WO2023200035A1 - 목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물 - Google Patents

목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물 Download PDF

Info

Publication number
WO2023200035A1
WO2023200035A1 PCT/KR2022/005968 KR2022005968W WO2023200035A1 WO 2023200035 A1 WO2023200035 A1 WO 2023200035A1 KR 2022005968 W KR2022005968 W KR 2022005968W WO 2023200035 A1 WO2023200035 A1 WO 2023200035A1
Authority
WO
WIPO (PCT)
Prior art keywords
moxidectin
microparticles
micro particles
release
injection
Prior art date
Application number
PCT/KR2022/005968
Other languages
English (en)
French (fr)
Inventor
김주희
이상노
Original Assignee
(주)인벤티지랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)인벤티지랩 filed Critical (주)인벤티지랩
Publication of WO2023200035A1 publication Critical patent/WO2023200035A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to microparticles containing moxidectin and a sustained-release injectable composition containing the same.
  • Heartworm disease is a parasite called Dirofilaria immitis that is transmitted by mosquitoes and infects dogs, cats, and ferrets. As the name suggests, heartworms live in the hearts of mammals.
  • heartworm parasites can live in the heart and pulmonary artery of an infected animal.
  • the infection causes the pulmonary arteries to thicken and become inflamed, forcing the heart to work harder to pump blood to the lungs and avoid heartworm. Inflammation also occurs in the lungs.
  • animals infected with heartworms may show avoidance of exercise, coughing, and weight loss as early symptoms. In severe cases, symptoms such as severe coughing, difficulty breathing, and heart failure may appear. If animals infected with heartworms show these symptoms, they may die from heart failure.
  • the adult heartworm can be killed with an arsenic-based drug (caparsolate) or treatment can be carried out using melarsomine.
  • arsenic-based drug caparsolate
  • all of the above treatments have side effects such as severe irritation at the injection site and some degree of damage to the liver and kidneys.
  • Heartworm prevention medications include diethylcarbamazine (DEC), which is administered daily, or ivermectin, milbemycin, moxidectin, and selamectin, which are administered monthly. All preventive drugs have excellent preventive effects when administered correctly, but since they must be administered daily or monthly, accidentally missing a few doses can expose you to the risk of infection.
  • DEC diethylcarbamazine
  • Patent Document 1 KR10-2006-0005472 A1
  • the purpose of the present invention is to provide microparticles containing moxidectin and a sustained-release injectable composition containing the same.
  • Another object of the present invention is that, unlike conventional heartworm prevention drugs that have a short half-life and must be administered regularly every month, when microparticles containing moxidectin are administered, moxidectin is continuously released for more than 3 months, preventing heartworm disease.
  • the goal is to provide microparticles containing moxidectin that can maintain the preventive effect.
  • Another object of the present invention is to prevent the initial excessive release of moxidectin even when the microparticles are administered, and to control the release of the drug so that the effective concentration of moxidectin can be maintained at a constant level for more than 3 months, and when applied as an injection
  • a sustained-release injectable composition containing moxidectin which can reduce foreign body sensation and pain.
  • the present invention provides microparticles containing moxidectin, which are microparticles containing moxidectin and a biodegradable polymer, and the intrinsic viscosity of the biodegradable polymer is 0.1 dl/g to 1 dl/g,
  • the average diameter of the micro particles may be 60 to 110 ⁇ m.
  • microparticles are spherical and may uniformly contain moxidectin within the microparticles.
  • the coefficient of variation (CV) of the micro particles may be 5% to 20%.
  • the micro particles may include biodegradable polymer and moxidectin in a weight ratio of 2:1 to 12:1.
  • the micro particles can continuously release moxidectin for more than 3 months.
  • the biodegradable polymers include polylactide (PLA), polylactide-co-glycolide (PLGA), polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, polyorthoester, and polycaprolactone. , polyhydroxyvalate, polyhydroxybutyrate, polyamino acids, and mixtures thereof.
  • micro particles may be 0.3 to 3 according to the following equation 1:
  • Microparticles containing moxidectin were mixed into a suspension solution to prepare an injection, the injection was administered to a beagle dog, and the blood concentration of moxidectin was measured.
  • C max-peak n is the nth Cmax value after injection is administered
  • C max-peak n+1 is the n+1st Cmax value as the blood concentration of moxidectin increases again after the nth Cmax value.
  • a sustained-release injectable composition containing moxidectin may include microparticles containing moxidectin and a suspension solution.
  • moxidectin is continuously released for more than 3 months, providing a heartworm prevention effect. It can be maintained.
  • microparticles in which the particle properties are smooth the particle average diameter is uniform, and the diameter distribution width is narrow, the initial overrelease of moxidectin is prevented even when the microparticles are administered, and the drug is released.
  • concentration of moxidectin which is effective for more than 3 months, it can be maintained at a constant concentration and can reduce foreign body sensation and pain when applied as an injection.
  • Figure 1 shows the results of an experiment on the moxidectin release pattern of microparticles according to an embodiment of the present invention.
  • Figure 2 shows the results of an experiment on the moxidectin release pattern of microparticles according to an embodiment of the present invention.
  • Figure 3 shows the results of an experiment on the moxidectin release pattern of microparticles according to an embodiment of the present invention.
  • Figure 4 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 5 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 6 is a SEM measurement photograph of micro particles according to an embodiment of the present invention.
  • Figure 7 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 8 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 9 is a SEM measurement photograph of micro particles according to an embodiment of the present invention.
  • Figure 10 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 11 is an SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 12 is an SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 13 is an SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 14 is an SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 15 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 16 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 17 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 18 is a SEM measurement photo of micro particles according to an embodiment of the present invention.
  • Figure 19 shows the results of the concentration of moxidectin in the blood measured after administering an injection containing microparticles according to an embodiment of the present invention to a beagle dog.
  • the present invention is a micro particle containing moxidectin and a biodegradable polymer, the biodegradable polymer has an intrinsic viscosity of 0.1 dl/g to 1 dl/g, and the average diameter of the micro particles is 60 to 110 ⁇ m. It relates to micro particles containing.
  • Micro particles containing moxidectin according to an embodiment of the present invention are micro particles containing moxidectin and a biodegradable polymer.
  • the intrinsic viscosity of the biodegradable polymer is 0.1 dl/g to 1 dl/g, and the micro particles include moxidectin and a biodegradable polymer.
  • the average diameter of the particles may be 60 to 110 ⁇ m.
  • Moxidectin of the present invention is a compound represented by the following formula (1) and refers to a substance used as a heartworm prevention agent in animals.
  • the micro particles are spherical and have a smooth surface.
  • the micro particles contain a biodegradable polymer and moxidectin, and the biodegradable polymer and moxidectin are uniformly mixed, and the moxidectin is uniformly distributed within the micro particles.
  • micro particles are used in the form of an injection, and the micro particles can be injected into an animal and injected into the body. As the biodegradable polymer of the microparticles injected into the animal's body decomposes, moxidectin may be slowly released.
  • the release of moxidectin by the microparticles of the present invention occurs when the biodegradable polymer on the surface decomposes, moxidectin begins to be released, and then when a plurality of holes are formed inside the microparticles, the microparticles Moxidectin contained inside may be released into the animal's body.
  • the microparticles of the present invention can release moxidectin in the animal's body for more than 3 months, preferably continuously for 6 months or 12 months. .
  • moxidectin may be above the concentration range for treatment or prevention of heartworm. In other words, this means that moxidectin is not simply released continuously over a long period of time, but is actually continuously released above the blood concentration level that can exert the medicinal effect of moxidectin.
  • the continuous release of moxidectin and the heartworm prevention effect by the microparticles of the present invention can be determined by the average diameter of the microparticles described above, the coefficient of variation (CV) to be described later, and the intrinsic viscosity of the biodegradable polymer. It is due to
  • the micro particles of the present invention may have an average diameter of 60 to 110 ⁇ m, 60 to 100 ⁇ m, or 70 to 100 ⁇ m.
  • moxidectin can be released for a desired period of time, can be administered by injection without causing a foreign body sensation, and can prevent absorption by macrophages in the body.
  • the micro particles may have a coefficient of variation (CV) of 5% to 20%, 6% to 19%, 7% to 18.5%, and 8% to 18.5%.
  • the coefficient of variation is a value representing the monodispersity of the particle size distribution, and the smaller the CV value, the more uniform the particle size.
  • Equation 2 The coefficient of variation can be calculated by Equation 2 below.
  • microparticles with a coefficient of variation within the above range By including microparticles with a coefficient of variation within the above range, the release pattern of moxidectin can be controlled.
  • microparticles of the present invention by the method of producing microparticles, it is possible to produce microparticles of uniform size. As a result, microparticles containing different biodegradable polymers can be manufactured, It may be possible to mix them and use them.
  • microparticles containing a drug such as moxidectin can release the drug when the biodegradable polymer decomposes in the body. Therefore, the microparticles must be of uniform size to continuously release the drug for a desired period of time.
  • microparticles when microparticles are distributed in various sizes, there is a problem that small microparticles are rapidly decomposed in the body or do not exhibit drug release by macrophages. In other words, even if microparticles with small particle sizes release drugs, they only act initially in the body and cannot release the drug for a long time.
  • the initial drug release effect is insignificant and the drug may be released for too long a time.
  • the microparticles are intended to release the drug over a desired period of time. If the drug is released longer than the desired period, the release pattern of the drug cannot be controlled, which may lead to difficulties in repeated administration.
  • Microparticles having various sizes include both small-sized microparticles and large-sized microparticles, as described above. In other words, this means that the size of the microparticles cannot be controlled, which means that the release time of the drug cannot be controlled, which may lead to difficulties in continuous use rather than one-time use.
  • micro particles of the present invention are characterized by an average particle diameter of 60 to 110 ⁇ m and a coefficient of variation of 5% to 20%. This means that micro particles are distributed within an average diameter range, meaning that only micro particles with uniform diameters are included.
  • the biodegradable polymers include polylactide (PLA), polylactide-co-glycolide (PLGA), polyphosphazine, polyiminocarbonate, polyphosphoester, polyanhydride, polyorthoester, and polycaprolactone. , polyhydroxyvalate, polyhydroxybutyrate, polyamino acids, and mixtures thereof.
  • the biodegradable polymer may preferably be selected from the group consisting of polylactide (PLA), polylactide-co-glycolide (PLGA), and mixtures thereof.
  • polylactide may include polylactide (PLA) or polylactide-co-glycolide (PLGA), and may include polylactide (PLA) and polylactide-co-glycolide (PLGA).
  • PLA polylactide
  • PLA polylactide-co-glycolide
  • PLA polylactide-co-glycolide
  • the microparticles may include PLA and moxidectin, may include PLGA and moxidectin, and may include PLA, PLGA, and moxidectin.
  • PLA and PLGA includes both PLA and PLGA when the biodegradable polymer and moxidectin are dissolved in an organic solvent, and both PLA and PLGA are included in the manufactured microparticles. do.
  • microparticles of the present invention may be included in a sustained-release injectable composition as described later, and in this case, the microparticles included include microparticles containing PLA and moxidectin, microparticles containing PLGA and moxidectin, PLA, It may be selected from the group consisting of micro particles including PLGA and moxidectin, and mixtures thereof.
  • the microparticles included in the injectable composition may contain only one type of biodegradable polymer, may contain two or more different types of biodegradable polymers, and may include two different microparticles containing one or more types of biodegradable polymers. More than one species may be included.
  • the purpose of including various types of micro particles as described above is to control the release time of moxidectin.
  • the intrinsic viscosity of the biodegradable polymer is 0.1 dl/g to 1 dl/g, 0.1 dl/g to 0.8 dl/g, 0.1 dl/g to 0.7 dl/g, and 0.1 dl/g to 0.6 dl/g. It can be.
  • the molecular weight (MW) of the biodegradable polymer is 10 kg/mol to 100 kg/mol, 11 kg/mol to 80 kg/mol, 12 kg/mol to 70 kg/mol, and 15 kg/mol to 15 kg/mol. It may be 65 kg/mol.
  • microparticles of the present invention are intended to continuously release moxidectin for 3 months, 6 months, or 12 months, preferably for 6 months or 12 months. .
  • the release of moxidectin from the micro particles is related to the average diameter of the particles, but is also greatly affected by the intrinsic viscosity.
  • the larger the viscosity of the biodegradable polymer the longer the release of moxidectin may be, but this feature This does not necessarily apply, and the intrinsic viscosity of the biodegradable polymer and the viscosity of moxidectin influence each other, affecting the decomposition of the biodegradable polymer and the release of moxidectin.
  • the biodegradable polymer has been approved by the FDA, etc. and can be used as a pharmaceutical injection, and the decomposition period is specified depending on the type of biodegradable polymer. That is, the biodegradation period of a specific polymer is used in various ways, such as 2 to 3 months, 6 to 9 months, 10 to 14 months, etc.
  • this refers to the biodegradation period for the biodegradable polymer, and when mixed with moxidectin to produce micro particles, the biodegradation period may be different due to the influence of moxidectin on the biodegradation period of the biodegradable polymer.
  • the combination of a biodegradable polymer and moxidectin is important.
  • the intrinsic viscosity of the biodegradable polymer is limited to 0.1 dl/g to 1 dl/g, and when a biodegradable polymer having an intrinsic viscosity within the above range is used in combination with moxidectin, the sustained viscosity of moxidectin is maintained for a desired period of time. It can show an emission effect.
  • the microparticles include biodegradable polymer and moxidectin at a weight ratio of 2:1 to 12:1, 4:1 to 10:1, and may include 9:1 by weight. .
  • biodegradable polymer and moxidectin are included within the above range, when injected into the body of an animal, initial excessive release can be prevented and a continuous release effect of moxidectin can be exhibited for a desired period.
  • continuously releasing moxidectin for 3 months, 6 months, or 12 months means that moxidectin is released at a level that can show a preventive or treatment effect for heartworm.
  • micro particles may be 0.3 to 3 according to the following equation 1:
  • Microparticles containing moxidectin were mixed into a suspension solution to prepare an injection, the injection was administered to a beagle dog, and the blood concentration of moxidectin was measured.
  • C max-peak n is the nth Cmax value after injection is administered
  • C max-peak n+1 is the n+1st Cmax value as the blood concentration of moxidectin increases again after the nth Cmax value.
  • the formula 1 above shows that the microparticles of the present invention were administered as an injection to a beagle dog and the blood concentration of moxidectin was measured.
  • the value according to Equation 1 may be 0.3 to 3, 0.5 to 3, or 0.5 to 2.5. If the ratio of the peak value of the blood concentration of moxidectin appears within the above range, it can be controlled to enable long-term release of moxidectin for a desired period.
  • Equation 1 above indicates that as the microparticles included in the injection contain different biodegradable polymers, the blood concentration peak of moxidectin appears, and the relationship accordingly.
  • the micro particles of the present invention can be manufactured from two or more different types of biodegradable polymers.
  • the plurality of micro particles may contain only one type of biodegradable polymer, but may contain different biodegradable polymers. That is, it may include micro particles containing PLGA and moxidectin and micro particles containing PLA and moxidectin.
  • microparticles containing different biodegradable polymers exhibit the maximum blood concentration of nth moxidectin (Cmax-peak n) as shown in Equation 1, and then the maximum blood concentration of n+1st moxidectin (Cmax-peak) n+1).
  • the nth maximum blood concentration of moxidectin is the maximum blood concentration of moxidectin after injection, and refers to the maximum value at which the blood concentration value of moxidectin gradually increases and then decreases again, where n + 1
  • the maximum blood concentration of the nth moxidectin refers to the maximum value at which the blood concentration of moxidectin increases again and then decreases again after the maximum blood concentration of the nth moxidectin, and includes the micro particles of the present invention.
  • Injectable dosage forms may exhibit multiple maximum blood concentration values.
  • the maximum blood concentration of nth moxidectin (Cmax-peak n) and the maximum blood concentration of n+1st moxidectin (Cmax-peak n+1) are the maximum blood concentration of nth moxidectin. It can represent a larger value than the maximum blood concentration of , and the maximum blood concentration of n+1st moxidectin can represent a larger value than the maximum blood concentration of nth moxidectin.
  • micro particles of the present invention are manufactured by a manufacturing method described later, and the micro particles manufactured by the manufacturing method of the present invention are characterized by being able to be precisely adjusted to have a uniform particle size. For this reason, micro particles can be manufactured using different biodegradable polymers and mixed together.
  • microparticles manufactured using different biodegradable polymers may each exhibit a unique release pattern of moxidectin, and depending on the unique release pattern, a plurality of blood concentration peaks may appear.
  • the biodegradation speed of the biodegradable polymers varies.
  • a mixture of microparticles capable of producing an early moxidectin release effect and microparticles capable of a late moxidectin release effect are used, thereby releasing moxidectin continuously for a long time. It can show an effect.
  • the microparticles of the present invention are characterized in that the maximum blood concentration (Cmax) of moxidectin appears after a certain point after being administered into the body.
  • the maximum blood concentration (Cmax) of moxidectin in the body may be influenced by the average diameter of the microparticles, particle size distribution, type of biodegradable polymer, etc.
  • microparticles of a 3- to 6-month formulation may exhibit a maximum blood concentration (Cmax) within 10 to 90 days after being administered into the body.
  • Cmax maximum blood concentration
  • the microparticles of the present invention suppress initial excessive release, and after injection into the body, the release amount of moxidectin gradually increases, and the maximum blood concentration is reached within the range of 10 to 90 days, and then the release amount of moxidectin decreases. Moxidectin can be released continuously for 3 months or 6 months.
  • multiple moxidectin maximum blood concentration peaks do not appear, but only a single maximum blood concentration peak appears, and the maximum blood concentration is in the range of 10 to 90 days after injection. It may appear.
  • the maximum blood concentration (Cmax) can be expressed between 10 and 90 days, like the previous 3-month formulation or 6-month formulation. However, as previously explained, it may be influenced by the average diameter of micro particles, particle size distribution, type of biodegradable polymer, etc.
  • the range of the date indicating the maximum blood concentration may vary depending on the administration subject and administration dose, but as in the embodiment of the present invention, the total content of moxidectin administered to a beagle dog is 0.2 mg/kg to 1 mg/kg. In this case, it can indicate the maximum blood concentration (Cmax) of moxidectin within 10 to 90 days.
  • the maximum blood concentration (Cmax) of moxidectin is within the above range, sustained release of moxidectin is possible for 3 months, 6 months, or 12 months, and preferably, moxidectin is released for 6 months or 12 months. May be released continuously.
  • microparticles containing moxidectin were mixed with a suspension solution to prepare an injection, and the injection was administered to a plurality of beagle dogs. It was administered in the same manner as in Formula 1 above, and 0.2 mg/kg of moxidectin was administered to 10 beagle dogs using the same injection, and the blood moxidectin concentration of the beagle dogs was measured.
  • the standard deviation for the concentration of moxidectin may be 0.01 to 10, 0.01 to 5, or 0.01 to 3.
  • the standard deviation value of the blood moxidectin concentration as described above means that the homogeneity of the manufactured microparticles is excellent, and the excellent reproducibility in the in vivo experiment results means that the effectiveness and safety following the administration of moxidectin are excellent. .
  • micro particles of the present invention are manufactured by a manufacturing method described later, and the size of the particles is very uniform, the surface of the particles is smooth, and the particles can be manufactured in a perfect spherical shape.
  • microparticles with uniform size and properties are manufactured as described above, even when administered as an injection to beagle dogs, some differences may occur in the concentration of moxidectin in the blood depending on differences between individuals. is just a minor difference.
  • the size of the microparticles included in the injection varies, and due to differences in properties, it is difficult to control the difference between individuals when administered to beagle dogs, etc.
  • concentration of moxidectin in the blood due to the difference as well as the difference between micro particles, there is a large difference in the value.
  • a sustained-release injectable composition containing moxidectin may include microparticles containing moxidectin and a suspension solution.
  • the suspending agent includes an isotonic agent, a suspending agent, and a solvent.
  • the isotonic agent is selected from the group consisting of D-Mannitol, Maltitol, Sorbitol, Lactitol, Xylitol, Sodium chloride, and mixtures thereof.
  • D-Mannitol Maltitol, Sorbitol, Lactitol, Xylitol, Sodium chloride, and mixtures thereof.
  • the suspending agent includes sodium carboxymethylcellulose, polysorbate 80, starch, starch derivatives, polyhydric alcohols, chitosan, chitosan derivatives, cellulose, cellulose derivatives, and collagen.
  • the solvent can be water for injection, and any solvent that can be used as water for injection can be used without limitation.
  • a method for producing microparticles containing moxidectin includes the steps of 1) dissolving a biodegradable polymer and moxidectin in an organic solvent to prepare an oily solution; 2) dissolving the surfactant in water to prepare an aqueous solution; 3) injecting the oil solution of step 1) into a microchannel in a straight direction and allowing it to flow; 4) The aqueous solution of step 2) is injected into a microchannel formed on both sides or one side so as to form an intersection with the microchannel where the oily solution of step 3) flows in a straight direction, and the oily solution is producing micro particles uniformly containing moxidectin by alternating the flow and the flow of the aqueous solution; 5) collecting micro particles generated at the intersection of step 4); 6) stirring the micro particles collected in step 5) to evaporate and remove the organic solvent present in the micro particles; and 7) washing and drying the micro particles of step 6), wherein the biodegradable polymer has an
  • Step 1) is a step of preparing an oily solution by dissolving moxidectin and a biodegradable polymer in an organic solvent, wherein the biodegradable polymer is polylactide (PLA), preferably polylactide. Tide-co-glycolide (PLGA) or polylactide (PLA), but are not limited to the above examples.
  • PLA polylactide
  • PLGA Tide-co-glycolide
  • PLA polylactide
  • the organic solvent is immiscible with water, for example, at least one selected from the group consisting of chloroform, chloroethane, dichloroethane, dichloromethane, trichloroethane and mixtures thereof, preferably dichloromethane.
  • any organic solvent that can dissolve biodegradable polymer and moxidectin is not limited to the above examples, and can be used as any organic solvent that can be easily selected by a person skilled in the art.
  • step 1) an oily solution is prepared by dissolving moxidectin and a biodegradable polymer, and an organic solvent is used as the solvent, as described above.
  • This utilizes the dissolution properties of moxidectin and biodegradable polymers to completely dissolve it using an organic solvent. More specifically, moxidectin and biodegradable polymer were dissolved in an organic solvent to prepare an oily solution.
  • the oil phase solution may have a weight ratio of biodegradable polymer and moxidectin of 2:1 to 12:1, 4:1 to 10:1, or 9:1. When mixed and used within the above range, moxidectin may be continuously released for a long time due to decomposition of the biodegradable polymer.
  • the weight ratio of the moxidectin and the biodegradable polymer is less than 1:2, that is, if the biodegradable polymer is included in less than the above weight ratio, the weight ratio of the biodegradable polymer is less than the weight of moxidectin, resulting in a spherical biodegradable form. It is difficult to manufacture microparticles in which moxidectin is evenly distributed and contained in the polymer particles, and when the weight ratio of biodegradable polymer and moxidectin exceeds 1:12, that is, the biodegradable polymer is used as described above. If it is included in excess of the weight ratio, the content of moxidectin in the sustained-release particles is small, which may cause the problem of having to administer a large amount of sustained-release particles to administer the drug at the desired concentration.
  • the oily solution contains 10 to 20% by weight of biodegradable polymer, preferably 15% by weight, but is not limited to the above examples.
  • Step 2) is a step of preparing an aqueous solution, and the aqueous solution is prepared by dissolving the surfactant in water.
  • the surfactant can be used without limitation as long as it can help the biodegradable polymer solution form a stable emulsion. Specifically, it is one or more selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants, and mixtures thereof, and more specifically, methylcellulose, polyvinylpyrrolidone, lecithin, gelatin, and polyvinyl alcohol.
  • polyoxyethylene sorbitan fatty acid ester polyoxyethylene castor oil derivative, sodium lauryl sulfate, sodium stearate, ester amine, linear diamine, patty amine, and mixtures thereof, preferably at least one selected from the group consisting of Polyvinyl alcohol, but is not limited to this example.
  • the surfactant included in the aqueous solution may be included in an amount of 0.1 to 1.0 wt%, 0.2 to 0.5 wt%, or 0.25 wt%. Everything else is water.
  • Step 3) is a step of injecting and flowing the oil phase solution and the aqueous phase solution into the microchannel formed on the wafer or organic substrate.
  • the microchannel previously used to manufacture the same microparticles as in the present invention was manufactured by forming seven microchannels on a silicon wafer.
  • the microchannel may include a channel for flowing an aqueous solution, a channel for flowing an oil-phase solution, and a channel through which the generated emulsion moves after the aqueous solution and the oil-phase solution form an intersection.
  • the flow rate ratio of the fluid flowing into the channel of the oil phase solution and the aqueous phase solution is set to 1:45 or more. It is characterized by maintaining.
  • microfluidics which is a technology for producing micro particles with a homogeneous diameter distribution using microfluidic engineering technology. It is a technology that utilizes the difference in polarity between an oil phase solution and an aqueous phase solution to create an emulsion through the repulsive force between fluids when they pass through a micro-unit channel.
  • the flow rate ratio of the oil phase solution and the aqueous phase solution there is a difference in whether it is possible to produce micro particles using a micro channel.
  • the fluid flowing in the microchannel forms a laminar flow and is constantly broken by the repulsive force of the fluid at the junction where the channels meet, it represents a dripping condition, but the flow rate ratio of the oil phase solution and the aqueous phase solution is the same according to the present invention. If it is outside the range, the emulsion is not produced uniformly due to jetting rather than dripping.
  • Figure 1 is a photograph of an emulsion formed when the aqueous solution and the oil phase solution are included within the range of the flow rate ratio according to an embodiment of the present invention, showing dripping conditions at the intersection where channels meet.
  • the emulsion shown in Figure 1 has a uniformly distributed particle size of 170 to 190 ⁇ m, is completely spherical, and has a smooth surface.
  • Figure 2 is an conceptual diagram of the case showing dripping conditions at the intersection where channels meet and the emulsion that can be formed by jetting phenomenon.
  • the flow rate ratio of the oil phase solution and the aqueous phase solution is 1:45 or more and may be 1:45 to 1:125. If it is less than 1:45, it becomes jetting and does not have a uniform size distribution with a CV of 10% or less, and if the ratio of the water phase becomes larger than 1:45 and exceeds 1:125, it all becomes dripping and does not have an appropriate size distribution. However, as the ratio of the aqueous phase increases, the amount of aqueous solution used increases, which may cause problems in manufacturing quantity.
  • the microchannel may be formed in a material selected from the group consisting of a glass substrate, silicon wafer, or polymer film, but examples of the material are not limited to the above examples, and any material capable of forming a microchannel may be used. possible.
  • the polymer film is polyimide, polyethylene, fluorinated ethylene propylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polysulfone ( Polysulfone) and mixtures thereof, but is not limited to the above examples.
  • aluminum is deposited on a silicon wafer using an e-beam evaporator, and photoresist is patterned on the aluminum using a photolithography technique. Afterwards, aluminum is etched using the photoresist as a mask, and after removing the photoresist, the silicon is etched using DRIE (deep ion reactive etching) using aluminum as a mask. After removing the aluminum, glass is anodized on the wafer to seal it. Thus, the above microchannel is manufactured.
  • DRIE deep ion reactive etching
  • the above microchannels have an average diameter of 160 to 200 ⁇ m, preferably 180 ⁇ m, but this is not limited to this example. If the average diameter of the microchannel is 160 ⁇ m or less, there is a possibility that small microparticles may be produced with a diameter of less than 50 ⁇ m, which may affect the release and in vivo absorption of effective drugs. If the average diameter of the microchannel is 200 ⁇ m or more, the average size of the manufactured microparticles will exceed 120 ⁇ m, foreign body sensation and pain may increase when administered as an injection, and as the diameter of the microchannel increases, the particle size distribution of the manufactured particles will change. It is difficult to manufacture micro particles of uniform particle size as they become large.
  • the average diameter of the microchannel is closely related to the average diameter of the particles, but is also closely related to the flow rate ratio ( ⁇ l/min) of the oil phase solution and the aqueous phase solution.
  • the cross-sectional width (w) and cross-sectional height (d) of the microchannel are closely related to the average diameter (d') of the micro particles being manufactured.
  • the width (w) of the microchannel cross section is in a ratio range of 0.7 to 1.3 with respect to the average diameter (d') of the micro particles, and the height (d) of the micro channel cross section is 0.7 with respect to the average diameter (d') of the micro particles.
  • the ratio ranges from 1.3 to 1.3.
  • the width (w) and height (d) of the microchannel cross-section must be set in the ratio range of 0.7 to 1.3 of d', It is possible to manufacture micro particles of desired size.
  • step 3 the oil phase solution and the aqueous phase solution are flowed into the first microchannel and the second microchannel where an intersection is formed under the above flow rate conditions.
  • the oil phase solution flows along the first microchannel, and the water phase solution flows along the second microchannel formed to form an intersection with the first microchannel, meeting the flow of the oil phase solution.
  • the flow rate and when injecting the aqueous phase solution into the second microchannel the flow rate ratio of the oil phase solution and the aqueous solution is 1:45 or more, and is 1:45 to 1. :125.
  • micro particles As explained earlier, in order to manufacture conventional micro particles, it was possible to manufacture micro particles with a constant diameter by controlling hydraulic pressure. However, in the case of chips with more than 10 micro channels integrated, a uniform diameter was achieved through control of hydraulic pressure. It is impossible to manufacture into micro particles. Accordingly, it is possible to manufacture micro particles with a uniform diameter by adjusting the flow rate ratio of the oil phase solution and the aqueous phase solution.
  • the aqueous phase solution with a relatively larger flow rate compresses the oil phase solution at the point where the flow of the oil phase solution and the flow of the aqueous phase solution meet.
  • the repulsive force of the solution causes a dripping phenomenon, generating spherical micro-particles in which the biodegradable polymer and moxidectin are uniformly distributed. More specifically, the micro particles form micro particles in which moxidectin is evenly distributed in a spherical biodegradable polymer.
  • Step 4) is a step of collecting micro particles, and the micro particles are collected in a water tank containing an aqueous solution, thereby preventing aggregation between initially generated micro particles.
  • Step 4) uses the aqueous solution prepared in step 2), that is, a mixed solution of surfactant and water. After the aqueous solution is prepared in step 2), part of it is injected into the microchannel, and the other part is injected into the microchannel. ) is used to prevent agglomeration among the collected micro particles by moving them to the water tank in the second stage.
  • Step 5) is a step for removing the organic solvent present in the micro particles collected in the water tank.
  • the organic solvent present inside the micro particles is evaporated and removed by stirring at a constant temperature condition and stirring speed.
  • the stirring conditions are 5-1) primary stirring at a speed of 150 to 350 rpm for 50 to 70 minutes at 15 to 20 ° C.; and 5-2) secondary stirring at a speed of 250 to 450 rpm for 50 to 70 minutes at 20 to 30°C; and 5-3) third stirring at 40 to 60°C for 3 to 9 hours at a speed of 450 to 650 rpm.
  • the stirring speed is carried out by varying the temperature conditions and stirring time in the first and second stirring steps.
  • the temperature condition is increased in the secondary stirring process compared to the primary stirring process, and as the temperature is gradually increased, the evaporation rate of the organic solvent present inside the micro particles can be adjusted.
  • micro particles can be manufactured by gradually evaporating the organic solvent present inside the micro particles.
  • the temperature when the oil phase solution and the aqueous phase solution flow through the microchannel is also 15 to 20°C, preferably 17°C. That is, after flowing through the microchannel and forming an intersection to generate microparticles, the temperature is maintained at a constant low temperature of 15 to 20°C until the first stirring of the collected microparticles. It is possible to manufacture and maintain spherical particles only by maintaining low temperature during the manufacturing process of micro particles. In other words, in cases other than low temperature conditions, it is difficult to manufacture particles of a certain spherical shape.
  • the secondary stirring process gradually increases the temperature and increases the stirring time, so that the organic solvent present inside the micro particles gradually moves to the surface, and as the organic solvent evaporates from the surface, it affects the properties of the micro particles.
  • the impact can be minimized. That is, when the organic solvent is rapidly evaporated, the surface of the micro particles may not be smooth due to the evaporation of the organic solvent, and pores may be formed.
  • the evaporation rate of the organic solvent can be controlled by gradually increasing the temperature conditions as described above and increasing the time for the stirring process. Due to this control of the evaporation rate of the organic solvent, the manufactured micro The surface properties of particles can be controlled.
  • the external aqueous phase is raised to a temperature near the boiling point of the organic solvent and stirred to remove the saturated organic solvent from the aqueous phase, making it easy to remove the remaining organic solvent in the micro particles.
  • step 6) is a step of washing and drying the microparticles.
  • the microparticles are stirred to remove all organic solvents on the surface and washed several times with sterilizing filtered purified water to remove the surfactant remaining in the microparticles. Afterwards, it is freeze-dried.
  • microparticles have moxidectin evenly distributed in microparticles made of spherical biodegradable polymers, and contain the biodegradable polymer and moxidectin in a weight ratio of 2:1 to 12:1.
  • the weight ratio of moxidectin and the biodegradable polymer contained in the microparticles is the same as that in the oil phase solution, which passes through the microchannel to prepare oil phase emulsion particles and removes all organic solvents in the emulsion, thereby forming the oil phase.
  • Micro particles containing moxidectin and biodegradable polymer can be prepared at the same ratio as the weight ratio in the solution.
  • Polylactide-co-glycolide which has a viscosity of 0.2 dl/g, contains terminal carboxylic acid groups, has a molecular weight (MW) of 17 kg/mol, and a ratio of lactide to glycolide of 75:25, and An oily solution was prepared by dissolving moxidectin in dichloromethane. At this time, polylactide-co-glycolide in the oil solution is included at a ratio of 15% by weight, and the weight ratio of polylactide-co-glycolide and moxidectin is 9:1.
  • Polyvinyl alcohol a surfactant, was mixed with water to prepare an aqueous solution containing 0.25% by weight of polyvinyl alcohol.
  • the oil phase solution and the aqueous phase solution were injected into a microchannel formed on a silicon wafer and allowed to flow. At this time, the oil phase solution and the aqueous phase solution were injected into each microchannel, the flow rate ratio was 1:50, and the temperature condition was maintained at 17°C.
  • Micro particles generated at the intersection where the flow of the oil phase solution and the flow of the aqueous phase solution meet were collected in a water tank containing the second mixture.
  • the micro particles collected in the water tank were first stirred at a speed of 250 rpm for 1 hour at 17°C, secondarily stirred at a speed of 350 rpm for 1 hour at 25°C, raised to 55°C, and stirred at 550 rpm for 4 hours. It was stirred three times at high speed.
  • microparticles were washed several times with sterilization-filtered purified water and freeze-dried to prepare microparticles.
  • polylactic acid which has a viscosity of 0.2 dl/g, contains a terminal carboxyl group, and has a molecular weight (MW) of 17 kg/mol.
  • MW molecular weight
  • the polylactic acid in the oil solution is 10 kg/mol.
  • Micro particles were prepared in the same manner as Preparation Example 1 except that they were included in weight percent ratio.
  • polylactic acid which has a viscosity of 0.4 dl/g, contains a terminal carboxyl group, and has a molecular weight (MW) of 45 kg/mol.
  • the polylactic acid in the oil solution is 10 Micro particles were prepared in the same manner as Preparation Example 1 except that they were included in weight percent ratio.
  • polylactic acid which has a viscosity of 0.4 dl/g, contains an ester group at the terminal, and has a molecular weight (MW) of 45 kg/mol.
  • the polylactic acid in the oil phase solution is 10 Micro particles were prepared in the same manner as Preparation Example 1 except that they were included in weight percent ratio.
  • polylactic acid which has a viscosity of 0.5 dl/g, contains an ester group at the terminal, and has a molecular weight (MW) of 61 kg/mol.
  • the polylactic acid in the oil phase solution is 10 Micro particles were prepared in the same manner as Preparation Example 1 except that they were included in weight percent ratio.
  • Polylactide-co-glycolide is a biodegradable polymer with a viscosity of 0.2 dl/g, contains a terminal carboxyl group, has a molecular weight (MW) of 17 kg/mol, and a ratio of lactide to glycolide of 75:25.
  • PLGA polylactide
  • PLA polylactide
  • Micro particles were prepared in the same manner as Preparation Example 1, except that polylactide-co-glycolide and polylactic acid in the oil phase solution were included in a ratio of 10% by weight.
  • Biodegradable polymer with a viscosity of 0.2 dl/g, contains carboxyl groups at the terminals, and polylactide (PLA) with a molecular weight (MW) of 17 kg/mol, and has a viscosity of 0.4 dl/g and contains carboxyl groups at the terminals.
  • polylactide (PLA) with a molecular weight (MW) of 45 kg/mol is used, the weight ratio of each of the different PLAs is 1 to 1, and the total polylactic acid in the oil solution is contained at a ratio of 10% by weight.
  • Micro particles were manufactured in the same manner as Preparation Example 1 except that.
  • Biodegradable polymer with a viscosity of 0.2 dl/g, contains a carboxyl group at the terminal, polylactide (PLA) with a molecular weight (MW) of 17 kg/mol, and has a viscosity of 0.4 dl/g and contains an ester group at the terminal.
  • polylactide (PLA) with a molecular weight (MW) of 45 kg/mol is used, the weight ratio of each of the different PLAs is 1 to 1, and the total polylactic acid in the oil solution is contained at a ratio of 10% by weight.
  • Micro particles were manufactured in the same manner as Preparation Example 1 except that.
  • Biodegradable polymer with a viscosity of 0.2 dl/g, contains carboxyl groups at the terminals, and polylactide (PLA) with a molecular weight (MW) of 17 kg/mol, and has a viscosity of 0.4 dl/g and contains carboxyl groups at the terminals.
  • Polylactide (PLA) with a molecular weight (MW) of 45 kg/mol is used, and the weight ratio of each of the different PLAs is 1 to 3, and at this time, the total polylactic acid in the oil solution is contained at a rate of 10% by weight.
  • Micro particles were manufactured in the same manner as Preparation Example 1 except that.
  • Polylactide (PLA) with a molecular weight (MW) of 61 kg/mol is used, and the weight ratio of each of the different PLAs is 1 to 1, and the total polylactic acid in the oil solution is contained at a rate of 10% by weight.
  • Micro particles were manufactured in the same manner as Preparation Example 1 except that.
  • Polylactide-co-glycolide is a biodegradable polymer with a viscosity of 0.2 dl/g, contains a carboxyl group at the terminal, has a molecular weight (MW) of 17 kg/mol, and a ratio of lactide and glycolide of 50:50.
  • PLGA polylactide-co-glycolide
  • PLGA polylactide-co-glycolide
  • PHA polylactide
  • micro particles of Preparation Example 1 and the micro particles of Preparation Example 2-1 were mixed at a weight ratio of 1:2, 2.0 mL of suspension solvent was added to 1 vial, and then uniformly suspended to prepare a composition for subcutaneous injection. did.
  • the suspension solvent had the composition shown in Table 1 below.
  • a composition for subcutaneous injection was prepared in the same manner as in Example 1, except that the microparticles of Preparation Example 1 and the microparticles of Preparation Example 2-1 were mixed at a weight ratio of 1:1.
  • Example 2 The experiment was conducted in the same manner as Example 1, except that 50% of the dose administered in Example 1 was administered.
  • the microparticles of Preparation Example 1 and the microparticles of Preparation Example 2-1 were mixed and administered at a weight ratio of 1:2 in the same manner.
  • the release test solution used in the release experiment was a solution containing 2% Tween 20 in purified water. 100 mg of micro particles were placed in an injection vial containing 100 ml of the release test solution, sealed, and stirred and shaken at 55°C and 120 rpm. The difference in dissolution rate was confirmed.
  • microparticles of Preparation Example 1 50% of moxidectin is released after 15 hours, and can be applied to a 3-month formulation, and for the microparticles of Preparation Example 2-1, 50% of moxidectin is released after 20 hours. In terms of time, it is available in a 6-month formulation.
  • microparticles of Preparation Example 4 can be applied as a formulation that releases moxidectin for a longer period of time than Preparation Example 1 and Preparation Example 2-1, as 50% of moxidectin is released in 84 hours.
  • microparticles of Preparation Example 5 take a longer time for 50% of moxidectin to be released compared to the microparticles of Preparation Example 3.
  • the release test solution used in the release experiment was a solution containing 2% Tween 20 and 0.001M sodium bicarbonate in purified water. 100 mg of micro particles were placed in an injection vial containing 100 ml of the release test solution and sealed. Afterwards, the mixture was stirred and shaken at 55°C and 120 rpm to confirm the difference in dissolution rate.
  • microparticles of Preparation Example 11 contain polylactide-co-glycolide (PLGA) compared to the microparticles of other Preparation Examples, so that moxidectin is released more quickly.
  • PLGA polylactide-co-glycolide
  • the release test solution used in the release experiment was a solution containing 2% Tween 20 and 0.001M sodium bicarbonate in purified water. 100 mg of micro particles were placed in an injection vial containing 100 ml of the release test solution and sealed. Afterwards, the mixture was stirred and shaken at 55°C and 120 rpm to confirm the difference in dissolution rate.
  • the unit of D10 to D90 is ⁇ m, and CV (%) was calculated as SD/Mean*100.
  • Span value is calculated as (D90-D10)/D50 and indicates the uniformity of particle size distribution.
  • the micro particles according to the preparation example of the present invention had a D50 of 84.85 ⁇ m, 90.70 ⁇ m, 83.69 ⁇ m, 91.41 ⁇ m, 82.38 ⁇ m, 87.92 ⁇ m, 84.20 ⁇ m, and 79.98 ⁇ m, and a CV value of 14.46%. , 10.43%, 9.49%, 10.97%, 8.98%, 11.35%, 12.91%, and 11.27%, indicating uniform particle distribution.
  • the average particle diameter (MV) of micro particles is 90.85 ⁇ m, 93.29 ⁇ m, 85.26 ⁇ m, 96.05 ⁇ m, 86.67 ⁇ m, 89.51 ⁇ m, 87.22 ⁇ m, and 81.87 ⁇ m, indicating uniform particle distribution within the range of 70 to 100 ⁇ m. can confirm.
  • the micro particles according to the preparation example of the present invention had D50 of 98.5 ⁇ m, 80.46 ⁇ m, 91.23 ⁇ m, 95.64 ⁇ m, 84.5 ⁇ m, 78.52 ⁇ m, and 93.32 ⁇ m, and CV values of 11.13% and 6.74%. , 10.53%, 10.75%, 10.64%, 10.63%, and 9.46%, indicating uniform particle distribution.
  • the average particle diameter (MV) of the micro particles was 99.63 ⁇ m, 80.54 ⁇ m, 91.22 ⁇ m, 96.96 ⁇ m, 86.72 ⁇ m, 78.61 ⁇ m, and 93.04 ⁇ m, indicating uniform particle distribution within the range of 70 to 100 ⁇ m. there is.
  • the average particle size (MV) of each particle is 84.96, and the standard deviation is 4.17.
  • the average particle size (MV) of each particle is 94.97 ⁇ m, and the standard deviation is 3.17.
  • concentration of the polymer in the oil solution increases, the average particle size of the particles increases. It can be seen that the size (MV) increases.
  • the Span value of the particles according to each manufacturing example which indicates the degree of particle size distribution, is less than 0.5, and the CV (%) is within 5 to 20%, so the particles manufactured according to the above manufacturing method show a very uniform particle size distribution. Able to know.
  • the average particle size (MV) of each particle is 57.98, and the polymer in the oil solution is 57.98.
  • the average particle size (MV) of each particle is 76.27 on average, and when the polymer in the oil solution is included at a rate of 15% by weight, the average particle size (MV) of each particle is 93.14 on average.
  • the average particle size (MV) of each particle is confirmed to be 103.30 on average, showing that the average particle size (MV) of the particles increases as the concentration of the polymer in the oil solution increases. You can. Therefore, when using the same microchannel and keeping the flow rate ratio between the oil phase and the water phase constant under dripping conditions, microparticles of the desired particle size can be manufactured by changing the weight percent of the polymer constituting the oil phase. Through this, the drug release pattern can be controlled by the size of the microparticles, such as suppressing the initial burst, and can be used to set the drug maintenance period.
  • the particles were manufactured as perfectly spherical micro particles with uniform size and smooth surfaces.
  • Example 1 was a sustained-release formulation for more than 6 months, and it was confirmed whether the drug effect of moxidectin was maintained by continuously releasing moxidectin for 6 months after injection.
  • moxidectin administered to beagle dogs is 0.4 mg/kg, and was administered to a total of 5 dogs by SC injection.
  • Microparticles containing moxidectin were mixed into a suspension solution to prepare an injection, the injection was administered to a beagle dog, and the blood concentration of moxidectin was measured.
  • C max-peak n is the nth Cmax value after injection is administered
  • C max-peak n+1 is the n+1st Cmax value as the blood concentration of moxidectin increases again after the nth Cmax value.
  • This blood concentration pattern of moxidectin is due to the production of each micro particle using two types of biodegradable polymers and mixing them to prepare an injectable formulation.
  • the viscosity and molecular weight of the biodegradable polymer and its combination with moxidectin A difference in the rate of decomposition appears, resulting in the release pattern of blood concentration as described above.
  • Example 2 The experiment was conducted in the same manner as Example 1, except that the micro particles of Preparation Example 1 and the micro particles of Preparation Example 2-1 were mixed and used at a weight ratio of 1:1.
  • the blood concentration of moxidectin was 0.75 ng/ml, and the standard deviation of the blood concentration of the beagle dog in which the experiment was performed was 0.24.
  • Example 2 The experiment was conducted in the same manner as Example 1, except that 50% of the dose administered in Example 1 was administered.
  • the microparticles of Preparation Example 1 and the microparticles of Preparation Example 2-1 were mixed and administered at a weight ratio of 1:2 in the same manner.
  • ProHeart SR-12 was administered to three beagle dogs, and the concentration of moxidectin in the blood was measured for 180 days.
  • microparticles of the present invention were used in Example 3, where the dose of moxidectin was set to 0.2 mg/kg, and were administered to a total of 10 beagle dogs, and the concentration of moxidectin in the blood was measured for 180 days.
  • ProHeart SR-12 (moxidectin dose 0.5 mg/kg) Time(Days) One 2 3 average Deviation 0 0.00 0.00 0.00 0.00 7 11.96 10.30 12.02 11.43 0.98 14 31.22 12.20 9.50 17.64 11.84 21 28.13 13.36 6.36 15.95 11.11 28 26.40 12.38 4.59 14.46 11.05 35 27.77 10.28 3.20 13.75 12.65 49 20.42 7.83 1.62 9.96 9.58 63 18.33 6.25 0.84 8.47 8.95 77 16.52 3.71 0.72 6.98 8.39 84 15.29 3.71 0.86 6.62 7.64 91 13.88 2.70 0.76 5.78 7.08 98 11.15 1.89 0.73 4.59 5.71 105 12.89 1.72 0.77 5.13 6.74 112 9.22 1.70 0.75 3.89 4.64 126 6.35 1.28 0.46 2.70 3.19 140 5.59 1.30 0.61 2.50 2.70 154 7.06 1.52 0.75 3.11 3.44 168 4.35 1.39 0.62 2.12 1.97 180 3.8 1.34 0.57 1.90 1.
  • Example 1 of the present invention measured the concentration of moxidectin in the blood of 10 beagle dogs. It can be seen that there is very little difference, with the deviation being 0.2 to 2.39.
  • the present invention relates to microparticles containing moxidectin and a sustained-release injectable composition containing the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Preparation (AREA)
  • Dermatology (AREA)

Abstract

본 발명은 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법으로, 종래 반감기가 짧아, 매일 또는 매달 투여해야 했던 종래의 심장사상충 예방약과 달리, 목시덱틴을 포함하는 마이크로 입자를 투여할 경우, 3개월 이상 지속적으로 목시덱틴이 방출되어, 심장사상충 예방 효과를 유지할 수 있다. 또한, 입자의 평균 직경이 일정하고, 직경의 분포 폭이 좁게 형성된 마이크로 입자를 제조하여, 상기 마이크로 입자를 투여하더라도, 목시덱틴의 초기 과방출을 방지하고, 약물의 방출을 제어하여 3개월 이상 유효한 목시덱틴의 농도를 일정하게 유지될 수 있도록 하며, 주사제로 적용 시 이물감 및 통증을 감소시킬 수 있다.

Description

목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물
본 발명은 목시덱틴(Moxidectin)을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물에 관한 것이다.
심장사상충(Heartworm Disease; HWD)은 모기에 의해 전염되는 Dirofilaria immitis라는 기생충으로 개, 고양이, 족제비에 감염된다. 이름에서 알 수 있듯이 심장사상충은 포유동물의 심장에 기생한다.
심장사상충의 성충은 30cm까지 성장하며 주로 폐동맥과 우심실에 기생합니다. 성숙한 암컷, 수컷 심장사상충은 마이크로 필라리아(microfilariae, L1)라고 불리는 매우 작은 유충을 생산한다. 이러한 유충들이 감염된 동물의 혈액 속에 기생하며 모기를 통해 다른 동물에 감염된다. 모기의 몸 속으로 들어간 L1은 2주 후에는 감염능력을 가지게 되며, 감염 능력을 가진 유충은 다시 모기를 통해 다른 동물로 전해지게 된다. 다른 동물에 감염된 유충은 몇 단계 성장을 거쳐 3 내지 4달 후에는 폐동맥으로 이주하게 된다. 이렇게 성숙한 심장사상충 성충은 평균 5 내지 7년간 생존하며 암컷, 수컷 심장사상충은 생식을 통해 수많은 유충을 생산한다.
감염된 동물의 심장과 폐동맥에는 심장사상충이 적게는 1마리부터 많게는 200마리까지 기생할 수 있다. 감염에 의해 폐동맥은 두꺼워지고 염증이 생겨 심장사상충을 피해 폐에 혈액을 보내기 위해 심장은 더 많은 일을 해야 한다. 또한 폐에도 염증이 발생한다. 감염된 심장사상충의 수가 적을 때는 특별한 증상이 없을 수 있지만 일반적으로 심장사상충에 감염된 동물은 초기 증상으로 운동 기피, 기침, 체중감소 등을 보일 수 있다. 감염이 심한 경우에는 심한 기침, 호흡 곤란, 심부전 등의 증상이 나타날 수 있다. 심장사상충에 감염된 동물이 이런 증상들을 보이면 심부전으로 인해 죽는 경우도 발생한다.
진단을 통해 심장사상충에 감염된 것으로 확인될 경우, 비소계 약물(caparsolate)로 심장사상충 성충을 죽이거나, melarsomine을 이용하여 치료를 진행할 수 있다. 다만, 상기 치료제 모두, 주사 부위에 자극이 심하고 간과 신장에 어느 정도 손상을 입히는 부작용이 있다.
이에, 심장사상충의 감염 전에 예방하는 것이 경제적이며 안전하다. 예방은 생후 6 내지 8주에 시행한다. 심장사상충 예방약에는 매일 먹이는 디에틸카바마진(diethylcarbamazine, DEC) 또는 매달 먹이는 이버멕틴(ivermectin), 밀베마이신(milbemycin), 목시덱틴(moxidectin), 세라멕틴(selamectin) 등이 있다. 예방약들은 올바르게 투여되면 모두 예방효과가 뛰어나지만, 매일 또는 매달 먹여야 하는 점에서, 실수로 몇 번 투여하는 것을 빼먹는 것만으로도 감염의 위험성에 노출될 수 있다. 
이에, 심장사상충을 예방할 수 있는 목시덱틴을 이용하여, 한번 투여로 인해 3개월 이상 약효를 유지시켜 투여 편의성을 개선한 심장사상충 예방약의 개발이 시급한 실정이다.
(선행기술문헌)
(특허문헌)
(특허문헌 1) KR10-2006-0005472 A1
본 발명의 목적은 목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물을 제공하는 것이다.
본 발명의 다른 목적은 종래 반감기가 짧아, 매달 정기적으로 투여해야 했던 종래의 심장사상충 예방약과 달리, 목시덱틴을 포함하는 마이크로 입자를 투여할 경우, 3개월 이상 지속적으로 목시덱틴이 방출되어, 심장사상충 예방 효과를 유지할 수 있는 목시덱틴을 포함하는 마이크로 입자를 제공하는 것이다.
본 발명의 다른 목적은 상기 마이크로 입자를 투여하더라도, 목시덱틴의 초기 과방출을 방지하고, 약물의 방출을 제어하여 3개월 이상 유효한 목시덱틴의 농도를 일정하게 유지될 수 있도록 하며, 주사제로 적용 시 이물감 및 통증을 감소시킬 수 있는 목시덱틴을 포함하는 서방형 주사제 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 목시덱틴을 포함하는 마이크로 입자는 목시덱틴 및 생분해성 고분자를 포함하는 마이크로 입자이며, 상기 생분해성 고분자의 고유 점도는 0.1 dl/g 내지 1 dl/g이며, 상기 마이크로 입자의 평균 직경은 60 내지 110㎛일 수 있다.
상기 마이크로 입자는 구형이며, 상기 마이크로 입자 내 목시덱틴을 균일하게 포함할 수 있다.
상기 마이크로 입자의 변동계수(coefficient of variation, CV)는 5% 내지 20%일 수 있다.
상기 마이크로 입자는 생분해성 고분자 및 목시덱틴을 2:1 내지 12:1의 중량 비율로 포함할 수 있다.
상기 마이크로 입자는 목시덱틴을 3개월 이상 지속적으로 방출할 수 있다.
상기 생분해성 고분자는 폴리락타이드(PLA), 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 마이크로 입자는 하기 식 1에 의해 0.3 내지 3일 수 있다:
[식 1]
Cmax-peak n/Cmax―peak n+1
여기서,
목시덱틴을 포함하는 마이크로 입자를 현탁 용액에 혼합하여 주사제로 제조하고, 상기 주사제를 비글견에 투여하고 목시덱틴의 혈중 농도를 측정한 것으로,
Cmax-peak n은 주사제를 투입하고, n차 Cmax 값이며,
Cmax-peak n+1는 상기 n차 Cmax 값 이후 목시덱틴의 혈중 농도가 다시 증가함에 따른 n+1차 Cmax 값이다.
본 발명의 다른 일 실시예에 따른 목시덱틴을 포함하는 서방형 주사제 조성물은 상기 목시덱틴을 포함하는 마이크로 입자 및 현탁 용액을 포함할 수 있다.
본 발명은 종래 반감기가 짧아, 매달 정기적으로 투여해야 했던 종래의 심장사상충 예방약과 달리, 목시덱틴을 포함하는 마이크로 입자를 투여할 경우, 3개월 이상 지속적으로 목시덱틴이 방출되어, 심장사상충 예방 효과를 유지할 수 있다.
또한, 입자의 성상이 매끈하고, 입자의 평균 직경이 균일하며, 직경의 분포 폭이 좁게 형성된 마이크로 입자를 제조하여, 상기 마이크로 입자를 투여하더라도, 목시덱틴의 초기 과방출을 방지하고, 약물의 방출을 제어하여 3개월 이상 유효한 목시덱틴의 농도를 일정하게 유지될 수 있도록 하며, 주사제로 적용 시 이물감 및 통증을 감소시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로 입자의 목시덱틴 방출 패턴에 대한 실험 결과이다.
도 2는 본 발명의 일 실시예에 따른 마이크로 입자의 목시덱틴 방출 패턴에 대한 실험 결과이다.
도 3은 본 발명의 일 실시예에 따른 마이크로 입자의 목시덱틴 방출 패턴에 대한 실험 결과이다.
도 4는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 5는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 6은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 7은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 8은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 9는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 10는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 11은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 12는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 13은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 14는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 15는 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 16은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 17은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 18은 본 발명의 일 실시예에 따른 마이크로 입자의 SEM 측정 사진이다.
도 19는 본 발명의 일 실시예에 따른 마이크로 입자를 포함하는 주사제를 비글견에 투여하고, 측정한 혈중 목시덱틴의 농도에 대한 결과이다.
본 발명은 목시덱틴 및 생분해성 고분자를 포함하는 마이크로 입자이며, 상기 생분해성 고분자의 고유 점도는 0.1 dl/g 내지 1 dl/g이며, 상기 마이크로 입자의 평균 직경은 60 내지 110㎛인 목시덱틴을 포함하는 마이크로 입자에 관한 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 따른 목시덱틴을 포함하는 마이크로 입자는 목시덱틴 및 생분해성 고분자를 포함하는 마이크로 입자이며, 상기 생분해성 고분자의 고유 점도는 0.1 dl/g 내지 1 dl/g이며, 상기 마이크로 입자의 평균 직경은 60 내지 110㎛일 수 있다.
본 발명의 목시덱틴은 하기 화학식 1로 표시되는 화합물로, 동물의 심장사상충 예방약으로 사용되는 물질을 의미한다.
[화학식 1]
Figure PCTKR2022005968-appb-img-000001
상기 마이크로 입자는 구형이며, 매끈한 표면을 갖는 것을 특징으로 한다.
또한, 상기 마이크로 입자는 생분해성 고분자 및 목시덱틴을 포함하며, 생분해성 고분자 및 목시덱틴이 균일하게 혼합하는 것을 특징으로 하며, 상기 마이크로 입자 내 목시덱틴이 균일하게 분포되어 있다.
상기 마이크로 입자는 주사제의 형태로 이용되는 것으로, 상기 마이크로 입자는 동물에 주사되어 체내로 주입될 수 있다. 상기 동물의 체내로 주입된 마이크로 입자는 생분해성 고분자가 분해됨에 따라, 목시덱틴이 서서히 방출될 수 있다.
상기 본 발명의 마이크로 입자에 의한 목시덱틴의 방출은, 표면의 생분해성 고분자가 분해되며, 목시덱틴이 방출되기 시작하고, 이후 마이크로 입자의 내부로 복수의 홀(hole)이 형성되면, 상기 마이크로 입자의 내부에 포함된 목시덱틴이 동물의 체내로 방출될 수 있다.
상기와 같은 목시덱틴의 방출로 인해, 본 발명의 마이크로 입자는 동물의 체내에서 목시덱틴을 3개월 이상 방출할 수 있으며, 바람직하게는 6개월 동안 또는 12개월 동안 지속적으로 목시덱틴을 방출할 수 있다.
상기 목시덱틴의 방출은, 심장 사상충의 치료 또는 예방을 위한 농도 범위 이상일 수 있다. 즉, 단순히 목시덱틴을 장시간 지속적으로 방출하는 것이 아닌, 실질적으로 목시덱틴에 의한 약효를 발휘할 수 있는 혈중 농도 이상으로 지속적으로 방출되는 것을 의미한다.
상기와 같이 본 발명의 마이크로 입자에 의한 지속적인 목시덱틴의 방출 및 심장사상충의 예방 효과를 나타낼 수 있는 것은, 앞서 설명한 마이크로 입자의 평균 직경, 후술할 변동계수(CV) 및 생분해성 고분자의 고유 점도에 의한 것이다.
본 발명의 마이크로 입자는 평균 직경이 60 내지 110㎛이며, 60 내지 100㎛이며, 70내지 100㎛일 수 있다. 상기 범위 내에서 사용 시, 원하는 기간 동안 목시덱틴의 방출 효과를 나타낼 수 있고, 주사로 투여 시 이물감이 없이 투여가 가능하며, 체내에서 대식세포에 의해 흡수작용을 방지할 수 있다.
상기 마이크로 입자는 변동계수(coefficient of variation, CV)가 5% 내지 20%이며, 6% 내지 19%이며, 7% 내지 18.5%이며, 8% 내지 18.5%일 수 있다. 상기 변동계수는 입자 크기 분포도의 단분산도(monodispersity)를 나타내는 값으로, CV 값이 작을수록 입자의 크기가 균일함을 의미한다.
상기 변동계수는 하기 식 2에 의해 계산될 수 있다.
[식 2]
(직경의 표준편차/직경의 평균값)*100
상기 범위 내의 변동계수를 갖는 마이크로 입자를 포함함에 따라, 목시덱틴의 방출 패턴을 제어할 수 있다. 또한, 후술하는 바와 같이, 본 발명의 마이크로 입자를 제조하는 방법에 의해서 제조 시, 균일한 크기의 마이크로 입자로 제조가 가능하며, 이로 인해, 서로 다른 생분해성 고분자를 포함하는 마이크로 입자를 제조하고, 이를 혼합하여 사용이 가능할 수 있다.
목시덱틴과 같은 약물을 포함하는 마이크로 입자는, 앞서 설명한 바와 같이 생분해성 고분자가 체내에서 분해되어, 약물을 방출할 수 있다. 이에, 상기 마이크로 입자는 균일한 크기로 포함되어야, 원하는 기간 동안 약물을 지속적으로 방출할 수 있다.
구체적으로, 마이크로 입자가 다양한 크기로 분포하는 경우, 입자가 작은 마이크로 입자는 체내에서 빠르게 분해되거나, 대식 세포에 의해 약물의 방출을 나타내지 못하는 문제가 있다. 즉, 입자의 크기가 작은 마이크로 입자는 약물을 방출하더라도, 체내에서 초기에만 작용하고 장시간 약물 방출이 불가능하다.
또한, 마이크로 입자의 크기가 큰 경우에는, 초기 약물의 방출 효과가 미비하고, 너무 오랜 시간 동안 약물이 방출될 수 있다. 상기 마이크로 입자는 원하는 기간 동안 약물을 방출하고자 하는 것으로, 원하는 기간 이상으로 약물이 방출되는 경우에는 약물의 방출 패턴을 조절하지 못해, 반복 투약에 어려움이 발생할 수 있다.
다양한 크기를 갖는 마이크로 입자는, 앞서 설명한 바와 같이 작은 크기의 마이크로 입자 및 큰 크기의 마이크로 입자를 모두 포함하는 것이다. 즉, 마이크로 입자의 크기를 조절하지 못함을 의미하는 것으로, 이는 약물의 방출 시간을 조절하지 못함을 의미하는 것으로 1회 사용이 아닌 지속적인 사용에 어려움이 발생할 수 있다.
본 발명의 마이크로 입자는 입자의 평균 직경이 60 내지 110㎛이며, 변동계수가 5% 내지 20%인 것을 특징으로 한다. 이는 평균 직경 범위 내에 마이크로 입자가 분포하는 것을 의미하는 것으로, 직경이 균일한 마이크로 입자만을 포함하는 것을 의미한다.
상기와 같이 균일한 크기의 마이크로 입자를 포함함에 따라, 동물의 체내로 주입하여, 초기 목시덱틴의 과방출을 방지하고, 3개월 동안, 6개월 동안 또는 12개월 동안 목시덱틴의 방출 효과를 나타낼 수 있다.
상기 생분해성 고분자는 폴리락타이드(PLA), 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 생분해성 고분자는 바람직하게는 폴리락타이드(PLA), 폴리락타이드-코-글리콜라이드(PLGA) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
구체적으로, 폴리락타이드(PLA) 또는 폴리락타이드-코-글리콜라이드(PLGA)를 포함할 수 있고, 폴리락타이드(PLA) 및 폴리락타이드-코-글리콜라이드(PLGA)를 포함할 수 있다.
보다 구체적으로, 상기 마이크로 입자는 PLA 및 목시덱틴을 포함할 수 있고, PLGA 및 목시덱틴을 포함할 수 있고, PLA, PLGA 및 목시덱틴을 포함할 수 있다. 상기 PLA 및 PLGA를 모두 포함하는 것은 후술하는 바와 같이 생분해성 고분자 및 목시덱틴을 유기 용매에 용해 시, PLA 및 PLGA를 모두 포함하는 것으로, 제조된 마이크로 입자 내 PLA 및 PLGA가 모두 포함되는 것을 특징으로 한다.
또한, 본 발명의 마이크로 입자는 후술하는 바와 같이 서방형 주사제 조성물에 포함될 수 있고, 이때, 포함되는 마이크로 입자는 PLA 및 목시덱틴을 포함하는 마이크로 입자, PLGA 및 목시덱틴을 포함하는 마이크로 입자, PLA, PLGA 및 목시덱틴을 포함하는 마이크로 입자 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 주사제 조성물에 포함되는 마이크로 입자는 1종의 생분해성 고분자만을 포함할 수 있고, 서로 다른 2종 이상의 생분해성 고분자를 포함할 수 있고, 1종 이상의 생분해성 고분자를 포함하는 서로 다른 마이크로 입자가 2종 이상 포함될 수 있다. 상기와 같이 다양한 종류의 마이크로 입자를 포함하는 것은, 목시덱틴의 방출 시간을 조절하기 위한 것이다.
상기 생분해성 고분자의 고유 점도는 0.1 dl/g 내지 1 dl/g이며, 0.1 dl/g 내지 0.8 dl/g이며, 0.1 dl/g 내지 0.7 dl/g이며, 0.1 dl/g 내지 0.6 dl/g일 수 있다. 또한, 상기 생분해성 고분자의 분자량(MW)는 10 kg/mol 내지 100 kg/mol이며, 11 kg/mol 내지 80 kg/mol이며, 12 kg/mol 내지 70 kg/mol이며, 15 kg/mol 내지 65 kg/mol일 수 있다.
본 발명의 마이크로 입자는 3개월 동안, 6개월 동안 또는 12개월 동안 목시덱틴을 지속적으로 방출하기 위한 것으로, 바람직하게는 6개월 동안 또는 12개월 동안 목시덱틴을 동물의 체내에서 지속적으로 방출하고자 하는 것이다.
상기 마이크로 입자의 목시덱틴 방출은 앞서 설명한 바와 같이 입자의 평균 직경도 관련되나, 고유 점도에 의해서도 큰 영향을 받는다, 일반적으로 생분해성 고분자의 점도가 클수록 목시덱틴의 방출이 지연될 수 있으나, 이러한 특징이 반드시 적용되는 것은 아니며, 생분해성 고분자의 고유 점도 및 목시덱틴의 점도가 상호간에 영향을 미쳐 생분해성 고분자의 분해 및 목시덱틴의 방출에 영향을 미치게 된다.
상기 생분해성 고분자는 FDA 등에 승인되어 인의약품 주사제로도 사용될 수 있는 것으로, 생분해성 고분자의 종류에 따라 분해 기간이 특정되어 있다. 즉, 특정 고분자의 생분해 기간은 2 내지 3개월인 것, 6 내지 9개월인 것, 10 내지 14개월 등인 것과 같이 다양하게 이용되고 있다.
다만, 이는 생분해성 고분자에 대한 생분해 기간을 의미하는 것으로, 이를 목시덱틴과 혼합하여 마이크로 입자로 제조하는 경우에는 생분해성 고분자의 생분해 기간에 목시덱틴이 영향을 미쳐 생분해되는 기간이 상이해질 수 있다.
이에, 목시덱틴을 원하는 기간 동안 체내에서 지속적으로 방출하기 위해선, 생분해성 고분자 및 목시덱틴의 조합이 중요하다.
즉, 3개월 동안 목시덱틴을 방출하기 위해, 단순히 생분해 기간이 3개월인 생분해성 고분자를 이용하면 가능한 것이 아니며, 목시덱틴과 생분해성 고분자의 조합에 의해 3개월 동안 생분해가 가능한지 여부의 검토를 필요로 한다.
이에 본 발명에서는 생분해성 고분자의 고유 점도를 0.1 dl/g 내지 1 dl/g으로 한정하며, 상기 범위 내 고유 점도를 가지는 생분해성 고분자를 목시덱틴과 조합하여 사용 시, 원하는 기간 동안 지속적인 목시덱틴의 방출 효과를 나타낼 수 있다.
상기 마이크로 입자는 생분해성 고분자 및 목시덱틴을 2:1 내지 12:1의 중량 비율로 포함하며, 4:1 내지 10:1의 중량 비율로 포함하며, 9:1의 중량 비율로 포함할 수 있다. 상기 범위 내에서 생분해성 고분자 및 목시덱틴을 포함하는 경우, 동물의 체내로 주입 시, 초기 과방출을 방지하고, 원하는 기간 동안 지속적인 목시덱틴의 방출 효과를 나타낼 수 있다.
일반적인 주사 제형의 경우, 초기 목시덱틴의 과방출로 인해 부작용이 발생할 수 있으나, 본 발명에서는 주사제로 주입 시에도 초기 과방출을 방지할 수 있으며, 원하는 기간 동안 지속적으로 목시덱틴의 방출 효과를 나타낼 수 있다.
또한, 앞서 설명한 바와 같이 3개월 동안, 6개월 동안 또는 12개월 동안 목시덱틴을 지속적으로 방출한다 함은, 심장사상충의 예방 또는 치료 효과를 나타낼 수 있는 수준으로 목시덱틴이 방출됨을 의미한다고 할 것이다.
상기 마이크로 입자는 하기 식 1에 의해 0.3 내지 3일 수 있다:
[식 1]
Cmax-peak n/Cmax―peak n+1
여기서,
목시덱틴을 포함하는 마이크로 입자를 현탁 용액에 혼합하여 주사제로 제조하고, 상기 주사제를 비글견에 투여하고 목시덱틴의 혈중 농도를 측정한 것으로,
Cmax-peak n은 주사제를 투입하고, n차 Cmax 값이며,
Cmax-peak n+1는 상기 n차 Cmax 값 이후 목시덱틴의 혈중 농도가 다시 증가함에 따른 n+1차 Cmax 값이다.
상기 식 1은 본 발명의 마이크로 입자를 주사제로 비글견에 투여하고, 목시덱틴의 혈중 농도를 측정한 것이다. 상기 식 1에 따른 값은 0.3 내지 3이며, 0.5 내지 3이며, 0.5 내지 2.5일 수 있다. 상기 범위 내로, 목시덱틴의 혈중 농도 피크 값의 비가 나타나는 경우, 원하는 기간 동안 목시덱틴의 장시간 방출이 가능하도록 제어할 수 있다.
상기 식 1은 주사제에 포함되는 마이크로 입자가 상이한 생분해성 고분자를 포함함에 따라, 목시덱틴의 혈중농도 피크가 나타나며, 이에 따른 관계를 의미하는 것이다.
구체적으로, 앞서 설명한 봐와 같이 본 발명의 마이크로 입자는 서로 다른 2종 이상의 생분해성 고분자로 제조될 수 있다. 복수의 마이크로 입자는 1종의 생분해성 고분자만 포함할 수 있으나, 서로 다른 생분해성 고분자를 포함할 수 있다. 즉, PLGA 및 목시덱틴을 포함하는 마이크로 입자 및 PLA 및 목시덱틴을 포함하는 마이크로 입자를 포함할 수 있다.
상기와 같이 서로 다른 생분해성 고분자를 포함하는 마이크로 입자는 식 1과 같이 n차 목시덱틴의 최대혈중농도(Cmax-peak n)를 나타내고, 이후 n+1차 목시덱틴의 최대혈중농도(Cmax-peak n+1)를 나타낼 수 있다.
상기 n차 목시덱틴의 최대혈중농도는 주사 후 목시덱틴의 최대 혈중 농도로, 목시덱틴의 혈중 농도 값이 점진적으로 증가하고, 이후 다시 감소하는 추세에서의 최대 값을 의미하는 것이며, 상기 n+1차 목시덱틴의 최대 혈중 농도는 상기 n차 목시덱틴의 최대 혈중 농도 이후, 목시덱틴의 혈중 농도가 다시 증가하는 추세에서 다시 감소하는 추세에서의 최대 값을 의미하는 것으로, 본 발명의 마이크로 입자를 포함하는 주사 제형은 복수 개의 최대 혈중 농도 값을 나타낼 수 있다. 상기 n차 목시덱틴의 최대혈중농도(Cmax-peak n) 및 n+1차 목시덱틴의 최대혈중농도(Cmax-peak n+1)는 n차 목시덱틴의 최대혈중농도가 n+1차 목시덱틴의 최대혈중농도에 비해 큰 값을 나타낼 수 있고, n+1차 목시덱틴의 최대혈중농도가 n차 목시덱틴의 최대혈중농도에 비해 큰 값을 나타낼 수 있다.
상기와 같은 혈중농도 피크 추세는, 생분해성 고분자의 종류에 의해 목시덱틴의 방출 패턴이 상이해짐에 따라 변화되는 것이다. 본 발명의 마이크로 입자는 후술하는 제조 방법에 의해 제조되는 것으로, 본 발명의 제조 방법에 의해 제조된 마이크로 입자는 균일한 입자의 크기를 갖도록 정밀하게 조절이 가능한 것을 특징으로 한다. 이러한 이유로, 서로 다른 생분해성 고분자를 이용하여 각각 마이크로 입자를 제조하고, 이를 혼합하여 이용할 수 있다.
상기와 같이 서로 다른 생분해성 고분자를 이용하여 제조된 마이크로 입자는 각자 고유의 목시덱틴의 방출 패턴을 나타낼 수 있으며, 상기 고유의 방출 패턴에 따라, 복수 개의 혈중농도 피크가 나타날 수 있다.
이는 앞서 설명한 바와 같이, 상기 마이크로 입자를 서로 다른 생분해성 고분자를 이용하여 제조하는 경우, 생분해성 고분자의 생분해 속도가 차이가 나타나게 된다. 이러한 특성을 이용하게 되면, 주사제로 투여 시, 초기 목시덱틴의 방출 효과를 나타낼 수 있는 마이크로 입자와 후기 목시덱틴의 방출 효과를 나타낼 수 있는 마이크로 입자를 혼합하여 사용함에 따라, 장시간 지속적인 목시덱틴의 방출 효과를 나타낼 수 있다.
이에 반해, 본 발명의 마이크로 입자는 체내에 투여된 후, 목시덱틴의 최대혈중농도(Cmax)가 특정 시점을 경과하여 나타나는 것을 특징으로 한다.
상기 본 발명의 마이크로 입자를 투여한 후, 체내 목시덱틴의 최대혈중농도(Cmax)는 마이크로 입자의 평균 직경, 입자의 크기 분포, 생분해성 고분자의 종류 등에 의해 영향을 받을 수 있다.
예를 들어, 3개월 내지 6개월 제형의 마이크로 입자는 체내에 투여된 후, 10일 내지 90일 내 최대혈중농도(Cmax)를 나타낼 수 있다. 구체적으로 본 발명의 마이크로 입자는 초기 과방출을 억제하고, 체내 주입 후, 서서히 목시덱틴의 방출량이 증가하며, 10일 내지 90일 범위 내에서 최대 혈중 농도를 나타낸 후, 이후 목시덱틴의 방출량이 감소하며, 3개월 동안 또는 6개월 동안 목시덱틴이 지속적으로 방출할 수 있다. 앞서 설명한 바와 달리, 1종의 생분해성 고분자만 이용한 경우에는 복수의 목시덱틴 최대 혈중 농도 피크가 나타나지 않고, 단일 최대 혈중 농도 피크만 나타나며, 상기 최대 혈중 농도는 주사 후 10일 내지 90일의 범위에서 나타날 수 있다.
또한, 12개월 제형의 경우 앞서 3개월 제형 또는 6개월 제형과 같이 10일 내지 90일 사이에 최대혈중농도(Cmax)를 나타낼 수 있다. 다만, 앞서 설명한 바와 같이, 마이크로 입자의 평균 직경, 입자의 크기 분포, 생분해성 고분자의 종류 등에 의해 영향을 받을 수 있다.
상기 최대 혈중 농도를 나타내는 일자의 범위는 투여 대상 및 투여 용량에 따라 차이가 나타날 수 있으나, 본 발명의 실시예와 같이 비글견에 투여된 목시덱틴의 총 함량이 0.2mg/kg 내지 1mg/kg인 경우, 10일 내지 90일 내 목시덱틴의 최대혈중농도(Cmax)를 나타낼 수 있다. 상기 범위 내에서 목시덱틴의 최대혈중농도(Cmax)를 나타내는 경우, 3개월 동안, 6개월 동안 또는 12개월 동안 목시덱틴의 지속 방출이 가능하며, 바람직하게는 6개월 동안 또는 12개월 동안 목시덱틴이 지속 방출될 수 있다.
상기 목시덱틴을 포함하는 마이크로 입자를 현탁 용액에 혼합하여 주사제로 제조하고, 상기 주사제를 복수의 비글견에 투여하였다. 상기 식 1과 동일한 방법으로 투여하였으며, 동일한 주사제로, 0.2mg/kg의 목시덱틴을 10마리의 비글견에 투여하고, 비글견의 혈중 목시덱틴 농도를 측정하며, 상기 비글견 간 동일 시간대의 혈중 목시덱틴의 농도에 대한 표준편차가 0.01 내지 10이며, 0.01 내지 5이며, 0.01 내지 3일 수 있다.
상기와 같은 혈중 목시덱틴 농도의 표준 편차 값은 제조된 마이크로 입자의 균질성이 우수함을 의미하며, In vivo 실험 결과에서의 재현성이 우수함은 목시덱틴의 투여에 따른 유효성 및 안전성이 우수함을 의미한다고 할 것이다.
동일한 주사제를 비글견에 투여하더라도, 비글견에 따라 혈중 목시덱틴의 농도에서 차이가 발생할 수 있다. 이는 투여 대상의 개체 간 약물 대사 효소의 차이에 따른 것으로 동일한 주사제를 투여 시에도 체내에서 방출된 약물의 대사속도 등에서 차이가 나타날 수 있음에 따른 것이다.
다만, 서방형 제형으로 제공하기 위해선, 체내에 투여 후 혈중 목시덱틴의 농도 값이 큰 차이를 나타나지 않도록 제어하는 것이 필요하며, 이는 제조된 목시덱틴을 포함하는 입자의 품질에 의해 영향을 받는 요소라 할 것이다.
본 발명의 마이크로 입자는 후술하는 제조 방법에 의해 제조되는 것으로, 입자의 크기가 매우 균일하며, 입자의 표면이 매끈하고 완전한 구 형상으로 제조될 수 있다.
즉, 상기와 같이 균일한 크기 및 성상을 갖는 마이크로 입자를 제조함에 따라, 이를 주사제로 이용하여 비글견 등에 투여 시에도 개체 간의 차이에 따라 혈중 목시덱틴의 농도에서 일부 차이가 발생할 수 있으나, 그 차이가 미차에 불과하다.
반면, 본 발명과 달리, 입자의 크기가 균일하지 않거나, 성상이 매끈하지 않은 마이크로 입자의 경우는 주사제에 포함되는 마이크로 입자의 크기가 다양하고, 성상의 차이로 인해 비글견 등에 투여 시에 개체 간의 차이 뿐 아니라 마이크로 입자들간의 차이로 인해 혈중 목시덱틴의 농도 측정하면, 그 값이 차이가 크다.
본 발명의 다른 일 실시예에 따른 목시덱틴을 포함하는 서방형 주사제 조성물은 상기 목시덱틴을 포함하는 마이크로 입자 및 현탁 용액을 포함할 수 있다.
상기 현탁 용제는 등장화제, 현탁화제 및 용제를 포함한다.
보다 구체적으로, 상기 등장화제는 D-만니톨(D-Mannitol), 말티톨(Maltitol), 솔비톨(Sorbitol), 락티톨(Lactitol), 자일리톨(Xylitol), 염화나트륨(Sodium chloride) 및 이의 혼합으로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 D-만니톨이지만, 상기 예시에 국한되지 않는다.
상기 현탁화제는 카르복시메틸셀룰로오스나트륨(Soduim Carboxymethylcellulose), 폴리소르베이트80(Polysorbate 80), 녹말(starch), 녹말 유도체, 다가알콜류, 키토산(chitosan), 키토산 유도체, 셀룰로스(cellulose), 셀룰로스 유도체, 콜라겐(collagen), 젤라틴 (gelatin), 히알루론산(hyaluronic acid, HA), 알긴산(alginic acid), 알진(algin), 펙틴(pectin), 카라기난(carrageenan), 콘드로이틴(chondroitin), 콘드로이틴 설페이트(chondroitin sulfate), 덱스트란(dextran), 덱스트란 설페이트(dextran sulfate), 폴리라이신(polylysine), 티틴(titin), 피브린(fibrin), 아가로스 (agares), 플루란(fluran), 잔탄검(xanthan gum) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 바람직하게는 카르복시메틸셀룰로오스나트륨 및 폴리소르베이트 80이지만, 상기 예시에 국한되지 않는다.
상기 용제는 주사용수(Water for injection)를 이용할 수 있으며, 주사용수로 사용가능한 용제는 제한 없이 모두 사용 가능하다.
본 발명의 다른 일 실시예에 따른 목시덱틴을 포함하는 마이크로 입자의 제조 방법은 1) 생분해성 고분자 및 목시덱틴을 유기 용매에 용해시켜 유상 용액을 제조하는 단계; 2) 계면활성제를 물에 용해시켜 수상 용액을 제조하는 단계; 3) 상기 1) 단계의 유상 용액을 직선 방향의 마이크로 채널로 주입하여, 흐르게 하는 단계; 4) 상기 2) 단계의 수상 용액을 상기 3) 단계의 유상 용액이 직선 방향으로 흐르는 마이크로 채널과 교차점을 형성할 수 있도록 양 측면 또는 일 측면에 형성된 마이크로 채널로 주입하여 흐르게 하며, 상기 유상 용액의 흐름과 수상 용액의 흐름이 교차하여, 목시덱틴을 균일하게 포함하는 마이크로 입자를 제조하는 단계; 5) 상기 4) 단계의 교차점에서 생성된 마이크로 입자를 수집하는 단계; 6) 상기 5) 단계에서 수집된 마이크로 입자를 교반하여, 상기 마이크로 입자에 존재하는 유기 용매를 증발시켜 제거하는 단계; 및 7) 상기 6) 단계의 마이크로 입자를 세척 및 건조하는 단계를 포함하며, 상기 생분해성 고분자의 고유 점도는 0.1 dl/g 내지 1 dl/g이며, 상기 마이크로 입자의 입자 평균 직경은 60 내지 110㎛일 수 있다.
상기 1) 단계는 유상 용액을 제조하는 단계로, 목시덱틴 및 생분해성 고분자를 유기 용매에 용해시켜 유상 용액을 제조하는 단계로, 상기 생분해성 고분자는 폴리락타이드(PLA), 바람직하게는 폴리락타이드-코-글리콜라이드(PLGA) 또는 폴리락타이드(PLA)이지만, 상기 예시에 국한되지 않는다.
또한, 상기 유기 용매는 물과 섞이지 않는 것으로, 예를 들면, 클로로포름, 클로로에탄, 디클로로에탄, 디클로로메탄, 트리클로로에탄 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 디클로로메탄이지만, 예시에 국한되는 것은 아니며, 생분해성 고분자 및 목시덱틴을 용해시킬 수 있는 유기 용매로, 상기 예시에 국한되지 않고, 당업자가 쉽게 선택할 수 있는 유기 용매라면 모두 사용 가능하다고 할 것이다.
상기 1) 단계는 목시덱틴 및 생분해성 고분자를 용해시킨 유상 용액을 제조하는 것으로, 용매는 상기에 기재한 바와 같이, 유기 용매를 사용한다. 이는 목시덱틴 및 생분해성 고분자의 용해 특성을 이용하여, 유기 용매를 사용하여 완전히 용해시킨다. 보다 구체적으로 목시덱틴 및 생분해성 고분자를 유기 용매에 용해시켜 유상 용액으로 제조하였다.
상기 유상 용액은 생분해성 고분자 및 목시덱틴의 중량 비율은 2:1 내지 12:1이며, 4:1 내지 10:1이며, 9:1일 수 있다. 상기 범위 내에서 혼합하여 사용 시, 생분해성 고분자의 분해에 의해 목시덱틴이 장시간 지속적으로 방출될 수 있다.
상기 목시덱틴 및 생분해성 고분자의 중량 비율이 1:2 미만인 경우, 즉 생분해성 고분자를 상기 중량 비율보다 미만으로 포함하는 경우에는 목시덱틴의 중량에 비해 생분해성 고분자의 중량 비율이 적어, 구형의 생분해성 고분자 입자에 목시덱틴이 고르게 분포하여 포함되고 있는 형태의 마이크로 입자의 제조가 어려운 문제가 발생하며, 생분해성 고분자 및 목시덱틴의 중량 비율이 1:12을 초과하는 경우, 즉 생분해성 고분자를 상기 중량 비율보다 초과하여 포함하는 경우에는, 서방성 입자 내 목시덱틴 함량이 적어 원하는 농도의 약물투여를 위해 많은 양의 서방성 입자를 투여해야 하는 문제가 발생할 수 있다.
보다 구체적으로, 상기 유상 용액 내의 생분해성 고분자는 10 내지 20 중량% 포함하며, 바람직하게는 15 중량% 이지만, 상기 예시에 국한되지 않는다.
상기 2) 단계는 수상 용액을 제조하는 단계로, 계면활성제를 물에 용해시켜 수상 용액을 제조한다. 상기 계면활성제는 생분해성 고분자 용액이 안정한 에멀젼 형성을 도울 수 있는 것이라면 제한 없이 사용 가능하다. 구체적으로는 비이온성 계면활성제, 음이온성 계면활성제, 양이온성 계면활성제 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 더욱 구체적으로 메틸셀룰로오스, 폴리비닐피롤리돈, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 피마자유 유도체, 라우릴 황산 나트륨, 스테아르산 나트륨, 에스테르 아민, 리니어 디아민, 패티 아민 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 폴리비닐알코올이지만, 예시에 국한되지는 않는다.
상기 수상 용액에 포함되는 계면활성제는 0.1 내지 1.0 중량%, 0.2 내지 0.5 중량% 또는 0.25 중량%로 포함될 수 있다. 나머지는 모두 물이다.
상기 3) 단계는 웨이퍼 또는 유기 기판 상에 형성된 마이크로 채널로 유상 용액 및 수상 용액을 주입하여, 흐르게 하는 단계이다.
종래 본 발명과 동일한 마이크로 입자를 제조하기 위해 사용되었던 마이크로 채널은 실리콘 웨이퍼 상에 7개의 마이크로 채널을 형성하여 제조하였다. 상기 마이크로 채널은 수상 용액을 흐르게 하는 채널, 유상 용액을 흐르게 하는 채널 및 상기 수상 용액 및 유상 용액이 교차점을 형성한 후, 생성된 에멀젼이 이동하는 채널을 포함할 수 있다.
다만, 상기 종래 실리콘 웨이퍼 상에 총 7개의 채널이 형성되는 칩의 경우, 작은 수의 마이크로 채널이 형성되어 있어, 7개의 마이크로 채널을 이용하여 동시에 마이크로 입자를 제조 시에, 유상 용액 및 수상 용액의 유압을 조절하여 동일한 크기의 마이크로 입자의 제조가 가능하였다.
다만, 상기 칩에 형성되는 마이크로 채널의 수가 증가할수록, 유상 용액 및 수상 용액의 유압을 조절하는 방식으로 크기가 균일한 마이크로 입자의 제조가 쉽지 않은 문제가 있다.
즉, 한 평면 상에 10개 이상의 마이크로 채널을 형성하는 경우, 1번 채널에서 10번 채널까지 수상 용액 및 유상 용액의 유압을 동일하게 공급하는 것이 용이하지 않고, 각 마이크로 채널 내 유압 분배의 불균일성으로 인해 제조된 마이크로 입자의 크기 및 입도분포가 상이한 문제가 발생하였다.
이에, 본 발명에서는 10개 이상의 마이크로 채널이 형성된 칩에서도 균일한 크기의 마이크로 입자로의 제조가 가능하게 하기 위해, 상기 유상 용액 및 수상 용액의 채널 내 유입되는 유체의 유량 비를 1:45 이상으로 유지하는 것을 특징으로 한다.
구체적으로, 유상 용액의 유량을 110 μl/min으로 조절하는 경우, 수상 용액은 5,000 μl/min의 유량을 나타내는 경우, 교차점에서 균일한 에멀젼의 제조가 가능하다.
상기와 같이 마이크로 채널을 이용하여 마이크로 입자를 제조하는 것은 미세 유체법(microfluidics)을 활용한 것으로, 상기 미세유체법은 미세유체 공학기술을 이용하여 균질한 직경 분포를 가지는 마이크로 입자를 제조하는 기술로서 유상 용액 및 수상 용액의 극성 차이를 이용하는 것으로, 마이크로 단위의 채널을 통과할 때, 유체 간의 반발력을 통해 에멀젼을 생성하는 기술이다.
기존 단일 채널 또는 10개 내외 채널의 칩을 사용하였을 때는 채널 내 주입되는 유상 용액 및 수상 용액의 압력(공압) 비를 조절하여 유량 컨트롤이 가능하였지만 다수 채널의 집적칩을 사용할 때는 채널로 주입되는 유상 용액 및 수상 용액의 압력이 아닌 유상 용액 및 수상 용액의 유량 비의 조절이 중요하다.
유상 용액 및 수상 용액의 유량 비에 따라 마이크로 채널을 이용한 마이크로 입자의 제조가 가능한지 여부가 차이가 나타난다. 상기 마이크로 채널에 흐르는 유체가 라미나 흐름(laminar flow)를 형성하여 채널이 만나는 교차점(junction) 부분에서 유체의 반발력에 의해 일정하게 끊어지면 dripping 조건을 나타내지만 유상 용액 및 수상 용액의 유량 비가 본 발명의 범위를 벗어나는 경우는, dripping 이 아닌 jetting 현상에 의해 균일하게 에멀젼이 제조되지 않는다.
도 1은 본 발명의 일 실시예에 따른 수상 용액 및 유상 용액이 유량비의 범위 내에 포함되어, 채널이 만나는 교차점에서 dripping 조건을 나타내는 경우에 형성된 에멀젼에 대한 사진이다.
도 1에 나타낸 에멀젼은 입자의 크기가 170 내지 190㎛로 균일하게 분포하고 있고, 완전한 구형이며 표면이 매끈한 형태임을 확인할 수 있다.
반면, 도 2는 채널이 만나는 교차점에서 dripping 조건을 나타내는 경우와 jetting 현상에 의해 형성될 수 있는 에멀젼에 대한 관념도이다.
상기와 같이 dripping 되는 경우는 도 1과 같이 균일한 직경을 갖는 에멀젼을 형성하는 것을 확인할 수 있으나, jetting 되는 경우는 상이한 직경을 갖는 에멀젼을 형성하는 것을 확인할 수 있다.
상기, 유상 용액 및 수상 용액의 유량비는 1:45 이상이며, 1:45 내지 1:125일 수 있다. 상기 1:45 이하가 될 경우에는 jetting이 되어 CV 10% 이하의 균일한 크기분포를 가지지 못하며, 1:45보다 수상의 비율이 더 커져서 1:125 이상이 될 경우에는 모두 dripping이 되어 적합한 크기분포를 가지겠지만 수상의 비율이 커지면 커질수록 사용되는 수상 용액의 양이 증가하여 제조수량에 있어 문제가 발생할 수 있다.
보다 구체적으로, 상기 마이크로 채널은 유리 기판, 실리콘 웨이퍼 또는 고분자 필름으로 이루어진 군으로부터 선택된 소재에 형성될 수 있으나, 상기 소재의 예시는 상기 예시에 국한되지 않고, 마이크로 채널의 형성이 가능한 소재는 모두 사용 가능하다.
상기 고분자 필름은 폴리이미드(Polyimide), 폴리에틸렌(Polyethylene), 플루오르화에틸렌프로필렌(Fluorinated ethylene propylene), 폴리프로필렌(Polypropylene), 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 폴리에틸렌 나프탈레이트(Polyethylene naphthalate), 폴리술폰(Polysulfone) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으나, 상기 예시에 국한되지 않는다.
일 예시로, 실리콘 웨이퍼에 e-beam evaporator를 이용하여 알루미늄을 증착하며, 포토리소그래피(photolithography) 기법을 이용하여 포토레지스트(photoresist)를 알루미늄 위에 패터닝한다. 이후, 포토레지스트를 마스크로 이용하여 알루미늄 식각(etching)하고, 포토레지스트를 제거한 후 알루미늄을 마스크로 하여 실리콘을 DRIE(deep ion reactive etching)로 에칭하고, 알루미늄 제거 후 웨이퍼 위에 유리를 양극 접합하여 밀봉하여, 상기의 마이크로 채널을 제조한다.
상기의 마이크로 채널은 평균 직경이 160 내지 200㎛이며, 바람직하게는 180㎛이지만, 예시에 국한되지 않는다. 마이크로 채널의 평균 직경이 160㎛ 이하인 경우 제조되는 마이크로 입자의 직경이 50㎛ 미만으로 작은 마이크로 입자가 제조될 가능성이 있어 유효한 약물의 방출 및 생체내 흡수에 영향을 미칠 수 있다. 마이크로 채널의 평균 직경이 200㎛ 이상인 경우 제조된 마이크로 입자의 평균 크기가 120㎛ 초과하게 되고, 주사제로 투여 시 이물감 및 통증이 증가될 수 있으며 마이크로 채널의 직경이 커질 수록 제조된 입자의 입도분포가 커져 균일한 입도의 마이크로 입자를 제조하기 어렵다.
또한, 상기 마이크로 채널의 평균 직경은 입자의 평균 직경과 밀접하게 관련되지만, 유상 용액 및 수상 용액의 유량비(μl/min)와도 밀접한 관련이 있다.
또한, 상기 마이크로 채널의 단면 폭(w) 및 단면의 높이(d)는 제조되는 마이크로 입자의 평균 직경(d')과 밀접한 관련이 있다. 상기 마이크로 채널 단면의 폭(w)은 마이크로 입자의 평균 직경(d')에 대해 0.7 내지 1.3의 비율 범위이며, 마이크로 채널 단면의 높이(d)는 마이크로 입자의 평균 직경(d')에 대해 0.7 내지 1.3의 비율 범위이다.
즉, 제조하고자 하는 마이크로 입자의 평균 직경(d')이 결정되면, 이에 따라, 마이크로 채널 단면의 폭(w) 및 높이(d)의 길이는 d'의 0.7 내지 1.3의 비율 범위로 설정해야만, 원하는 크기의 마이크로 입자로의 제조가 가능하다.
상기 3) 단계는 유상 용액 및 수상 용액을 교차점이 형성된 제1 마이크로 채널 및 제2 마이크로 채널로 상기 유량 조건 하에서, 흐르게 하는 것이다.
즉, 유상 용액은 제1 마이크로 채널을 따라 흐르며, 수상 용액은 상기 제1 마이크로 채널과 교차점을 형성하도록 성형된 제2 마이크로 채널을 따라 흘러, 유상 용액의 흐름과 만나게 된다.
보다 구체적으로, 상기 유상 용액을 제1 마이크로 채널에 주입 시, 유량 및 상기 수상 용액을 제2 마이크로 채널로 주입하는 경우, 유상 용액 및 수상 용액의 유량비는 1:45 이상이며, 1:45 내지 1:125일 수 있다.
앞서 설명한 바와 같이 종래 마이크로 입자를 제조하기 위해서는 유압을 제어하여, 일정한 직경을 갖는 마이크로 입자로의 제조가 가능하였으나, 10개 이상의 마이크로 채널이 집적된 칩의 경우는 유압의 제어를 통해 균일한 직경을 갖는 마이크로 입자로의 제조가 불가하다. 이에 유상 용액 및 수상 용액의 유량 비를 조절하여 균일한 직경을 갖는 마이크로 입자로의 제조가 가능하다.
상기와 같이, 유상 용액 및 수상 용액의 유량을 다르게 하면, 유상 용액의 흐름과 수상 용액의 흐름이 만나는 지점에서 상대적으로 더 큰 유량을 가지는 수상 용액이 유상 용액을 압축하게 되고, 이때 유상 용액 및 수상 용액의 반발력으로 인해 dripping 현상이 나타나게 되어, 생분해성 고분자 및 목시덱틴이 균일하게 분포하는 구 형상의 마이크로 입자를 생성하게 된다. 상기 마이크로 입자는 보다 구체적으로, 구형의 생분해성 고분자에 목시덱틴이 고르게 분포되어 있는 형태의 마이크로 입자를 형성하게 된다.
상기 4) 단계는, 마이크로 입자를 수집하는 단계로 수상 용액이 담긴 수조 내에서 마이크로 입자를 수집하여, 초기 생성된 마이크로 입자들 간의 뭉치는 현상(aggregation)을 방지한다.
상기 4) 단계는 상기 2) 단계에서 제조한 수상 용액, 즉 계면활성제 및 물의 혼합 용액을 이용하는 것으로, 수상 용액을 상기 2) 단계에서 제조한 이후, 일부는 마이크로 채널로 주입시키고, 다른 일부는 4) 단계의 수조로 이동시켜, 수집된 마이크로 입자들 간의 뭉치는 현상을 방지하는데 이용된다.
상기 5) 단계는, 수조 내에서 수집된 마이크로 입자에 존재하는 유기 용매를 제거하기 위한 단계로, 일정한 온도 조건 및 교반 속도로 교반하여, 마이크로 입자의 내부에 존재하는 유기 용매를 증발시켜 제거한다. 이때, 교반 조건은 5-1) 15 내지 20℃에서 50 내지 70분 동안 150 내지 350rpm의 속도로 1차 교반하는 단계; 및 5-2) 20 내지 30℃에서 50 내지 70분 동안 250 내지 450rpm의 속도로 2차 교반하는 단계; 및 5-3) 40 내지 60℃에서 3 내지 9시간 동안 450 내지 650rpm의 속도로 3차 교반하는 것이다.
상기 교반 속도는 1차 및 2차 교반 단계는 온도 조건 및 교반 진행 시간을 달리하여, 교반 공정을 진행한다.
상기와 같이, 온도 조건을 1차 교반 공정에 비해 2차 교반 공정에서 상승시켜 교반하는 것을 특징으로 하며, 온도를 단계적으로 상승시킴에 따라, 마이크로 입자의 내부에 존재하는 유기 용매의 증발 속도를 조절할 수 있다. 즉, 마이크로 입자의 내부에 존재하는 유기 용매를 서서히 증발시켜, 마이크로 입자를 제조할 수 있다.
유상 용액 및 수상 용액이 마이크로 채널을 흐를 때의 온도 또한 15 내지 20℃이며, 바람직하게는 17℃이다. 즉, 마이크로 채널을 흐르고, 교차점을 형성하여 마이크로 입자를 생성한 이후, 수집된 마이크로 입자를 1차 교반할 때 까지는 일정하게 15 내지 20℃로 저온을 유지한다. 마이크로 입자의 제조 과정에서 저온을 유지해야만, 구형의 입자를 제조 및 유지가 가능하다. 즉, 저온 조건이 아닌 경우에는 일정한 구 형상의 입자를 제조하기 어려운 문제가 발생한다.
이후, 2차 교반 공정은 온도를 점진적으로 상승시키고, 교반 시간을 늘려, 마이크로 입자의 내부에 존재하는 유기 용매가 서서히 표면으로 이동하여, 표면에서 유기 용매가 증발됨에 따라, 마이크로 입자의 성상에 미치는 영향을 최소화할 수 있다. 즉, 급격하게 유기 용매가 증발되는 경우, 유기 용매의 증발에 의해 마이크로 입자의 표면이 매끈하지 못하고, 기공이 형성되는 문제가 발생할 수 있다. 이러한 문제를 방지하고자, 상기와 같이 온도 조건을 점진적으로 상승시키고, 교반 공정을 진행하는 시간 또한 증가시켜, 유기 용매의 증발 속도를 조절할 수 있고, 이러한 유기 용매의 증발 속도 조절로 인해, 제조된 마이크로 입자의 표면 성상을 제어할 수 있다.
상기 3차 교반 공정은 에멀젼 내 유기용매가 외부 수상으로 추출된 이후 외부 수상을 유기용매 끓는점 근처의 온도로 높여 교반함으로써 포화된 유기용매를 수상으로부터 제거하여 마이크로 입자 내 잔여 유기용매 제거가 용이하게 한다.
마지막으로 상기 6) 단계는, 마이크로 입자를 세척 및 건조하는 단계로, 교반하여 표면의 유기 용매를 모두 제거한 마이크로 입자를 제균 여과된 정제수로 수 차례 세척하여 마이크로 입자에 잔존하는 계면활성제를 제거하고, 이후 동결 건조한다.
최종적으로 생성된 마이크로 입자는 구형의 생분해성 고분자로 이루어진 마이크로 입자에 목시덱틴이 고르게 분포되어 있는 형태이며, 생분해성 고분자 및 목시덱틴을 2:1 내지 12:1의 중량 비율로 포함한다.
상기 마이크로 입자 내에 포함된 목시덱틴 및 생분해성 고분자의 중량 비율은 유상 용액에서의 중량 비율과 동일한데, 이는 마이크로채널을 통과하여 유상 에멀젼 입자를 제조하고, 에멀젼 내 유기 용매를 모두 제거함에 따라, 유상 용액 내에서의 중량 비율과 동일한 비율로 목시덱틴 및 생분해성 고분자를 함유한 마이크로 입자를 제조할 수 있다.
제조예 1
목시덱틴를 포함하는 마이크로 입자의 제조
점도가 0.2dl/g이며, 말단의 카르복실산기를 포함하며, 분자량(MW)이 17kg/mol이고 락타이드와 글리콜라이드의 비율이 75:25인 폴리락타이드-코-글리콜라이드(PLGA) 및 목시덱틴을 디클로로메탄(dichloromethane)에 용해하여 유상 용액을 제조하였다. 이때, 상기 유상 용액 내의 폴리락타이드-코-글리콜라이드는 15 중량%의 비율로 포함하며, 폴리락타이드-코-글리콜라이드 및 목시덱틴의 중량 비율은 9:1이다.
계면활성제인 폴리비닐알콜을 물에 혼합하여, 폴리비닐알콜을 0.25 중량% 포함하는 수상 용액을 제조하였다.
상기 유상 용액 및 수상 용액을 실리콘 웨이퍼 상에 형성된 마이크로 채널에 주입하여 흐르게 하였다. 이때, 유상 용액 및 수상 용액은 각 마이크로 채널로 주입하고, 유량비가 1:50이며, 온도 조건은 17℃로 유지하였다.
상기 유상 용액의 흐름 및 수상 용액의 흐름이 만나는 교차점에서 생성된 마이크로 입자를 제2 혼합물이 담긴 수조 내에서 수집하였다. 상기 수조 내에 수집된 마이크로 입자를 17℃에서 1시간 동안 250rpm의 속도로 1차 교반하고, 25℃에서 1시간 350rpm의 속도로 2차 교반하고, 55℃로 온도를 상승시켜, 4시간 동안 550rpm의 속도로 3차 교반 하였다.
교반을 완료한 마이크로 입자를 제균 여과된 정제수로 수 차례 세척하고, 동결 건조하여 마이크로 입자를 제조하였다.
제조예 2-1
폴리락타이드-코-글리콜라이드를 대신하여, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락트산을 이용한 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 2-2
폴리락타이드-코-글리콜라이드를 대신하여, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락트산을 이용하며 이때, 유상 용액 내의 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 3-1
폴리락타이드-코-글리콜라이드를 대신하여, 점도가 0.4dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락트산을 이용한 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 3-2
폴리락타이드-코-글리콜라이드를 대신하여, 점도가 0.4dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락트산을 이용하며 이때, 유상 용액 내의 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 4
폴리락타이드-코-글리콜라이드를 대신하여, 점도가 0.4dl/g이며, 말단의 에스터기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락트산을 이용하며 이때, 유상 용액 내의 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 5
폴리락타이드-코-글리콜라이드를 대신하여, 점도가 0.5dl/g이며, 말단의 에스터기를 포함하며, 분자량(MW)이 61kg/mol인 폴리락트산을 이용하며 이때, 유상 용액 내의 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 6
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol이고 락타이드와 글리콜라이드의 비율이 75:25인 폴리락타이드-코-글리콜라이드(PLGA) 및 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 PLGA 및 PLA의 중량 비율은 1 대 1 이며 이때, 유상 용액 내의 폴리락타이드-코-글리콜라이드 및 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 7-1
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA) 및 점도가 0.4dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 PLA의 중량 비율은 1 대 1 인 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 7-2
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA) 및 점도가 0.4dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 PLA의 중량 비율은 1 대 1 이며 이때, 유상 용액 내의 총 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 8
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA) 및 점도가 0.4dl/g이며, 말단의 에스터기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 PLA의 중량 비율은 1 대 1 이며 이때, 유상 용액 내의 총 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 9-1
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA) 및 점도가 0.4dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 PLA의 중량 비율은 1 대 3 인 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 9-2
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA) 및 점도가 0.4dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 PLA의 중량 비율은 1 대 3 이며, 이때, 유상 용액 내의 총 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 10
생분해성 고분자로, 점도가 0.4dl/g이며, 말단의 에스터기를 포함하며, 분자량(MW)이 45kg/mol인 폴리락타이드(PLA) 및 점도가 0.5dl/g이며, 말단의 에스터기를 포함하며, 분자량(MW)이 61kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 PLA의 중량 비율은 1 대 1 이며, 이때, 유상 용액 내의 총 폴리락트산은 10 중량%의 비율로 포함하는 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
제조예 11
생분해성 고분자로, 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol이고 락타이드와 글리콜라이드의 비율이 50:50인 폴리락타이드-코-글리콜라이드(PLGA), 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol이고 락타이드와 글리콜라이드의 비율이 75:25인 폴리락타이드-코-글리콜라이드(PLGA) 및 점도가 0.2dl/g이며, 말단의 카르복실기를 포함하며, 분자량(MW)이 17kg/mol인 폴리락타이드(PLA)을 이용하고, 상기 각각 다른 고분자의 중량 비율은 1 대 1 대 4 인 것을 제외하고 제조예 1과 동일한 방식으로 마이크로 입자를 제조하였다.
실시예 1
제조예 1의 마이크로 입자 및 제조예 2-1의 마이크로 입자를 1:2의 중량비율로 혼합하여 1 바이알을 기준으로, 2.0 mL의 현탁 용제를 가한 후, 균일하게 현탁시켜 피하 주사용 조성물로 제조하였다.
상기 현탁 용제는 하기 표 1과 같은 조성으로 구성하였다.
함량기준 배합목적 성분명 분량 단위
2.0 mL 등장화제 D-만니톨
(D-Mannitol)
100.0 mg
현탁화제 카르복시메틸셀룰로오스나트륨
(Soduim Carboxymethylcellulose)
10.0 mg
현탁화제 폴리소르베이트80(Polysorbate 80) 20.0 mg
용제 주사용수(Water for injection) 나머지
실시예 2
제조예 1의 마이크로 입자 및 제조예 2-1의 마이크로 입자를 1:1의 중량비율로 혼합하여 사용한 것을 제외하고 실시예 1과 동일하게 피하 주사용 조성물을 제조하였다.
실시예 3
실시예 1에서 투여된 용량의 50%를 투여한 것을 제외하고 실시예 1과 동일한 방식으로 실험을 진행하였다. 제조예 1의 마이크로 입자 및 제조예 2-1의 마이크로 입자를 1:2의 중량비율로 혼합하여 투여한 것은 동일하였다.
실험예 1
방출 양상
상기 제조예 1, 2-1, 4, 5의 마이크로 입자에 대한, 목시덱틴 방출을 확인하기 위해, 방출 실험을 진행하였다.
방출 실험에 이용된 방출시험액은 정제수 내 2% 트윈(Tween)20을 포함하는 용액으로 100mg의 마이크로 입자를 상기 방출시험액 100ml가 담긴 주사약병에 넣고, 밀봉시킨 후, 55℃, 120rpm으로 교반 진탕하여 용출율의 차이를 확인하였다.
실험 결과는 도 1과 같다.
제조예 1의 마이크로 입자는 목시덱틴이 50% 방출되는 시점이 15시간이 경과하는 때로, 3개월 제형에 적용될 수 있고, 제조예 2-1의 마이크로 입자는 목시덱틴이 50% 방출되는 시점이 20시간으로, 6개월 제형에 이용이 가능하다.
제조예 4의 마이크로 입자는 목시덱틴이 50% 방출되는 시점이 84시간으로, 상기 제조예 1 및 제조예 2-1에 비해 보다 오랜 시간 동안 목시덱틴을 방출하는 제형으로의 적용이 가능하다.
또한, 제조예 5의 마이크로 입자는 제조예 3의 마이크로 입자에 비해 목시덱틴이 50% 방출되는 시점이 더 장시간 소요되는 것을 확인할 수 있다.
실험예 2
방출 양상
상기 제조예 2-1, 3-1, 9-1, 7-1 및 11의 마이크로 입자에 대한, 목시덱틴 방출을 확인하기 위해, 방출 실험을 진행하였다.
방출 실험에 이용된 방출시험액은 정제수 내 2% 트윈(Tween)20 및 탄산수소나트륨(sodium bicarbonate) 0.001M을 포함하는 용액으로 100mg의 마이크로 입자를 상기 방출시험액 100ml가 담긴 주사약병에 넣고, 밀봉시킨 후, 55℃, 120rpm으로 교반 진탕하여 용출율의 차이를 확인하였다.
실험 결과는 도 2와 같다.
평균 직경(MV)이 95㎛내외로, 유사한 사이즈를 가지는 마이크로 입자의 방출 시험에서 마이크로 입자를 구성하고 있는 고분자의 분자량에 따라 방출패턴의 차이가 있었다. 제조예 2-1, 3-1, 7-1 및 9-1의 마이크로 입자 방출율을 비교하였을 때 마이크로 입자 내 분자량(MW)이 17kg/mol인 폴리락티드 보다는 분자량(MW)이 45kg/mol인 폴리락티드의 비율이 높을수록 오랜 시간 동안 목시덱틴을 방출하는 제형으로의 적용이 가능하다.
제조예 7-1과 9-1에서 분자량(MW)이 17kg/mol인 폴리락티드와 분자량(MW)이 45kg/mol인 폴리락티드의 비율이 1:1 내지 1:3에 따라 방출 지연시간이 달라짐을 확인하였다.
또한, 제조예 11의 마이크로 입자는 다른 제조예의 마이크로 입자에 비해 폴리락타이드-코-글리콜라이드(PLGA)를 포함하고 있어 목시덱틴의 방출이 더 빨리 이루어지는 것을 확인할 수 있다.
실험예 3
방출 양상
상기 제조예 2-2, 3-2, 4, 7-2, 8 및 9-2의 마이크로 입자에 대한, 목시덱틴 방출을 확인하기 위해, 방출 실험을 진행하였다.
방출 실험에 이용된 방출시험액은 정제수 내 2% 트윈(Tween)20 및 탄산수소나트륨(sodium bicarbonate) 0.001M을 포함하는 용액으로 100mg의 마이크로 입자를 상기 방출시험액 100ml가 담긴 주사약병에 넣고, 밀봉시킨 후, 55℃, 120rpm으로 교반 진탕하여 용출율의 차이를 확인하였다.
실험 결과는 도 3과 같다.
평균 직경(MV)이 85㎛ 내외로, 유사한 사이즈를 가지는 마이크로 입자의 방출 시험에서 마이크로 입자를 구성하고 있는 고분자의 분자량의 비율 및 고분자 말단기의 차이에 따라 방출패턴의 차이가 있다. 각각 제조예의 마이크로 입자 방출율을 비교하였을 때 마이크로 입자 내 분자량(MW)이 17kg/mol인 폴리락티드 보다는 분자량(MW)이 45kg/mol인 폴리락티드의 비율이 높을수록 오랜 시간 동안 목시덱틴을 방출하는 제형으로의 적용이 가능하다.
또한, 제조예 3-2와 4의 마이크로 입자를 비교하였을 때 말단기의 차이에 따라 카르복실기보다 에스터기를 포함하고 있을 때 목시덱틴의 방출이 더 지연되는 것을 확인할 수 있다.
실험예 4
PSA 분석 결과
마이크로 입자의 직경을 구체적으로 확인하기 위해, Microtrac 입도분석기를 이용하여 제조예 1 내지 11에 대한 분석을 진행하였다.
D10 내지 D90의 단위는 ㎛이며, CV(%)는 SD/Mean*100으로 계산하였다.
Span value는 (D90-D10)/D50으로 계산하며 입도분포의 균일도를 나타낸다.
제조예들에 대한 입도 분석 결과는 하기 표 2와 같다.
  제조예 1 제조예 2-1 제조예 2-2 제조예 3-1 제조예 3-2 제조예 4 제조예 5 제조예 6
D10 71.27 78.36 75.90 78.52 74.66 77.40 73.46 68.69
D20 75.74 81.69 78.09 82.33 76.88 80.20 76.68 72.62
D30 78.91 84.63 79.98 85.61 78.76 82.77 79.27 75.42
D40 81.87 87.40 81.84 88.63 80.56 85.33 81.74 77.77
D50 84.85 90.70 83.69 91.41 82.38 87.92 84.20 79.98
D60 88.12 92.75 85.77 94.20 84.20 90.86 87.01 82.28
D70 92.36 95.49 87.97 97.14 86.43 94.06 90.58 84.78
D80 97.90 98.63 91.56 100.40 89.29 97.75 95.38 87.71
D90 107.00 102.50 97.06 104.60 94.61 102.50 103.10 93.91
Width 26.29 19.46 16.19 21.08 15.01 20.32 22.51 18.46
Mean
(MV)
90.85 93.29 85.26 96.05 83.67 89.51 87.22 81.87
SD 13.14 9.73 8.09 10.54 7.51 10.16 11.26 9.23
Span value 0.42 0.27 0.25 0.29 0.24 0.29 0.35 0.32
CV(%) 14.46 10.43 9.49 10.97 8.98 11.35 12.91 11.27
상기 표 2에 의하면, 본 발명의 제조예에 의한 마이크로 입자는 D50이 84.85㎛, 90.70㎛, 83.69㎛, 91.41㎛, 82.38㎛, 87.92㎛, 84.20㎛ 및 79.98㎛로 측정되었으며, CV 값이 14.46%, 10.43%, 9.49%, 10.97%, 8.98%, 11.35%, 12,91% 및 11.27%로 균일한 입자 분포를 나타냄을 확인할 수 있다. 또한, 마이크로 입자의 평균 입자 직경(MV)는 90.85㎛, 93.29㎛, 85.26㎛, 96.05㎛, 86.67㎛, 89.51㎛, 87.22㎛ 및 81.87㎛로 70 내지 100㎛의 범위 내에서 균일한 입자 분포를 나타냄을 확인할 수 있다.
제조예 7-1 내지 11에 대한 입도 분석 결과는 하기 표 3과 같다.
  제조예 7-1 제조예 7-2 제조예 8 제조예 9-1 제조예 9-2 제조예 10 제조예 11
D10 86.34 74.13 79 82.95 75.79 67.67 81.3
D20 90.28 75.89 82.67 87.6 78.23 71.29 85.49
D30 93.19 77.57 85.82 90.53 80.35 74.17 88.66
D40 95.84 79.02 88.68 93.16 82.42 76.38 91.06
D50 98.5 80.46 91.23 95.64 84.5 78.52 93.32
D60 101.3 81.96 93.78 98.26 86.88 80.61 95.52
D70 104.4 83.47 96.38 101.1 89.86 82.88 97.89
D80 108.9 85.24 99.29 104.4 93.93 85.45 100.3
D90 115.3 87.28 102.9 111.4 99.9 88.98 103.6
Width 22.19 10.87 19.22 20.84 18.47 16.72 17.6
Mean(MV) 99.63 80.54 91.22 96.96 86.72 78.61 93.04
SD 11.09 5.43 9.61 10.42 9.23 8.36 8.8
Span value 0.29 0.16 0.26 0.30 0.29 0.27 0.24
CV(%) 11.13 6.74 10.53 10.75 10.64 10.63 9.46
상기 표 3에 의하면, 본 발명의 제조예에 의한 마이크로 입자는 D50이 98.5㎛, 80.46㎛, 91.23㎛, 95.64㎛, 84.5㎛, 78.52㎛ 및 93.32㎛로 측정되었으며, CV 값이 11.13%, 6.74%, 10.53%, 10.75%, 10.64%, 10.63% 및 9.46%으로 균일한 입자 분포를 나타냄을 확인할 수 있다. 또한, 마이크로 입자의 평균 입자 직경(MV)는 99.63㎛, 80.54㎛, 91.22㎛, 96.96㎛, 86.72㎛, 78.61㎛ 및 93.04㎛로 70 내지 100㎛의 범위 내에서 균일한 입자 분포를 나타냄을 확인할 수 있다.
상기 표 2 및 표 3에 의한 PSA 분석 결과에 의하면, 제조된 유상 용액 내 고분자가 10 중량%의 비율로 포함하면 각각 입자의 평균 입도사이즈(MV)는 평균 84.96이고, 표준편차는 4.17로 확인되며, 유상 용액 내 고분자가 15 중량%의 비율로 포함하면 각각 입자의 평균 입도사이즈(MV)는 평균 94.97㎛이고, 표준편차는 3.17로 확인되어 유상 용액 내 고분자의 농도가 증가함에 따라 입자의 평균 입도사이즈(MV)가 증가하는 것을 알 수 있다.
또한 각각의 제조예에 따른 입자는 입도의 분포 정도를 나타내는 Span value는 0.5이하, CV(%)는 5 내지 20% 내로서 위의 제조방법에 따라 제조된 입자는 매우 균일한 입도 분포를 나타내는 것을 알 수 있다.
유상 내 고분자 함량에 따른 제조된 마이크로 입자의 입도 분석결과는 하기 표 4와 같다.
Polymer Content 5% 10% 15% 20%
Polymer 폴리락타이드-코-글리코라이드(PLGA)
ID 101-OP30 IC-4 IC-17 IC-16
D10 46.00 66.38 81.67 90.66
D20 48.33 69.40 85.89 93.63
D30 50.36 71.99 88.95 96.30
D40 52.23 74.35 91.29 98.86
D50 53.97 76.41 93.47 101.50
D60 55.72 78.49 95.60 104.40
D70 57.55 80.56 97.90 108.20
D80 59.59 82.93 100.20 112.80
D90 62.47 85.73 103.40 118.90
Width 12.8 15.58 17.03 22.37
MV(㎛) 57.98 76.27 93.14 103.30
SD 6.63 7.79 8.51 11.19
Span value 0.31 0.25 0.23 0.28
CV(%) 11.43 10.21 9.14 10.83
상기 표에 의한 PSA 분석결과에 의하면, 동일한 고분자(PLGA)에 의해 제조된 유상 용액 내 고분자가 5 중량%의 비율로 포함하면 각 입자의 평균 입도사이즈(MV)는 57.98이고, 유상 용액 내 고분자가 10 중량%의 비율로 포함하면 각 입자의 평균 입도사이즈(MV)는 평균 76.27이고, 유상 용액 내 고분자가 15 중량%의 비율로 포함하면 각 입자의 평균 입도사이즈(MV)는 평균 93.14이고, 유상 용액 내 고분자가 20 중량%의 비율로 포함하면 각 입자의 평균 입도사이즈(MV)는 평균 103.30으로 확인되어 유상 용액 내 고분자의 농도가 증가함에 따라 입자의 평균 입도사이즈(MV)가 증가하는 것을 알 수 있다. 따라서 동일한 마이크로 채널을 사용하고 유상과 수상의 유량 비를 dripping 조건으로 일정하게 유지하였을 때 유상액을 구성하는 고분자의 중량%를 변경하여 원하는 입도 사이즈의 마이크로 입자를 제조할 수 있다. 이를 통하여 initial burst 억제 등 마이크로 입자의 크기에 의한 약물 방출 패턴을 제어할 수 있으며 약물 유지 기간을 설정하는 데 활용할 수 있다.
실험예 5
SEM 분석 결과
마이크로 입자의 성상을 구체적으로 확인하기 위해, Scanning Electron Microscope(SEM)를 이용하여 제조예 1 내지 11에 대한 분석을 진행하였다.
제조예 1 내지 11에 대한 SEM 분석 결과는 하기 도 3 내지 18과 같다.
SEM 측정 사진에 의하면, 입자의 크기가 균일하고, 표면이 매끈한 완전한 구 형상의 마이크로 입자로 제조됨을 확인하였다.
실험예 6
약동학 분석 결과
실시예 1에 대한 약동학 평가를 확인하였다
상기 실시예 1은 6개월 이상 지속 방출 제형으로, 주사 후 6개월 동안 목시덱틴을 지속적으로 방출하여 목시덱틴에 의한 약효를 유지하는지 여부를 확인하였다.
본 발명의 마이크로 입자를 통해, 비글견에 투여되는 목시덱틴은 0.4mg/kg이며, 총 5마리에게 SC injection 방식으로 투여하였다.
목시덱틴의 혈중 농도 분석 결과는 하기 표 5와 같다.
실시예 1
Time(hr) Average STDEV
0 0.00 0.00
48 0.31 0.05
72 0.71 0.15
168 2.27 0.34
240 3.55 0.56
336 4.44 0.49
408 5.95 0.95
504 8.86 1.97
600 15.56 3.05
672 14.81 3.94
720 11.74 3.13
1008 5.82 2.29
1344 4.89 1.54
1680 6.31 3.38
1848 8.43 4.81
2016 9.05 4.33
2184 11.55 6.45
2352 8.50 4.53
2520 10.13 4.65
2688 6.13 2.45
2856 6.19 2.96
3024 4.51 2.74
3360 3.21 2.51
3696 2.62 2.21
4032 1.34 1.46
4320 0.76 0.86
상기 실험 결과에 의하면, 목시덱틴의 혈중 농도는 초기 과방출이 없고, 주사 후 25일 경 1차 Cmax를 나타냄을 확인하였다. 25일이 경과한 시점에 목시덱틴의 혈중 농도가 일정하게 감소하다가, 56일이 경과한 이후 목시덱틴의 혈중농도가 증가하였다. 이후 2차 Cmax는 91일 경에 나타남을 확인하였다. 이에, 하기 식 1에 따른 값이 1.35인 것을 확인할 수 있다:
[식 1]
Cmax-peak n/Cmax―peak n+1
여기서,
목시덱틴을 포함하는 마이크로 입자를 현탁 용액에 혼합하여 주사제로 제조하고, 상기 주사제를 비글견에 투여하고 목시덱틴의 혈중 농도를 측정한 것으로,
Cmax-peak n은 주사제를 투입하고, n차 Cmax 값이며,
Cmax-peak n+1는 상기 n차 Cmax 값 이후 목시덱틴의 혈중 농도가 다시 증가함에 따른 n+1차 Cmax 값이다.
이와 같은 목시덱틴의 혈중 농도 패턴은 2종의 생분해성 고분자를 이용하여 각 마이크로 입자를 제조하고 이를 혼합하여 주사 제형으로 제조함에 따른 것으로, 생분해성 고분자의 점도, 분자량 및 목시덱틴과의 조합에 의해 분해 속도의 차이가 나타나게 되어, 상기와 같은 혈중농도의 방출 패턴이 나타나게 된다.
또한, 상기 실시예 1에 대한 약동학 특성에 대한 분석 결과는 하기 표 6과 같다.
실시예 1 Average STDEV
AUClast (ng·hr/ml) 25084.66 6983.41
AUCinf (ng·hr/ml) 26028.26 7034.78
Cmax (ng/ml) 16.73 4.32
Tmax (hr) 916.80 708.39
T1/2 466.89 121.18
실험예 7
약동학 분석 결과
실시예 2에 대한 약동학 평가를 확인하였다
제조예 1의 마이크로 입자 및 제조예 2-1의 마이크로 입자를 1:1의 중량비율로 혼합하여 사용한 것을 제외하고 실시예 1과 동일한 방식으로 실험을 진행하였다.
실시예 2
Time(hr) Average STDEV
0 0.00 0.00
24 0.75 0.24
72 1.32 0.45
168 2.93 0.85
240 4.68 1.88
336 7.01 3.45
408 9.45 3.70
504 12.79 5.64
600 11.93 4.72
672 11.69 5.51
720 11.21 3.83
1008 6.30 2.72
1344 4.55 1.61
1680 5.72 2.11
1848 5.31 1.49
2016 5.18 1.76
2184 4.57 1.67
2352 3.47 2.72
2520 3.54 2.45
2688 2.70 2.04
2856 1.78 1.51
3024 1.50 1.27
3360 1.23 1.19
3696 1.00 0.00
4032 0.68 0.00
4320 0.47 0.00
상기 실험 결과에 의하면, 목시덱틴의 혈중 농도는 초기 과방출이 없고, 주사 후 21일 경 1차 Cmax를 나타냄을 확인하였다. 21일이 경과한 시점에 목시덱틴의 혈중 농도가 일정하게 감소하다가, 56일이 경과한 이후 목시덱틴의 혈중농도가 증가하였다. 이후 2차 Cmax는 70일 경에 나타남을 확인하였다. 이에, 상기 식 1에 따른 값이 2.24인 것을 확인할 수 있다.
또한, 주사 후 24시간이 경과한 후, 목시덱틴의 혈중 농도는 0.75 ng/ml이며, 실험을 진행한 비글견의 혈중 농도의 표준 편차도 0.24이다.
상기 실시예 2에 대한 약동학 특성에 대한 분석 결과는 하기 표 8과 같다.
실시예 2 Average STDEV
AUClast (ng·hr/ml) 17701.36 3301.50
AUCinf (ng·hr/ml) 18717.96 3736.92
Cmax (ng/ml) 13.66 4.61
Tmax (hr) 576.00 124.71
실험예 8
약동학 분석 결과
실시예 3에 대한 약동학 분석을 진행하였다.
실시예 1에서 투여된 용량의 50%를 투여한 것을 제외하고 실시예 1과 동일한 방식으로 실험을 진행하였다. 제조예 1의 마이크로 입자 및 제조예 2-1의 마이크로 입자를 1:2의 중량비율로 혼합하여 투여한 것은 동일하였다.
실시예 3
Time(Days) Mean SD
0 0.00 0.00
7 0.44 0.40
14 1.19 0.46
21 1.96 0.81
28 2.84 0.92
35 3.36 1.16
49 1.90 0.66
63 1.61 0.85
77 2.37 0.78
84 2.39 0.35
91 2.54 0.83
98 4.71 1.62
105 6.00 1.65
112 5.99 2.57
126 5.40 1.46
140 3.17 1.34
154 1.60 0.95
168 1.06 1.04
182 0.50 0.91
상기 실험 결과에 의하면, 목시덱틴의 혈중 농도는 초기 과방출이 없고, 주사 후 35일 경 1차 Cmax를 나타냄을 확인하였다. 35일이 경과한 시점에 목시덱틴의 혈중 농도가 일정하게 감소하다가, 77일이 경과한 이후 목시덱틴의 혈중농도가 증가하였다. 이후 2차 Cmax는 105일 경에 나타남을 확인하였다. 이에, 상기 식 1에 따른 값이 0.56인 것을 확인할 수 있다.
실험예 9
약동학 분석 결과
In vivo 실험에 있어, 투여 개체별 혈중 목시덱틴의 농도를 비교하여 동일한 시험 약물 투여 시 재현성을 확인하는 실험을 진행하였다.
비교를 위해, 현재 시판 중인 ProHeart SR-12를 3마리의 비글견에 투여하고, 180일간 혈중 목시덱틴의 농도를 측정하였다.
본 발명의 마이크로 입자는 실시예 3으로, 목시덱틴의 투여량이 0.2mg/kg이 되도록 하였으며, 총 10마리의 비글견에 투여하고, 180일간 혈중 목시덱틴의 농도를 측정하였다.
실험 결과는 하기 표 10, 표 11 및 도 19와 같다.
ProHeart SR-12(목시덱틴의 투여량 0.5mg/kg)
Time(Days) 1 2 3 평균 편차
0 0.00 0.00 0.00 0.00 0.00
7 11.96 10.30 12.02 11.43 0.98
14 31.22 12.20 9.50 17.64 11.84
21 28.13 13.36 6.36 15.95 11.11
28 26.40 12.38 4.59 14.46 11.05
35 27.77 10.28 3.20 13.75 12.65
49 20.42 7.83 1.62 9.96 9.58
63 18.33 6.25 0.84 8.47 8.95
77 16.52 3.71 0.72 6.98 8.39
84 15.29 3.71 0.86 6.62 7.64
91 13.88 2.70 0.76 5.78 7.08
98 11.15 1.89 0.73 4.59 5.71
105 12.89 1.72 0.77 5.13 6.74
112 9.22 1.70 0.75 3.89 4.64
126 6.35 1.28 0.46 2.70 3.19
140 5.59 1.30 0.61 2.50 2.70
154 7.06 1.52 0.75 3.11 3.44
168 4.35 1.39 0.62 2.12 1.97
180 3.8 1.34 0.57 1.90 1.69
(단위 ng/ml)
실시예 3
Time
(Days)
1 2 3 4 5 6 7 8 9 10 평균 편차
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.87 0.55 0.33 0.92 0.85 0.69 0.43 0.73 0.78 0.42 0.66 0.21
14 1.36 0.98 0.36 1.72 2.05 1.29 0.60 1.74 1.45 0.86 1.24 0.54
21 3.29 1.59 1.31 3.03 3.68 2.15 1.30 3.11 2.17 1.07 2.27 0.95
28 3.44 3.22 1.77 3.82 4.75 3.49 2.24 3.60 3.38 1.51 3.12 0.99
35 3.06 2.97 1.79 2.32 4.75 4.54 2.01 3.15 4.56 2.54 3.17 1.09
49 1.19 0.86 0.97 1.52 2.88 2.84 1.30 2.36 1.54 1.48 1.69 0.74
63 2.34 2.32 0.66 1.88 3.42 2.73 0.64 2.20 1.49 1.01 1.87 0.92
77 2.65 1.77 0.92 2.31 3.70 3.20 1.61 3.19 2.18 1.68 2.32 0.87
84 1.97 1.08 1.18 2.80 4.46 2.83 2.05 2.36 2.64 2.05 2.34 0.96
91 1.70 0.95 1.25 2.81 4.49 3.70 1.90 3.00 2.41 1.67 2.39 1.12
98 3.78 1.89 1.85 4.94 5.08 7.17 3.45 5.06 4.80 3.06 4.11 1.63
105 3.34 1.98 2.29 5.52 6.24 8.50 3.96 6.34 5.80 5.42 4.94 2.03
112 2.96 3.26 2.11 4.97 7.15 9.84 3.47 7.33 4.78 4.55 5.04 2.39
126 4.74 2.72 3.31 3.10 7.75 7.62 5.32 5.35 5.17 3.52 4.86 1.78
140 1.67 1.10 2.59 0.90 4.48 5.41 2.69 2.82 3.11 1.84 2.66 1.43
154 -  0.69 1.32 -  2.74 3.21 0.93 1.53 1.52 0.83 1.60 0.91
168 -  -  1.01 -  1.75 2.87 -  1.01 0.75 0.68 1.35 0.84
180 -  -  0.57 -  1.10 1.88 -  0.60 -  -  1.04 0.61
(단위 ng/ml)
상기 실험 결과에 의하면, 시판되는 되는 ProHeart SR-12는 비글견 간 혈중 농도에서 큰 차이를 나타내는 반면, 본 발명의 실시예 1은 10마리의 비글견에 대해 혈중 목시덱틴의 농도를 측정한 결과에서 편차가 0.2 내지 2.39로 매우 차이가 없음을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 목시덱틴(Moxidectin)을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물에 관한 것이다.

Claims (9)

  1. 목시덱틴 및 생분해성 고분자를 포함하는 마이크로 입자이며,
    상기 생분해성 고분자의 고유 점도는 0.1 dl/g 내지 1 dl/g이며,
    상기 마이크로 입자의 평균 직경은 60 내지 110㎛인
    목시덱틴을 포함하는 마이크로 입자.
  2. 제1항에 있어서,
    상기 마이크로 입자는 구형이며,
    상기 마이크로 입자 내 목시덱틴을 균일하게 포함하는
    목시덱틴을 포함하는 마이크로 입자.
  3. 제1항에 있어서,
    상기 마이크로 입자의 변동계수(coefficient of variation, CV)는 5% 내지 20%인
    목시덱틴을 포함하는 마이크로 입자.
  4. 제1항에 있어서,
    상기 마이크로 입자는 생분해성 고분자 및 목시덱틴을 2:1 내지 12:1의 중량 비율로 포함하는
    목시덱틴을 포함하는 마이크로 입자.
  5. 제1항에 있어서,
    상기 마이크로 입자는 목시덱틴을 3개월 이상 지속적으로 방출하는
    목시덱틴을 포함하는 마이크로 입자.
  6. 제1항에 있어서,
    상기 생분해성 고분자는 폴리락타이드(PLA), 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산 및 이들의 혼합으로 이루어진 군으로부터 선택되는
    목시덱틴을 포함하는 마이크로 입자.
  7. 제1항에 있어서,
    상기 마이크로 입자는 하기 식 1에 의해 0.3 내지 3인
    목시덱틴을 포함하는 마이크로 입자:
    [식 1]
    Cmax-peak n/Cmax―peak n+1
    여기서,
    목시덱틴을 포함하는 마이크로 입자를 현탁 용액에 혼합하여 주사제로 제조하고, 상기 주사제를 비글견에 투여하고 목시덱틴의 혈중 농도를 측정한 것으로,
    Cmax-peak n은 주사제를 투입하고, n차 Cmax 값이며,
    Cmax-peak n+1는 상기 n차 Cmax 값 이후 목시덱틴의 혈중 농도가 다시 증가함에 따른 n+1차 Cmax 값이다.
  8. 제7항에 있어서,
    복수의 비글견에 상기 주사제로 0.2mg/kg의 목시덱틴을 투여하고, 혈중 목시덱틴의 농도를 측정하며,
    상기 주사제를 투여한 비글견 간 혈중 목시덱틴의 농도에 대한 표준편차가 0.01 내지 10인
    목시덱틴을 포함하는 마이크로 입자.
  9. 제1항에 따른 목시덱틴을 포함하는 마이크로 입자; 및
    현탁 용액을 포함하는
    목시덱틴을 포함하는 서방형 주사제 조성물.
PCT/KR2022/005968 2022-04-13 2022-04-27 목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물 WO2023200035A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220045772A KR102464821B1 (ko) 2022-04-13 2022-04-13 목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물
KR10-2022-0045772 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023200035A1 true WO2023200035A1 (ko) 2023-10-19

Family

ID=84040356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005968 WO2023200035A1 (ko) 2022-04-13 2022-04-27 목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물

Country Status (2)

Country Link
KR (1) KR102464821B1 (ko)
WO (1) WO2023200035A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042013A1 (en) * 2005-08-19 2007-02-22 Soll Mark D Long acting injectable formulations
KR20120115302A (ko) * 2009-12-22 2012-10-17 에보닉 데구사 코포레이션 마이크로입자를 제조하기 위한 에멀전-기반 방법 및 이 방법과 함께 사용하기 위한 워크헤드 조립체
KR101350680B1 (ko) * 2008-04-18 2014-02-10 워쏘우 오르쏘페딕 인코포레이티드 생분해성 고분자 운반체 내의 클로니딘 제제
KR20190027302A (ko) * 2017-09-06 2019-03-14 (주)인벤티지랩 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법
KR20220032301A (ko) * 2020-09-07 2022-03-15 (주)인벤티지랩 약물의 지속 방출을 위한 서방형 마이크로입자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544732B1 (ko) 2004-07-13 2006-01-24 (주)이엘티사이언스 개 심장사상충 예방 및 박멸을 위한 경구용 이버멕틴페이스트 복합조성물 및 그의 제조방법
WO2019050259A1 (ko) * 2017-09-06 2019-03-14 (주)인벤티지랩 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042013A1 (en) * 2005-08-19 2007-02-22 Soll Mark D Long acting injectable formulations
KR101350680B1 (ko) * 2008-04-18 2014-02-10 워쏘우 오르쏘페딕 인코포레이티드 생분해성 고분자 운반체 내의 클로니딘 제제
KR20120115302A (ko) * 2009-12-22 2012-10-17 에보닉 데구사 코포레이션 마이크로입자를 제조하기 위한 에멀전-기반 방법 및 이 방법과 함께 사용하기 위한 워크헤드 조립체
KR20190027302A (ko) * 2017-09-06 2019-03-14 (주)인벤티지랩 목시덱틴을 포함하는 마이크로 입자 및 이의 제조 방법
KR20220032301A (ko) * 2020-09-07 2022-03-15 (주)인벤티지랩 약물의 지속 방출을 위한 서방형 마이크로입자

Also Published As

Publication number Publication date
KR102464821B1 (ko) 2022-11-09
KR102464821B9 (ko) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2019078583A1 (ko) 약물을 포함하는 지속 방출형 마이크로 입자 및 이의 제조 방법
WO2010056065A9 (en) Method for preparing microspheres and microspheres produced thereby
WO2020197185A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2022050783A1 (ko) 약물의 지속 방출을 위한 서방형 마이크로입자
WO2013015545A1 (en) Composition for edible film and pharmaceutical preparation for edible film containing drugs
WO2016068457A1 (ko) 탁산을 포함하는 경구 투여용 약학 조성물
WO2016114521A1 (ko) 안정성이 개선된 정제형태의 두타스테리드 조성물
AU2018289188B2 (en) Particle and pharmaceutical composition comprising an insoluble camptothecin compound with double core-shell structure and method for manufacturing the same
WO2023200035A1 (ko) 목시덱틴을 포함하는 마이크로 입자 및 이를 포함하는 서방형 주사제 조성물
WO2023200036A1 (ko) 목시덱틴을 포함하는 마이크로 입자의 제조 방법 및 이의 제조 방법으로 제조된 마이크로 입자를 포함하는 서방형 주사제 조성물
WO2019031898A2 (ko) 약학 조성물 및 이의 제조방법
WO2017014431A1 (ko) 생분해성 고분자를 포함하는 마이크로파티클의 제조방법
WO2023101348A1 (ko) 류프로라이드를 포함하는 마이크로 입자 및 이의 제조 방법
WO2020180093A2 (ko) 오셀타미비르 함유 의약 조성물
WO2023038202A1 (ko) 생분해성 고분자를 이용한 서방형 미립구 및 이의 제조방법
WO2020242234A1 (ko) 캐스파제 저해제 프로드럭을 함유하는 주사용 조성물 및 이의 제조 방법
WO2020130385A1 (ko) 내산성이 우수한 탐수로신 염산염 함유 제약 조성물 및 이의 제조방법
WO2016114602A1 (en) Novel pharmaceutical composition
WO2016052866A1 (en) Solid pharmaceutical composition comprising amlodipine and losartan
WO2023158228A1 (ko) 데슬로렐린을 포함하는 서방성 주사용 조성물
WO2021040257A1 (en) Pharmaceutical formulations comprising sodium palmitoyl-l-prolyl-l-prolyl-glycyl-l-tyrosinate and methods for preparing the same
WO2024019439A1 (ko) 두타스테라이드를 포함하는 서방성 주사용 조성물
WO2021242021A1 (ko) 글루카곤 유사 펩타이드 1 작용제 함유 제어방출 미립구 및 이의 제조방법
WO2022114876A1 (ko) 캐스파제 저해제를 함유하는 주사용 조성물 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937548

Country of ref document: EP

Kind code of ref document: A1