WO2023200055A1 - 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법 - Google Patents

실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법 Download PDF

Info

Publication number
WO2023200055A1
WO2023200055A1 PCT/KR2022/015791 KR2022015791W WO2023200055A1 WO 2023200055 A1 WO2023200055 A1 WO 2023200055A1 KR 2022015791 W KR2022015791 W KR 2022015791W WO 2023200055 A1 WO2023200055 A1 WO 2023200055A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
layer
solid electrolyte
electrode
protective layer
Prior art date
Application number
PCT/KR2022/015791
Other languages
English (en)
French (fr)
Inventor
최시영
강병우
양유정
김소연
김아빈
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220128815A external-priority patent/KR20230145898A/ko
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2023200055A1 publication Critical patent/WO2023200055A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for supplying lithium ions for real-time transmission electron microscopy analysis and a method of manufacturing the same.
  • the present invention relates to an electrode for supplying lithium ions for real-time transmission electron microscopy analysis and a method of manufacturing the same.
  • a protective layer containing a metal lithium is not oxidized while loading the lithium secondary battery material into a holder for real-time analysis. It relates to an electrode for supplying lithium ions that is stored without any damage and a method of manufacturing the same.
  • the lithium ion supply electrode that is currently used most often is tested by wetting liquid lithium on the tip of a metal tip in a glove box, then taking it out into the air and loading the tip into a holder for a short period of time.
  • lithium oxide (Li 2 O) formed by oxidation of lithium exposed to the air is used as a solid electrolyte, and the analysis is performed by contacting the lithium secondary battery material and applying voltage.
  • Lithium oxide (Li 2 O) has significantly lower lithium ion conductivity compared to materials currently used and researched as actual solid electrolytes. This difference in ionic conductivity causes overvoltage when applied in an experiment and is different from the actual electrode environment, making it difficult to view it as an analysis of lithium secondary battery materials using actual electrolyte.
  • the sample when an electrode for supplying lithium ions is manufactured by wetting lithium in a glove box, the sample must be loaded into the holder within a short period of time and then mounted on the microscope to prevent the lithium from being completely oxidized when exposed to the air, so the glove box must be used. It should be near the microscope.
  • equipment such as transmission electron microscopes are sensitive to light and vibration due to their nature, so it is not easy to place the two equipment in close proximity due to the vibration coming from the pump in the glove box.
  • the purpose of the present invention is to solve the above problems, using a solid electrolyte with high lithium ion conductivity for real-time analysis of lithium secondary battery materials by implementing a charging and discharging environment, and preserving lithium without being oxidized while loading into the holder.
  • the aim is to provide an electrode for supplying lithium ions and a method for manufacturing the same.
  • the aim is to provide a small-sized lithium ion supply electrode that can be used to analyze microstructural changes and interfacial reactions of lithium secondary battery materials using equipment that is sensitive to light and vibration due to its characteristics, such as a transmission electron microscope.
  • a solid electrolyte layer containing a solid electrolyte; A lithium layer formed on the solid electrolyte layer and containing lithium; and a protective layer formed on the lithium layer and containing a metal.
  • An electrode for supplying lithium ions is provided.
  • the thickness of the lithium layer may be 0.5 to 10 ⁇ m.
  • the metal of the protective layer may include one or more types selected from the group consisting of copper (Cu), gold (Au), silver (Ag), and nickel (Ni).
  • the metal of the protective layer may include copper (Cu).
  • the thickness of the protective layer may be 0.5 to 10 ⁇ m.
  • the farther the solid electrolyte layer is from the lithium layer the smaller the area of the cross section of the solid electrolyte layer parallel to the lithium layer.
  • the solid electrolyte layer may have any shape selected from the group consisting of a cone, an elliptical cone, and a polygonal pyramid.
  • the solid electrolyte may include one or more selected from the group consisting of oxide-based solid electrolyte, sulfide-based solid electrolyte, phosphide-based solid electrolyte, silicide-based solid electrolyte, and combinations thereof.
  • the solid electrolyte layer may have a thickness of 0.5 ⁇ m to 85 mm.
  • it may be used to analyze lithium secondary battery materials during the charging and discharging process of a lithium secondary battery using any one selected from the group consisting of a transmission electron microscope, scanning electron microscope, optical microscope, and scanning probe microscope.
  • a liquid lithium layer is formed on the solid electrolyte layer, and the liquid lithium layer is formed on the liquid lithium layer.
  • a method of manufacturing an electrode for supplying lithium ions is provided, including the step of manufacturing an electrode.
  • step (a) may be performed at a temperature of 180.5 to 500 °C.
  • step (a) includes (a-1) wetting liquid lithium on a solid electrolyte to form a solid electrolyte layer/liquid lithium layer; and (a-2) manufacturing a solid electrolyte layer/lithium layer/protective layer by placing a protective layer containing a metal on the liquid lithium layer.
  • step (a) between step (a-1) and step (a-2), at a temperature above the melting point of lithium (a-1'), a liquid lithium layer is added to the liquid lithium layer. It may further include adjusting the thickness of the liquid lithium layer by adding lithium or removing some liquid lithium from the liquid lithium layer.
  • step (b) includes (b-1) etching the solid electrolyte layer/lithium layer/protective layer to have a bridge shape when viewed from above the protective layer using a focused ion beam device; (b-2) etching one of the left and right ends of the leg shape and the lower end; (b-3) bonding a probe to the protective layer surface of a leg-shaped portion whose end and lower end are etched; and (b-4) manufacturing a lithium ion supply electrode including a protective layer/lithium layer/solid electrolyte layer bonded to the probe by etching the other end of the left end and the right end of the leg shape; may include.
  • the method of manufacturing the lithium ion supply electrode includes, after step (b-4), (c) bonding the protective layer and the lithium layer of the lithium ion supply electrode to a metal tip and part or all of the solid electrolyte layer. Not bonding with a metal tip; and (d) etching the solid electrolyte layer of the lithium ion supply electrode so that the area of the cross section of the solid electrolyte layer parallel to the lithium layer decreases as the distance from the lithium layer increases.
  • step (c) in the method of manufacturing the lithium ion supply electrode, (c') the lithium ion supply electrode bonded to the probe is approached to a metal tip, and the probe is rotated to bond to the probe.
  • the method may further include allowing the surface of the protective layer/lithium layer/solid electrolyte layer, the surface of the lithium layer, and the surface of the solid electrolyte layer to face the side of the tip.
  • a real-time analysis method of a lithium secondary battery material is provided, including the step of analyzing in real time using a microscope.
  • the material used in the lithium secondary battery may be any one selected from the group consisting of a negative electrode material, an electrolyte, a positive electrode material, and a current collector.
  • the microscope may be any one selected from the group consisting of a transmission electron microscope, scanning electron microscope, optical microscope, and scanning probe microscope.
  • the lithium ion supply electrode of the present invention uses a solid electrolyte with high lithium ion conductivity for real-time analysis of lithium secondary battery materials through the implementation of a charge and discharge environment, and has the effect of preserving lithium without oxidation during loading into the holder. .
  • the lithium ion supply electrode of the present invention does not require a glove box while loading the electrode because oxidation of lithium does not proceed in a short period of time, so equipment that is sensitive to light and vibration due to its characteristics, such as a transmission electron microscope, is used to produce lithium secondary battery materials. It can be used to analyze structural changes and interface reactions.
  • Figure 1 shows a schematic diagram of a laminate including a protective layer and a laminate not including a protective layer according to an embodiment of the present invention.
  • Figure 2 shows a schematic diagram of the lithium ion supply electrode before and after the probe is rotated 180° in the focused ion beam device when manufacturing the lithium ion supply electrode according to one embodiment of the present invention.
  • Figure 3 is an image confirming the degree of oxidation of lithium in the laminate manufactured according to Example 1 and Comparative Example 1 using a scanning electron microscope in a focused ion beam device.
  • Figure 4 is an image taken with a scanning electron microscope inside the focused ion beam device of the manufacturing process of the electrode for supplying lithium ions using the focused ion beam device according to Example 1.
  • Figure 5 shows the process of loading the lithium ion supply electrode and the working electrode (current collector material) manufactured in Example 2 into a real-time biasing holder to analyze the electrodeposition reaction of the lithium secondary battery current collector.
  • Figure 6 shows the experimental results of Example 2 when using the lithiophobic material Cu as the working electrode.
  • Figure 7 shows the experimental results of Example 2 when lithiophobic material Ni is used as the working electrode.
  • Figure 8 shows the experimental results of Example 2 when using the lithiophobic material Ni coated with the lithiophilic material Ag as the working electrode.
  • Figure 9 shows the lithium particles generated during the electrodeposition reaction analysis in Example 2 when using the lithiophobic material Cu as the working electrode and the change in shape of the electrode for supplying lithium ions when exposed to air after analysis.
  • first, second, etc. which will be used below, may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • a component when referred to as being “formed” or “laminated” on another component, it may be formed or laminated directly on the entire surface or one side of the surface of the other component, but may also mean that the component is “formed” or “laminated” on another component. It should be understood that other components may exist.
  • the electrode for supplying lithium ions for real-time microscopic analysis and its manufacturing method will be described in detail.
  • this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.
  • Figure 1 shows a schematic diagram of a laminate including a protective layer and a laminate not including a protective layer according to an embodiment of the present invention.
  • the present invention includes a solid electrolyte layer containing a solid electrolyte; A lithium layer formed on the solid electrolyte layer and containing lithium; and a protective layer formed on the lithium layer and containing a metal.
  • the thickness of the lithium layer may be 0.5 to 10 ⁇ m, preferably 1 to 8 ⁇ m, and more preferably 2 to 6 ⁇ m. If the thickness is less than 0.5 ⁇ m, lithium ions cannot be sufficiently supplied, and a smooth interface cannot be formed between the solid electrolyte layer and the lithium layer or the lithium layer and the protective layer, and air may penetrate into the empty space and lithium may be oxidized. Otherwise, if it exceeds 10 ⁇ m, a long time is required for etching when manufacturing a lithium ion supply electrode using a focused ion beam device, and the greater the amount of etching, the more strain it places on the focused ion beam device, which is not desirable.
  • the metal of the protective layer may include one or more types selected from the group consisting of copper (Cu), gold (Au), silver (Ag), and nickel (Ni).
  • the metal of the protective layer may include copper (Cu).
  • the thickness of the protective layer may be 0.5 to 10 ⁇ m, preferably 4 to 8 ⁇ m, and more preferably 5 to 7 ⁇ m. If the thickness is less than 0.5 ⁇ m, it may be difficult to handle using a tweezer in a glove box, and it is not desirable to protect lithium metal from damage caused by the Ga ion beam in a focused ion beam device. If the thickness is more than 10 ⁇ m, a focused ion beam device must be used. Therefore, when manufacturing an electrode for supplying lithium ions, a long time is consumed for etching, and the greater the amount of etching, the more strain it places on the focused ion beam device, which is not desirable.
  • the farther the solid electrolyte layer is from the lithium layer the smaller the area of the cross section of the solid electrolyte layer parallel to the lithium layer.
  • the solid electrolyte layer may have any shape selected from the group consisting of a cone, an elliptical cone, and a polygonal pyramid.
  • the solid electrolyte may include one or more selected from the group consisting of oxide-based solid electrolyte, sulfide-based solid electrolyte, phosphide-based solid electrolyte, silicide-based solid electrolyte, and combinations thereof.
  • the solid electrolyte layer may have a thickness of 0.5 ⁇ m to 85 mm. If the thickness is less than 0.5 ⁇ m, the solid electrolyte layer is too thin and may be difficult to etch in the focused ion device, and if it exceeds 85 mm, it may be difficult to mount in the chamber of the focused ion device, which is not desirable.
  • the lithium secondary battery material during the charging and discharging process of the lithium secondary battery may be used to analyze the lithium secondary battery material during the charging and discharging process of the lithium secondary battery using any one selected from the group consisting of a transmission electron microscope, scanning electron microscope, optical microscope, and scanning probe microscope, and is preferably used. may be used to analyze lithium secondary battery materials during the charging and discharging process of lithium secondary batteries using a transmission electron microscope.
  • Figure 4 is an image taken with a scanning electron microscope inside the focused ion beam device of the manufacturing process of the electrode for supplying lithium ions using the focused ion beam device according to Example 1.
  • the present invention (a) forms a liquid lithium layer on a solid electrolyte layer at a temperature above the melting point of lithium under inert gas conditions, and forms a liquid lithium layer on the liquid lithium layer.
  • Manufacturing a laminate including a solid electrolyte layer/lithium layer/protective layer by forming a protective layer including a metal; and (b) for supplying lithium ions including the solid electrolyte layer/lithium layer/protective layer by separating a portion of the laminate into a predetermined shape using a focused ion beam device at a temperature below the melting point of lithium. It provides a method of manufacturing an electrode for supplying lithium ions, including the step of manufacturing an electrode.
  • step (a) may be performed at a temperature of 180.5 to 500°C, and preferably may be performed at a temperature of 200 to 300°C. If the temperature is less than 180.5 °C, it is not desirable because lithium does not change to a liquid state and a liquid lithium layer cannot be formed on the solid electrolyte layer, and if it exceeds 500 °C, it may have a structural effect on the protective layer or solid electrolyte. This is not desirable.
  • step (a) includes (a-1) wetting liquid lithium on a solid electrolyte to form a solid electrolyte layer/liquid lithium layer; and (a-2) manufacturing a solid electrolyte layer/lithium layer/protective layer by placing a protective layer containing a metal on the liquid lithium layer.
  • step (a) between step (a-1) and step (a-2), at a temperature above the melting point of lithium (a-1'), a liquid lithium layer is added to the liquid lithium layer. It may further include adjusting the thickness of the liquid lithium layer by adding lithium or removing some liquid lithium from the liquid lithium layer.
  • step (b) includes (b-1) etching the solid electrolyte layer/lithium layer/protective layer to have a bridge shape when viewed from above the protective layer using a focused ion beam device; (b-2) etching one of the left and right ends of the leg shape and the lower end; (b-3) bonding a probe to the protective layer surface of a leg-shaped portion whose end and lower end are etched; and (b-4) manufacturing a lithium ion supply electrode including a protective layer/lithium layer/solid electrolyte layer bonded to the probe by etching the other end of the left end and the right end of the leg shape; may include.
  • the method of manufacturing the lithium ion supply electrode includes, after step (b-4), (c) bonding the protective layer and the lithium layer of the lithium ion supply electrode to a metal tip and part or all of the solid electrolyte layer. Not bonding with a metal tip; and (d) etching the solid electrolyte layer of the lithium ion supply electrode so that the area of the cross section of the solid electrolyte layer parallel to the lithium layer decreases as the distance from the lithium layer increases.
  • step (c) in the method of manufacturing the lithium ion supply electrode, (c') the lithium ion supply electrode bonded to the probe is approached to a metal tip, and the probe is rotated to bond to the probe.
  • the method may further include allowing the surface of the protective layer/lithium layer/solid electrolyte layer, the surface of the lithium layer, and the surface of the solid electrolyte layer to face the side of the tip.
  • the present invention includes the steps of (1) loading the lithium ion supply electrode into a first holder of a real-time biasing holder; (2) loading a material used in a lithium secondary battery into a second holder; and (3) bringing the solid electrolyte of the lithium ion supply electrode into contact with the material and applying voltage or current to the lithium ion supply electrode and the material to change the structure and interface of the material during charging and discharging. It provides a real-time analysis method of a lithium secondary battery material including the step of analyzing in real time using a microscope.
  • the material used in the lithium secondary battery may be any one selected from the group consisting of a negative electrode material, an electrolyte, a positive electrode material, and a current collector.
  • the microscope may be any one selected from the group consisting of a transmission electron microscope, scanning electron microscope, optical microscope, and scanning probe microscope, and is preferably a transmission electron microscope.
  • the electrode for supplying lithium ions for real-time transmission electron microscopy analysis must be capable of observing structural defects and analyzing defect generation mechanisms through the implementation of a charging and discharging environment at a fine scale, and must be capable of supplying lithium ions, including lithium and electrolyte. , lithium must be preserved without being oxidized during mounting in the real-time transmission electron microscope holder.
  • the first strategy is to prevent oxidation of lithium by wetting liquid lithium on a solid electrolyte in the glove box and then covering it with a copper metal thin film as a protective layer to minimize the area where lithium is exposed to the air ( Figure 1 ). Because the partial pressure of water vapor and partial pressure of oxygen are strictly controlled inside the glove box, lithium is not oxidized during this process. In addition, the copper metal thin film covering the lithium at this stage serves to protect the lithium from the Ga ion beam during the later etching process with a focused ion beam device, making it possible to manufacture an electrode for supplying lithium ions without depositing an additional protective layer.
  • the second strategy was to design a method of manufacturing electrodes for supplying lithium ions using a focused ion beam device.
  • the focused ion beam device enables etching, deposition, and observation in microscale using Ga ion beam and Pt simultaneously with scanning electron microscope observation.
  • the size of the lithium ion supply electrode of the present invention is about 15 can do.
  • a protective layer to prevent oxidation of lithium is exposed on the surface, and the solid electrolyte is located at the bottom.
  • the thickness of the protective layer of the top layer is 6 ⁇ m
  • the thickness of the lithium layer immediately below is about 5 ⁇ m
  • the thickness of the solid electrolyte layer of the bottom layer is more than several hundred ⁇ m. Since the focused ion beam device irradiates an ion beam from the surface of the laminate toward the inside to etch the laminate, the laminate must be mounted on the focused ion beam device so that the 6 ⁇ m-thick thin protective layer is on top so that all solid electrolyte layer/lithium layer/protective layer materials are used.
  • the solid electrolyte has a thickness of several hundred ⁇ m or more, making it difficult to etch from the surface.
  • the top layer is generally protected.
  • the layers are located and consist of the lithium layer and the solid electrolyte layer in that order.
  • a solid electrolyte layer capable of delivering lithium ions must be located at the top layer and be in contact with the lithium secondary battery material.
  • the third strategy is to adjust the thickness of the lithium layer to within 0.5 to 10 ⁇ m in the process of applying the first strategy. If the lithium layer is too thin (less than 0.5 ⁇ m), not only can lithium ions not be supplied sufficiently, but a smooth interface is not formed between the solid electrolyte layer and the lithium layer, or the lithium layer and the protective layer, and air penetrates into the empty space, causing lithium to There is a risk of oxidation. On the other hand, if the thickness of the lithium layer exceeds 10 ⁇ m, etching using a focused ion beam device takes a long time, and the greater the amount of etching, the more strain it places on the focused ion beam device, so the lithium layer thickness must be optimized to within 0.5 to 10 ⁇ m. proceeded.
  • Example 1 Preparation of electrode for lithium ion supply
  • Liquid lithium was prepared by melting the lithium ribbon using a hot plate heated to 260°C.
  • a lithium layer was formed by wetting the liquid lithium on one side of a pellet-shaped oxide-based solid electrolyte (Li 7 La 3 Zr 2 O 12 ). Afterwards, the wetting lithium was taken out 2 to 3 times and the lithium layer was adjusted to have a thickness of about 5 ⁇ m.
  • a 6 ⁇ m thick copper metal thin film (Cu foil) was placed on the lithium layer to prepare a laminate including a solid electrolyte layer/lithium layer/protective layer. Afterwards, the laminate was taken off the hot plate, cooled sufficiently, sealed, and taken out of the glove box.
  • the sealed laminate was unsealed and placed in a focused ion beam device.
  • the focused ion beam device is capable of etching, deposition, and observation in microscale using Ga ion beam and Pt.
  • the additionally prepared tungsten metal tip (company name: Probes, product name: WNP-10, Tungsten nano probe) was placed horizontally and installed together.
  • Figure 4 is an image taken with a scanning electron microscope inside the focused ion beam device of the manufacturing process of the electrode for supplying lithium ions using the focused ion beam device according to Example 1.
  • the images were taken with a scanning electron microscope and the inset images were taken with a focused ion beam device.
  • the laminate including the solid electrolyte layer/lithium layer/protection layer was formed into 30 x 30 squares on both sides using a Ga ion beam at a voltage of 30 kV and a current of 21 nA, leaving a width of about 10 to 12 ⁇ m.
  • x 25 ⁇ m 3 was dug out and the solid electrolyte layer/lithium layer/protective layer was etched to have a bridge shape when viewed in the z-axis direction.
  • check whether the interface between the protective layer, the lithium layer, and the solid electrolyte layer is well formed and whether the thickness of the lithium layer is appropriate is checked in the x-axis direction as shown in the inset using a focused ion device.
  • the etched surface is damaged when etched with high current, the etched surface is smoothed by gradually etching at lower currents in the order of 30kV voltage, 9.3 nA, and 2.5 nA.
  • the width of the leg shape is adjusted to approximately 8 ⁇ m.
  • a cross section of the protective layer, lithium layer, and solid electrolyte layer is irradiated with a beam in the x-direction and etched in an L-shape when viewed from the The ends and bottom portions were etched.
  • a probe was inserted, and Pt was deposited to bond the probe to the protective layer surface of the leg-shaped portion where one of the ends and bottom portions were etched.
  • the other end of the left end and the right end of the leg shape is etched (etching the L shape into a U shape) to form a protective layer/lithium layer/solid electrolyte layer bonded to the probe.
  • An electrode for supplying lithium ions was manufactured.
  • FIG. 4e the probe with the lithium ion supply electrode attached is inserted into the end area of the trimmed metal tip, and then the probe is rotated 180° as shown in FIG. 4f.
  • Figure 2 shows a schematic diagram of an electrode for supplying lithium ions before and after rotating the probe 180° in a focused ion beam device.
  • the order was composed of the protective layer/lithium layer/solid electrolyte layer from the surface, whereas when the probe was rotated 180 degrees, the order was solid electrolyte layer/lithium layer/protective layer from the right. The location changes to .
  • the protective layer of the lithium ion supply electrode and the lithium layer are connected using Pt deposition to contact the end of the metal tip, and the probe and the lithium ion supply electrode are separated using an etching function. did.
  • the size is several micrometers, so the surface of the electrode for supplying lithium ions must be made sharp to make contact.
  • the surface morphology of the lithium ion supply electrode was adjusted to have a milk carton shape using the etching function of the focused ion beam device.
  • the lithium ion supply electrode manufactured according to Example 1 is loaded into the first holder, the material of the current collector is loaded into the second holder as a working electrode, and then the solid of the lithium ion supply electrode is loaded.
  • the electrolyte layer is brought into contact with the working electrode to form a half cell in the following order: counter electrode (lithium layer of the lithium ion supply electrode)/electrolyte (solid electrolyte layer of the lithium ion supply electrode)/working electrode (current collector material). It was composed.
  • lithiophobic material Cu lithiophobic material Ni
  • lithiophobic material Ni coated with lithiophobic material Ag three types of working electrodes were prepared: lithiophobic material Cu, lithiophobic material Ni, and lithiophobic material Ni coated with lithiophobic material Ag.
  • a lithiophobic material refers to a material for which the plating of pure lithium is difficult
  • a lithiophilic material refers to a material for which the plating of pure lithium is easy.
  • the contact and connected half cells were charged and discharged in real time and imaged using a transmission electron microscope to analyze the electrodeposition reaction of the current collector during charge and discharge.
  • Comparative Example 1 Manufacturing of electrode for supplying lithium ions without protective layer
  • An electrode for supplying lithium ions was manufactured in the same manner as in Example 1, except that a 6 ⁇ m thick copper metal thin film (Cu foil) was not placed on the lithium layer.
  • Test Example 1 Confirmation of the lithium oxidation prevention effect of the protective layer
  • Figure 3 is an image confirming the degree of oxidation of lithium in the laminate manufactured according to Example 1 and Comparative Example 1 using a scanning electron microscope in a focused ion beam device.
  • Figure 3a is a scanning electron microscope image of a cross section of the solid electrolyte layer/lithium layer laminate of Comparative Example 1.
  • Figure 3a is a scanning electron microscope image immediately after forming the solid electrolyte layer/lithium layer laminate of Comparative Example 1 and mounting it on a focused ion beam device. While the laminate was mounted on the focused ion beam device, the laminate was exposed to air for less than 5 minutes. According to Figure 3a, it can be seen that Comparative Example 1 did not include a protective layer (copper metal thin film), so lithium was oxidized and the interface between lithium and the solid electrolyte layer was not smooth.
  • a protective layer copper metal thin film
  • Figure 3b is a cross-sectional scanning electron microscope image after depositing Pt on the surface of the lithium layer of the solid electrolyte layer/lithium layer laminate of Comparative Example 1.
  • the Pt is a protective layer to protect the sample from the Ga ion beam.
  • Comparative Example 1 does not include a protective layer, lithium is oxidized and the lithium layer becomes a lithium oxide layer, and during the Pt deposition process, the interface between the lithium oxide layer and the solid electrolyte layer opens to create an empty space. You can.
  • Figure 3c is a cross-sectional scanning electron microscope image of the solid electrolyte layer/lithium layer/protective layer laminate when manufacturing the electrode for supplying lithium ions according to Example 1. According to FIG. 3C, it can be seen that Example 1 forms a smooth interface because the lithium in the lithium layer is not oxidized.
  • Figure 3d is a cross-sectional scanning electron microscope image of the solid electrolyte layer/lithium layer/protection layer laminate of Example 1 after being stored in a vacuum desiccator for 7 days. According to Figure 3D, it can be seen that Example 1 still maintains a smooth interface without oxidation of lithium even after 7 days.
  • Figure 3e shows that in Example 1, the solid electrolyte layer/lithium layer/protective layer was etched to have a bridge shape when viewed from above the protective layer using a focused ion beam device, and exposed to air for 7 days before being exposed to a focused ion beam. This is the result of observation using the device. According to Figure 3e, it can be seen that the lithium exposed to air through etching is oxidized and its volume increases. That is, even if a protective layer is formed, it can be confirmed that lithium is oxidized if the lithium layer is exposed to the air for a long time.
  • Figure 3f is the result of observing the interface around the position exposed to the air in Figure 3e using a focused ion beam device. According to FIG. 3f, it can be confirmed that the volume of the lithium layer expanded up to 80 ⁇ m from the area where lithium was exposed, or that the lithium layer was oxidized because a hole was created. Meanwhile, the dotted square portion of FIG. 3F shows that the lithium layer is not oxidized in the area 80 ⁇ m after the lithium exposed area.
  • the lithium ion supply electrode is manufactured from the area after 80 ⁇ m from the exposed area, the lithium ion supply electrode in which the lithium layer is not oxidized can be obtained. can be manufactured repeatedly.
  • Test Example 2 Checking the performance of the electrode for supplying lithium ions
  • Figure 5 shows the process of loading the lithium ion supply electrode and the working electrode (current collector material) manufactured in Example 2 into a real-time biasing holder to analyze the electrodeposition reaction of the lithium secondary battery current collector. Depending on the results of the electrodeposition reaction analysis of the working electrode, it can be confirmed whether the lithium ion supply electrode of the present invention is operating.
  • Figure 5a is a schematic diagram of the current collector analysis experiment of the lithium secondary battery of Example 2
  • Figure 5b is an image of the lithium ion supply electrode according to Example 1
  • Figure 5c is a lithiophobic material Cu among the working electrodes used in Example 2. This shows loading.
  • Figure 5D shows an image of the real-time biasing holder when the lithium ion supply electrode and the working electrode (lithiophobic material Cu) manufactured according to Example 1 were loaded for a current collector analysis experiment of a lithium secondary battery according to Example 2. This is a low-magnification image mounted on a transmission electron microscope.
  • Figure 6 shows the experimental results of Example 2 when using the lithiophobic material Cu as the working electrode.
  • Figure 6a is a transmission electron microscope image of the interface between the lithium ion supply electrode and the lithiophobic material Cu of Example 1 in a constant current environment of + 10 uA or - 10 uA
  • Figure 6b is a transmission electron microscope image in a constant current environment of + 20 uA or - 20 uA.
  • This is a transmission electron microscope image of the interface between the lithium ion supply electrode of Example 1 and the lithiophobic material Cu.
  • Figure 7 shows the experimental results of Example 2 when lithiophobic material Ni is used as the working electrode.
  • Figure 7a is a transmission electron microscope image of the interface between the lithium ion supply electrode and the working electrode (lithiophobic material Ni) of Example 1 in a + 8 pA constant current environment
  • Figure 7b is a transmission electron microscope image of Example 1 in a - 8 pA constant current environment. This is a transmission electron microscope image of the interface of the working electrode (lithiophobic material Ni) for lithium ion supply.
  • Figure 8 shows the experimental results of Example 2 when using the lithiophobic material Ni coated with the lithiophilic material Ag as the working electrode.
  • Figure 8a is a low-magnification transmission electron microscope image of the interface between the lithium ion supply electrode and the working electrode (lithiophobic material Ni coated with lithiophilic material Ag) of Example 1 in a state without charging and discharging
  • Figure 8b is +20
  • Figure 8c shows the lithium ion supply electrode and working electrode of Example 1 in an environment before current supply (Before biasing), + 20 nA constant current supply (Biasing: + 20 nA), and - 20 nA constant current supply (Biasing: - 20 nA).
  • Current supply Before biasing
  • + 20 nA constant current supply Biasing: + 20 nA
  • - 20 nA constant current supply Biasing: - 20 nA
  • High magnification transmission electron microscope images of the interface (lithiophobic material Ni coated with lithiophilic material Ag) are shown.
  • Figure 8d shows the lithium ion supply electrode and working electrode of Example 1 in an environment before current supply (Before biasing), + 160 nA constant current supply (Biasing: + 160 nA), and - 160 nA constant current supply (Biasing: - 160 nA).
  • Current supply Before biasing
  • + 160 nA constant current supply Biasing: + 160 nA
  • - 160 nA constant current supply Biasing: - 160 nA
  • High magnification transmission electron microscope images of the interface (lithiophobic material Ni coated with lithiophilic material Ag) are shown.
  • the lithiophilic Ag coating layer in the working electrode exists on the lithiophobic material Ni with a thickness of about 150 to 200 nm.
  • FIG. 8D it can be seen that the size of the black pattern grows larger than that of FIG. 8C in a relatively higher current environment of + 160 nA (Biasing: + 160 nA) than that of FIG. 8C. It can be confirmed that these changes cause lithiation and delithiation in the lithiophobic material Ni through coating of the lithiophilic material Ag.
  • lithium growth morphology can be observed in various microcurrent and voltage environments, and changes in the structure and interface of lithium secondary battery materials with various lithio-properties can be analyzed in real time. there is.
  • Figure 9 shows the lithium particles generated during the electrodeposition reaction analysis in Example 2 when using the lithiophobic material Cu as the working electrode and the change in shape of the electrode for supplying lithium ions when exposed to air after analysis.
  • Figure 9a shows a high-resolution transmission electron microscopy (HRTEM) image (upper left) and FFT of lithium oxide (Li 2 O) observed during the experiment of Example 2 when using the lithiophobic material Cu.
  • HRTEM transmission electron microscopy
  • HRTEM high-resolution transmission electron microscope image
  • FFT image lower right
  • Figure 9b is an image immediately after fabrication of the lithium ion supply electrode of Example 1 before the electrodeposition reaction analysis of Example 2
  • Figure 9c is an image of the lithium ion supply electrode of Example 1 after analysis of the electrodeposition reaction of Example 2 exposed to air. This is an image after work.
  • FIGS. 9B and 9C it can be observed that the lithium portion of the lithium ion supply electrode is oxidized and lithium oxide is generated due to exposure to air for a week, and the lithium ion supply electrode is covered with lithium oxide. Through this, it can be confirmed that lithium existed as lithium metal in the lithium ion supply electrode during the experiment.
  • the lithium ion supply electrode of the present invention uses a solid electrolyte with high lithium ion conductivity for real-time analysis of lithium secondary battery materials through the implementation of a charge and discharge environment, and has the effect of preserving lithium without oxidation during loading into the holder. .
  • the lithium ion supply electrode of the present invention does not require a glove box while loading the electrode because oxidation of lithium does not proceed in a short period of time, so equipment that is sensitive to light and vibration due to its characteristics, such as a transmission electron microscope, is used to produce lithium secondary battery materials. It can be used to analyze structural changes and interface reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법이 개시된다. 상기 리튬이온 공급용 전극은 고체전해질을 포함하는 고체전해질층; 상기 고체전해질층 상에 형성되고, 리튬을 포함하는 리튬층; 및 상기 리튬층 상에 형성되고, 금속을 포함하는 보호층;을 포함함으로써 짧은 시간 안에 리튬의 산화가 진행되지 않아 투과전자현미경을 이용한 리튬이차전지 소재의 구조 변화 및 계면 반응 실시간 분석에 사용할 수 있다.

Description

실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법
본 발명은 실시간 투과전자현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법에 관한 것으로, 금속을 포함하는 보호층을 포함함으로써 리튬이차전지 소재를 실시간 분석하기 위해 홀더에 로딩하는 동안 리튬이 산화되지 않고 보존되는 리튬이온 공급용 전극 및 그의 제조방법에 관한 것이다.
현재 대부분 사용되고 있는 리튬이온 공급용 전극은 글러브박스 내에서 액체상의 리튬을 금속 팁 끝에 wetting한 후 공기 중에 꺼내 짧은 시간 동안 홀더에 팁을 로딩하여 실험을 하는 방식이다. 이때, 공기 중에 노출된 리튬이 산화되어 형성된 리튬 산화물(Li2O)을 고체전해질로 사용하여 리튬이차전지 소재에 접촉하고 전압을 인가하여 분석을 진행한다. 리튬 산화물(Li2O)은 현재 실제 고체전해질로 사용 및 연구되고 있는 소재들과 비교하여 리튬이온 전도도가 현저히 낮다. 이러한 이온 전도도 차이는 실험에 적용하였을 때 과전압을 유발하여 실제 전극 환경과 차이가 있어 실제 전해질을 적용한 리튬이차전지 소재 분석으로 보기 어렵다. 또한 글러브박스 내에서 리튬을 wetting하여 리튬이온 공급용 전극을 제작하면, 공기 중에 노출되었을 때 리튬이 모두 산화되는 것을 막기 위하여 샘플을 홀더에 짧은 시간 내에 로딩한 뒤 현미경에 장착해야 하기 때문에 글러브박스가 현미경 근방에 있어야한다. 하지만 현미경 중 투과전자현미경과 같은 장비는 특성상 빛과 진동에 예민한 장비이기 때문에 글러브박스의 펌프에서 나오는 진동으로 두 장비를 근거리에 두는 것이 쉽지 않다.
또한 액상 환경에서 실시간 충방전 실험을 위해서는 액상 환경을 제공할 수 있는 액상용 홀더가 따로 필요한데 이 장비는 고가이므로 접근성이 쉽지 않고 액체 전해질 내 투과전자현미경 이미징은 액체 환경을 투과하기 때문에 전자빔으로 진공을 통과한 이미지에 비해 이미지가 선명하지 않고 불분명할 수 있다. 액상용 홀더를 사용하지 않고 액상의 전해질을 금속 팁 끝에 묻혀 실험하기에는 액체 전해질이 고진공의 투과전자현미경 내 환경에서 존재하기 어렵고 전자빔에 의해 고형화 될 위험이 있다.
따라서 리튬이차전지 소재의 실시간 분석을 위해서는 장시간 공기 중에서 생존할 수 있고 리튬이온 전도도가 높은 고체전해질을 사용한 리튬이온 공급용 전극의 개발이 필요하다.
본 발명의 목적은 상기 문제점들을 해결하기 위한 것으로, 충방전 환경 구현을 통해 리튬이차전지 소재의 실시간 분석을 위해 리튬이온 전도도가 높은 고체전해질을 사용하고, 홀더에 로딩하는 동안 리튬이 산화되지 않고 보존되는 리튬이온 공급용 전극 및 그의 제조방법을 제공하는데 있다.
또한, 투과전자현미경과 같은 특성상 빛과 진동에 예민한 장비를 이용해 리튬이차전지 소재의 미세구조 변화 및 계면 반응을 분석할 때 사용할 수 있는 소형의 리튬이온 공급용 전극을 제공하는데 있다.
본 발명의 일 측면에 따르면, 고체전해질을 포함하는 고체전해질층; 상기 고체전해질층 상에 형성되고, 리튬을 포함하는 리튬층; 및 상기 리튬층 상에 형성되고, 금속을 포함하는 보호층;을 포함하는 리튬이온 공급용 전극이 제공된다.
또한, 상기 리튬층의 두께가 0.5 내지 10 μm일 수 있다.
또한, 상기 보호층의 금속이 구리(Cu), 금(Au), 은(Ag) 및 니켈(Ni)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 보호층의 금속이 구리(Cu)를 포함할 수 있다.
또한, 상기 보호층의 두께가 0.5 내지 10 μm일 수 있다.
또한, 상기 고체전해질층이 상기 리튬층에서 멀어질수록 리튬층에 평행한 상기 고체전해질층의 단면의 면적이 작아지는 것일 수 있다.
또한, 상기 고체전해질층이 원뿔, 타원뿔 및 다각뿔로 이루어진 군으로부터 선택된 어느 하나의 형태를 갖는 것일 수 있다.
또한, 상기 고체전해질이 산화물계 고체전해질, 황화물계 고체전해질, 인화물계 고체전해질, 규소화물계 고체전해질 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 고체전해질층의 두께가 0.5 μm 내지 85 mm 일 수 있다.
또한, 투과전자현미경, 주사전자현미경, 광학현미경 및 주사탐침현미경으로 이루어진 군으로부터 선택된 어느 하나를 사용하여 리튬이차전지의 충방전 과정에서 리튬이차전지 소재를 분석하기 위해 사용되는 것일 수 있다.
본 발명의 다른 하나의 측면에 따르면, (a) 불활성 기체 조건 하에서, 리튬의 용융점(melting point) 이상의 온도에서, 고체전해질층 상에 액체상태의 리튬층을 형성하고, 상기 액체상태의 리튬층 상에 금속을 포함하는 보호층을 형성하여 고체전해질층/리튬층/보호층을 포함하는 적층체를 제조하는 단계; 및 (b) 리튬의 용융점(melting point) 미만의 온도에서, 집속이온빔 장치를 이용하여 상기 적층체의 일부분을 소정 형상으로 분리하여 상기 고체전해질층/리튬층/보호층을 포함하는 리튬이온 공급용 전극을 제조하는 단계;를 포함하는 리튬이온 공급용 전극의 제조방법이 제공된다.
또한, 상기 단계 (a)가 180.5 내지 500 ℃의 온도에서 수행될 수 있다.
또한, 상기 단계 (a)가 (a-1) 액체상태인 리튬을 고체전해질 상에 묻혀(wetting) 고체전해질층/액체상태의 리튬층을 형성하는 단계; 및 (a-2) 상기 액체상태의 리튬층 상에 금속을 포함하는 보호층을 위치시켜 고체전해질층/리튬층/보호층을 제조하는 단계;를 포함할 수 있다.
또한, 상기 단계 (a)가 단계 (a-1)과 단계 (a-2) 사이에 (a-1') 리튬의 용융점(melting point) 이상의 온도에서, 상기 액체상태의 리튬층에 액체상태의 리튬을 추가하거나 상기 액체상태의 리튬층의 일부 액체상태의 리튬을 제거하여 액체상태의 리튬층의 두께를 조절하는 단계;를 추가로 포함할 수 있다.
또한, 상기 단계 (b)가 (b-1) 집속이온빔 장치를 이용하여 상기 고체전해질층/리튬층/보호층을 상기 보호층 위에서 보았을 때 다리(bridge) 형상을 갖도록 식각하는 단계; (b-2) 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 어느 하나의 끝단과 하단부를 식각하는 단계; (b-3) 어느 하나의 끝단과 하단부가 식각된 다리 형상 부분의 보호층 표면과 프루브(Probe)를 접합하는 단계; 및 (b-4) 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 다른 하나의 끝단을 식각하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층을 포함하는 리튬이온 공급용 전극을 제조하는 단계;를 포함할 수 있다.
또한, 상기 리튬이온 공급용 전극의 제조방법이 단계 (b-4) 이후에, (c) 상기 리튬이온 공급용 전극의 보호층 및 리튬층을 금속 팁과 접합시키고 고체전해질층의 일부 또는 전부를 금속 팁과 접합시키지 않는 단계; 및 (d) 상기 리튬이온 공급용 전극의 고체전해질층은 상기 리튬층에서 멀어질수록 리튬층에 평행한 상기 고체전해질층의 단면의 면적이 작아지도록 식각하는 단계;를 추가로 포함할 수 있다.
또한, 상기 리튬이온 공급용 전극의 제조방법이 단계 (c) 전에, (c') 상기 프루브와 접합된 상기 리튬이온 공급용 전극을 금속 팁에 접근시키고, 상기 프루브를 회전하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층의 보호층의 표면, 리튬층의 표면 및 고체전해질층의 표면이 상기 팁의 측면과 마주하도록 하는 단계;를 추가로 포함할 수 있다.
본 발명의 또 다른 하나의 측면에 따르면, (1) 실시간 바이어싱 홀더의 제1 홀더에 상기 리튬이온 공급용 전극을 로딩하는 단계; (2) 제2 홀더에 리튬이차전지에 사용되는 소재를 로딩하는 단계; 및 (3) 상기 리튬이온 공급용 전극의 고체전해질을 상기 소재와 접촉(contact)시키고, 상기 리튬이온 공급용 전극과 상기 소재에 전압 또는 전류를 인가하여 충방전 동안 상기 소재의 구조 및 계면의 변화를 현미경을 이용하여 실시간으로 분석하는 단계;를 포함하는 리튬이차전지 소재의 실시간 분석 방법이 제공된다.
또한, 상기 리튬이차전지에 사용되는 소재가 음극재, 전해질, 양극재 및 집전체로 이루어진 군으로부터 선택된 어느 하나일 수 있다.
또한, 상기 현미경이 투과전자현미경, 주사전자현미경, 광학현미경 및 주사탐침현미경으로 이루어진 군으로부터 선택된 어느 하나일 수 있다.
본 발명의 리튬이온 공급용 전극은 충방전 환경 구현을 통해 리튬이차전지 소재의 실시간 분석을 위해 리튬이온 전도도가 높은 고체전해질을 사용하고, 홀더에 로딩하는 동안 리튬이 산화되지 않고 보존되는 효과가 있다.
또한, 본 발명의 리튬이온 공급용 전극은 짧은 시간 안에 리튬의 산화가 진행되지 않아 전극을 로딩하는 동안 글러브박스가 요구되지 않으므로 투과전자현미경과 같은 특성상 빛과 진동에 예민한 장비를 이용해 리튬이차전지 소재의 구조 변화 및 계면 반응을 분석할 때 사용할 수 있다.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.
도 1은 본 발명의 하나의 실시예에 따라 보호층을 포함하는 적층체 및 보호층을 포함하지 않는 적층체의 모식도를 나타낸 것이다.
도 2는 본 발명 하나의 실시예에 따라 리튬이온 공급용 전극을 제조할 때 집속이온빔 장치에서 프루브 180 ˚ 회전 전/후 리튬이온 공급용 전극의 모식도를 나타낸 것이다.
도 3은 실시예 1 및 비교예 1에 따라 제조된 적층체에서 리튬의 산화 정도를 집속이온빔 장치 내 주사전자현미경으로 확인한 이미지이다.
도 4는 실시예 1에 따른 집속이온빔 장치를 이용한 리튬이온 공급용 전극 제작 과정을 집속이온빔 장치 내 주사전자현미경으로 촬영한 이미지이다.
도 5는 실시예 2에서 리튬이차전지 집전체의 전착 반응 분석을 위해 실시간 바이어싱 홀더에 제조된 리튬이온 공급용 전극과 작업전극(집전체 재료)을 로딩하는 과정을 나타낸 것이다.
도 6은 작업전극으로 lithiophobic 소재 Cu를 사용할 경우 실시예 2의 실험 결과를 나타낸 것이다.
도 7은 작업전극으로 lithiophobic 소재 Ni를 사용할 경우 실시예 2의 실험 결과를 나타낸 것이다.
도 8은 작업전극으로 lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni를 사용할 경우 실시예 2의 실험 결과를 나타낸 것이다.
도 9는 작업전극으로 lithiophobic 소재 Cu를 사용할 경우 실시예 2의 전착 반응 분석 중 생성된 리튬 입자와 분석 후 공기 중에 노출시켜 리튬이온 공급용 전극의 형태 변화를 나타낸 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.
이하, 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
도 1은 본 발명의 하나의 실시예에 따라 보호층을 포함하는 적층체 및 보호층을 포함하지 않는 적층체의 모식도를 나타낸 것이다.
도 1을 참고하면, 본 발명은 고체전해질을 포함하는 고체전해질층; 상기 고체전해질층 상에 형성되고, 리튬을 포함하는 리튬층; 및 상기 리튬층 상에 형성되고, 금속을 포함하는 보호층;을 포함하는 리튬이온 공급용 전극을 제공한다.
또한, 상기 리튬층의 두께가 0.5 내지 10 μm일 수 있고, 바람직하게는 1 내지 8 μm, 보다 바람직하게는 2 내지 6 μm일 수 있다. 상기 두께가 0.5 μm 미만일 경우 리튬이온을 충분히 공급하기 못할 뿐만 아니라 고체전해질층과 리튬층, 리튬층과 보호층 사이에 매끈한 계면이 형성되지 못하고 빈 공간으로 공기가 침투하여 리튬이 산화될 수 있어 바람직하지 않고, 10 μm를 초과할 경우 집속이온빔 장치를 이용하여 리튬이온 공급용 전극을 제조할 때 식각에 오랜 시간이 소모되고, 식각하는 양이 많을수록 집속이온빔 장치에 무리가 가서 바람직하지 않다.
또한, 상기 보호층의 금속이 구리(Cu), 금(Au), 은(Ag) 및 니켈(Ni)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 보호층의 금속이 구리(Cu)를 포함할 수 있다.
또한, 상기 보호층의 두께가 0.5 내지 10 μm일 수 있고, 바람직하게는 4 내지 8 μm, 보다 바람직하게는 5 내지 7 μm일 수 있다. 상기 두께가 0.5 μm 미만일 경우 글러브박스 내에서 트위저를 사용하여 다루기 어려울 수 있고 집속이온빔 장치 내에서 Ga 이온빔으로 인한 데미지로부터 리튬금속을 보호하기에 바람직하지 않고, 10 μm 초과일 경우 집속이온빔 장치를 이용하여 리튬이온 공급용 전극을 제조할 때 식각에 오랜 시간이 소모되고, 식각하는 양이 많을수록 집속이온빔 장치에 무리가 가서 바람직하지 않다.
또한, 상기 고체전해질층이 상기 리튬층에서 멀어질수록 리튬층에 평행한 상기 고체전해질층의 단면의 면적이 작아지는 것일 수 있다.
또한, 상기 고체전해질층이 원뿔, 타원뿔 및 다각뿔로 이루어진 군으로부터 선택된 어느 하나의 형태를 갖는 것일 수 있다.
또한, 상기 고체전해질이 산화물계 고체전해질, 황화물계 고체전해질, 인화물계 고체전해질, 규소화물계 고체전해질 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
또한, 상기 고체전해질층의 두께가 0.5 μm 내지 85 mm 일 수 있다. 상기 두께가 0.5 μm 미만일 경우 고체전해질층이 너무 얇아 집속이온 장치 내에서 식각하기 어려울 수 있고, 85 mm를 초과할 경우 집속이온 장치의 챔버 내에 장착이 어려울 수 있어 바람직하지 않다.
또한, 투과전자현미경, 주사전자현미경, 광학현미경 및 주사탐침현미경으로 이루어진 군으로부터 선택된 어느 하나를 사용하여 리튬이차전지의 충방전 과정에서 리튬이차전지 소재를 분석하기 위해 사용되는 것일 수 있고, 바람직하게는 투과전자현미경을 사용하여 리튬이차전지의 충방전 과정에서 리튬이차전지 소재를 분석하기 위해 사용되는 것일 수 있다.
도 4는 실시예 1에 따른 집속이온빔 장치를 이용한 리튬이온 공급용 전극 제작 과정을 집속이온빔 장치 내 주사전자현미경으로 촬영한 이미지이다.
도 4를 참고하면, 본 발명은 (a) 불활성 기체 조건 하에서, 리튬의 용융점(melting point) 이상의 온도에서, 고체전해질층 상에 액체상태의 리튬층을 형성하고, 상기 액체상태의 리튬층 상에 금속을 포함하는 보호층을 형성하여 고체전해질층/리튬층/보호층을 포함하는 적층체를 제조하는 단계; 및 (b) 리튬의 용융점(melting point) 미만의 온도에서, 집속이온빔 장치를 이용하여 상기 적층체의 일부분을 소정 형상으로 분리하여 상기 고체전해질층/리튬층/보호층을 포함하는 리튬이온 공급용 전극을 제조하는 단계;를 포함하는 리튬이온 공급용 전극의 제조방법을 제공한다.
또한, 상기 단계 (a)가 180.5 내지 500 ℃의 온도에서 수행될 수 있고, 바람직하게는 200 내지 300 ℃의 온도에서 수행될 수 있다. 상기 온도가 180.5 ℃ 미만일 경우 리튬이 액체상태로 변하지 않아, 고체전해질층 상에 액체상태의 리튬층을 형성할 수 없으므로 바람직하지 않고, 500 ℃를 초과할 경우 보호층이나 고체전해질에 구조적 영향을 줄 수 있어 바람직하지 않다.
또한, 상기 단계 (a)가 (a-1) 액체상태인 리튬을 고체전해질 상에 묻혀(wetting) 고체전해질층/액체상태의 리튬층을 형성하는 단계; 및 (a-2) 상기 액체상태의 리튬층 상에 금속을 포함하는 보호층을 위치시켜 고체전해질층/리튬층/보호층을 제조하는 단계;를 포함할 수 있다.
또한, 상기 단계 (a)가 단계 (a-1)과 단계 (a-2) 사이에 (a-1') 리튬의 용융점(melting point) 이상의 온도에서, 상기 액체상태의 리튬층에 액체상태의 리튬을 추가하거나 상기 액체상태의 리튬층의 일부 액체상태의 리튬을 제거하여 액체상태의 리튬층의 두께를 조절하는 단계;를 추가로 포함할 수 있다.
또한, 상기 단계 (b)가 (b-1) 집속이온빔 장치를 이용하여 상기 고체전해질층/리튬층/보호층을 상기 보호층 위에서 보았을 때 다리(bridge) 형상을 갖도록 식각하는 단계; (b-2) 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 어느 하나의 끝단과 하단부를 식각하는 단계; (b-3) 어느 하나의 끝단과 하단부가 식각된 다리 형상 부분의 보호층 표면과 프루브(Probe)를 접합하는 단계; 및 (b-4) 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 다른 하나의 끝단을 식각하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층을 포함하는 리튬이온 공급용 전극을 제조하는 단계;를 포함할 수 있다.
또한, 상기 리튬이온 공급용 전극의 제조방법이 단계 (b-4) 이후에, (c) 상기 리튬이온 공급용 전극의 보호층 및 리튬층을 금속 팁과 접합시키고 고체전해질층의 일부 또는 전부를 금속 팁과 접합시키지 않는 단계; 및 (d) 상기 리튬이온 공급용 전극의 고체전해질층은 상기 리튬층에서 멀어질수록 리튬층에 평행한 상기 고체전해질층의 단면의 면적이 작아지도록 식각하는 단계;를 추가로 포함할 수 있다.
또한, 상기 리튬이온 공급용 전극의 제조방법이 단계 (c) 전에, (c') 상기 프루브와 접합된 상기 리튬이온 공급용 전극을 금속 팁에 접근시키고, 상기 프루브를 회전하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층의 보호층의 표면, 리튬층의 표면 및 고체전해질층의 표면이 상기 팁의 측면과 마주하도록 하는 단계;를 추가로 포함할 수 있다.
본 발명은 (1) 실시간 바이어싱 홀더의 제1 홀더에 상기 리튬이온 공급용 전극을 로딩하는 단계; (2) 제2 홀더에 리튬이차전지에 사용되는 소재를 로딩하는 단계; 및 (3) 상기 리튬이온 공급용 전극의 고체전해질을 상기 소재와 접촉(contact)시키고, 상기 리튬이온 공급용 전극과 상기 소재에 전압 또는 전류를 인가하여 충방전 동안 상기 소재의 구조 및 계면의 변화를 현미경을 이용하여 실시간으로 분석하는 단계;를 포함하는 리튬이차전지 소재의 실시간 분석 방법을 제공한다.
또한, 상기 리튬이차전지에 사용되는 소재가 음극재, 전해질, 양극재 및 집전체로 이루어진 군으로부터 선택된 어느 하나일 수 있다.
또한, 상기 현미경이 투과전자현미경, 주사전자현미경, 광학현미경 및 주사탐침현미경으로 이루어진 군으로부터 선택된 어느 하나일 수 있고, 바람직하게는 투과전자현미경일 수 있다.
실시간 투과전자현미경 분석을 위한 리튬이온 공급용 전극은 미세 스케일에서 충방전 환경 구현을 통해 구조적인 결함 관찰 및 결함 생성 메커니즘 분석이 가능해야 하고, 리튬과 전해질을 포함하여 리튬이온의 공급이 가능해야 하며, 실시간 투과전자현미경 홀더에 장착하는 동안 리튬이 산화되지 않고 보존되어야 한다.
따라서, 이를 해결하기 위해 아래 3 가지 전략을 시도하였다.
첫번째 전략은 리튬의 산화를 방지하기 위해 글러브박스 내에서 고체전해질에 액체상의 리튬을 wetting한 뒤, 그 위를 보호층인 구리 금속박막으로 덮어, 리튬이 공기 중에 드러나는 면적을 최소화한 것이다(도 1). 글러브박스 내부는 수증기 분압과 산소 분압이 엄격하게 조절된 상태이기 때문에 이 과정에서는 리튬이 산화되지 않는다. 또한 이 단계에서 리튬 위를 덮은 구리 금속박막이 추후 집속이온빔 장치로 식각하는 과정에서 리튬을 Ga 이온빔으로부터 보호하는 역할을 하기 때문에 추가적인 보호층의 증착 없이 리튬이온 공급용 전극을 제작할 수 있게 한다.
두번째 전략은 집속이온빔 장치를 이용한 리튬이온 공급용 전극 제작 방법을 디자인한 것이다. 집속이온빔 장치는 주사전자현미경 관찰과 동시에 Ga 이온빔과 Pt를 사용하여 미세단위의 식각, 증착 및 관찰이 가능하다. 본 발명의 리튬이온 공급용 전극의 크기는 약 15 x 8 x 20 μm3으로 사람의 손으로 제작이 불가능한 반면, 집속이온빔 장치를 이용하면 미세크기의 리튬이온 공급용 전극을 제작하고 금속 팁에 부착할 수 있다.
첫번째 전략을 통해 제작한 고체전해질층/리튬층/보호층 적층체에서 표면에는 리튬의 산화를 막기위한 보호층이 드러나 있고, 고체전해질은 최하단에 위치하고 있다. 최상층의 보호층 두께는 6 μm이고 바로 아래의 리튬층의 두께는 약 5 μm, 최하층의 고체전해질층 두께는 수백 μm 이상이다. 집속이온빔 장치는 적층체의 표면에서 내부를 향해 이온빔을 조사하여 식각하기 때문에 6 μm 두께의 얇은 보호층이 위로 오도록 집속이온빔 장치에 적층체를 장착해야 고체전해질층/리튬층/보호층 재료가 모두 포함되어 있는 샘플을 제작할 수 있다. (반대로 고체전해질이 위로 오도록 적층체를 장착하게 되면 고체전해질은 수백 μm 이상의 두께를 갖고 있어 표면으로부터 식각이 어렵다.) 집속이온빔 장치를 이용하여 적층체에서 전극을 분리해내면, 일반적으로 최상층에 보호층이 위치하고 리튬층, 고체전해질층 순으로 구성된다. 그러나 리튬이차전지 소재에 리튬이온을 공급하기 위해서는 리튬이온을 전달할 수 있는 고체전해질층이 최상층에 위치하여 리튬이차전지 소재와 접촉할 수 있어야 한다. 따라서 고체전해질층이 최상층으로 드러나도록 하기 위해서 집속이온빔 장치의 프루브를 180 ˚ 회전하여 제작하는 방식을 고안하였다. 프루브를 회전하지 않은 상태에서는 고체전해질이 최하층에 위치하지만(도 2a), 프루브를 180 ˚ 회전하면 고체전해질이 우측에 위치한다(도 2b). 이러한 프루브 회전 방식을 통해 고체전해질이 바깥으로 드러난 리튬이온 공급용 전극을 개발할 수 있었다.
세번째 전략은 첫번째 전략을 적용하는 과정에서 리튬층의 두께를 0.5 내지 10 μm이내로 조절한 것이다. 리튬층이 너무 얇으면(0.5 μm 미만일 경우) 리튬이온을 충분히 공급하기 못할 뿐만 아니라 고체전해질층과 리튬층, 리튬층과 보호층 사이에 매끈한 계면이 형성되지 못하고 빈 공간으로 공기가 침투하여 리튬이 산화될 위험이 있다. 반면 리튬층의 두께가 10 μm를 넘어가면 집속이온빔 장치를 이용하여 식각할 때 오랜 시간이 소모되고, 식각하는 양이 많을수록 집속이온빔 장치에 무리가 가기 때문에 0.5 내지 10 μm 이내로 리튬층 두께의 최적화를 진행하였다.
[실시예]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
실시예 1: 리튬이온 공급용 전극 제조
고체전해질층/리튬층/보호층을 포함하는 적층체의 제조는 산소와 수증기 분압이 엄격하게 제어된 글러브박스 내에서 진행하였다. 260 ℃로 가열한 핫플레이트를 이용하여 리튬 리본을 녹여 액체상의 리튬을 준비하였다. 펠렛 형태의 산화물계 고체전해질(Li7La3Zr2O12) 한 면에 상기 액체상의 리튬을 wetting하여 리튬층을 형성하였다. 이후, wetting한 리튬을 2 ~ 3회 덜어내어 리튬층이 약 5 μm의 두께를 갖도록 조절하였다. 상기 리튬층 상에 6 μm 두께의 구리 금속박막(Cu foil)을 올려 고체전해질층/리튬층/보호층을 포함하는 적층체를 제조하였다. 이후, 상기 적층체를 핫플레이트에서 내린 뒤 충분히 식힌 후 밀봉하여 글러브박스에서 꺼냈다.
상기 밀봉된 적층체의 밀봉을 해제하고 집속이온빔 장치에 넣었다. 상기 집속이온빔 장치는 Ga 이온빔과 Pt를 사용하여 미세단위의 식각, 증착 및 관찰이 가능하다. 이때 추가로 준비한 tungsten 금속 팁(회사명: Probes, 제품명: WNP-10, Tungsten nano probe)을 가로로 눕혀 함께 장착하였다.
도 4는 실시예 1에 따른 집속이온빔 장치를 이용한 리튬이온 공급용 전극 제작 과정을 집속이온빔 장치 내 주사전자현미경으로 촬영한 이미지이다. 상세하게는, 이미지는 주사전자현미경으로 촬영된 것이고 inset 이미지는 집속이온빔 장치로 촬영된 것이다.
도 4a를 참고하면, 먼저 상기 고체전해질층/리튬층/보호층을 포함하는 적층체를 30kV 전압, 21 nA 전류에서 Ga 이온빔을 사용하여 폭을 10 내지 12 μm 정도 남겨두고 양 옆으로 30 x 30 x 25 μm3을 파내어 상기 고체전해질층/리튬층/보호층을 z축 방향으로 보았을 때 다리(bridge) 형상을 갖도록 식각하였다. 이때 보호층과 리튬층, 고체전해질층 사이의 계면이 잘 형성되었는가, 리튬층의 두께가 적절한가를 집속이온장치로 inset과 같이 x축 방향으로 확인한다. 높은 전류로 식각 시 식각면이 데미지를 입기 때문에 30kV 전압, 9.3 nA, 2.5 nA 순으로 점진적으로 낮은 전류에서 식각하며 식각면을 매끄럽게 다듬는다. 이 단계에서 다리 형상의 폭이 약 8 μm로 조절된다.
도 4b를 참고하면, 보호층과 리튬층, 고체전해질층의 단면으로 x방향에서 빔을 조사하여 x방향에서 보았을 때 L자 모양으로 식각을 진행하여 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 어느 하나의 끝단과 하단부를 식각하였다.
이후, 도 4c를 참고하면, 프루브(Probe)를 삽입하고, Pt를 증착하여 상기 어느 하나의 끝단 및 하단부가 식각된 다리 형상 부분의 보호층 표면과 프루브를 접합하였다.
도 4d를 참고하면, 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 다른 하나의 끝단을 식각(상기 L자 모양을 U자 모양으로 식각)하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층을 포함하는 리튬이온 공급용 전극을 제조하였다.
상기 금속 팁의 끝이 수 μm로 상기 리튬이온 공급용 전극보다 작아, 금속 팁의 끝부분을 다듬었다. 도 4e를 참고하면, 다듬은 금속 팁의 끝 부분영역에서 상기 리튬이온 공급용 전극이 부착된 프루브를 삽입한 후, 도 4f와 같이 프루브를 180 ˚ 회전한다. 도 2는 집속이온빔 장치에서 프루브 180 ˚ 회전 전/후 리튬이온 공급용 전극 모식도를 나타낸 것이다. 도 2 및 4f를 참고하면, 프루브를 회전하기 전에는 표면부터 보호층/리튬층/고체전해질층 순으로 구성되어 있던 반면, 프루브를 180 ˚ 회전하면 오른쪽에서부터 고체전해질층/리튬층/보호층의 순서로 위치가 변경된다.
도 4g를 참고하면, 상기 리튬이온 공급용 전극의 보호층과 리튬층이 상기 금속 팁의 끝과 맞닿게 Pt 증착을 이용해 연결하고, 식각 기능을 이용하여 상기 프루브와 상기 리튬이온 공급용 전극을 분리하였다.
관찰하고자 하는 리튬이차전지 전극재료를 투과전자현미경 샘플링을 하면 크기가 수 마이크로미터 이기 때문에 리튬이온 공급용 전극의 표면을 뾰족하게 제작하여 접촉해야 한다. 도 4h 및 4i를 참고하면, 상기 리튬이온 공급용 전극은 집속이온빔 장치의 식각 기능을 이용하여 전극을 우유곽 형태가 되도록 표면 모폴로지를 조절하였다.
실시예 2: 리튬이차전지의 집전체 분석
실시간 바이어싱 홀더에서, 실시예 1에 따라 제조된 리튬이온 공급용 전극을 제1 홀더에 로딩하고, 집전체의 재료를 작업전극으로 제2 홀더에 로딩한 후, 상기 리튬이온 공급용 전극의 고체전해질 층을 상기 작업전극과 접촉(contact)시켜 상대전극(리튬이온 공급용 전극의 리튬층)/전해질(리튬이온 공급용 전극의 고체전해질층)/작업전극(집전체 재료) 순의 half cell을 구성하였다.
이때, 상기 작업전극은 lithiophobic 소재 Cu, lithiophobic 소재 Ni, 및 lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni 3 가지를 준비하였다.
여기서 lithiophobic 소재는 순수 리튬의 전착(Plating)이 어려운 소재이고, lithiophilic 소재는 순수 리튬의 전착이 용이한 소재를 의미한다.
이후, contact되어 연결되어 있는 half cell을 실시간으로 충방전하면서 투과전자현미경으로 이미징(imaging)하여 충방전 동안 집전체의 전착 반응 분석을 진행하였다.
비교예 1: 보호층 없는 리튬이온 공급용 전극 제조
리튬층 상에 6 μm 두께의 구리 금속박막(Cu foil)을 올리지 않는 것을 제외하고는 실시예 1과 동일하게 리튬이온 공급용 전극을 제조하였다.
[시험예]
시험예 1: 보호층의 리튬 산화방지 효과 확인
도 3은 실시예 1 및 비교예 1에 따라 제조된 적층체에서 리튬의 산화 정도를 집속이온빔 장치 내 주사전자현미경으로 확인한 이미지이다.
도 3a는 비교예 1의 고체전해질층/리튬층 적층체의 단면의 주사전자현미경 이미지이다. 상세하게는, 도 3a는 비교예 1의 고체전해질층/리튬층 적층체를 형성하고 집속이온빔 장치에 장착한 직후의 주사전자현미경 이미지이다. 적층체를 집속이온빔 장치에 장착하는 동안 적층체는 공기 중에 5분 이내로 노출되었다. 도 3a에 따르면, 비교예 1은 보호층(구리 금속박막)을 포함하지 않으므로 리튬이 산화하였고, 리튬과 고체전해질층 간의 계면이 매끄럽지 못한 것을 확인할 수 있다.
도 3b는 비교예 1의 고체전해질층/리튬층 적층체의 상기 리튬층 표면에 Pt를 증착한 후 단면 주사전자현미경 이미지이다. 이때, 상기 Pt는 Ga 이온빔으로부터 샘플을 보호하기 위한 보호층이다. 도 3b에 따르면, 비교예 1은 보호층을 포함하지 않으므로 리튬이 산화하여 리튬층이 리튬 산화물층이 되고, Pt 증착 과정에서 상기 리튬 산화물층과 고체전해질층 사이 계면이 벌어져 빈 공간이 생기는 것을 확인할 수 있다.
도 3c는 실시예 1에 따라 리튬이온 공급용 전극을 제조할 때 고체전해질층/리튬층/보호층 적층체의 단면 주사전자현미경 이미지이다. 도 3c에 따르면, 실시예 1은 리튬층의 리튬이 산화하지 않아 매끈한 계면을 형성하는 것을 확인할 수 있다.
도 3d는 실시예 1의 고체전해질층/리튬층/보호층 적층체를 진공 데시케이터에 7일 동안 보관한 후의 단면 주사전자현미경 이미지이다. 도 3d에 따르면 실시예 1은 7일 이후에도 여전히 리튬이 산화되지 않고 매끈한 계면을 유지하는 것을 확인할 수 있다.
따라서, 보호층을 보호막으로 적용하지 않은 경우에는 적층체를 집속이온빔 장치에 장착하는 5분 이내의 짧은 순간에도 리튬이 산화되었으나, 보호층을 사용한 경우에는 진공 데시케이터에 일주일 동안 보관한 뒤에도 내부에 리튬이 산화되지 않은 것을 확인할 수 있다.
도 3e는 실시예 1에서 집속이온빔 장치를 이용하여 상기 고체전해질층/리튬층/보호층을 상기 보호층 위에서 보았을 때 다리(bridge) 형상을 갖도록 식각하고, 공기중에서 7일 동안 노출한 후에 집속이온빔 장치로 관찰한 결과이다. 도 3e에 따르면, 식각함으로써 공기에 노출된 리튬이 산화하여 부피가 증가한 것을 확인할 수 있다. 즉, 보호층을 형성하여도 리튬층이 공기중에 오래 노출될 경우 리튬이 산화되는 것을 확인할 수 있다.
도 3f는 도 3e에서 공기 중에 노출된 위치 주변의 계면을 집속이온빔 장치로 관찰한 결과이다. 도 3f에 따르면, 리튬이 노출된 영역으로부터 80 μm까지 리튬층의 부피가 팽창하거나, 구멍이 생성된 것으로부터 리튬층이 산화된 것을 확인할 수 있다. 한편, 도 3f의 점선 네모 부분은 리튬이 노출된 영역으로부터 80 μm 이후의 영역으로 리튬층이 산화되지 않은 것을 확인할 수 있다.
따라서, 실시예 1과 같이 보호층을 형성할 경우 리튬층이 공기중에 노출된다 하여도 노출된 영역으로부터 80 μm 이후 부분으로부터 리튬이온 공급용 전극을 제조하면 리튬층이 산화되지 않은 리튬이온 공급용 전극을 반복적으로 제조할 수 있다.
시험예 2: 리튬이온 공급용 전극의 성능 확인
도 5는 실시예 2에서 리튬이차전지 집전체의 전착 반응 분석을 위해 실시간 바이어싱 홀더에 제조된 리튬이온 공급용 전극과 작업전극(집전체 재료)을 로딩하는 과정을 나타낸 것이다. 상기 작업전극의 전착 반응 분석 결과에 따라 본 발명의 리튬이온 공급용 전극의 구동 여부를 확인할 수 있다.
도 5a는 실시예 2의 리튬이차전지의 집전체 분석 실험 모식도이고, 도 5b는 실시예 1에 따른 리튬이온 공급용 전극의 이미지이고, 도 5c는 실시예 2에서 사용한 작업전극 중 lithiophobic 소재 Cu를 로딩한 모습을 나타낸 것이다. 도 5d는 실시예 2에 따라 리튬이차전지의 집전체 분석 실험을 위해 실시예 1에 따라 제조된 리튬이온 공급용 전극 및 작업전극(lithiophobic 소재 Cu)을 로딩하였을 때 실시간 바이어싱 홀더의 이미지와 이를 투과전자현미경에 장착한 저배율 이미지이다.
도 6은 작업전극으로 lithiophobic 소재 Cu를 사용할 경우 실시예 2의 실험 결과를 나타낸 것이다. 상세하게는 도 6a는 + 10 uA 또는 - 10 uA 정전류 환경에서 실시예 1의 리튬이온 공급용 전극과 lithiophobic 소재 Cu 계면의 투과전자현미경 이미지이고, 도 6b는 + 20 uA 또는 - 20 uA 정전류 환경에서 실시예 1의 리튬이온 공급용 전극과 lithiophobic 소재 Cu 계면의 투과전자현미경 이미지이다.
도 6a 및 6b에 따르면, 10 uA와 20 uA 모두 +방향으로 전류를 인가 시, 리튬이온 공급용 전극과 작업전극(lithiophobic 소재 Cu)의 계면에서 전착반응이 일어나 리튬 입자가 성장하는 것을 관찰할 수 있었고 상대적으로 고전류 환경인 20 uA에서 리튬 입자가 더 크게 성장하는 것을 확인할 수 있다. 또한 10 uA와 20 uA 모두 -방향으로 전류를 인가 시, 계면에서 성장한 입자에서 리튬이온이 리튬이온 공급용 전극 방향으로 이동하여 입자의 크기가 감소하는 것을 관찰할 수 있다.
도 7은 작업전극으로 lithiophobic 소재 Ni를 사용할 경우 실시예 2의 실험 결과를 나타낸 것이다. 상세하게는 도 7a는 + 8 pA 정전류 환경에서 실시예 1의 리튬이온 공급용 전극과 작업전극(lithiophobic 소재 Ni) 계면의 투과전자현미경 이미지이고, 도 7b는 - 8 pA 정전류 환경에서 실시예 1의 리튬이온 공급용 작업전극(lithiophobic 소재 Ni) 계면의 투과전자현미경 이미지이다.
도 7a에 따르면, +방향으로 8 pA의 전류를 인가 시, 리튬이온 공급용 전극과 작업전극(lithiophobic 소재 Ni) 계면에서 전착반응이 일어나 리튬 입자의 형태가 dendritic 모양으로 성장하는 것을 관찰할 수 있다.
또한, 도 7b에 따르면 -방향으로 8 pA의 전류를 인가 시, 리튬이온이 리튬이온 공급용 전극 방향으로 이동하여 계면에서 성장한 리튬의 크기가 감소하는 것을 관찰할 수 있다.
도 8은 작업전극으로 lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni를 사용할 경우 실시예 2의 실험 결과를 나타낸 것이다.
상세하게는 도 8a는 충방전을 하지 않은 상태에서 실시예 1의 리튬이온 공급용 전극과 작업전극(lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni) 계면의 저배율 투과전자현미경 이미지이고, 도 8b는 + 20 nA 정전류 환경에서 실시예 1의 리튬이온 공급용 전극과 작업전극(lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni) 계면의 저배율 투과전자현미경 이미지를 각각 나타낸 것이다.
도 8c는 전류 공급 전(Before biasing), + 20 nA 정전류 공급(Biasing: + 20 nA) 및 - 20 nA 정전류 공급(Biasing: - 20 nA) 환경에서 실시예 1의 리튬이온 공급용 전극과 작업전극(lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni) 계면의 고배율 투과전자현미경 이미지를 각각 나타낸 것이다.
도 8d는 전류 공급 전(Before biasing), + 160 nA 정전류 공급(Biasing: + 160 nA) 및 - 160 nA 정전류 공급(Biasing: - 160 nA) 환경에서 실시예 1의 리튬이온 공급용 전극과 작업전극(lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni) 계면의 고배율 투과전자현미경 이미지를 각각 나타낸 것이다.
도 8a에 따르면, 작업전극에서 lithiophilic 소재 Ag 코팅층은 약 150 내지 200 nm의 두께로 lithiophobic 소재 Ni 상에 존재하는 것을 확인할 수 있다.
도 8b에 따르면, 저배율에서는 + 20 nA 전류를 인가하는 동안 리튬이온 공급용 전극과 작업전극(lithiophilic 소재 Ag가 코팅된 lithiophobic 소재 Ni)의 계면에서 리튬 입자가 형성되지 않고 나타나는 변화가 미미한 것을 확인할 수 있다.
한편 동일하게 + 20 nA 전류를 인가하나 고배율인 도 8c에 따르면, + 20 nA 정전류 환경(Biasing: + 20 nA)에서는 lithiophobic 소재 Ni에서 붉은색 화살표로 표시한 검은색 무늬가 나타나고, - 20 nA 정전류 환경(Biasing: - 20 nA)에서는 사라지는 것을 관찰할 수 있다.
또한, 도 8d에 따르면 도 8c 보다 상대적으로 고전류 환경인 + 160 nA(Biasing: + 160 nA)에서는 도 8c 보다 검은색 무늬의 크기가 더 크게 성장함을 확인할 수 있다. 이러한 변화는 lithiophilic 소재 Ag 코팅을 통해 lithiophobic 소재 Ni에서 lithiation과 delithiation을 유발함을 확인할 수 있다.
즉 본 발명의 리튬이온 공급용 전극을 사용할 경우 lithiophobic 소재의 리튬 전착 과정뿐만 아니라 (de)lithiation 반응 또한 관찰이 가능하다.
따라서, 본 발명의 리튬이온 공급용 전극을 사용할 경우 다양한 미세 전류 및 전압 환경에서 리튬 성장 모폴로지를 관찰할 수 있고, 다양한 lithio- 성질의 리튬이차전지 소재의 구조 및 계면의 변화를 실시간으로 분석할 수 있다.
도 9는 작업전극으로 lithiophobic 소재 Cu를 사용할 경우 실시예 2의 전착 반응 분석 중 생성된 리튬 입자와 분석 후 공기 중에 노출시켜 리튬이온 공급용 전극의 형태 변화를 나타낸 것이다.
상세하게는 도 9a는 lithiophobic 소재 Cu를 사용할 경우 실시예 2의 실험 과정에서 관찰한 리튬 산화물(Li2O)의 고해상도 투과전자현미경 이미지(High-resolution transmission electron microscopy, HRTEM)(왼쪽 위)와 FFT(Fast Fourier Transform) 이미지(왼쪽 아래), 리튬(Li)의 고해상도 투과전자현미경 이미지(HRTEM)(오른쪽 위)와 FFT 이미지(오른쪽 아래)를 각각 나타낸 것이다. 성장한 리튬 입자는 강한 전자빔에 약하기 때문에 성장한 리튬 입자에 전자빔을 강하게 조사하여 회절패턴의 변화를 확인한 것이다.
도 9a에 따르면, 실시예 1에 따라 제조된 리튬이온 공급용 전극과 작업전극(lithiophobic 소재 Cu)의 계면에서 성장한 입자가 실제 리튬임을 확인할 수 있다.
도 9b는 실시예 2의 전착 반응 분석 전 실시예 1의 리튬이온 공급용 전극의 제작 직후 이미지이고, 도 9c는 실시예 2의 전착 반응 분석 후 실시예 1의 리튬이온 공급용 전극의 공기 노출 7일 후의 이미지이다.
도 9b 및 9c에 따르면, 일주일 동안의 공기 노출로 인해 리튬이온 공급용 전극의 리튬 부분이 산화되어 리튬 산화물이 발생함에 따라 리튬이온 공급용 전극이 리튬 산화물로 뒤덮인 것을 관찰할 수 있다. 이를 통해 실험 동안 리튬이온 공급용 전극 내에 리튬이 리튬금속으로 존재하였음을 확인할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 리튬이온 공급용 전극은 충방전 환경 구현을 통해 리튬이차전지 소재의 실시간 분석을 위해 리튬이온 전도도가 높은 고체전해질을 사용하고, 홀더에 로딩하는 동안 리튬이 산화되지 않고 보존되는 효과가 있다.
또한, 본 발명의 리튬이온 공급용 전극은 짧은 시간 안에 리튬의 산화가 진행되지 않아 전극을 로딩하는 동안 글러브박스가 요구되지 않으므로 투과전자현미경과 같은 특성상 빛과 진동에 예민한 장비를 이용해 리튬이차전지 소재의 구조 변화 및 계면 반응을 분석할 때 사용할 수 있다.

Claims (20)

  1. 고체전해질을 포함하는 고체전해질층;
    상기 고체전해질층 상에 형성되고, 리튬을 포함하는 리튬층; 및
    상기 리튬층 상에 형성되고, 금속을 포함하는 보호층;을
    포함하는 리튬이온 공급용 전극.
  2. 제1항에 있어서,
    상기 리튬층의 두께가 0.5 내지 10 μm인 것을 특징으로 하는 리튬이온 공급용 전극.
  3. 제1항에 있어서,
    상기 보호층의 금속이 구리(Cu), 금(Au), 은(Ag) 및 니켈(Ni)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬이온 공급용 전극.
  4. 제3항에 있어서,
    상기 보호층의 금속이 구리(Cu)를 포함하는 것을 특징으로 하는 리튬이온 공급용 전극.
  5. 제1항에 있어서,
    상기 보호층의 두께가 0.5 내지 10 μm인 것을 특징으로 하는 리튬이온 공급용 전극.
  6. 제1항에 있어서,
    상기 고체전해질층이 상기 리튬층에서 멀어질수록 리튬층에 평행한 상기 고체전해질층의 단면의 면적이 작아지는 것을 특징으로 하는 리튬이온 공급용 전극.
  7. 제1항에 있어서,
    상기 고체전해질층이 원뿔, 타원뿔 및 다각뿔로 이루어진 군으로부터 선택된 어느 하나의 형상을 갖는 것을 특징으로 하는 리튬이온 공급용 전극.
  8. 제1항에 있어서,
    상기 고체전해질이 산화물계 고체전해질, 황화물계 고체전해질, 인화물계 고체전해질, 규소화물계 고체전해질 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬이온 공급용 전극.
  9. 제1항에 있어서,
    상기 고체전해질층의 두께가 0.5 μm 내지 85 mm인 것을 특징으로 하는 리튬이온 공급용 전극.
  10. 제1항에 있어서,
    상기 리튬이온 공급용 전극이 투과전자현미경, 주사전자현미경, 광학현미경 및 주사탐침현미경으로 이루어진 군으로부터 선택된 어느 하나를 사용하여 리튬이차전지의 충방전 과정에서 리튬이차전지 소재를 분석하기 위해 사용되는 것을 특징으로 하는 리튬이온 공급용 전극.
  11. (a) 불활성 기체 조건 하에서, 리튬의 용융점(melting point) 이상의 온도에서, 고체전해질층 상에 액체상태의 리튬층을 형성하고, 상기 액체상태의 리튬층 상에 금속을 포함하는 보호층을 형성하여 고체전해질층/리튬층/보호층을 포함하는 적층체를 제조하는 단계; 및
    (b) 리튬의 용융점(melting point) 미만의 온도에서, 집속이온빔 장치를 이용하여 상기 적층체의 일부분을 소정 형상으로 분리하여 상기 고체전해질층/리튬층/보호층을 포함하는 리튬이온 공급용 전극을 제조하는 단계;를
    포함하는 리튬이온 공급용 전극의 제조방법.
  12. 제11항에 있어서,
    상기 단계 (a)가 180.5 내지 500 ℃의 온도에서 수행되는 것을 특징으로 하는 리튬이온 공급용 전극의 제조방법.
  13. 제11항에 있어서,
    상기 단계 (a)가
    (a-1) 액체상태인 리튬을 고체전해질 상에 묻혀(wetting) 고체전해질층/액체상태의 리튬층을 형성하는 단계; 및
    (a-2) 상기 액체상태의 리튬층 상에 금속을 포함하는 보호층을 위치시켜 고체전해질층/리튬층/보호층을 제조하는 단계;를 포함하는 것을 특징으로 하는 리튬이온 공급용 전극의 제조방법.
  14. 제13항에 있어서,
    상기 단계 (a)가 단계 (a-1)과 단계 (a-2) 사이에,
    (a-1') 리튬의 용융점(melting point) 이상의 온도에서, 상기 액체상태의 리튬층에 액체상태의 리튬을 추가하거나 상기 액체상태의 리튬층의 일부 액체상태의 리튬을 제거하여 액체상태의 리튬층의 두께를 조절하는 단계;를 추가로 포함하는 것을 특징으로 하는 리튬이온 공급용 전극의 제조방법.
  15. 제11항에 있어서,
    상기 단계 (b)가
    (b-1) 집속이온빔 장치를 이용하여 상기 고체전해질층/리튬층/보호층을 상기 보호층 위에서 보았을 때 다리(bridge) 형상을 갖도록 식각하는 단계;
    (b-2) 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 어느 하나의 끝단을 식각하는 단계;
    (b-3) 어느 하나의 끝단이 식각된 다리 형상 부분의 보호층 표면과 프루브(Probe)를 접합하는 단계; 및
    (b-4) 상기 다리 형상의 좌측 끝단 및 우측 끝단 중 다른 하나의 끝단을 식각하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층을 포함하는 리튬이온 공급용 전극을 제조하는 단계;를 포함하는 것을 특징으로 하는 공급용 전극의 제조방법.
  16. 제15항에 있어서,
    상기 리튬이온 공급용 전극의 제조방법이 단계 (b-4) 이후에,
    (c) 상기 리튬이온 공급용 전극의 보호층 및 리튬층을 금속 팁과 접합시키고 고체전해질층의 일부 또는 전부를 금속 팁과 접합시키지 않는 단계; 및
    (d) 상기 리튬이온 공급용 전극의 고체전해질층은 상기 리튬층에서 멀어질수록 리튬층에 평행한 상기 고체전해질층의 단면의 면적이 작아지도록 식각하는 단계;를 추가로 포함하는 것을 특징으로 하는 리튬이온 공급용 전극의 제조방법.
  17. 제16항에 있어서,
    상기 리튬이온 공급용 전극의 제조방법이 단계 (c) 전에,
    (c') 상기 프루브와 접합된 상기 리튬이온 공급용 전극을 금속 팁에 접근시키고, 상기 프루브를 회전하여 상기 프루브와 접합된 보호층/리튬층/고체전해질층의 보호층의 표면, 리튬층의 표면 및 고체전해질층의 표면이 상기 팁의 측면과 마주하도록 하는 단계;를 추가로 포함하는 것을 특징으로 하는 리튬이온 공급용 전극의 제조방법.
  18. (1) 제1 홀더에 제1항에 따른 리튬이온 공급용 전극을 로딩하는 단계;
    (2) 제2 홀더에 리튬이차전지에 사용되는 소재를 로딩하는 단계; 및
    (3) 상기 리튬이온 공급용 전극의 고체전해질을 상기 소재와 접촉(contact)시키고, 상기 리튬이온 공급용 전극과 상기 소재에 전압 또는 전류를 인가하여 충방전 동안 상기 소재의 구조 및 계면의 변화를 현미경을 이용하여 실시간으로 분석하는 단계;를
    포함하는 리튬이차전지 소재의 실시간 분석 방법.
  19. 제18항에 있어서,
    상기 리튬이차전지에 사용되는 소재가 음극재, 양극재, 전해질 및 집전체로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬이차전지 소재의 실시간 분석 방법.
  20. 제18항에 있어서,
    상기 현미경이 투과전자현미경, 주사전자현미경, 광학현미경 및 주사탐침현미경으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬이차전지 소재의 실시간 분석 방법.
PCT/KR2022/015791 2022-04-11 2022-10-18 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법 WO2023200055A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220044556 2022-04-11
KR10-2022-0044556 2022-04-11
KR1020220128815A KR20230145898A (ko) 2022-04-11 2022-10-07 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법
KR10-2022-0128815 2022-10-07

Publications (1)

Publication Number Publication Date
WO2023200055A1 true WO2023200055A1 (ko) 2023-10-19

Family

ID=88238783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015791 WO2023200055A1 (ko) 2022-04-11 2022-10-18 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법

Country Status (2)

Country Link
US (1) US20230327127A1 (ko)
WO (1) WO2023200055A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259483A (ja) * 2003-02-24 2004-09-16 Sumitomo Electric Ind Ltd リチウム二次電池負極部材、及びその製造方法
JP6323490B2 (ja) * 2016-04-14 2018-05-16 トヨタ自動車株式会社 集電体、電池及びそれら製造方法
JP2021132031A (ja) * 2020-02-18 2021-09-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. 負極、及びそれを含む全固体二次電池
WO2021210446A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 電池
JP7038488B2 (ja) * 2016-05-09 2022-03-18 三星電子株式会社 リチウム金属電池用負極、及びそれを含むリチウム金属電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259483A (ja) * 2003-02-24 2004-09-16 Sumitomo Electric Ind Ltd リチウム二次電池負極部材、及びその製造方法
JP6323490B2 (ja) * 2016-04-14 2018-05-16 トヨタ自動車株式会社 集電体、電池及びそれら製造方法
JP7038488B2 (ja) * 2016-05-09 2022-03-18 三星電子株式会社 リチウム金属電池用負極、及びそれを含むリチウム金属電池
JP2021132031A (ja) * 2020-02-18 2021-09-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. 負極、及びそれを含む全固体二次電池
WO2021210446A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 電池

Also Published As

Publication number Publication date
US20230327127A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US7375325B2 (en) Method for preparing a sample for electron microscopic examinations, and sample supports and transport holders used therefor
WO2018131899A1 (ko) 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
JP4185604B2 (ja) 試料解析方法、試料作成方法およびそのための装置
WO2018186555A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
WO2023200055A1 (ko) 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법
CN111238894B (zh) 一种原位电学tem样品的制备方法
CN111721792A (zh) 一种薄膜材料截面扫描电镜样品的制备方法
WO2021177569A1 (ko) 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
JP3851464B2 (ja) マニピュレータおよびそれを用いたプローブ装置、試料作製装置
WO2019013474A2 (ko) 코팅 장치
JP2007194096A (ja) 荷電粒子ビーム装置、及び荷電粒子ビーム装置を用いた試料のピックアップ方法
JP4012705B2 (ja) 試料ホルダ及びそれを用いた荷電粒子線装置
KR20230145898A (ko) 실시간 현미경 분석을 위한 리튬이온 공급용 전극 및 그의 제조방법
WO2023167558A1 (ko) X선 검사 장치 및 x선 검사 방법
JPH11218473A (ja) 断面透過電子顕微鏡試料の作製方法及び作製装置
CN111474195B (zh) 一种自对准式原位表征芯片及其制备和使用方法
KR20110070031A (ko) 원자간력 현미경 탐침의 팁용 탄소나노튜브 부착방법 및 그 방법에 의해 팁에 탄소나노튜브가 부착된 원자간력 현미경용 탐침
CN113358676B (zh) 应用于原位透射电镜的降低芯片漏电流的方法
JP3652144B2 (ja) プローブ装置
WO2023027497A1 (ko) 이차전지용 음극, 이를 제조하는 방법, 및 이를 포함하는 이차전지
JP4534235B2 (ja) 試料分析方法
TW494533B (en) Focus ion beam apparatus and method for picking small piece of test sample
CN211404450U (zh) 一种基于惰性气体对样品进行防护的扫描电镜样品台
JPH0376122A (ja) デバイス移植装置
WO2023033472A1 (ko) 리드 공급 시스템 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937568

Country of ref document: EP

Kind code of ref document: A1