbon nanotube layer, or a graphene layer.
  • the substrate provides a method of manufacturing a pellicle for extreme ultraviolet lithography, which is a silicon substrate having a silicon nitride layer formed on at least one surface thereof.
  • the step d) provides a method of manufacturing a pellicle for extreme ultraviolet lithography, which is a step of heat-treating at 600 to 1200° C. in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere provides a method of manufacturing a pellicle for extreme ultraviolet lithography in an argon gas atmosphere or an argon and hydrogen gas atmosphere.
  • a method of manufacturing a pellicle for extreme ultraviolet lithography further comprising the step of forming a capping layer on the graphene layer.
  • the capping layer is silicon nitride, silicon oxynitride (SiON), yttrium oxide (Y 2 O 3 ), yttrium nitride (YN), ruthenium (Ru), molybdenum (Mo), niobium (Nb), yttrium (Y), zirconium (Zr), boron carbide (B 4 C), silicon carbide (SiC), boron nitride (BN) It provides a method of manufacturing a pellicle for extreme ultraviolet lithography comprising at least one of.
  • a graphene layer is directly formed on the silicon carbide layer during the heat treatment process. Accordingly, the bonding force between the silicon carbide layer and the graphene layer is improved. In addition, since the transfer process of the graphene layer is not required, the process is simplified.
  • the metal catalyst can be easily removed from the graphene layer, there is little concern about changes in the properties of the pellicle, such as reflection of extreme ultraviolet rays by the remaining metal catalyst.
  • the composition of the metal catalyst layer can be more freely selected.
  • FIG. 1 is a flowchart of a method of manufacturing a pellicle for extreme ultraviolet lithography according to an embodiment of the present invention.
  • FIG. 2A to 2H are diagrams for explaining each step of the embodiment shown in FIG. 1 .
  • FIG. 1 is a flowchart of a method of manufacturing a pellicle for extreme ultraviolet lithography according to an embodiment of the present invention.
  • the method of manufacturing a pellicle for extreme ultraviolet lithography includes forming a silicon nitride layer on both sides of a silicon substrate (S1), and on the silicon nitride layer formed on one surface of the silicon substrate.
  • a silicon carbide layer (S2), forming a metal catalyst layer over the silicon carbide layer (S3), forming a solid carbon source layer over the metal catalyst layer (S4), the silicon carbide layer and the metal Heat treatment to form a graphene layer between the catalyst layers (S5), removing the metal catalyst layer (S6), forming a capping layer on the graphene layer (S7), and the other side of the silicon substrate and etching the silicon nitride layer and the silicon substrate formed thereon to form a window (S8).
  • silicon nitride (Si x N y ) layers 11a and 11b are respectively formed on the upper and lower surfaces of the silicon substrate 10 ( S1 ).
  • the silicon nitride layer 11a formed on the upper surface serves to protect the silicon carbide layer 12 from the wet etching solution and hydrogen radicals.
  • the silicon nitride layers 11a and 11b may be formed by depositing through a CVD or PVD process, for example, a low-pressure chemical vapor deposition (LPCVD) process or an atomic layer doposition (ALD) process. Since the silicon nitride layers 11a and 11b have low transmittance for extreme ultraviolet rays, they must be deposited to a thin thickness.
  • a silicon carbide layer 12 is formed on the silicon nitride layer 11a formed on one surface of the silicon substrate 10 ( S2 ).
  • the silicon carbide layer 12 has high transmittance with respect to extreme ultraviolet rays, and has excellent thermal emissivity and hydrogen resistance. In addition, the bonding strength with the graphene layer 15 formed on the silicon carbide layer 12 in a process to be described later is excellent.
  • the thickness of the silicon carbide layer 12 is preferably 30 to 500 ⁇ . This is because as the thickness increases, the transmittance of extreme ultraviolet rays decreases.
  • the average grain size of the silicon carbide layer 12 is 500 nm or less. This is because, when the average grain size is too large, the mechanical strength decreases.
  • the center line average roughness is 0.1 nmRa to 15 nmRa.
  • the silicon carbide layer 12 may be formed by a CVD or PVD process.
  • it may be formed through DC sputtering, RF sputtering, magnetron sputtering, bias sputtering, reactive sputtering, electron beam deposition process, ion beam deposition process, atomic layer doposition (ALD) process, and the like.
  • the reaction gas Si x H y , C x H y, etc. are suitable.
  • heat treatment or plasma treatment is performed to adjust the average grain size and center line average roughness of the formed silicon carbide layer 12 .
  • the heat treatment may be performed in CVD equipment, rapid heat treatment equipment, heat treatment furnace, and the like.
  • the heat treatment atmosphere is preferably vacuum, and the heat treatment temperature is preferably 400 to 900° C., and the time is preferably 15 to 60 minutes.
  • Plasma treatment includes reactive ion etching (RIE) apparatus, inductively coupled plasma (ICP) apparatus, capacitively coupled plasma (CCP) apparatus, atmospheric pressure plasma apparatus, chemical ion beam etching (CAIBE) apparatus, reactive ion beam etching (RIBE) apparatus, etc.
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • CCP capacitively coupled plasma
  • CAIBE chemical ion beam etching
  • RIBE reactive ion beam etching
  • Plasma treatment may be performed by forming plasma with a single gas or a mixed gas including at least one of hydrogen (H), carbon (C), fluoride (F), and argon (Ar) gas.
  • the average grain size is 500 nm or less, and the center line average roughness is preferably 0.1 nmRa to 15 nmRa.
  • a metal catalyst layer 13 is formed on the silicon carbide layer 12 ( S3 ).
  • the metal catalyst layer 13 nickel, cobalt, chromium, ruthenium, platinum, molybdenum, or an alloy thereof may be used.
  • the metal catalyst layer 13 may be a nickel copper alloy layer.
  • Nickel has high carbon solubility, and copper has low carbon solubility and is easy to etch, so if the content of nickel and copper is adjusted, the thickness of the graphene layer 15 and the etching rate of the metal catalyst layer 13 can be controlled.
  • the metal catalyst layer 13 may be formed by a method such as sputtering or vacuum deposition.
  • a solid carbon source layer 14 is formed on the metal catalyst layer 13 ( S4 ).
  • the solid carbon source layer 14 may be an amorphous carbon layer, a graphite layer, a graphene nanoplate layer, a carbon nanotube layer, or a graphene layer formed by a PVD or CVD method.
  • amorphous carbon formed by dispersing amorphous carbon powder, graphite powder, graphene nanoplate powder, carbon nanotube powder or graphene powder in a solvent to prepare a coating solution, then applying the coating solution by a method such as spin coating and drying It may be a layer, a graphite layer, a graphene nanoplate layer, a carbon nanotube layer, or a graphene layer.
  • a graphene layer 15 is formed between the silicon carbide layer 12 and the metal catalyst layer 13 through heat treatment ( S5 ).
  • Heat treatment is carried out at 600 ⁇ 1200°C, in a non-oxidizing atmosphere.
  • the heat treatment may be performed in an argon gas atmosphere or an argon atmosphere containing a small amount of hydrogen gas.
  • this step at least a portion of the solid carbon source layer 14 diffuses into the metal catalyst layer 13 to reach a supersaturated state, and carbon nuclei are formed between the silicon carbide layer 12 and the metal catalyst layer 13.
  • a pin layer 15 is formed. Since the graphene layer 15 is directly formed on the silicon carbide layer 12 , the bonding force between the graphene layer 15 and the silicon carbide layer 12 is improved.
  • the graphene layer 15 has advantages of high transmittance for extreme ultraviolet rays, excellent mechanical strength, and high thermal conductivity.
  • the metal catalyst layer 13 may be removed using an etching solution such as an iron chloride (FeCl 3 ) solution, an ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) solution, or an acidic solution. At this time, the solid carbon source layer 14 remaining on the metal catalyst layer 13 is also removed.
  • an etching solution such as an iron chloride (FeCl 3 ) solution, an ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) solution, or an acidic solution.
  • a capping layer 16 is formed on the graphene layer 15 (S7).
  • the capping layer 16 serves to protect the graphene layer 15 from high-power extreme UV rays.
  • the capping layer 16 is stable to hydrogen radicals generated by extreme ultraviolet light, and should protect the graphene layer from oxidation.
  • the capping layer 16 is a silicon nitride layer or silicon oxynitride (SiON), yttrium oxide (Y 2 O 3 ), yttrium nitride (YN), ruthenium (Ru), molybdenum (Mo), niobium (Nb), yttrium (Y), Zirconium (Zr), boron carbide (B 4 C), silicon carbide (SiC), boron nitride (BN) It may be a layer including at least one of
  • the capping layer 16 is preferably a silicon nitride layer.
  • the capping layer 16 may be formed by various methods such as a CVD method, a sputtering method, an electron beam deposition method, an ion beam deposition method, and the like.
  • a window is formed by etching the silicon nitride layer 11b and the silicon substrate 10 formed on the other surface of the silicon substrate 10 ( S8 ).
  • a photoresist layer is applied on the silicon nitride layer 11b formed on the lower surface of the silicon substrate 10, and after patterning, the center portion of the silicon nitride layer 11b is removed by dry etching, and the silicon substrate 10 through wet etching. By removing the central portion of the to form a window through which extreme ultraviolet rays can be transmitted, it is possible to obtain a pellicle for extreme ultraviolet.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

본 발명은 극자외선 리소그라피용 펠리클의 제조방법에 관한 것이다. 본 발명은 본 발명은 a) 기판의 일면 위에 탄화규소 층을 형성하는 단계와, b) 상기 탄화규소 층 위에 금속 촉매 층을 형성하는 단계와, c) 상기 금속 촉매 층 위에 고체 탄소 소스 층을 형성하는 단계와, d) 상기 고체 탄소 소스 층의 적어도 일부가 상기 금속 촉매 층으로 확산되면서 과포화되어 상기 탄화규소 층과 상기 금속 촉매 층 사이에 그래핀 층이 형성되도록 열처리하는 단계와, e) 상기 금속 촉매 층을 제거하는 단계를 포함하는 극자외선 리소그라피용 펠리클의 제조방법을 제공한다. 본 발명에 따른 극자외선 리소그라피용 펠리클의 제조방법에 따르면 열처리 과정에서 탄화규소 층 위에 그래핀 층이 바로 형성된다. 따라서 탄화규소 층과 그래핀 층 사이의 결합력이 개선된다.

Description

극자외선 리소그라피용 펠리클의 제조방법
본 발명은 극자외선 리소그라피용 펠리클의 제조방법에 관한 것이다.
반도체 디바이스 또는 액정 표시판 등의 제조에서 반도체 웨이퍼 또는 액정용 기판에 패터닝을 하는 경우에 포토리소그라피라는 방법이 사용된다. 포토리소그라피에서는 패터닝의 원판으로서 마스크가 사용되고, 마스크 상의 패턴이 웨이퍼 또는 액정용 기판에 전사된다. 이 마스크에 먼지가 부착되어 있으면 이 먼지로 인하여 빛이 흡수되거나, 반사되기 때문에 전사한 패턴이 손상되어 반도체 장치나 액정 표시판 등의 성능이나 수율의 저하를 초래한다는 문제가 발생한다. 따라서, 이들의 작업은 보통 클린룸에서 행해지지만 이 클린룸 내에도 먼지가 존재하므로, 마스크 표면에 먼지가 부착하는 것을 방지하기 위하여 펠리클을 부착하는 방법이 행해지고 있다. 이 경우, 먼지는 마스크의 표면에는 직접 부착되지 않고, 펠리클 막 위에 부착되고, 리소그라피 시에는 초점이 마스크의 패턴 상에 일치되어 있으므로 펠리클 상의 먼지는 초점이 맞지 않아 패턴에 전사되지 않는 이점이 있다.
점차 반도체 제조용 노광 장치의 요구 해상도는 높아져 가고 있고, 그 해상도를 실현하기 위해서 광원의 파장이 점점 더 짧아지고 있다. 구체적으로, UV 광원은 자외광 g선(436), I선(365), KrF 엑시머 레이저(248), ArF 엑시머 레이저(193)에서 극자외선(EUV, extreme UltraViolet, 13.5㎚)으로 점점 파장이 짧아지고 있다. 이러한 극자외선을 이용한 노광 기술을 실현하기 위해서는 새로운 광원, 레지스트, 마스크, 펠리클의 개발이 불가결하다. 즉, 종래의 유기 펠리클 막은 높은 에너지를 가진 노광 광원에 의해서 물성이 변화되고, 수명이 짧기 때문에 극자외선용 펠리클에는 사용되기 어렵다는 문제가 있다. 이러한 문제를 해결하기 위해서 다양한 시도가 진행되고 있다.
예를 들어, 한국공개특허 제2009-0088396호에는 에어로겔 필름으로 이루어진 펠리클이 개시되어 있다.
그리고 한국공개특허 제2009-0122114호에는 실리콘 단결정 막으로 이루어지는 펠리클 막과 그 펠리클 막을 지지하는 베이스 기판을 포함하며, 베이스 기판은 60% 이상의 개구부를 형성하는 것을 특징으로 하는 극자외선용 펠리클이 개시되어 있다.
한국공개특허 제2009-0122114호에 개시된 극자외선용 펠리클은 극자외선의 투과를 위해서 실리콘 단결정 막을 박막으로 형성하여야 한다. 이러한 실리콘 단결정 박막은 작은 충격에도 쉽게 손상될 수 있으므로, 이를 지지하기 위한 베이스 기판을 사용한다. 이러한 베이스 기판의 보강 틀은 일정한 패턴을 형성하며, 이 패턴이 리소그라피 공정에서 기판에 전사된다는 문제가 있다. 또한, 투과율이 60% 정도로 매우 낮다는 문제가 있다.
극자외선은 파장이 짧기 때문에 에너지가 매우 높으며, 투과율이 낮기 때문에 상당량의 에너지가 펠리클 막과 베이스 기판에 흡수되어 펠리클 막과 베이스 기판이 가열될 수 있다. 따라서 펠리클 막과 베이스 기판의 재질이 서로 다를 경우에는 리소그라피 공정에서 발생하는 열에 의한 열팽창 차이에 의해서 변형이 발생할 수 있다는 문제 또한 있다.
펠리클 막을 보강하기 위한 별도의 베이스 기판을 사용하지 않는 프리스텐딩 펠리클을 사용하는 방법도 개시되어 있다.
예를 들어, 본 출원인에 의해서 출원되어 등록된 한국등록특허 제1552940호에는 니켈 호일에 흑연 박막을 형성한 후 니켈 호일을 염화철이 포함된 수용액을 이용하여 에칭하여 흑연 박막을 얻는 방법이 개시되어 있다.
또한, 본 출원인에 의해서 출원되어 등록된 한국등록특허 제1303795호, 제1940791호에는 유기물 기판에 지르코늄 또는 몰리브덴 금속 박막 층, 실리콘 박막 층, 탄화규소 박막 층 또는 카본 박막 층을 형성한 후 유기물 기판을 용매를 이용하여 용해하여 펠리클 막을 얻는 방법이 개시되어 있다.
또한, 실리콘 기판의 양면에 질화규소 층을 형성하고, 실리콘 기판의 윗면의 질화규소 층 위에 극자외선의 투과율이 높은 코어 층인 단결정 또는 다결정 실리콘 층, 질화규소 층, 캐핑 층을 순차적으로 형성한 후, 실리콘 기판의 아랫면에 형성된 질화규소 층에 포토레지스트를 도포한 후 패터닝하고, 질화규소 층의 중심부를 건식에칭으로 제거하고, 실리콘 기판의 중심부를 습식에칭으로 제거하여 극자외선이 투과되는 윈도우를 형성하여 펠리클을 제조하는 방법도 사용되고 있다.
또한, 코어 층으로 열전도도가 높고, 극자외선의 흡수율이 낮은 그래핀 층을 사용하는 방법도 연구되고 있다. 종래의 방법에서는 그래핀 층을 전이금속 촉매 층이 형성된 기판에 탄화수소를 포함한 혼합가스를 주입하여 열처리함으로써 탄소를 흡착시킨 후 냉각하는 방법으로 형성하였으며, 이 그래핀 층을 기판에서 분리한 후, 질화규소 층이 형성된 실리콘 기판에 전사하였다.
그런데 이러한 방법으로 전사된 그래핀 층은 질화규소 층으로부터 쉽게 박리된다는 문제점이 있었다. 또한, 극자외선의 반사 등과 같이, 그래핀 층에 잔존하는 금속 촉매에 의한 펠리클 특성에 대한 악영향도 있을 수 있다는 문제점도 있었다.
[선행기술문헌]
(특허문헌 1) 한국공개특허 제2009-0088396호
(특허문헌 2) 한국공개특허 제2009-0122114호
(특허문헌 3) 한국등록특허 제1552940호
(특허문헌 4) 한국등록특허 제1303795호
(특허문헌 5) 한국등록특허 제1940791호
(특허문헌 6) 한국공개특허 제2016-0086024호
(특허문헌 7) 한국공개특허 제2019-0005911호
(특허문헌 8) 한국공개특허 제2019-0107603호
본 발명은 상술한 문제점을 개선하기 위한 것으로서, 그래핀 코어 층을 사용하는 극자외선 리소그라피용 펠리클의 새로운 제조방법을 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위해서, 본 발명은 a) 기판의 일면 위에 탄화규소 층을 형성하는 단계와, b) 상기 탄화규소 층 위에 금속 촉매 층을 형성하는 단계와, c) 상기 금속 촉매 층 위에 고체 탄소 소스 층을 형성하는 단계와, d) 상기 고체 탄소 소스 층의 적어도 일부가 상기 금속 촉매 층으로 확산되면서 과포화되어 상기 탄화규소 층과 상기 금속 촉매 층 사이에 그래핀 층이 형성되도록 열처리하는 단계와, e) 상기 금속 촉매 층을 제거하는 단계를 포함하는 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 금속 촉매 층은 니켈, 코발트, 크롬, 루테늄, 백금, 몰리브덴 또는 이들의 합금 중에서 선택된 금속 층인 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 금속 촉매 층은 니켈 구리 합금 층인 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 고체 탄소 소스 층은 비정질 탄소 층, 흑연 층, 그래핀 나노플레이트 층, 탄소나노튜브 층 또는 그래핀 층인 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 기판은 적어도 일면에 질화규소 층이 형성된 실리콘 기판인 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 d) 단계는 600~1200℃, 비산화성 분위기에서 열처리하는 단계인 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 비산화성 분위기는 아르곤 가스 분위기 또는 아르곤 및 수소 가스 분위기인 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 그래핀 층 위에 캐핑 층을 형성하는 단계를 더 포함하는 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
또한, 상기 캐핑 층은 질화규소, 산화질화규소(SiON), 산화이트륨(Y2O3), 질화이트륨(YN), 루테늄(Ru), 몰리브덴(Mo), 니오븀(Nb), 이트륨(Y), 지르코늄(Zr), 탄화붕소(B4C), 탄화규소(SiC), 질화붕소(BN) 중 적어도 하나를 포함하는 극자외선 리소그라피용 펠리클의 제조방법을 제공한다.
본 발명에 따른 극자외선 리소그라피용 펠리클의 제조방법에 따르면 열처리 과정에서 탄화규소 층 위에 그래핀 층이 바로 형성된다. 따라서 탄화규소 층과 그래핀 층 사이의 결합력이 개선된다. 또한, 그래핀 층의 전사 과정이 필요하지 않기 때문에 공정이 간소화된다.
또한, 그래핀 층으로부터 금속 촉매를 용이하게 제거할 수 있어서, 잔존하는 금속 촉매에 의한 극자외선의 반사와 같은 펠리클 특성 변화 우려가 적다. 또한, 금속 촉매 층의 조성을 좀더 자유롭게 선택할 수 있다.
도 1은 본 발명의 일실시예에 따른 극자외선 리소그라피용 펠리클의 제조방법의 순서도이다.
도 2a 내지 2h는 도 1에 도시된 실시예의 각 단계를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참고하여 본 발명에 따른 극자외선 리소그라피용 펠리클의 제조방법에 대해서 상세히 설명한다.
다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일실시예에 따른 극자외선 리소그라피용 펠리클의 제조방법의 순서도이다.
도 1에 도시된 바와 같이, 본 발명에 일실시예에 따른 극자외선 리소그라피용 펠리클의 제조방법은 실리콘 기판의 양면에 질화규소 층을 형성하는 단계(S1)와, 실리콘 기판의 일면에 형성된 질화규소 층 위에 탄화규소 층을 형성하는 단계(S2)와, 탄화규소 층 위에 금속 촉매 층을 형성하는 단계(S3)와, 금속 촉매 층 위에 고체 탄소 소스 층을 형성하는 단계(S4)와, 탄화규소 층과 금속 촉매 층 사이에 그래핀 층이 형성되도록 열처리하는 단계(S5)와, 금속 촉매 층을 제거하는 단계(S6)와, 그래핀 층 위에 캐핑 층을 형성하는 단계(S7)와, 실리콘 기판의 다른 일면에 형성된 질화규소 층과 실리콘 기판을 에칭하여 윈도우를 형성하는 단계(S8)를 포함한다.
이하, 도 2a 내지 2h를 참고하여, 각각의 단계에 대해서 설명한다.
먼저, 도 2a에 도시된 바와 같이, 실리콘 기판(10)의 상면과 하면에 각각 질화규소(SixNy) 층(11a, 11b)을 형성한다(S1).
상면에 형성된 질화규소 층(11a)은 습식 에칭 액과 수소 라디칼로부터 탄화규소 층(12)을 보호하는 역할을 한다. 질화규소 층(11a, 11b)은 CVD나 PVD 공정, 예를 들어, 저압 화학 증착(LPCVD) 공정이나, 원자층 증착(Atomic layer doposition, ALD) 공정을 통해서 증착하는 방법으로 형성할 수 있다. 질화규소 층(11a, 11b)은 극자외선에 대한 투과율이 낮기 때문에 얇은 두께로 증착되어야 한다.
다음, 도 2b에 도시된 바와 같이, 실리콘 기판(10)의 일면에 형성된 질화규소 층(11a) 위에 탄화규소 층(12)을 형성한다(S2).
탄화규소 층(12)은 극자외선에 대한 투과율이 높으며, 열방사율 및 내수소성이 우수하다. 또한, 후술하는 공정에서 탄화규소 층(12) 위에 형성되는 그래핀 층(15)과의 결합력이 우수하다.
여기서 탄화규소 층(12)의 두께는 30 ~ 500Å인 것이 바람직하다. 두께가 두꺼워지면 극자외선의 투과율이 떨어지기 때문이다.
그리고 탄화규소 층(12)의 평균 결정립 크기(Grain size)는 500㎚ 이하인 것이 바림직하다. 평균 결정립 크기가 너무 크면, 기계적 강도가 떨어지기 때문이다.
또한, 중심선 평균조도는 0.1㎚Ra ~ 15㎚Ra인 것이 바람직하다. 탄화규소 층(12)의 표면이 거칠어지면, 탄화규소 층(12)과 다른 층 간의 밀착력이 떨어진다.
탄화규소 층(12)은 CVD나 PVD 공정으로 형성할 수 있다. 예를 들어, DC 스퍼터링, RF 스퍼터링, 마그네트론 스퍼터링, 바이어스 스퍼터링, 반응성 스퍼터링(Reactive sputtering), 전자빔 증착 공정, 이온빔 증착 공정, 원자층 증착(Atomic layer doposition, ALD) 공정 등을 통해서 형성할 수 있다. 반응가스로는 SixHy, CxHy 등이 적합하다.
그리고 형성된 탄화규소 층(12)의 평균 결정립 크기(Grain size)와 중심선 평균조도를 조절하기 위해서 열처리 또는 플라즈마 처리를 진행한다.
열처리는 CVD 장비, 급속 열처리 장비, 열처리로 등에서 진행할 수 있다. 열처리 분위기는 진공인 것이 바람직하며, 그리고 열처리 온도는 400 ~ 900℃이고, 시간은 15 ~ 60분인 것이 바람직하다.
플라즈마 처리는 반응성 이온식각(RIE) 장치, 유도결합 플라즈마(ICP) 장치, 용량성 결합 플라즈마(CCP) 장치, 대기압 플라즈마 장치, 화학적 이온 빔 식각(CAIBE) 장치, 반응성 이온 빔 식각(RIBE) 장치 등으로 진행할 수 있다. 플라즈마 처리는 수소(H), 탄소(C), 플루오르화(F), 아르곤 (Ar) 가스 중 적어도 하나를 포함하는 단일가스 혹은 혼합가스로 플라즈마를 형성하여 진행할 수 있다.
그리고 이온빔을 사용하는 경우에 80~111eV의 이온빔을 사용하여 10초 이하로 플라즈마 처리를 진행하는 것이 바람직하다.
열처리 또는 플라즈마 처리 후 평균 결정립 크기(Grain size)는 500㎚ 이하이며, 중심선 평균조도는 0.1㎚Ra ~ 15㎚Ra인 것이 바람직하다.
다음, 도 2c에 도시된 바와 같이, 탄화규소 층(12) 위에 금속 촉매 층(13)을 형성한다(S3).
금속 촉매 층(13)으로는 니켈, 코발트, 크롬, 루테늄, 백금, 몰리브덴 또는 이들의 합금 등을 사용할 수 있다. 바람직하게는 금속 촉매 층(13)은 니켈 구리 합금 층일 수 있다. 니켈은 탄소 용해도가 높으며, 구리는 탄소 용해도가 낮고 에칭이 용이하므로, 니켈과 구리의 함량을 조절하면 생성되는 그래핀 층(15)의 두께와 금속 촉매 층(13)의 에칭 속도를 조절할 수 있다. 금속 촉매 층(13)은 스퍼터링이나 진공증착 방법 등의 방법으로 형성할 수 있다.
다음, 도 2d에 도시된 바와 같이, 금속 촉매 층(13) 위에 고체 탄소 소스 층(14)을 형성한다(S4).
고체 탄소 소스 층(14)은 PVD 또는 CVD 방법으로 형성된 비정질 탄소 층, 흑연 층, 그래핀 나노플레이트 층, 탄소나노튜브 층 또는 그래핀 층일 수 있다. 또한, 비정질 탄소 파우더, 흑연 파우더, 그래핀 나노플레이트 파우더, 탄소나노튜브 파우더 또는 그래핀 파우더를 용매에 분산하여 코팅액을 제조한 후 스핀 코팅 등의 방법으로 코팅액을 도포한 후 건조하여 형성한 비정질 탄소 층, 흑연 층, 그래핀 나노플레이트 층, 탄소나노튜브 층 또는 그래핀 층일 수도 있다.
다음, 도 2e에 도시된 바와 같이, 열처리를 통해서 탄화규소 층(12)과 상기 금속 촉매 층(13) 사이에 그래핀 층(15)을 형성한다(S5).
열처리는 600~1200℃, 비산화성 분위기에서 진행된다. 예를 들어, 아르곤 가스 분위기 또는 수소 가스가 소량 포함된 아르곤 분위기에서 열처리가 진행될 수 있다. 본 단계에서는 고체 탄소 소스 층(14)의 적어도 일부가 금속 촉매 층(13)으로 확산되면서 과포화 상태에 이르게 되며, 탄소 핵이 형성되면서 탄화규소 층(12)과 금속 촉매 층(13) 사이에 그래핀 층(15)을 형성한다. 그래핀 층(15)이 탄화규소 층(12) 위에 직접 형성되므로 그래핀 층(15)과 탄화규소 층(12)의 결합력이 향상된다. 그래핀 층(15)은 극자외선에 대한 투과율이 높으며, 기계적 강도가 우수하고, 열전도도가 높다는 장점이 있다.
다음, 도 2f에 도시된 바와 같이, 금속 촉매 층(13)을 제거한다(S6).
금속 촉매 층(13)은 염화철(FeCl3) 용액, 과황산암모늄((NH4)2S2O8) 용액, 산성 용액 등의 에칭액을 이용해서 제거할 수 있다. 이때, 금속 촉매 층(13) 위에 잔류하는 고체 탄소 소스 층(14) 도 함께 제거된다.
다음, 도 2g에 도시된 바와 같이, 그래핀 층(15) 위에 캐핑 층(16)을 형성한다(S7).
캐핑 층(16)은 고출력의 극자외선으로부터 그래핀 층(15)을 보호하는 역할을 한다. 캐핑 층(16)은 극자외선 광에 의해서 발생하는 수소 라디칼에 안정적이며, 산화로부터 그래핀 층을 보호해야 한다. 캐핑 층(16)은 질화규소 층 또는 산화질화규소(SiON), 산화이트륨(Y2O3), 질화이트륨(YN), 루테늄(Ru), 몰리브덴(Mo), 니오븀(Nb), 이트륨(Y), 지르코늄(Zr), 탄화붕소(B4C), 탄화규소(SiC), 질화붕소(BN) 중 적어도 하나를 포함하는 층일 수 있다. 캐핑 층(16)은 질화규소 층인 것이 바람직하다.
캐핑 층(16)은 CVD 법, 스퍼터링법, 전자빔 증착법, 이온빔 증착법 등의 다양한 방법으로 형성할 수 있다.
다음, 도 2h에 도시된 바와 같이, 실리콘 기판(10)의 다른 일면에 형성된 질화규소 층(11b)과 실리콘 기판(10)을 에칭하여 윈도우를 형성한다(S8).
실리콘 기판(10)의 하면에 형성된 질화규소 층(11b) 위에 포토레지스트 층을 도포하고, 패터닝을 한 후 건식 에칭으로 질화규소 층(11b)의 중심 부분을 제거하고, 습식 에칭을 통해서 실리콘 기판(10)의 중심 부분을 제거하여, 극자외선이 투과될 수 있는 윈도우를 형성하면, 극자외용 펠리클을 얻을 수 있다.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.
[부호의 설명]
10: 실리콘 기판
11a, 11b: 질화규소 층
12: 탄화규소 층
13: 금속촉매 층
14: 고체 탄소 소스 층
15: 그래핀 층
16: 캐핑 층

Claims (9)

  1. a) 기판의 일면 위에 탄화규소 층을 형성하는 단계와,
    b) 상기 탄화규소 층 위에 금속 촉매 층을 형성하는 단계와,
    c) 상기 금속 촉매 층 위에 고체 탄소 소스 층을 형성하는 단계와,
    d) 상기 고체 탄소 소스 층의 적어도 일부가 상기 금속 촉매 층으로 확산되면서 과포화되어 상기 탄화규소 층과 상기 금속 촉매 층 사이에 그래핀 층이 형성되도록 열처리하는 단계와,
    e) 상기 금속 촉매 층을 제거하는 단계를 포함하는 극자외선 리소그라피용 펠리클의 제조방법.
  2. 제1항에 있어서,
    상기 금속 촉매 층은 니켈, 코발트, 크롬, 루테늄, 백금, 몰리브덴 또는 이들의 합금 중에서 선택된 금속 층인 극자외선 리소그라피용 펠리클의 제조방법.
  3. 제2항에 있어서,
    상기 금속 촉매 층은 니켈 구리 합금 층인 극자외선 리소그라피용 펠리클의 제조방법.
  4. 제1항에 있어서,
    상기 고체 탄소 소스 층은 비정질 탄소 층, 흑연 층, 그래핀 나노플레이트 층, 탄소나노튜브 층 또는 그래핀 층인 극자외선 리소그라피용 펠리클의 제조방법.
  5. 제1항에 있어서,
    상기 기판은 적어도 일면에 질화규소 층이 형성된 실리콘 기판인 극자외선 리소그라피용 펠리클의 제조방법.
  6. 제1항에 있어서,
    상기 d) 단계는 600~1200℃, 비산화성 분위기에서 열처리하는 단계인 극자외선 리소그라피용 펠리클의 제조방법.
  7. 제6항에 있어서,
    상기 비산화성 분위기는 아르곤 가스 분위기 또는 아르곤 및 수소 가스 분위기인 극자외선 리소그라피용 펠리클의 제조방법.
  8. 제1항에 있어서,
    상기 그래핀 층 위에 캐핑 층을 형성하는 단계를 더 포함하는 극자외선 리소그라피용 펠리클의 제조방법.
  9. 제8항에 있어서,
    상기 캐핑 층은 질화규소, 산화질화규소(SiON), 산화이트륨(Y2O3), 질화이트륨(YN), 루테늄(Ru), 몰리브덴(Mo), 니오븀(Nb), 이트륨(Y), 지르코늄(Zr), 탄화붕소(B4C), 탄화규소(SiC), 질화붕소(BN) 중 적어도 하나를 포함하는 극자외선 리소그라피용 펠리클의 제조방법.
PCT/KR2021/008492 2020-07-09 2021-07-05 극자외선 리소그라피용 펠리클의 제조방법 WO2022010201A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0084866 2020-07-09
KR1020200084866A KR102482649B1 (ko) 2020-07-09 2020-07-09 극자외선 리소그라피용 펠리클의 제조방법

Publications (1)

Publication Number Publication Date
WO2022010201A1 true WO2022010201A1 (ko) 2022-01-13

Family

ID=79553332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008492 WO2022010201A1 (ko) 2020-07-09 2021-07-05 극자외선 리소그라피용 펠리클의 제조방법

Country Status (2)

Country Link
KR (1) KR102482649B1 (ko)
WO (1) WO2022010201A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232408A1 (en) * 2022-05-31 2023-12-07 Asml Netherlands B.V. A membrane and associated method and apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102504698B1 (ko) * 2022-04-04 2023-02-28 주식회사 그래핀랩 펠리클 제조방법
KR20230174998A (ko) * 2022-06-22 2023-12-29 주식회사 에프에스티 극자외선 리소그라피용 펠리클의 제조방법
KR20240049899A (ko) * 2022-10-11 2024-04-18 주식회사 그래핀랩 펠리클 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100111447A (ko) * 2009-04-07 2010-10-15 삼성전자주식회사 그래핀의 제조 방법
CN103204495A (zh) * 2012-01-17 2013-07-17 铼钻科技股份有限公司 图案化石墨烯制备方法
KR20190003752A (ko) * 2016-07-05 2019-01-09 미쯔이가가꾸가부시끼가이샤 펠리클막, 펠리클 프레임체, 펠리클, 그 제조 방법, 노광 원판, 노광 장치, 반도체 장치의 제조 방법
KR20190013460A (ko) * 2017-07-31 2019-02-11 삼성전자주식회사 포토마스크용 펠리클과 이를 포함하는 레티클 및 포토마스크용 펠리클의 제조방법
JP2019168502A (ja) * 2018-03-22 2019-10-03 三井化学株式会社 カーボンナノチューブ自立膜の製造方法、およびペリクルの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723704B2 (en) 2006-11-10 2010-05-25 Globalfoundries Inc. EUV pellicle with increased EUV light transmittance
KR101622306B1 (ko) 2009-10-29 2016-05-19 삼성전자주식회사 그라펜 시트, 이를 포함하는 그라펜 기재 및 그의 제조방법
JP4934099B2 (ja) 2008-05-22 2012-05-16 信越化学工業株式会社 ペリクルおよびペリクルの製造方法
US8980217B2 (en) * 2010-12-21 2015-03-17 Nec Corporation Method of manufacturing graphene substrate, and graphene substrate
KR101303795B1 (ko) 2011-12-26 2013-09-04 주식회사 에프에스티 초극자외선용 펠리클 및 그 제조방법
US10431354B2 (en) * 2013-03-15 2019-10-01 Guardian Glass, LLC Methods for direct production of graphene on dielectric substrates, and associated articles/devices
KR101552940B1 (ko) 2013-12-17 2015-09-14 삼성전자주식회사 흑연-함유 박막을 포함하는 극자외선 리소그래피용 펠리클 막
KR102251999B1 (ko) 2015-01-09 2021-05-17 삼성전자주식회사 펠리클 및 이의 제조 방법
US9864270B2 (en) * 2016-01-15 2018-01-09 Taiwan Semiconductor Manufacturing Company Ltd. Pellicle and method for manufacturing the same
CN109313385A (zh) 2016-06-28 2019-02-05 三井化学株式会社 防护膜、防护膜组件框体、防护膜组件及其制造方法
KR101940791B1 (ko) 2017-05-19 2019-01-21 주식회사 에프에스티 유기물 희생층 기판을 이용한 초극자외선용 펠리클의 제조방법
KR20190107603A (ko) 2019-04-22 2019-09-20 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100111447A (ko) * 2009-04-07 2010-10-15 삼성전자주식회사 그래핀의 제조 방법
CN103204495A (zh) * 2012-01-17 2013-07-17 铼钻科技股份有限公司 图案化石墨烯制备方法
KR20190003752A (ko) * 2016-07-05 2019-01-09 미쯔이가가꾸가부시끼가이샤 펠리클막, 펠리클 프레임체, 펠리클, 그 제조 방법, 노광 원판, 노광 장치, 반도체 장치의 제조 방법
KR20190013460A (ko) * 2017-07-31 2019-02-11 삼성전자주식회사 포토마스크용 펠리클과 이를 포함하는 레티클 및 포토마스크용 펠리클의 제조방법
JP2019168502A (ja) * 2018-03-22 2019-10-03 三井化学株式会社 カーボンナノチューブ自立膜の製造方法、およびペリクルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232408A1 (en) * 2022-05-31 2023-12-07 Asml Netherlands B.V. A membrane and associated method and apparatus

Also Published As

Publication number Publication date
KR20220006887A (ko) 2022-01-18
KR102482649B1 (ko) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2022010201A1 (ko) 극자외선 리소그라피용 펠리클의 제조방법
WO2018212604A1 (ko) 유기물 희생층 기판을 이용한 초극자외선용 펠리클의 제조방법
US11467486B2 (en) Graphene pellicle lithographic apparatus
WO2011090262A2 (ko) 경사 증착을 이용한 리소그래피 방법
WO2013191341A1 (en) Method of manufacturing stamp for plasmonic nanolithography apparatus and plasmonic nanolithography apparatus
WO2016171514A1 (ko) 펠리클 및 그 제조 방법
WO2021194032A1 (ko) 그래핀을 포함하는 그래핀-금속복합 펠리클 및 그의 제조방법
WO2020209527A1 (ko) 고두께 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2021054541A1 (ko) 구리 박막의 건식 식각방법
WO2023195677A1 (ko) 펠리클 제조방법 및 이에 의해 제조된 펠리클
WO2021018777A1 (en) Pellicle membrane
WO2013143183A1 (zh) 光刻蚀方法及曝光系统
WO2023200300A1 (ko) 오존가스를 이용한 펠리클 소재용 그래핀박막의 제조방법
WO2021080294A1 (ko) 질화붕소 나노튜브를 사용하는 극자외선 리소그래피용 펠리클 및 이의 제조방법
WO2022169170A2 (ko) 카르빈 층을 포함하는 극자외선 리소그라피용 펠리클 막 및 그 제조방법
WO2018226004A1 (ko) 펠리클 제조방법
KR20210030621A (ko) 탄화규소 층을 포함하는 극자외선용 펠리클의 제조방법
WO2023085761A1 (ko) 다성분계 실리콘 화합물 층을 포함하는 극자외선 리소그래피용 펠리클 막
WO2023090777A1 (ko) 극자외선 리소그라피용 펠리클의 제조방법
WO2023249314A1 (ko) 극자외선 리소그라피용 펠리클의 제조방법
WO2022182094A1 (ko) 질화 붕소 나노 구조 층을 포함하는 극자외선 리소그라피용 펠리클 막 및 그 제조방법
WO2024080446A1 (ko) 펠리클 제조 방법
WO2016043536A1 (ko) 감광성 유리를 이용한 euv 리소그래피용 펠리클 제조방법
KR102546968B1 (ko) 극자외선 리소그라피용 펠리클의 제조방법
WO2016032096A1 (ko) 탄화규소를 이용한 펠리클 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838316

Country of ref document: EP

Kind code of ref document: A1