WO2017082695A2 - 탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법 - Google Patents

탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법 Download PDF

Info

Publication number
WO2017082695A2
WO2017082695A2 PCT/KR2016/013037 KR2016013037W WO2017082695A2 WO 2017082695 A2 WO2017082695 A2 WO 2017082695A2 KR 2016013037 W KR2016013037 W KR 2016013037W WO 2017082695 A2 WO2017082695 A2 WO 2017082695A2
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal
precursor
carbon
oxygen
Prior art date
Application number
PCT/KR2016/013037
Other languages
English (en)
French (fr)
Other versions
WO2017082695A3 (ko
Inventor
정동근
반원진
권성률
Original Assignee
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교 산학협력단 filed Critical 성균관대학교 산학협력단
Publication of WO2017082695A2 publication Critical patent/WO2017082695A2/ko
Publication of WO2017082695A3 publication Critical patent/WO2017082695A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3

Definitions

  • the present invention is carbon; Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten, the thin film comprising: 5 to 85 atomic% carbon, 5 to 5 atomic%, based on the total atomic percentage (atomic%); 60 atomic percent oxygen; And it relates to a metal carbide thin film comprising a metal of 5 to 40 atomic%.
  • Metal oxide thin films and hydrocarbon thin films are widely used as insulator layers in semiconductor processes and are also useful as hard masks, which are atomic layer deposition (ALD), sputtering or plasma atomic layers. It is known to be deposited and formed by a deposition method (PEALD) (Korean Patent Publication No. 2007-0049927).
  • PEALD atomic layer deposition
  • An Al 2 O 3 thin film which is a typical metal oxide thin film, is formed by depositing by atomic layer deposition using trimethylaluminum (TMA) and water, or from trimethylaluminum and oxygen plasma using plasma atomic layer deposition.
  • TMA trimethylaluminum
  • TiO 2 In the case of a thin film, a thin film is deposited by using a titanium target (Ti target) and an oxygen reactor by sputtering.
  • Hard masks for semiconductor processing require physical and chemical properties that can act as a mask on the top while removing thin films stacked in more than 24 or 32 steps of the bottom (Korean Patent Publication No. 2006-0030205) ). For example, it is possible to etch a laminated structure of more than 24 steps while lifting and warpage of the mask film does not occur, and there is a need for a characteristic that can improve the critical dimension (CD) uniformity.
  • CD critical dimension
  • a mask film having excellent chemical and physical properties for an etching gas eg, fluorine gas series (CF 4 , F 2 , NF 3, etc.)
  • an etching gas eg, fluorine gas series (CF 4 , F 2 , NF 3, etc.)
  • an amorphous carbon layer (ACL) formed from hydrocarbons is used as a hard mask thin film.
  • the ACL is easily removed by an oxygen ashing process after the mask process because of the C x H y component, but it is difficult to apply to a mask for removing a laminated thin film having more than 32 steps.
  • the present inventors have diligently researched to develop a thin film for hard masks having excellent physical and chemical performance while exhibiting insulating thin film properties.
  • the thin film is manufactured to further include a metal in a hydrocarbon component, thereby improving physical and chemical etching resistance of the thin film.
  • the invention was found to be capable of forming a single layer thin film that is easy to remove in subsequent processes.
  • a first aspect of the invention is carbon; Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten, wherein the metal carbide thin film comprises 5 to 85 atomic% carbon and 5 to 60 atomic% oxygen based on the total atomic% ; And it provides a thin film comprising a metal of 5 to 40 atomic%.
  • a method of manufacturing a metal carbide thin film comprising forming a thin film on a substrate by a plasma chemical vapor deposition method using a precursor, wherein the precursor includes all of carbon, oxygen, and metal.
  • a precursor includes all of carbon, oxygen, and metal.
  • the metal carbide thin film of the present invention is deposited and formed through a single injection process of the reaction precursor, the thickness of the thin film can be reduced, thereby simplifying the process and reducing the manufacturing cost, thereby contributing to productivity improvement.
  • the method of manufacturing the metal carbide thin film of the present invention can adjust the content ratio of each component in the thin film by changing the deposition conditions, and thus can control the physical properties such as strength, etching resistance, conductivity of the thin film prepared accordingly, It is advantageous to produce thin films having properties suitable for the intended use.
  • FIG. 1 is a view schematically showing the structure of a conventional single-component thin film usable as a hard mask and the metal carbide thin film of the present invention.
  • DMAI dimethylaluminum isopropoxide
  • FIG. 3 is a view showing the characteristics of titanium tetraisopropoxide (TTIP) which is a single precursor used in the method for forming a metal carbide thin film of the present invention.
  • TTIP titanium tetraisopropoxide
  • XPS X-ray photoelectron spectrometer
  • XPS X-ray photoelectron spectrometer
  • FIG. 6 is a view showing the results of the FT-IR analysis of the metal carbide thin film of the present invention prepared using a single precursor TTIP.
  • FIG. 7 is a view showing the results of the FT-IR analysis of the metal carbide thin film of the present invention prepared using TTIP and cyclohexane as a precursor.
  • FIG. 8 is a view showing the current density characteristics of the metal carbide thin film of the present invention.
  • the sample numbers indicated on the drawings correspond to the sample numbers disclosed in Table 1 of Example 1.
  • a first aspect of the invention is carbon; Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten, wherein the metal carbide thin film comprises 5 to 85 atomic% carbon and 5 to 60 atomic% oxygen based on the total atomic% ; And it provides a thin film comprising a metal of 5 to 40 atomic%.
  • a method of manufacturing a metal carbide thin film comprising forming a thin film on a substrate by a plasma chemical vapor deposition method using a precursor, wherein the precursor includes all of carbon, oxygen, and metal.
  • a precursor includes all of carbon, oxygen, and metal.
  • a single precursor including all carbon, oxygen, and metal, or a mixture of organic precursor and inorganic precursor is prepared by depositing a single precursor including metals together with a hydrocarbon component in the thin film by depositing a mixture of organic precursor and inorganic precursor. It was first discovered that thin films of layers could be formed. In addition, it was confirmed that by manufacturing the metal carbide thin film to include all of carbon, oxygen, and metal, it was possible to form a thin film having enhanced physical and chemical etching resistance while exhibiting insulating thin film properties. The present invention is based on this.
  • the metal oxide thin film or the hydrocarbon thin film may be used as a hard mask for an etching process performed to form a fine structure in the manufacture of a semiconductor device, etc.
  • the hard mask may be an etching process for that purpose. After this, it is preferable that the ashing process is completely removed.
  • a thin film formed by using a metal oxide alone is used as a hard mask, it is difficult to be completely removed even after the ashing process.
  • a thin film formed by using hydrocarbon alone is used as a hard mask, there is a disadvantage in that it is difficult to etch the lower thin film due to weak physical properties. Therefore, in order to compensate for the shortcomings of the respective thin films, two layers have been used, but the above-described disadvantages occur in combination, which is not sufficient to solve this problem.
  • the present invention is carbon; Oxygen; And a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten, wherein the metal carbide thin film comprises 5 to 85 atomic% carbon and 5 to 60 atomic% oxygen based on the total atomic% ; And 5 to 40 atomic percent of the metal.
  • the 'metal carbide thin film' according to the present invention is a thin film containing all of carbon, oxygen, and metal in a certain ratio.
  • a metal oxide is uniformly distributed in a hydrocarbon, and carbon: oxygen:
  • the composition ratio of the metal can be controlled to exhibit various physical and chemical properties.
  • a schematic structure of the metal carbide oxide according to the present invention is shown in FIG. 1. Specifically, in a form in which a metal oxide is evenly distributed and embedded in a hydrocarbon film, the abundance ratio of each element such as carbon, metal, and oxygen in the entire thin film may be relatively changed within the above-described range according to the reaction conditions for forming it. .
  • the ratio of metal and oxygen may increase while the ratio of carbon may decrease.
  • the abundance ratio of each component can also change with the pattern similar to a plasma power also about the change of deposition pressure. Therefore, these reaction conditions can be combined suitably, and the thin film which has a desired component ratio can be manufactured.
  • the manufacturing method of the present invention may further include selecting a deposition pressure, plasma power, or deposition temperature of a plasma chemical vapor deposition method to control the composition ratio of a specific metal: carbon: oxygen.
  • the thin film may be formed by plasma enhanced chemical vapor deposition (PECVD), and the metal: carbon: metal of the metal carbide thin film according to the deposition pressure, plasma power, and deposition temperature of the plasma chemical vapor deposition method.
  • PECVD plasma enhanced chemical vapor deposition
  • the composition ratio of oxygen can be controlled.
  • a reaction gas required for deposition is injected into a vacuum chamber, and when a desired deposition pressure and substrate temperature are set, the reaction gas is converted into a plasma state by applying ultra-high frequency to the electrode through a power supply, and the precursor is formed.
  • a method of forming a thin film by ionizing and depositing a portion of an ionized precursor and a reaction gas in a plasma state on a substrate by physical or chemical reaction.
  • the manufacturing method of the present invention may further include selecting a deposition pressure, plasma power, and deposition temperature of a plasma chemical vapor deposition method to control the composition ratio of a specific metal: carbon: oxygen.
  • the thin film may be formed by plasma enhanced chemical vapor deposition (PECVD), and the metal: carbon: metal of the metal carbide thin film according to the deposition pressure, plasma power, and deposition temperature of the plasma chemical vapor deposition method.
  • PECVD plasma enhanced chemical vapor deposition
  • the composition ratio of oxygen can be controlled.
  • a reaction gas required for deposition is injected into a vacuum chamber, and when a desired deposition pressure and substrate temperature are set, the reaction gas is converted into a plasma state by applying ultra-high frequency to the electrode through a power supply, and the precursor is formed.
  • a method of forming a thin film by ionizing and depositing a portion of an ionized precursor and a reaction gas in a plasma state on a substrate by physical or chemical reaction.
  • the hard mask for the semiconductor process requires physical and chemical properties that can act as a mask on the top while removing the thin film stacked in the lower 24 or 32 steps. For example, it is possible to etch a laminated structure of more than 24 steps while lifting and warpage of the mask film does not occur, and there is a need for a characteristic that can improve the critical dimension (CD) uniformity.
  • thin films with good chemical and physical properties are essential for etching gases (e.g., fluorine gas series (CF 4 , F 2 , NF 3, etc.)) to simplify the patterning process and reduce the hard mask thickness. .
  • the metal carbide thin film of the present invention is carbon; Oxygen; And a thin film including a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten, and further include metal in the hydrocarbon component, thereby exhibiting excellent chemical properties for the etching gas.
  • a metal selected from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium, and tungsten and further include metal in the hydrocarbon component, thereby exhibiting excellent chemical properties for the etching gas.
  • the composition ratio of aluminum: carbon: oxygen is 1: 1: 1.5 in the metal hydrocarbon thin film formed by the embodiment of the present invention, the 1.5 times hardmask selectivity is higher than that of the hydrocarbon thin film without metal. It was confirmed to be strengthened.
  • the selection ratio refers to the ratio between the etching rate of the portion to be etched, that is, the unmasked portion of the thin film, and the etching rate of the mask layer formed on the portion not to be etched.
  • the composition ratio of titanium: carbon: oxygen is 1.5: 1: 3 in the metal hydrocarbon thin film formed by another embodiment of the present invention
  • the selection ratio of the hard mask is 1.5 times higher than that of the hydrocarbon thin film containing no metal. It was confirmed.
  • the present invention is a method of manufacturing a metal carbide thin film comprising the step of forming a thin film on a substrate by a plasma chemical vapor deposition method using a precursor, the precursor is a single precursor containing all carbon, oxygen and metal It provides a method of producing a material, or a mixture of one or more organic precursors and one or more inorganic precursors.
  • the metal hydrocarbon thin film of the present invention may be formed by injecting a vaporized reaction precursor and an argon transport gas into a PECVD vacuum chamber of a plasma chemical vapor deposition apparatus and depositing a thin film on a substrate by applying plasma energy.
  • the method for producing a metal hydrocarbon thin film of the present invention by using a single precursor containing all the elements of the metal carbide as a reaction precursor, or by simultaneously using a mixture of organic precursors and inorganic precursors, injection of one precursor and A thin film may be formed through a deposition process, and thus a single layer thin film including all of carbon, oxygen, and metal may be manufactured.
  • the metal hydrocarbon thin film may be formed as a single layer in which the metal oxide is uniformly distributed in the hydrocarbon, the thickness of the formed thin film may be 400 to 5000 ⁇ .
  • the method of manufacturing the metal carbide thin film of the present invention can control the metal: carbon: oxygen ratio of the thin film according to the deposition pressure, plasma power, and deposition temperature of the plasma chemical vapor deposition method.
  • the deposition pressure may be performed in the range of 200 to 1500 mTorr, the deposition temperature in the range of 25 ° C to 600 ° C, and the plasma power may be performed in the range of 50 to 150W.
  • the metal carbide thin film may be formed by depositing on a layer for forming a pattern of a semiconductor device or an organic electronic device, or a portion where a cutting film or an encapsulation film is required, but is not limited thereto.
  • the single precursor material used in the method for producing the metal carbide thin film of the present invention may include all carbon, oxygen, and metal, and specifically, trimethylaluminum, triethylaluminum, triisobutylaluminum, dimethylaluminum isopropoxide Said, diisobutylaluminum hydride, titanium tetraisopropoxide, hafnium isopropoxide, tetrakis (dimethylamido) hafnium, tantalum pentoxide, tantalum tetraisopropoxide, tetrakis (dimethylamido) tantalum , Zirconium isopropoxide, tetrakis (dimethylamido) zirconium, zirconium dioxide, tungsten trioxide, or oxo tungsten.
  • DMAI dimethylaluminum isopropoxide
  • TTIP titanium tetraisopropoxide
  • non-limiting examples of the organic precursor may be acetylene, propane, cyclohexane, hexene, methylcyclohexane or mixtures thereof, the inorganic precursor from the group consisting of aluminum, titanium, hafnium, tantalum, zirconium and tungsten It may be a precursor including one or more metals selected, but is not limited thereto.
  • the precursor comprising a metal can be an alkyl compound, an alkoxide compound, a tetrakis (dialkylamido) compound or mixtures thereof.
  • the precursor including aluminum of the present invention may be, but is not limited to, trimethylaluminum, triethylaluminum, triisobutylaluminum, dimethylaluminum isopropoxide, diisobutylaluminum hydride, or a mixture thereof. .
  • the precursor containing titanium of the present invention may be titanium tetraisopropoxide
  • the precursor containing hafnium may be hafnium isopropoxide, tetrakis (dimethylamido) hafnium or a mixture thereof, respectively. It is not limited to this.
  • the precursor including tantalum of the present invention may be, but is not limited to, tantalum tetraisopropoxide, tetrakis (dimethylamido) tantalum or mixtures thereof.
  • the precursor comprising zirconium of the present invention may be, but is not limited to, zirconium isopropoxide, tetrakis (dimethyl amido) zirconium, or a mixture thereof.
  • the precursor including tungsten of the present invention may be, but is not limited to, oxo tungsten or a mixture thereof.
  • the present invention also provides a hard mask for a semiconductor process formed of the metal carbide thin film.
  • the metal carbide thin film may be used as a hard mask thin film in the etching process of a laminated structure of more than 32 layers in the semiconductor process since the metal is added to the hydrocarbon component to exhibit an excellent chemical property against the etching gas.
  • the metal carbide thin film of the present invention may be applied as an encapsulation of an insulating film for an organic process or an organic electronic device because it exhibits characteristics as an insulating thin film, but its application field is not limited thereto.
  • Example 1 using single precursor plasma chemistry On vapor deposition Formation of metal carbide thin film 1
  • Dimethylaluminum is a single precursor containing aluminum and oxygen as a metal element by placing a silicon wafer (Si-wafer) in a substrate holder in a plasma enhanced chemical vapor deposition (PECVD) vacuum chamber of a plasma chemical vapor deposition equipment.
  • PECVD plasma enhanced chemical vapor deposition
  • a bubbler containing isopropoxide (DMAI) was heated to 85 ° C. to vaporize the precursor and inject it into the chamber together with the argon transport gas, and then form a metal carbide thin film using plasma.
  • the deposition temperature was performed at room temperature (25 ° C.) to 600 ° C., the deposition power was 50 to 150 W, and the deposition pressure was 200 to 500 mTorr.
  • the characteristics of the DAMI used as the precursor are shown in FIG. 2.
  • the plasma chemical vapor deposition method for forming the metal carbide thin film was performed while changing conditions such as substrate temperature and plasma power to prepare a thin film having various thicknesses and / or physical properties (sample 1). To 9).
  • Example 2 using a single precursor plasma chemistry On vapor deposition Formation of Metal Carbide Thin Films 2
  • TTIP titanium tetraisopropoxide
  • the plasma chemical vapor deposition method for forming the metal carbide thin film was performed while changing conditions such as substrate temperature and plasma power to prepare thin films having various thicknesses and physical properties (samples 10 to 16). ).
  • Example 3 using organic precursor and inorganic precursor plasma chemistry On vapor deposition Formation of metal carbide thin film 1
  • the metal carbide thin film was prepared in the same manner as in Example 1 except for using cyclohexane, an organic precursor, and trimethylaluminum (TMA), an inorganic precursor. It was.
  • the experimental conditions used at this time are as shown in Table 3 below.
  • Example 4 using organic precursor and inorganic precursor plasma chemistry Meteorology Formation of metal carbide thin films by complexation 2
  • a metal carbide thin film was manufactured in the same manner as in Example 3 except that TTIP was used instead of TMA as the inorganic precursor.
  • the experimental conditions used at this time are as shown in Table 4 below.
  • the change in characteristics of the thin film according to the deposition conditions in the manufacturing process of the metal carbide thin film of Examples 1 to 3 was measured. Specifically, by varying the substrate temperature, deposition pressure and plasma power, the deposition conditions were varied to prepare a series of samples and to confirm the optical and chemical properties. Specific deposition conditions are as shown in Tables 1 to 4 above.
  • the optical properties of the metal carbide thin film due to the deposition conditions were analyzed using an ellipsometer (Ellipsometer, M-2000 Ellipsometer, JA Woollam Co.) (Table 1), X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo Scientific) and FT-IR spectroscopy (Nicolet 6700, Thermo Electron Co.) were used to analyze the chemical composition of the thin films (Tables 3, 5 and 6, FIGS. 4-7).
  • Table 1 and Table 5, and Table 2 and Table 6 show the optical characteristics and chemical composition of the thin film prepared using a single precursor DMAI and TTIP, respectively, cyclohexane and organic precursors trimethyl aluminum ( XPS analysis results of the metal carbide thin film prepared using the mixture of TMA) are shown in Table 3 together.
  • FT-IR analysis was performed on samples 15 and 16 of Table 2 using a single inorganic precursor and samples of Table 4 deposited using an organic precursor and an inorganic precursor (FIGS. 6 and 7).
  • Ti-O peaks were observed around 658 cm ⁇ 1 in thin films deposited using a single inorganic precursor (FIG. 6).
  • a thin film having a different metal: carbon: oxygen ratio can be formed according to the deposition conditions of the metal carbide thin film forming method of the present invention. This suggests that a thin film having a desired composition can be formed by appropriately selecting a deposition pressure, a temperature, and a plasma power in consideration of the above-described change pattern.
  • the etching properties of the aluminum-containing metal carbide thin film of the present invention which was deposited at a thickness of about 5000 kPa under the conditions of Sample 6 shown in Table 1 of Example 1 and the metal, were not included.
  • Plasma etching was performed on the two thin films by using C 4 F 8 / Ar / CH 2 F 2 / O 2 etching gas for 10 minutes, and the thicknesses of the thin films before and after etching were measured by FE-SEM.
  • the etching film is etched at a speed of 130 nm / min under the above etching conditions, and a hydrocarbon thin film containing no metal has a selectivity of 4.5 to an oxide thin film, and a selection of 6.6 for an aluminum-containing metal carbide thin film. Rain was shown. In the case of the aluminum-containing metal carbide oxide, it was confirmed that the selectivity was increased about 1.5 times compared to the hydrocarbon thin film containing no metal.
  • Table 7 The measured values for the two kinds of thin films are summarized in Table 7 below.
  • the aluminum-containing metal hydrocarbon thin film prepared by depositing at a thickness of about 5000 kPa under the conditions of Sample 6 shown in Table 1 of Example 1 contains an aluminum: carbon: oxygen ratio of 1: 1: 1.5, the metal It was confirmed that the selectivity of the hard mask is 1.5 times stronger than that of the hydrocarbon thin film not included.
  • the etching characteristics of the titanium-containing metal carbide thin film of the present invention deposited in a thickness of about 400 nm under sample condition 15 shown in Table 2 of Example 2 were confirmed.
  • Plasma etching was performed on the titanium-containing metal carbide thin film using C 4 F 8 / Ar / CH 2 F 2 / O 2 etching gas for 10 minutes, and the thickness of the thin film before and after etching was measured by FE-SEM. The selectivity with SiO 2 was confirmed.
  • the titanium-containing metal carbide also exhibited a selectivity that is about 1.5 times stronger than that of the hydrocarbon thin film containing no metal.
  • Table 8 The measured results are summarized in Table 8 below.
  • Titanium oxide hydrocarbon thin film Thickness before etching (nm) 405.5 Thickness after etching (nm) 217 Etching amount (nm) 188.5 Etching Speed (nm / min) 18.85 Selectivity (@ SiO 2 ) 6.51 Ti (%) 20.95 C (%) 30.87 O (%) 48.18
  • the titanium-containing metal hydrocarbon thin film prepared by depositing about 400 nm thick under the conditions of Sample 15 shown in Table 2 of Example 2 includes the composition ratio of titanium: carbon: oxygen as 1.5: 1: 3, It was confirmed that the selectivity of the hard mask was 1.5 times higher than that of the hydrocarbon thin film without metal.
  • Examples 1 to 9 Aluminum dots were deposited on the metal hydrocarbon thin films (samples 1 to 9) prepared by evaporation under various conditions as shown in Table 1 using an evaporation apparatus. When deposition was complete, a silfer paste was applied onto the glass and the silicon wafer was attached. After forming a metal-insulator-metal (MIM) structure as described above, the current density of the thin film was measured while applying a voltage by 1V using a current-voltage measuring device (Keithley, 6517A).
  • MIM metal-insulator-metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 박막으로서, 총 원자%을 기준으로 5 내지 85원자%의 탄소, 5 내지 60원자%의 산소; 및 5 내지 40원자%의 금속을 포함하는 금속탄화산화물 박막에 관한 것이다. 본 발명의 금속탄화산화물 박막은 반응 전구체의 단일 주입공정을 통해 증착되어 형성되므로 박막 두께를 축소화할 수 있어 공정의 단순화 및 제조 원가의 절감이 가능해지며 이를 통해 생산성 향상에 기여할 수 있다. 또한, 본 발명의 금속탄화산화물 박막을 제조하는 방법은 증착 조건을 변화시켜 박막 중의 각 성분의 함량비를 조절할 수 있고 이에 따라 제조되는 박막의 강도, 내식각성, 전도도 등의 물성을 조절할 수 있으므로, 사용하고자 하는 용도에 맞는 성질을 갖는 박막을 제조하기에 유리하다.

Description

탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법
본 발명은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 박막으로서, 총 원자백분율(atomic%; 이하 원자%)을 기준으로 5 내지 85원자%의 탄소, 5 내지 60원자%의 산소; 및 5 내지 40원자%의 금속을 포함하는 금속탄화산화물 박막에 관한 것이다.
금속산화물 박막 및 탄화수소 박막은 반도체 공정에서 절연막(insulator layer)으로 널리 사용되며, 하드마스크(Hardmask)로도 유용하게 이용되는 박막으로서, 원자층 증착 방식(ALD), 스퍼터링 방식(sputtering) 또는 플라즈마 원자층 증착 방식(PEALD)에 의해 증착되어 형성되는 것으로 알려져 있다(대한민국 공개특허공보 제2007-0049927호). 대표적인 금속산화물 박막인 Al2O3 박막은, 트리메틸알루미늄(TMA)과 물을 이용하여 원자층 증착 방식으로 증착시켜 형성하거나, 플라즈마 원자층 증착 방식을 이용하여 트리메틸알루미늄과 산소 플라즈마로부터 형성시킨다. 또한, TiO2 박막의 경우에는 스퍼터링 방식으로 티타늄 타겟(Ti target) 및 산소 반응기체를 이용하여 박막을 증착시킨다.
반도체 소자의 특성 개발 연구가 진행됨에 따라, 패턴의 미세화가 필수 불가결하며 이를 위해 하드마스크는 필수적인 박막으로 인식되고 있다. 반도체 공정용 하드마스크는 하부의 24단 또는 32단 이상으로 적층된 박막을 제거하는 동안 상부에서 마스크 역할을 수행할 수 있을 정도의 물리적, 화학적 특성이 요구된다(대한민국 공개특허공보 제2006-0030205호). 예컨대, 24단 이상의 적층 구조의 식각이 가능하면서 마스크 필름의 리프팅(lifting) 및 휘어짐(warpage)이 발생하지 않으며 임계치수(critical dimension; CD) 균일성을 향상시킬 수 있는 특성이 필요하다. 또한, 패터닝 공정의 단순화 및 하드마스크 두께의 축소화를 위해, 에칭 가스(예를 들어, 불소 가스 계열(CF4, F2, NF3 등))에 대해 우수한 화학적, 물리적 특성을 지닌 마스크 필름을 구현하기 위한 연구가 필요한 실정이다.
최근, 반도체 공정에서는 탄화수소로부터 형성되는 비정질 탄소막(Amorphous carbon layer; ACL)이 하드마스크 박막으로 사용되고 있다. 상기 ACL은 CxHy 성분으로 이루어져 있어 마스크 공정 이후 산소 에싱(ashing) 처리로 용이하게 제거되나, 32단 이상의 적층 박막을 제거하기 위한 마스크로의 적용이 어려운 단점이 있다.
본 발명자들은 절연 박막 특성을 나타내면서 물리적, 화학적 성능이 우수한 하드마스크용 박막을 개발하기 위해 예의 연구 노력한 결과, 탄화수소 성분에 금속이 추가로 포함되도록 박막을 제조함으로써, 박막의 물리적, 화학적 에칭내성이 향상되고 후속 공정에서의 제거가 용이한 단일층의 박막 형성이 가능함을 발견하고 본 발명을 완성하였다.
본 발명의 제1양태는 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서, 총 원자%을 기준으로 5 내지 85원자%의 탄소, 5 내지 60원자%의 산소; 및 5 내지 40원자%의 금속을 포함하는 박막을 제공한다.
본 발명의 제2양태는 전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는, 금속탄화산화물 박막의 제조방법에 있어서, 상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일 전구체 물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인 제조방법을 제공한다.
본 발명의 금속탄화산화물 박막은 반응 전구체의 단일 주입공정을 통해 증착되어 형성되므로 박막 두께를 축소화할 수 있어 공정의 단순화 및 제조 원가의 절감이 가능해지며 이를 통해 생산성 향상에 기여할 수 있다. 또한, 본 발명의 금속탄화산화물 박막을 제조하는 방법은 증착 조건을 변화시켜 박막 중의 각 성분의 함량비를 조절할 수 있고 이에 따라 제조되는 박막의 강도, 내식각성, 전도도 등의 물성을 조절할 수 있으므로, 사용하고자 하는 용도에 맞는 성질을 갖는 박막을 제조하기에 유리하다.
도 1은 하드마스크로 사용 가능한 종래 단일성분의 박막 및 본 발명의 금속탄화산화물 박막의 구조를 개략적으로 나타낸 도이다.
도 2는 본 발명의 금속탄화산화물 박막 형성방법에 사용되는 단일전구체인 디메틸알루미늄 이소프로폭사이드(Dimethylaluminum isopropoxide; DMAI)의 특성을 나타낸 도이다.
도 3은 본 발명의 금속탄화산화물 박막 형성방법에 사용되는 단일전구체인 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide; TTIP)의 특성을 나타낸 도이다.
도 4는 본 발명의 금속탄화산화물 박막의 X-선 광전자 분광기(XPS) 분석 결과로서, 플라즈마 파워에 따른 금속탄화산화물 박막의 화학적 조성 변화를 나타낸 도이다.
도 5는 본 발명의 금속탄화산화물 박막의 X-선 광전자 분광기(XPS) 분석 결과로서, 기판 온도에 따른 금속탄화산화물 박막의 화학적 조성 변화를 나타낸 도이다.
도 6은 단일전구체 TTIP를 사용하여 제조한 본 발명의 금속탄화산화물 박막의 FT-IR 분석 결과를 나타낸 도이다.
도 7은 전구체로서 TTIP와 사이클로헥산을 사용하여 제조한 본 발명의 금속탄화산화물 박막의 FT-IR 분석 결과를 나타낸 도이다.
도 8은 본 발명의 금속탄화산화물 박막의 전류 밀도 특성을 나타낸 도이다. 도면 상에 표시된 시료 번호는 실시예 1의 표 1에 개시된 시료 번호와 일치한다.
본 발명의 제1양태는 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서, 총 원자%을 기준으로 5 내지 85원자%의 탄소, 5 내지 60원자%의 산소; 및 5 내지 40원자%의 금속을 포함하는 박막을 제공한다.
본 발명의 제2양태는 전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는, 금속탄화산화물 박막의 제조방법에 있어서, 상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일 전구체 물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인 제조방법을 제공한다.
이하, 본 발명을 자세히 설명한다.
본 발명은 플라즈마 화학 기상 증착 방법을 이용하여 탄소, 산소 및 금속을 모두 포함하는 단일 전구체, 또는 유기물 전구체 및 무기물 전구체 혼합물을 증착시켜 박막을 제조함으로써 박막 내에 탄화수소 성분과 함께 금속이 추가로 포함된 단일층의 박막을 형성할 수 있음을 최초로 발견하였다. 또한, 금속탄화산화물 박막에 탄소, 산소 및 금속이 모두 포함되도록 제조함으로써 절연 박막 특성을 나타내면서 물리적, 화학적 에칭내성이 강화된 박막을 형성할 수 있음을 확인하였다. 본 발명은 이에 기초한다.
예컨대, 금속산화물 박막이나 탄화수소 박막은 반도체 소자 등의 제조에 있어서 미세한 구조를 형성하기 위하여 수행되는 에칭(etching)공정을 위한 하드마스크로 사용될 수 있으며, 상기 하드마스크는 그 목적상 에칭(etching)공정이 끝난 후 에싱(ashing)공정을 통해 완전히 제거되는 것이 바람직하다. 그러나, 금속산화물을 단독으로 사용하여 형성한 박막을 하드마스크로 사용한 경우, 에싱(ashing)공정을 수행한 후에도 완전히 제거되기 어려운 단점이 있다. 한편, 탄화수소를 단독으로 사용하여 형성한 박막을 하드마스크로 사용한 경우에는 물성이 약해 하부 박막을 깊게 에칭하기 어려운 단점이 있다. 따라서, 상기 각각의 박막의 단점을 보완하기 위하여 2개 층을 적층하여 사용하고자 하였으나, 전술한 단점이 복합적으로 발생할 뿐 이를 해결하기에는 역부족이다.
본 발명은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서, 총 원자%을 기준으로 5 내지 85원자%의 탄소, 5 내지 60원자%의 산소; 및 5 내지 40원자%의 금속을 포함하는 것을 특징으로 한다.
본 발명에 따른 '금속탄화산화물 박막'은 탄소, 산소 및 금속을 일정 비율로 모두 포함하는 박막으로서, 예컨대, 탄화수소에 금속산화물이 균일하게 분포되어 있으며, 증착 공정의 조건 변화에 따라 탄소:산소:금속의 조성비율이 제어되어 다양한 물리적, 화학적 특성을 나타낼 수 있다. 상기 본 발명에 따른 금속탄화산화물의 개략적인 구조를 도 1에 나타내었다. 구체적으로, 탄화수소 필름에 금속산화물이 고르게 분포하여 매립된 형태로, 전체 박막에서 각 원소 예컨대, 탄소, 금속 및 산소의 존재비는 이를 형성하는 반응 조건에 따라 전술한 범위 이내에서 상대적으로 변화할 수 있다. 예컨대, 박막 증착에 사용한 플라즈마 파워가 증가함에 따라 금속 및 산소의 비율은 증가하는 동시에 탄소의 비율은 감소할 수 있다. 한편, 증착 압력의 변화에 대해서도 플라즈마 파워에 대해서와 유사한 패턴으로 각 성분의 존재비가 변화할 수 있다. 따라서, 이들 반응 조건을 적절히 조합하여 원하는 성분비를 갖는 박막을 제조할 수 있다.
이에 본 발명의 제조방법은 특정 금속:탄소:산소의 조성비율로 제어하기 위해 플라즈마 화학 기상 증착방식의 증착 압력, 플라즈마 파워, 또는 증착 온도를 선택하는 단계를 더 포함할 수 있다.
상기 박막은 플라즈마 화학 기상 증착(Plasma enhanced chemical vapor deposition; PECVD) 방식에 의해 형성될 수 있으며, 상기 플라즈마 화학 기상 증착 방식의 증착 압력, 플라즈마 파워, 증착 온도에 따라 금속탄화산화물 박막의 금속:탄소:산소의 조성비율이 제어될 수 있다.
플라즈마 화학 기상 증착 방법은, 진공을 이루는 챔버 내부에 증착시 필요한 반응가스를 주입하여 원하는 증착 압력과 기판 온도가 설정되면 전원장치를 통해 전극에 초고주파를 인가함으로써 반응가스를 플라즈마 상태로 만들고, 전구체를 이온화시켜 이온화된 전구체와 플라즈마 상태의 반응가스 중 일부가 물리적 또는 화학적 반응을 하여 기판에 증착되게 함으로써 박막을 형성하는 방법이다.
이에 본 발명의 제조방법은 특정 금속:탄소:산소의 조성비율로 제어하기 위해 플라즈마 화학 기상 증착방식의 증착 압력, 플라즈마 파워, 증착 온도를 선택하는 단계를 더 포함할 수 있다.
상기 박막은 플라즈마 화학 기상 증착(Plasma enhanced chemical vapor deposition; PECVD) 방식에 의해 형성될 수 있으며, 상기 플라즈마 화학 기상 증착 방식의 증착 압력, 플라즈마 파워, 증착 온도에 따라 금속탄화산화물 박막의 금속:탄소:산소의 조성비율이 제어될 수 있다.
플라즈마 화학 기상 증착 방법은, 진공을 이루는 챔버 내부에 증착시 필요한 반응가스를 주입하여 원하는 증착 압력과 기판 온도가 설정되면 전원장치를 통해 전극에 초고주파를 인가함으로써 반응가스를 플라즈마 상태로 만들고, 전구체를 이온화시켜 이온화된 전구체와 플라즈마 상태의 반응가스 중 일부가 물리적 또는 화학적 반응을 하여 기판에 증착되게 함으로써 박막을 형성하는 방법이다.
반도체 공정용 하드마스크는 하부의 24단 또는 32단 이상으로 적층된 박막을 제거하는 동안 상부에서 마스크 역할을 수행할 수 있을 정도의 물리적, 화학적 특성이 요구된다. 예컨대, 24단 이상의 적층 구조의 식각이 가능하면서 마스크 필름의 리프팅(lifting) 및 휘어짐(warpage)이 발생하지 않으며 임계치수(critical dimension; CD) 균일성을 향상시킬 수 있는 특성이 필요하다. 또한, 패터닝 공정의 단순화 및 하드마스크 두께의 축소화를 위해, 에칭 가스(예를 들어, 불소 가스 계열(CF4, F2, NF3 등))에 대해 우수한 화학적, 물리적 특성을 지닌 박막이 필수적이다.
본 발명의 금속탄화산화물 박막은 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속을 포함하는 박막으로서, 탄화수소 성분에 금속이 추가로 포함됨으로써 에칭 가스에 대해 우수한 화학적 특성을 나타낼 수 있다. 구체적으로, 본 발명의 일 실시예에 의해 형성된 금속탄화수소 박막 중에 알루미늄:탄소:산소의 조성비율이 1:1:1.5로 포함된 경우, 금속이 포함되지 않은 탄화수소 박막에 비해 1.5배 하드마스크 선택비가 강화됨을 확인하였다. 여기서, 선택비란 박막의 식각하고자 하는 부분 즉, 마스킹하지 않은 부분에서의 식각속도와 식각을 원하지 않는 부분에 형성한 마스크 층의 식각속도의 비를 말한다. 또한, 본 발명의 다른 실시예에 의해 형성된 금속탄화수소 박막 중에 티타늄:탄소:산소의 조성비율이 1.5:1:3으로 포함된 경우, 금속이 포함되지 않은 탄화수소 박막에 비해 1.5배 하드마스크 선택비가 강화됨을 확인하였다.
또한, 본 발명은 전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는 금속탄화산화물 박막의 제조방법에 있어서, 상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일 전구체 물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인 제조방법을 제공한다.
본 발명의 금속탄화수소 박막은 플라즈마 화학 기상증착 장비의 PECVD 진공 챔버 내에, 기화시킨 반응 전구체 및 아르곤 수송 가스를 주입시킨 후, 플라즈마 에너지를 인가하여 기판상에 박막으로 증착시켜 형성할 수 있다. 구체적으로, 본 발명의 금속탄화수소 박막의 제조방법은, 반응 전구체로서 금속탄화산화물의 원소를 모두 포함하는 단일전구체를 사용하거나, 또는 유기물 전구체 및 무기물 전구체를 혼합하여 동시에 사용함으로써, 한번의 전구체 주입 및 증착 과정을 통해 박막 형성이 이루어질 수 있으며, 이에 따라 탄소, 산소 및 금속이 모두 포함된 단일층의 박막을 제조할 수 있다.
또한, 상기 금속탄화수소 박막은 탄화수소에 금속산화물이 균일하게 분포된 단일층으로 형성될 수 있으며, 형성된 박막의 두께는 400 내지 5000Å일 수 있다.
또한, 본 발명의 금속탄화산화물 박막의 제조방법은, 플라즈마 화학 기상 증착 방식의 증착 압력, 플라즈마 파워, 증착 온도에 따라 박막의 금속:탄소:산소 조성비율을 제어할 수 있다.
상기 증착 압력은 200 내지 1500 mTorr의 범위에서, 상기 증착 온도는 25℃ 내지 600℃의 범위에서, 그리고 상기 플라즈마 파워는 50 내지 150W의 범위 내에서 수행될 수 있다.
상기 금속탄화산화물 박막은 반도체 소자 또는 유기전자 소자 중 패턴을 형성하기 위한 층, 또는 절역막 또는 봉지박막이 요구되는 부분 상에 증착시켜 형성할 수 있으나, 이에 제한되지 않는다.
본 발명의 금속탄화산화물 박막의 제조방법에 사용되는 단일 전구체 물질은 탄소, 산소, 및 금속을 모두 포함할 수 있으며, 구체적으로, 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 디메틸알루미늄 이소프로폭사이드, 디이소부틸알루미늄 하이드라이드, 티타늄 테트라이소프로폭사이드, 하프늄 이소프로폭사이드, 테트라키스(디메틸아미도)하프늄, 탄탈륨 펜톡사이드, 탄탈륨 테트라이소프로폭사이드, 테트라키스(디메틸아미도)탄탈륨, 지르코늄 이소프로폭사이드, 테트라키스(디메틸아미도)지르코늄, 지르코늄 디옥사이드, 텅스텐 트리옥사이드, 또는 옥소텅스텐일 수 있다. 예컨대, 디메틸알루미늄 이소프로폭사이드(dimethylaluminium isopropoxide; DMAI), 또는 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide; TTIP)일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 유기물 전구체의 비제한적인 예로는 아세틸렌, 프로판, 사이클로헥산, 헥센, 메틸사이클로헥산 또는 이들의 혼합물일 수 있으며, 상기 무기물 전구체는 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 하나 이상의 금속을 포함하는 전구체일 수 있으나, 이에 제한되는 것은 아니다.
예컨대, 금속을 포함하는 전구체는 금속의 알킬 화합물, 알콕사이드 화합물, 테트라키스(디알킬아미도) 화합물 또는 이들의 혼합물일 수 있다.
구체적으로, 본 발명의 알루미늄을 포함하는 전구체는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 디메틸알루미늄 이소프로폭사이드, 디이소부틸알루미늄 하이드라이드 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 티타늄을 포함하는 전구체는 티타늄 테트라이소프로폭사이드일 수 있으며, 하프늄을 포함하는 전구체는 하프늄 이소프로폭사이드, 테트라키스(디메틸아미도)하프늄 또는 이들의 혼합물일 수 있으나, 각각 이에 제한되는 것은 아니다.
본 발명의 탄탈륨을 포함하는 전구체는 탄탈륨 테트라이소프로폭사이드, 테트라키스(디메틸아미도)탄탈륨 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 지르코늄을 포함하는 전구체는 지르코늄 이소프로폭사이드, 테트라키스(디메틸아미도)지르코늄, 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 텅스텐을 포함하는 전구체는 옥소텅스텐 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 금속탄화산화물 박막으로 형성된 반도체 공정용 하드마스크를 제공한다. 상기 금속탄화산화물 박막은 탄화수소 성분에 금속이 추가로 포함됨으로써 에칭 가스에 대해 우수한 화학적 특성을 나타내므로, 반도체 공정중의 32층 이상 적층 구조의 식각 과정에 있어 하드마스크 박막으로서 사용될 수 있다. 또한, 본 발명의 금속탄화산화물 박막은 절연 박막으로서의 특성을 나타내므로 반도체 공정용 절연막 또는 유기전자 소자의 봉지박막(encapsulation)으로 적용될 수 있으나, 그 적용분야는 이에 제한되지 않는다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 단일전구체를 사용한 플라즈마 화학 기상증착법에 의한 금속탄화산화물 박막의 형성 1
플라즈마 화학 기상증착 장비의 PECVD(Plasma enhanced chemical vapor deposition) 진공챔버에 실리콘 웨이퍼(Si-wafer)를 기판홀더에 놓고 금속 원소로서 알루미늄과 산소 원소를 포함하는 단일 전구체인 디메틸알루미늄 이소프로폭사이드(dimethylaluminum isopropoxide; DMAI)가 담긴 버블러를 85℃로 열을 가하여, 전구체를 기화시켜 아르곤 수송 가스와 함께 챔버로 주입시킨 후, 플라즈마를 이용하여 금속탄화산화물 박막을 형성하였다. 증착 온도는 상온(25℃) 내지 600℃, 증착 파워는 50 내지 150W, 및 증착 압력은 200 내지 500 mTorr에서 수행하였다. 상기 전구체로 사용한 DAMI의 특성은 도 2에 나타내었다.
나아가 상기 금속탄화산화물 박막 형성을 위한 플라즈마 화학 기상증착법을 하기 표 1에 나타난 바와 같이, 기판 온도, 플라즈마 파워 등의 조건을 변화시키면서 수행하여 다양한 두께 및/또는 물성을 갖는 박막을 제조하였다(시료 1 내지 9).
시료 DMAI 증착 압력 증착 시간 기판 온도 플라즈마 파워 박막 두께(THK) 증착 속도 굴절률(R.I)
(mTorr) (s) (℃) (W) (Å) (Å/s) (n)
1 Ar15sccm 440-300 600 30 50 1123.4 1.872 1.5933
2 75 869.1 1.449 1.6078
3 100 820.33 1.367 1.6288
4 125 785.75 1.31 1.6561
5 300 50 634.79 1.058 1.6237
6 100 463.72 0.773 1.6477
7 150 478.39 0.797 1.6597
8 400 100 533.57 0.889 1.66
9 500 100 640.47 1.067 1.6757
* 단일 전구체 DMAI를 이용하여 증착된 박막의 증착 조건에 따른 두께 및 굴절률
실시예 2: 단일전구체를 사용한 플라즈마 화학 기상증착법에 의한 금속탄화산화물 박막의 형성 2
플라즈마 화학 기상증착 장비의 PECVD 진공챔버에 실리콘 웨이퍼를 기판홀더에 놓고 금속 원소로서 티타늄과 산소 원소를 포함하는 단일 전구체인 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide; TTIP)가 담긴 버블러를 110℃로 열을 가하여, 전구체를 기화시켜 아르곤 수송 가스와 함께 챔버로 주입시킨 후, 플라즈마를 이용하여 금속탄화산화물 박막을 형성하였다. 증착 온도는 상온(25℃) 내지 600℃, 증착 파워는 50 내지 150W, 및 증착 압력은 200 내지 800 mTorr에서 수행하였다. 상기 전구체로 사용한 TTIP의 특성은 도 3에 나타내었다.
나아가 상기 금속탄화산화물 박막 형성을 위한 플라즈마 화학 기상증착법을 하기 표 2에 나타난 바와 같이, 기판 온도, 플라즈마 파워 등의 조건을 변화시키면서 수행하여 다양한 두께 및 물성을 갖는 박막을 제조하였다(시료 10 내지 16).
시료 TTIP 증착 압력 증착 시간 기판 온도 플라즈마 파워 박막 두께 증착 속도 굴절률(R.I)
(mTorr) (s) (℃) (W) (nm) (nm/min) (n)
10 Ar30sccm 330 15 25 50 204 13.6 1.616
11 360 75 157 10.5 1.628
12 100 200 13.3 1.637
13 390 125 163 10.9 1.684
14 380 15 100 100 161 10.7 1.652
15 800 20 300 100 432 21.6 -
16 800 30 500 100 612 20.4 -
* 단일 전구체 TTIP를 이용하여 증착된 박막의 증착 조건에 따른 두께 및 굴절률
실시예 3: 유기물 전구체 및 무기물 전구체를 사용한 플라즈마 화학 기상증착법에 의한 금속탄화산화물 박막의 형성 1
단일 전구체로서 디메틸알루미늄 이소프로폭사이드(dimethylaluminum isopropoxide; DMAI) 이외에 유기물 전구체인 사이클로헥산과 무기물 전구체인 트리메틸알루미늄(TMA)를 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 금속탄화산화물 박막을 제조하였다. 이때 사용한 실험조건은 하기 표 3에 나타낸 바와 같다.
사이클로헥산 TMA 플라즈마파워 기판 온도 압력(사이클로헥산) 압력(TMA) 압력 (전체) 탄소 산소 알루미늄
sccm sccm (W) (℃) (mTorr) (mTorr) (mTorr) (%) (%) (%)
Ar 20 Ar 10 100 300 300 100 400 70.89 12.09 17.02
300 200 500 83.29 7.03 9.68
300 300 600 54.07 23.03 22.89
* 사이클로헥산 및 트리메틸알루미늄을 이용하여 증착된 박막의 증착 조건에 따른 XPS 분석 결과
실시예 4: 유기물 전구체 및 무기물 전구체를 사용한 플라즈마 화학 기상증 착법에 의한 금속탄화산화물 박막의 형성 2
무기물 전구체로서 TMA 대신에 TTIP를 사용하는 것을 제외하고는 실시예 3과 유사한 방법으로 금속탄화산화물 박막을 제조하였다. 이때 사용한 실험조건은 하기 표 4에 나타낸 바와 같다.
사이클로헥산 TTIP 플라즈마 파워 기판 온도 압력(사이클로헥산) 압력(TTIP) 압력 (전체)
sccm sccm (W) (℃) (mTorr) (mTorr) (mTorr)
Ar 60 Ar 30 100 300 400 500 900
400
500
* 사이클로헥산 및 TTIP를 이용하여 증착된 박막의 증착 조건에 따른 XPS 분석 결과
실험예 1: 금속탄화산화물 박막의 특성 분석
1-1. 금속탄화산화물 박막의 광학적, 화학적 특성 분석
상기 실시예 1 내지 3의 금속탄화산화물 박막의 제조 공정에서의 증착 조건 변화에 따른 박막의 특성 변화를 측정하였다. 구체적으로, 기판 온도, 증착 압력 및 플라즈마 파워를 달리함으로써, 증착 조건을 변화시켜 일련의 시료를 제조하고 광학적 특성 및 화학적 특성을 확인하였다. 구체적인 증착 조건은 상기 표 1 내지 4에 나타난 바와 같다. 증착 조건 변화에 의한 금속탄화산화물 박막의 광학적 특성은 엘립소미터(Ellipsometer, M-2000 Ellipsometer, J.A. Woollam Co.)를 이용하여 분석하였으며(표 1), X-선 광전자 분광기(XPS, ESCALAB 250, Thermo Scientific) 및 FT-IR 분광기(Nicolet 6700, Thermo Electron Co.)를 이용하여 박막의 화학적 조성을 분석하였다(표 3, 5 및 6, 도 4 내지 7).
상기 표 1과 하기 표 5, 및 상기 표 2와 하기 표 6은 각각 단일 전구체인 DMAI 및 TTIP를 이용하여 제조한 박막의 광학적 특성 및 화학적 조성을 나타내며, 유기물 전구체인 사이클로헥산과 무기물 전구체인 트리메틸알루미늄(TMA)의 혼합물을 이용하여 제조한 금속탄화산화물 박막의 XPS 분석 결과는 상기 표 3에 함께 나타내었다.
시료 알루미늄(%) 탄소(%) 산소(%)
1 9.62 62.04 28.34
1-etch* 17.11 48.35 34.54
2 8.88 63.52 27.6
2-etch 16.25 50.07 33.68
3 9.81 61.22 28.96
3-etch 17.39 47.06 35.55
4 10.9 58.22 30.88
4-etch 18.14 44.95 36.91
5 22.43 35 42.57
5-etch 32.37 13.81 53.82
6 27.24 27.42 45.34
6-etch 35.94 8.31 55.75
7 27.21 26.98 45.8
7-etch 34.71 11.53 53.76
8 29.25 23.13 47.63
8-etch 35.81 9.56 54.63
9 29.19 23.32 47.49
9-etch 36.2 8.5 55.3
* etch로 표시된 시료는 표면을 아르곤 sputtering을 2분간 진행한 후 측정한 결과임.
* 표 1의 단일 전구체 DMAI를 이용하여 증착된 박막의 증착 조건 및 표면 Ar 스퍼터링 유무에 따른 XPS 분석 결과
시료 티타늄(%) 탄소(%) 산소(%)
10 5.53 72.07 22.40
10-etch* 13.50 65.39 21.12
11 6.27 71.50 22.23
11-etch 11.28 69.67 19.05
12 6.05 69.82 24.14
12-etch 12.60 66.58 20.82
13 7.49 67.35 25.16
13-etch 15.54 58.35 26.11
14 5.41 73.45 21.14
14-etch 9.26 74.54 16.21
15 26.05 18.56 55.40
15-etch 33.12 3.00 63.88
16 27.35 16.92 55.94
16-etch 32.85 3.32 63.83
* etch로 표시된 시료는 표면을 아르곤 sputtering을 2분간 진행한 후 측정한 결과임.
* 표 1의 단일 전구체 TTIP를 이용하여 증착된 박막의 증착 조건 및 표면 Ar 스퍼터링 유무에 따른 XPS 분석 결과
증착 조건 변화에 따른 박막의 XPS 분석 결과, 플라즈마 파워가 증가할수록 박막의 금속(Al 및 Ti) 및 산소(O)의 비율은 증가하고, 탄소(C)의 비율은 감소하는 양상을 나타내었다. 또한, 기판 온도가 증가함에 따라 금속(Al 및 Ti) 및 산소(O)의 비율은 증가하는 반면, 탄소(C)의 비율은 감소하는 경향을 나타내었다(표 5, 표 6, 도 4 및 도 5).
또한, 유기물 전구체 및 무기물 전구체를 이용한 경우에도, 증착 압력의 증가에 따라 금속(Al) 및 산소(O)의 비율은 증가하나 탄소(C)의 비율은 감소하는 결과를 나타내었다(표 3).
단일 무기물 전구체를 이용한 표 2의 시료 15, 16 그리고 유기물 전구체 및 무기물 전구체를 이용하여 증착한 표 4의 시료들의 FT-IR 분석을 하였다(도 6 및 도 7). 단일 무기물 전구체를 이용하여 증착된 박막에서는 658 cm-1 주위로 Ti-O 피크가 관찰되었다(도 6). 유기물 전구체 및 무기물 전구체를 혼합하여 증착된 박막은 2800-3100 cm-1의 C-Hx(x=2,3) 피크, 1400 cm-1 주위로 CHx(x=2,3) 굽힘 피크, 그리고 658 cm-1 주위로 Ti-O 피크가 관찰되었다(도 6 및 도 7).
상기 결과로부터 본 발명의 금속탄화산화물 박막 형성 방법의 증착 조건에 따라 금속:탄소:산소 비율이 상이한 박막의 형성이 가능함을 확인하였다. 이는 상기와 같은 변화 패턴을 고려하여 증착 압력, 온도 및 플라즈마 파워를 적절히 조합하여 선택함으로써 원하는 조성의 박막을 형성할 수 있음을 시사하는 것이다.
1-2. 금속탄화산화물 박막의 에칭 특성 분석
대조군으로서 금속이 포함되지 않은 탄화수소 박막과 상기 실시예 1의 표 1에 나타난 시료 6번의 조건으로 약 5000Å 두께로 증착시킨 본 발명의 알루미늄 함유 금속탄화산화물 박막의 에칭 특성을 확인하였다. 10분 동안 상기 2종의 박막에 C4F8/Ar/CH2F2/O2 에칭가스를 이용하여 플라즈마 에칭을 수행하되, 에칭 전/후 박막의 두께를 FE-SEM으로 측정하였다. 산화물 박막(oxide film)의 경우 상기 에칭조건에서 130 nm/min 속도로 에칭되며, 금속이 포함되지 않은 탄화수소 박막은 산화물 박막 대비 4.5의 선택비를 가지며, 알루미늄 함유 금속탄화산화물 박막의 경우 6.6의 선택비를 나타내었다. 알루미늄 함유 금속탄화산화물의 경우 금속이 포함되지 않은 탄화수소 박막에 비해 약 1.5배 선택비가 강화됨을 확인하였다. 상기 2종 박막에 대한 측정값을 하기 표 7에 정리하였다.
탄화수소 박막 알루미늄 산화물 탄화수소 박막
에칭 전 두께 (Å) 5480 5040
에칭 후 두께 (Å) 2620 3060
에칭량 (Å) 2860 1980
에칭속도 (Å/min) 28.6 19.8
선택비 (@ SiO2) 4.5 6.6
Al (%) - 30.17
C (%) 97.2 24.65
O (%) 2.8 45.18
* 탄화수소 박막 및 알루미늄 산화물 탄화수소 박막의 선택비 및 XPS 분석 결과
예컨대, 상기 실시예 1의 표 1에 나타난 시료 6번의 조건으로 약 5000Å 두께로 증착시켜 제조한 알루미늄 함유 금속탄화수소 박막에 알루미늄:탄소:산소의 조성비율이 1:1:1.5로 포함된 경우, 금속이 포함되지 않은 탄화수소 박막에 비해 하드마스크 선택비가 1.5배 강화됨을 확인하였다.
또한, 상기 실시예 2의 표 2에 나타난 시료 15번 조건으로 약 400 nm 두께로 증착시킨 본 발명의 티타늄 함유 금속탄화산화물 박막의 에칭 특성을 확인하였다. 10분 동안 상기 티타늄 함유 금속탄화산화물 박막에 C4F8/Ar/CH2F2/O2 에칭가스를 이용하여 플라즈마 에칭을 수행하되, 에칭 전/후 박막의 두께를 FE-SEM으로 측정하여 SiO2와의 선택비를 확인하였다. 그 결과, 티타늄 함유 금속탄화산화물 역시 금속이 포함되지 않은 탄화수소 박막에 비해 약 1.5배 강화된 선택비를 나타내었다. 측정된 결과를 하기 표 8에 정리하였다.
티타늄 산화물 탄화수소 박막
에칭 전 두께 (nm) 405.5
에칭 후 두께 (nm) 217
에칭량 (nm) 188.5
에칭속도 (nm/min) 18.85
선택비 (@ SiO2) 6.51
Ti (%) 20.95
C (%) 30.87
O (%) 48.18
* 티타늄 산화물 탄화수소 박막의 선택비 및 XPS 분석 결과
예컨대, 상기 실시예 2의 표 2에 나타난 시료 15번의 조건으로 약 400 nm 두께로 증착시켜 제조한 티타늄 함유 금속탄화수소 박막에 티타늄:탄소:산소의 조성비율이 1.5:1:3으로 포함된 경우, 금속이 포함되지 않은 탄화수소 박막에 비해 하드마스크 선택비가 1.5배 강화됨을 확인하였다.
1-3. 금속탄화산화물 박막의 전기적 특성 분석
evaporation 장비를 이용하여 상기 실시예 1의 표 1에 나타난 다양한 조건으로 증착시켜 제조한 금속탄화수소 박막(시료 1 내지 9) 위에 알루미늄 도트를 증착시켰다. 증착이 완료되면 유리 위에 실퍼 페이스트를 바르고 실리콘 웨이퍼를 부착시켰다. 이와 같이 금속-절연체-금속(metal-insulator-metal; MIM) 구조를 형성한 후 전류-전압 측정장치(Keithley, 6517A)를 사용하여 1V씩 전압을 가하면서 박막의 전류밀도를 측정하였다.
상기 실시예 1에서 제조된 시료 1 내지 9의 금속탄화산화물 박막의 전기적 특성을 분석한 결과, 전기장 2 MV/cm에서 전류밀도 10-6 내지 10-7A/cm2의 값을 갖는 절연 박막 특성을 나타내었다(도 8). 상기 결과로부터, 상기 실시예 1에서 제조된 금속탄화산화물 박막이 반도체 공정에서의 절연박막으로서 이용 가능함을 확인하였다.

Claims (15)

  1. 탄소; 산소; 및 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 금속;을 포함하는 금속탄화산화물 박막으로서,
    총 원자%을 기준으로 5 내지 85원자%의 탄소, 5 내지 60원자%의 산소; 및 5 내지 40원자%의 금속을 포함하는 금속탄화산화물 박막.
  2. 제1항에 있어서,
    상기 박막은 플라즈마 화학 기상 증착방식(Plasma enhanced chemical vapor deposition; PECVD)에 의해 형성된 것인 금속탄화산화물 박막.
  3. 제1항에 있어서,
    상기 박막은 탄화수소에 금속산화물이 균일하게 분포된 단일층인 것인 금속탄화산화물 박막.
  4. 제1항에 있어서,
    상기 박막의 두께는 400 내지 5000Å인 것인 금속탄화산화물 박막.
  5. 전구체를 이용하여 플라즈마 화학 기상 증착방식으로 기재 상에 박막을 형성하는 단계를 포함하는, 금속탄화산화물 박막의 제조방법에 있어서,
    상기 전구체는 탄소, 산소 및 금속을 모두 포함하는 단일 전구체 물질, 또는 1종 이상의 유기물 전구체 및 1종 이상의 무기물 전구체의 혼합물인 것인 제조방법.
  6. 제5항에 있어서,
    금속:탄소:산소의 조성비율로 제어하기 위해 플라즈마 화학 기상 증착방식의 증착 압력, 플라즈마 파워, 또는 증착 온도를 선택하는 단계를 더 포함하는 것인 제조방법.
  7. 제6항에 있어서,
    상기 증착 압력은 200 내지 1500 mTorr의 범위인 것인 금속탄화산화물 박막 제조방법.
  8. 제6항에 있어서,
    상기 증착 온도는 25℃ 내지 600℃의 범위인 것인 제조방법.
  9. 제6항에 있어서,
    상기 플라즈마 파워는 50 내지 150W의 범위인 것인 제조방법.
  10. 제5항에 있어서,
    상기 단일물질은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 디메틸알루미늄 이소프로폭사이드, 디이소부틸알루미늄 하이드라이드, 티타늄 테트라이소프로폭사이드, 하프늄 이소프로폭사이드, 테트라키스(디메틸아미도)하프늄, 탄탈륨 테트라이소프로폭사이드, 테트라키스(디메틸아미도)탄탈륨, 지르코늄 이소프로폭사이드, 테트라키스(디메틸아미도)지르코늄, 또는 옥소텅스텐인 것인 제조방법.
  11. 제5항에 있어서,
    상기 유기물 전구체는 아세틸렌, 프로판, 사이클로헥산, 헥센 및 메틸사이클로헥산으로 구성된 군으로부터 선택되는 하나 이상인 것인 제조방법.
  12. 제5항에 있어서,
    상기 무기물 전구체는 알루미늄, 티타늄, 하프늄, 탄탈륨, 지르코늄 및 텅스텐으로 구성된 군으로부터 선택되는 하나 이상의 금속을 포함하는 전구체인 것인 제조방법.
  13. 제5항에 있어서,
    상기 박막은 탄화수소에 금속산화물이 균일하게 분포된 단일층인 것인 제조방법.
  14. 제5항에 있어서,
    상기 박막은 반도체 소자 또는 유기전자 소자 중 패턴을 형성하기 위한 층, 또는 절역막 또는 봉지박막이 요구되는 부분 상에 형성되는 것인 제조방법.
  15. 제1항 내지 제4항 중 어느 한 항에 따른 금속탄화산화물 박막으로 형성된 반도체 공정용 하드마스크.
PCT/KR2016/013037 2015-11-12 2016-11-11 탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법 WO2017082695A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0159154 2015-11-12
KR1020150159154A KR101818610B1 (ko) 2015-11-12 2015-11-12 탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법

Publications (2)

Publication Number Publication Date
WO2017082695A2 true WO2017082695A2 (ko) 2017-05-18
WO2017082695A3 WO2017082695A3 (ko) 2017-06-29

Family

ID=58695793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013037 WO2017082695A2 (ko) 2015-11-12 2016-11-11 탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법

Country Status (2)

Country Link
KR (1) KR101818610B1 (ko)
WO (1) WO2017082695A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112914561A (zh) * 2021-01-25 2021-06-08 深圳大学 一种混配位金属碳纳米薄膜水凝胶柔性弯曲传感单元及其制备方法、柔性弯曲传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141850A1 (ko) * 2018-12-31 2020-07-09 충남대학교산학협력단 탄화수소 박막, 탄화수소 박막의 제조방법 및 탄화수소 박막을 포함하는 반도체 소자
WO2024091323A1 (en) * 2022-10-26 2024-05-02 Applied Materials, Inc. Aluminum oxide carbon hybrid hardmasks and methods for making the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573030B1 (en) * 2000-02-17 2003-06-03 Applied Materials, Inc. Method for depositing an amorphous carbon layer
US20090315093A1 (en) * 2008-04-16 2009-12-24 Asm America, Inc. Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds
KR100948770B1 (ko) * 2008-06-27 2010-03-24 주식회사 에스앤에스텍 블랭크 마스크, 포토마스크 및 이의 제조 방법
KR101384111B1 (ko) * 2009-01-09 2014-04-10 주식회사 에스앤에스텍 블랭크 마스크, 이를 이용하는 포토 마스크 및 이를 제조하는 방법
JP5739375B2 (ja) * 2012-05-16 2015-06-24 信越化学工業株式会社 ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスクの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112914561A (zh) * 2021-01-25 2021-06-08 深圳大学 一种混配位金属碳纳米薄膜水凝胶柔性弯曲传感单元及其制备方法、柔性弯曲传感器
CN112914561B (zh) * 2021-01-25 2023-06-20 深圳大学 一种混配位金属碳纳米薄膜水凝胶柔性弯曲传感单元及其制备方法、柔性弯曲传感器

Also Published As

Publication number Publication date
KR101818610B1 (ko) 2018-01-16
WO2017082695A3 (ko) 2017-06-29
KR20170056093A (ko) 2017-05-23

Similar Documents

Publication Publication Date Title
US20200111669A1 (en) Method for depositing oxide film by peald using nitrogen
TWI398925B (zh) 氮化硼及氮化硼衍生材料之沉積方法
EP0428839B1 (en) Method for depositing high quality silicon dioxide by plasma-enhanced chemical vapour deposition (PECVD)
JP6845252B2 (ja) ケイ素含有膜の堆積のための組成物及びそれを用いた方法
WO2018066884A1 (ko) 복합막 제조방법
TWI600614B (zh) 矽石質膜之形成方法及以相同方法形成之矽石質膜
WO2012018210A2 (ko) 사이클릭 박막 증착 방법
CN108122739A (zh) 拓扑限制的等离子体增强循环沉积的方法
WO2019103500A1 (ko) 실리콘 함유 박막 증착용 조성물 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2017082695A2 (ko) 탄소, 산소, 및 금속을 포함하는 금속탄화산화물 박막 및 그의 제조방법
WO2016010267A1 (ko) 고종횡비를 가지는 오목부 상에 절연막을 증착하는 방법
WO2014027854A1 (ko) iCVD 공정을 이용한 절연막 형성 방법
KR100463858B1 (ko) 층간절연막의형성방법
KR20190123514A (ko) 유연한 유무기 보호막 및 그 제조방법
EP0794569A2 (en) Amorphous carbon film, formation process thereof, and semiconductor device making use of the film
US6551949B2 (en) Deposition method of dielectric films having a low dielectric constant
WO2023096270A1 (ko) 고유전율 박막용 가리움제, 이를 이용한 선택영역증착 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2022220450A1 (ko) 문턱 전압이 제어된 반도체 소자 및 그 제조방법
WO2020256515A1 (ko) 물질막 및 타겟 패턴의 선택적 제조 방법
WO2024080811A1 (ko) 탄소분자체의 개질 방법
WO2023090910A1 (ko) 유기 금속 화합물을 이용하여 박막을 형성하는 방법 및 이로부터 제조된 박막
WO2018199508A1 (ko) 플라즈마 처리장치 및 이를 이용한 탄소막의 증착방법
WO2020141850A1 (ko) 탄화수소 박막, 탄화수소 박막의 제조방법 및 탄화수소 박막을 포함하는 반도체 소자
US20230142684A1 (en) Single Precursor Low-K Film Deposition and UV Cure for Advanced Technology Node
WO2015060636A1 (ko) 단원자 증착법을 이용한 복합 및 비대칭적인 복합박막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864621

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864621

Country of ref document: EP

Kind code of ref document: A2