WO2023199876A1 - 複数溶媒を用いた水素化重合体の製造方法 - Google Patents

複数溶媒を用いた水素化重合体の製造方法 Download PDF

Info

Publication number
WO2023199876A1
WO2023199876A1 PCT/JP2023/014477 JP2023014477W WO2023199876A1 WO 2023199876 A1 WO2023199876 A1 WO 2023199876A1 JP 2023014477 W JP2023014477 W JP 2023014477W WO 2023199876 A1 WO2023199876 A1 WO 2023199876A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
hydrogenation
polymer
aromatic vinyl
vinyl compound
Prior art date
Application number
PCT/JP2023/014477
Other languages
English (en)
French (fr)
Inventor
英之 佐藤
啓克 荒井
裕介 中村
海瑠 松下
宣之 加藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023199876A1 publication Critical patent/WO2023199876A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a method for producing a hydrogenated polymer using multiple solvents.
  • the present invention relates to a method for producing a hydrogenated polymer by hydrogenating (nuclear hydrogenation) the aromatic ring of an aromatic vinyl compound-based polymer.
  • Patent Document 1 Japanese Patent No. 5540703
  • Patent Document 2 Japanese Patent Application Laid-open No. 2014-77044
  • the present invention relates to a method for producing a nuclear hydrogenated polymer using.
  • Patent Document 3 Japanese Patent No. 2890748
  • Patent Document 4 Japanese Patent Publication No. 2001-527095
  • Patent Document 5 Japanese Patent Publication No. 2002-511501
  • Patent Document 6 relate to a method for hydrogenating aromatic polymers.
  • Patent Document 7 Japanese Patent No. 4224655 (Patent Document 7) and Japanese Patent No. 5007688 (Patent Document 8) are related to alicyclic hydrocarbon copolymers or alicyclic structure-containing polymers, and these polymers are aromatic polymers. It is described that it can be obtained by hydrogenation of a combination.
  • Patent No. 5540703 Japanese Patent Application Publication No. 2014-77044 Patent No. 2890748 Special Publication No. 2001-527095 Special Publication No. 2002-511501 Special Publication No. 2002-511508 Patent No. 4224655 Patent No. 5007688
  • the present inventors have discovered that in a method for producing a hydrogenated polymer by hydrogenating the aromatic ring of an aromatic vinyl compound-based polymer, at least one first solvent and at least one The present invention was achieved by using a mixed solvent containing a second solvent and adjusting the Hansen solubility parameter (HSP) of each solvent or the mixed solvent.
  • HSP Hansen solubility parameter
  • a method for producing a hydrogenated polymer by hydrogenating an aromatic ring of an aromatic vinyl compound-based polymer comprising: carrying out a hydrogenation reaction using the aromatic vinyl compound-based polymer, a solvent and a hydrogenation catalyst,
  • the solvent is a mixed solvent containing at least one type of first solvent and at least one type of second solvent
  • the Hansen solubility parameter (HSP) value of the mixed solvent is 1) Entering into a Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound polymer before hydrogenation, and 2) entering the Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound-based polymer after hydrogenation;
  • Method for producing hydrogenated polymer is 1) Entering into a Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and
  • a method for producing a hydrogenated polymer by hydrogenating an aromatic ring of an aromatic vinyl compound-based polymer comprising: carrying out a hydrogenation reaction using the aromatic vinyl compound-based polymer, a solvent and a hydrogenation catalyst,
  • the solvent is a mixed solvent containing at least one type of first solvent and at least one type of second solvent
  • the Hansen solubility parameters (HSP) of the at least one first solvent are as follows, ⁇ d: 10-20 (preferably 11-19, more preferably 12-18, even more preferably 14-17) ⁇ p: 1 to 15 (preferably 2 to 12, more preferably 3 to 10, even more preferably 4 to 8) ⁇ h: 1 to 25 (preferably 2 to 20, more preferably 4 to 15, even more preferably 5 to 10)
  • the HSP of the at least one second solvent is as follows, ⁇ d: 10-20 (preferably 11-19, more preferably 12-18, even more preferably 14-18) ⁇ p: 0 to less than 1 (preferably 0 to 0.9, more preferably 0 to 0.6, even more preferably
  • the weight ratio (first:second) of the at least one first solvent to the at least one second solvent is 1:9 to 9:1 (preferably 2:8 to 9:1, more preferably is 2:8 to 8:2), the manufacturing method according to [1].
  • the HSP of the mixed solvent is as follows: ⁇ d: 15.6 to 16.7 ⁇ p: 0.3 to 4.7 ⁇ h: 0.5 to 5.8 The manufacturing method according to any one of [1] to [4].
  • the at least one first solvent contains one or more selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, methyl isobutyrate, methyl propionate, and propylene glycol monomethyl ether acetate, preferably butyl acetate. , methyl isobutyrate, and methyl propionate.
  • the production method according to any one of [1] to [5].
  • the at least one second solvent is cyclohexane, C7-C15 monoalkylcyclohexane, C8-C15 dialkylcyclohexane, C9-C15 trialkylcyclohexane, C10-C15 tetraalkylcyclohexane, cyclooctane, C9-C15 monoalkylcyclooctane.
  • C10-C15 dialkylcyclooctane C11-C15 trialkylcyclooctane, C12-C15 tetraalkylcyclooctane, n-octane, and n-decane, preferably cyclohexane, C7-
  • the aromatic vinyl compound polymer may be a copolymer of styrene and butadiene, a copolymer of styrene and isoprene, a copolymer of styrene and methyl methacrylate, a copolymer of styrene and maleic anhydride, a copolymer of styrene and vinyl acetate.
  • the manufacturing method according to any one of [1] to [12] which comprises forming a polymer resin by devolatilizing extrusion after the hydrogenation reaction.
  • Ru a mixed solvent containing at least one type of first solvent and at least one type of second solvent
  • both the polymer before and after hydrogenation are Since the state dissolved in the solvent is maintained, a precipitate removal step after hydrogenation is not necessary, improving productivity.
  • both the polymer before and after hydrogenation are maintained dissolved in the solvent, so that the reaction rate can be improved.
  • a method for producing a hydrogenated polymer by hydrogenating an aromatic ring of an aromatic vinyl compound-based polymer comprising: carrying out a hydrogenation reaction using the aromatic vinyl compound-based polymer, a solvent and a hydrogenation catalyst,
  • the solvent is a mixed solvent containing at least one type of first solvent and at least one type of second solvent
  • the Hansen solubility parameter (HSP) value of the mixed solvent is 1) Entering into a Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound polymer before hydrogenation, and 2) entering the Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound-based polymer after hydrogenation;
  • a method of making a hydrogenated polymer is provided.
  • a method for producing a hydrogenated polymer by hydrogenating an aromatic ring of an aromatic vinyl compound-based polymer comprising: carrying out a hydrogenation reaction using the aromatic vinyl compound-based polymer, a solvent and a hydrogenation catalyst,
  • the solvent is a mixed solvent containing at least one type of first solvent and at least one type of second solvent
  • the Hansen solubility parameters (HSP) of the at least one first solvent are as follows, ⁇ d: 10-20 ⁇ p: 1 to 15 ⁇ h: 1 to 25
  • the HSP of the at least one second solvent is as follows, ⁇ d: 10-20 ⁇ p: 0 to less than 1 ⁇ h: 0 to 2
  • the weight ratio (first:second) of the at least one type of first solvent to the at least one type of second solvent is 1:9 to 9:1,
  • a method for producing a hydrogenated polymer is provided, wherein the first solvent is a solvent selected from the group consisting of ester solvents, aromatic solvents, monocyclic monoterpen
  • the manufacturing method relates to a method of manufacturing a hydrogenated polymer by hydrogenating the aromatic ring of an aromatic vinyl compound-based polymer.
  • aromatic vinyl compound polymer refers to a polymer containing units derived from aromatic vinyl compounds as constitutional units. Therefore, the aromatic vinyl compound-based polymer may be a polymer (homopolymer) consisting of units derived from one type of aromatic vinyl compound, or may include units derived from two or more types of aromatic vinyl compounds as constituent units. Alternatively, it may be a copolymer containing as constituent units a unit derived from one or more aromatic vinyl compounds and a unit derived from one or more compounds other than the aromatic vinyl compound.
  • the unit derived from an aromatic vinyl compound means a unit having a structure in which the C ⁇ C double bond of the vinyl group in the aromatic vinyl compound is opened by polymerization.
  • aromatic vinyl compound polymer used in the production method according to some embodiments of the present invention is not particularly limited, but aromatic vinyl compound monomers include styrene; ⁇ -methylstyrene, ⁇ -ethylstyrene, o-methyl Alkylstyrene such as styrene, m-methylstyrene, p-methylstyrene, 1,3-dimethylstyrene, p-tert-butylstyrene (the number of carbon atoms in the alkyl group is preferably 1 to 5); p- Hydroxystyrene; alkoxystyrene such as p-methoxystyrene, m-butoxystyrene, p-butoxystyrene (the number of carbon atoms in the alkoxy group is preferably 1 to 5); o-chlorostyrene, m-chlorostyrene, Examples include halogen
  • the aromatic vinyl compound-based polymer used in the production method according to some embodiments of the present invention is a polymer using, in addition to the aromatic vinyl compound monomer, a monomer of a compound other than the aromatic vinyl compound.
  • monomers of compounds other than aromatic vinyl compounds include (meth)acrylates, dienes, and acid anhydrides.
  • (meth)acrylates include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, dodecyl (meth)acrylate, and octadecyl (meth)acrylate.
  • Ester (the number of carbon atoms in the alkyl group is preferably 1 to 20, more preferably 1 to 10, even more preferably 1 to 5); cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, etc.
  • (meth)acrylic acid cycloalkyl ester or cyclic saturated hydrocarbon ester (the number of carbon atoms forming the ring is preferably 5 to 20, more preferably 5 to 10); (meth)acrylic acid (2-hydroxy (meth)acrylic acid hydroxyalkyl esters (the number of carbon atoms in the alkyl group part is preferably (meth)acrylic acid (2-methoxyethyl), (meth)acrylic acid (2-ethoxyethyl), etc.
  • Acrylic acid alkoxyalkyl ester (The number of carbon atoms in the alkyl group portion is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. Also, the number of carbon atoms in the alkoxy group portion is preferably 1 (meth)acrylic acid phenyl ester such as phenyl (meth)acrylate; (meth)acrylic acid such as benzyl (meth)acrylate Aryl alkyl ester (The number of carbon atoms in the aryl group site is preferably 6 to 10.
  • the number of carbon atoms in the alkyl group site is preferably 1 to 5.
  • 2-(meth)acroyloxyethylphosphorylcholine Examples include (meth)acrylic acid esters having a phospholipid structure such as. One type of (meth)acrylate may be used alone, or two or more types may be used in combination. As the (meth)acrylate, methyl (meth)acrylate is preferred.
  • diene examples include 1,2-butadiene, 1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,2-hexadiene, 1,3-hexadiene, 1, 4-hexadiene, 1,5-hexadiene, 1,3-heptadiene, 1,3-octadiene, 1,3-nonadiene, 1,3-decadiene, isoprene, cyclopentadiene, 1,3-cyclohexadiene and 1,4- Examples include cyclohexadiene.
  • the diene one type may be used alone, or two or more types may be used in combination.
  • conjugated dienes are preferred, such as 1,3-butadiene or isoprene.
  • acid anhydride examples include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, among which maleic anhydride is preferred.
  • the aromatic vinyl compound-based polymer used in the production method according to some embodiments of the present invention may contain monomer components other than those mentioned above, as long as the effects of the present invention are not impaired.
  • monomer components other than those mentioned above may be contained in a molar ratio of 0 to 10% or 0 to 5% based on the total monomer components.
  • the aromatic vinyl compound-based polymer is a copolymer of styrene and butadiene (1,2-butadiene, 1,3-butadiene or a combination thereof), a copolymer of styrene and isoprene, It contains one or more selected from the group consisting of a copolymer of styrene and methyl methacrylate, a copolymer of styrene and maleic anhydride, a copolymer of styrene and vinyl acetate, and polystyrene.
  • the aromatic vinyl compound-based polymer is a copolymer of styrene and butadiene (1,2-butadiene, 1,3-butadiene or a combination thereof), a copolymer of styrene and isoprene. It is a type of polymer selected from the group consisting of a copolymer of styrene and methyl methacrylate, a copolymer of styrene and maleic anhydride, a copolymer of styrene and vinyl acetate, and polystyrene. These polymers may be polymerized from each monomer as described below, or commercially available ones may be used. For example, as the polystyrene, "GPPS HF-77" manufactured by PS Japan, etc. can be used.
  • Aromatic vinyl compound polymers can be produced by polymerizing various monomers. There are no particular restrictions on the method of polymerizing one or more types of aromatic vinyl compounds or the method of copolymerizing an aromatic vinyl compound with monomers other than aromatic vinyl compound monomers, and radical polymerization methods, ionic polymerization methods, compounding methods, etc. Known methods such as positional polymerization can be used. Industrially, radical polymerization is simple and preferred. As the radical polymerization method, known methods such as bulk polymerization, solution polymerization, emulsion polymerization, and suspension polymerization can be appropriately selected.
  • a monomer composition containing monomer components, a chain transfer agent, and a polymerization initiator (as well as a solvent in the case of solution polymerization) is continuously fed into a complete mixing tank.
  • a continuous polymerization method in which the polymer is supplied and polymerized at 100 to 180°C.
  • solvents used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane, and methylcyclohexane; ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; tetrahydrofuran, and 1,4-dioxane.
  • hydrocarbon solvents such as toluene, xylene, cyclohexane, and methylcyclohexane
  • ester solvents such as ethyl acetate
  • ketone solvents such as acetone and methyl ethyl ketone
  • tetrahydrofuran 1,4-dioxane
  • examples include ether solvents such as; alcohol solvents such as methanol and isopropanol.
  • the reaction mixture after polymerization is extracted from the complete mixing tank and then introduced into a devolatilizing extruder or vacuum devolatilizing tank to devolatilize the volatile components (monomer components, solvent, etc.), thereby removing the aromatic vinyl compound.
  • a copolymer of a polymer or an aromatic vinyl compound with a monomer other than the aromatic vinyl compound monomer (these may also be collectively referred to simply as an "aromatic vinyl compound polymer”) can be obtained.
  • the molar ratio (A/B) of the constituent units of monomers other than the aromatic vinyl compound monomer (A moles) to the constituent units derived from the aromatic vinyl compound (B moles) is , preferably from 0 to 4, more preferably from 0 to 3, even more preferably from 0 to 2.
  • the weight average molecular weight of the aromatic vinyl compound polymer used in some embodiments of the present invention is preferably 10,000 to 1,000,000, more preferably 50,000 to 700,000, and more preferably 100,000 to 1,000,000. ⁇ 500,000 is more preferred, and 130,000 ⁇ 250,000 is particularly preferred.
  • polymers with molecular weights less than 10,000 or greater than 1,000,000 can also be hydrogenated by methods according to some embodiments of the present invention, copolymers with weight average molecular weights within the above ranges are preferred. However, it is preferable because it has sufficient mechanical strength and can withstand practical use, has an appropriate viscosity, and is easy to handle.
  • the weight average molecular weight is a value determined in terms of polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • hydrogenation of an aromatic vinyl compound polymer means a reaction in which hydrogen is added to the aromatic ring of an aromatic vinyl compound polymer, for example, a benzene ring is reduced to cyclohexane. . Such hydrogenation is also called nuclear hydrogenation or hydrogenation.
  • the aromatic vinyl compound-based polymer used in some embodiments of the present invention is dissolved in a suitable solvent and hydrogenated. It is preferable that the polymer has good solubility in both aromatic polymers and hydrogenated polymers, and does not have hydrogenated sites. Furthermore, it is more preferable to use a solvent that allows the reaction to occur quickly. This is because the reaction time is shortened by increasing the rate of hydrogenation, making it possible to reduce damage to the polymer such as a decrease in molecular weight. Further, when assuming devolatilization of solvent components after hydrogenation, it is preferable that the ignition point of the solvent is high. It is preferable if the devolatilizing extrusion step can be performed, since the hydrogenated polymer can be efficiently produced.
  • the solvent used in the manufacturing method in some embodiments of the present invention is a mixed solvent containing at least one type of first solvent and at least one type of second solvent.
  • the first solvent preferably has a high solubility for the polymer before hydrogenation
  • the second solvent preferably has a high solubility for the polymer after hydrogenation.
  • the solubility of polymers in solvents is not easy to predict, and mixing these two types of solvents does not necessarily result in a solvent in which both the polymers before and after the hydrogenation reaction are well dissolved. Do not mean.
  • the present inventors unexpectedly found that the Hansen solubility parameter (HSP) value of the mixed solvent was 1) ⁇ d axis, ⁇ p axis, and 2) Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound polymer after hydrogenation; It has been found that by using a solvent that dissolves in the hydrogenation reaction, a solvent in which both the polymer before and after the hydrogenation reaction can be well dissolved can be obtained (first aspect of the invention).
  • HSP Hansen solubility parameter
  • the present inventors also found that the Hansen solubility parameters (HSP) of at least one first solvent are ⁇ d: 10 to 20, ⁇ p: 1 to 15, and ⁇ h: 1 to 25, respectively, and the at least one first solvent HSP of the second solvent is ⁇ d: 10 to 20, ⁇ p: 0 to less than 1, and ⁇ h: 0 to 2, respectively, and the at least one first solvent has an HSP of at least one second solvent.
  • the weight ratio (first: second) is 1:9 to 9:1, and the first solvent is selected from the group consisting of ester solvents, aromatic solvents, monocyclic monoterpenes, and dioxane. It has been found that by using a solvent, a solvent can be obtained in which both the polymer before and after the hydrogenation reaction are well dissolved (second aspect of the invention).
  • the Hansen solubility parameter and the Hansen sphere will be specifically explained below.
  • the SP value is a value indicating the strength of intermolecular forces in a molecular population. The closer the SP values are, the easier it is to mix, wet, and bond.
  • HSPiP those described in the dedicated software
  • Hansen's solubility parameter (HSP) value it refers to the value on the three-dimensional space consisting of the ⁇ d-axis, ⁇ p-axis, and ⁇ h-axis derived from the Hansen's solubility parameters of the above three components. means coordinates.
  • HSPs of various solvents are shown in Tables 1 and 2 below. Note that "calculated value” written in the notes column of the table means a value determined by the Y-MB method, and can be calculated using dedicated software (HSPiP 5th Edition version 5.2.05).
  • the HSP of a mixed solvent can be determined from the volume average value of each solvent.
  • ⁇ d AB of a mixed solvent with a volume ratio of solvent A and solvent B of 9 : 1 let ⁇ d of solvents A and B be ⁇ d A and ⁇ d B , respectively. ⁇ d B ”.
  • the mixing ratio of the mixed solvent is already known, calculation can be performed using that mixing ratio. If the mixing ratio is unknown, it can be obtained by measuring the mass ratio of each solvent using the internal standard method of gas chromatography mass spectrometry (GC) and determining the volume ratio from the specific gravity of each solvent.
  • GC gas chromatography mass spectrometry
  • the Hansen sphere dissolves resin in multiple solvents (approximately 10 to 30 types of solvents) and investigates the solubility, and the obtained results are expressed in a three-dimensional space (Hansen space) consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis. It is a sphere that can be obtained by plotting.
  • the Hansen solubility parameter (HSP) value ( ⁇ Tot) of each resin is obtained from the center coordinates of the Hansen sphere thus obtained.
  • HSP Hansen solubility parameter
  • Solvents for obtaining resin Hansen spheres include acetone, acetonitrile, 1-butanol, butyl acetate, ⁇ -butyrolactone, chloroform, cyclohexane, cyclohexanol, diacetone alcohol, diethylene glycol, DMF, DMSO, 1,4-dioxane, ethanol, Ethyl acetate, MEK, MIBK, N-methyl-2-pyrrolidone, dichloromethane, decalin, styrene, ethylene dichloride, IBM, toluene, m-xylene, acetic anhydride, aniline, nitrobenzene, propylene carbonate, cyclohexanone, cyclohexylamine, 2-methyl
  • Ten or more, preferably twelve or more, more preferably fourteen or more solvents selected from the group consisting of -1,3-dioxolane, piperidine and cyclohexene can be
  • acetone, acetonitrile, butyl acetate, gamma-butyrolactone, chloroform, cyclohexane, DMF, 1,4-dioxane, ethanol, ethyl acetate, MEK, MIBK, IBM, and toluene among the above solvents. It is possible to use 14 or more kinds of solvents including at least the following.
  • acetone, acetonitrile, butyl acetate, gamma-butyrolactone, chloroform, cyclohexane, DMF, 1,4-dioxane, ethanol, ethyl acetate, MEK, MIBK, IBM, toluene, and m-xylene Hansen spheres of SBC resin before and after hydrogenation can be obtained using 15 types of solvents consisting of: Also, in some embodiments of the present invention, acetone, acetonitrile, butyl acetate, gamma-butyrolactone, chloroform, cyclohexane, cyclohexanol, DMF, DMSO, 1,4-dioxane, ethanol, ethyl acetate, MEK, MIBK, N- Hansen spheres of PS resin before and after hydrogenation can be obtained using 21 kinds of solvents consisting of methyl-2-pyrrol
  • acetone, acetonitrile, 1-butanol, butyl acetate, gamma-butyrolactone, chloroform, cyclohexane, cyclohexanol, diacetone alcohol, diethylene glycol, DMF, DMSO, 1,4-dioxane, ethanol, acetic acid Ethyl, MEK, MIBK, N-methyl-2-pyrrolidone, dichloromethane, decalin, styrene, ethylene dichloride, IBM, toluene, m-xylene, acetic anhydride, aniline, nitrobenzene, propylene carbonate, cyclohexylamine, 2-methyl-1, Hansen spheres of SMA resin can be obtained using 33 solvents consisting of 3-dioxolane, piperidine and cyclohexene.
  • a Hansen sphere of SMA resin can be obtained.
  • solvents consisting of methyl-2-pyrrolidone, dichloromethane, decalin, ethylene dichloride, IBM, toluene, m-xylene, nitrobenzene, and cyclohexanone, or 24 types of solvents with styrene added.
  • a Hansen sphere made of MS resin can be obtained.
  • HSPiP dedicated software
  • a Hansen sphere is gradually formed.
  • the shape of the Hansen sphere is gradually fixed, so the values of ⁇ d, ⁇ p, ⁇ h, and the radius of the Hansen sphere will fluctuate by more than ⁇ 0.1. Reproducible results can be obtained by performing the solubility test until the solubility is exhausted.
  • the Hansen solubility parameter (HSP) values of the mixed solvent are: 1) the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound-based polymer before hydrogenation; and 2) inside a Hansen sphere in a three-dimensional space consisting of the ⁇ d axis, ⁇ p axis, and ⁇ h axis of the aromatic vinyl compound polymer after hydrogenation.
  • HSP solubility parameter
  • the Hansen sphere if known information is available, it may be used.
  • the hydrogenation reaction may be performed after obtaining the solubility in about 10 to 30 types of solvents by inputting them into dedicated software (HSPiP).
  • Some embodiments of the first aspect of the present invention further include obtaining Hansen spheres of the aromatic vinyl compound-based polymer before hydrogenation and Hansen spheres of the aromatic vinyl compound-based polymer after hydrogenation. .
  • the Hansen solubility parameters (HSP) of the at least one first solvent are as follows: ⁇ d: 10-20 ⁇ p: 1 to 15 ⁇ h: 1 to 25
  • the HSP of at least one second solvent is as follows, ⁇ d: 10-20 ⁇ p: 0 to less than 1 ⁇ h: 0 to 2
  • the weight ratio (first:second) of the at least one first solvent to the at least one second solvent is 1:9 to 9:1;
  • the first solvent is a solvent selected from the group consisting of ester solvents, aromatic solvents, monocyclic monoterpenes, and dioxane.
  • both the polymer before and after hydrogenation remain dissolved in the solvent, resulting in precipitation after hydrogenation.
  • productivity can also be improved.
  • both the polymer before and after hydrogenation remain dissolved in the solvent, the reaction rate can be improved.
  • the Hansen solubility parameters (HSP) of the at least one first solvent are ⁇ d: 11-19, ⁇ p: 2-12 and ⁇ h: 2-20, and ⁇ d: 12-18, ⁇ p: 3-10 and ⁇ h: 4-15, more preferably ⁇ d: 14-17, ⁇ p: 4-8 and ⁇ h: 5-10.
  • the Hansen solubility parameters (HSP) of the at least one second solvent are ⁇ d: 11-19, ⁇ p: 0-0.9, and ⁇ h: 0-1.5. Yes, preferably ⁇ d: 12-18, ⁇ p: 0-0.6 and ⁇ h: 0-1, ⁇ d: 14-18, ⁇ p: 0-0.4 and ⁇ h: 0-0.8. It is more preferable.
  • the weight ratio (first:second) of at least one first solvent to at least one second solvent is from 1:9 to 9:1, preferably 1:9-8:2, 1:9-7:3, 1:9-6:4, 1:9-5:5, 2:8-9:1, 2:8-8:2, 2: 8-7:3, 2:8-6:4, 2:8-5:5, 3:7-8:2, 2:8-7:3, 2:8-6:4, 2:8-
  • the ratio may be 5:5, 3:7 to 9:1, 3:7 to 8:2, 3:7 to 7:3, 3:7 to 6:4 or 3:7 to 5:5.
  • the aromatic vinyl compound polymer is polystyrene
  • the ratio of first to second is preferably 1:9 to 5:5.
  • the ratio of first to second is preferably 3:7 to 7:3.
  • the aromatic vinyl compound-based polymer is a copolymer of styrene and maleic anhydride
  • the ratio of first to second is preferably 3:7 to 9:1.
  • the aromatic vinyl compound-based polymer is a copolymer of styrene and butadiene or isoprene
  • the ratio of first to second is preferably 1:9 to 7:3.
  • a mixed solvent having HSPs of ⁇ d: 15.6 to 16.7, ⁇ p: 0.3 to 4.7, and ⁇ h: 0.5 to 5.8, respectively is used. I can do it.
  • a mixed solvent having HSPs of ⁇ d: 16.2 to 16.7, ⁇ p: 0.5 to 2.4, and ⁇ h: 0.7 to 3.0, respectively may be used.
  • a mixed solvent having HSPs of ⁇ d: 16.0 to 16.5, ⁇ p: 1.4 to 3.4, and ⁇ h: 1.8 to 4.2, respectively, may be used. can.
  • a mixed solvent having HSPs of ⁇ d: 15.6 to 16.5, ⁇ p: 1.4 to 4.5, and ⁇ h: 1.8 to 5.4, respectively, may be used.
  • a mixed solvent having HSPs of ⁇ d: 16.0 to 16.7, ⁇ p: 0.5 to 3.4, and ⁇ h: 0.7 to 4.2, respectively, may be used. can.
  • the at least one first solvent is selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, methyl propionate, methyl isobutyrate, and propylene glycol monomethyl ether acetate. Contains more than one species.
  • the at least one second solvent includes one or more selected from the group consisting of saturated hydrocarbon solvents and hydrogenated monocyclic monoterpenes.
  • the at least one second solvent is cyclohexane, C7-C15 monoalkylcyclohexane, C8-C15 dialkylcyclohexane, C9-C15 trialkylcyclohexane, C10-C15 tetraalkylcyclohexane, cyclooctane, Contains one or more selected from the group consisting of C9-C15 monoalkylcyclooctane, C10-C15 dialkylcyclooctane, C11-C15 trialkylcyclooctane, C12-C15 tetraalkylcyclooctane, n-octane, and n-decane.
  • the at least one second solvent comprises C9 alkylcyclohexane and/or C10 alkylcyclohexane.
  • the solvent containing C9 alkylcyclohexane and/or C10 alkylcyclohexane for example, Suclean 150 manufactured by Maruzen Petrochemical Co., Ltd. can be used.
  • a solvent having a boiling point of 50° C. or higher and an ignition point of 400° C. or higher can be used as the first solvent.
  • the ignition point is preferably 410°C or higher, more preferably 420°C or higher, even more preferably 430°C or higher.
  • the upper limit of the boiling point and the upper limit of the ignition point are not particularly limited, but for example, it is preferable that the boiling point is 150°C or less and the ignition point is 470°C or less.
  • the second solvent has a boiling point of 80°C or higher and an ignition point of 230°C or higher.
  • the ignition point is preferably 250°C or higher, more preferably 280°C or higher, even more preferably 300°C or higher.
  • the upper limit of the boiling point and the upper limit of the ignition point are not particularly limited, but for example, it is preferable that the boiling point is 150°C or less and the ignition point is 470°C or less.
  • Such solvents include cyclohexane, cyclopentane, methylcyclohexane, n-heptane, 2,2,4-trimethylpentane, cyclooctane, 1,3 dimethylcyclohexane, ethylcyclohexane, 1,2,4-trimethylcyclohexane, decalin ( cis, trans-decahydronaphthalene) and Swaclean 150.
  • the approximate value of the ignition point of the mixed solvent containing the first solvent and the second solvent can be determined by a weighted average of the ignition point values of each solvent.
  • a metal element having catalytic hydrogenation ability As an effective component of the hydrogenation catalyst used in some embodiments of the present invention, a metal element having catalytic hydrogenation ability (hereinafter referred to as "specific metal component”) can be mentioned.
  • Specific metal components include, for example, nickel, cobalt, iron, ruthenium, rhodium, palladium, platinum, iridium, copper, silver, molybdenum, tungsten, chromium, and rhenium.
  • the specific metal component may be in a metal state or a cation state as long as it exhibits hydrogenation ability. Among these, the metal state is generally preferable because it has a stronger hydrogenation ability and is stable in a reducing atmosphere.
  • the specific metal components can be used singly or in combination of two or more in a state contained in the solid catalyst.
  • the hydrogenation catalyst is preferably a solid catalyst supporting one or more selected from the group consisting of palladium, platinum, ruthenium, rhodium and nickel, particularly preferably palladium. It is a supported solid catalyst.
  • raw materials for these specific metal components there are no particular restrictions on the raw materials for these specific metal components, and those used as raw materials when preparing catalysts by conventionally known methods can be employed.
  • Such raw materials include, for example, hydroxides, oxides, fluorides, chlorides, bromides, iodides, sulfates, nitrates, acetates, ammine complexes, and carbonyl complexes of the respective metal elements. These may be used alone or in combination of two or more.
  • a specific metal component can be used alone or in combination with a metal that does not have catalytic hydrogenation ability.
  • catalysts such as palladium black and platinum black, which are composed of fine metal powders of specific metal components, and forming alloys of specific metal components, aluminum, and small amounts of additives, and then forming alloys with aluminum and small amounts of additives.
  • a sponge catalyst prepared by partially leaching can be mentioned.
  • lithium, sodium, potassium, rubidium, and cesium as alkali metal elements, magnesium, calcium, strontium, and barium as alkaline earth metal elements, and fluorine as a halogen element.
  • chlorine, bromine and iodine, and a compound of one or more elements selected from the group consisting of mercury, lead, bismuth, tin, tellurium and antimony as auxiliary additive elements (hereinafter abbreviated as specific additive components), It can also be used by being added to the catalyst together with the specific metal components mentioned above.
  • raw materials for these specific additive components there are no particular restrictions on the raw materials for these specific additive components, and those used as raw materials for preparing catalysts by conventionally known methods can be employed.
  • Such raw materials include, for example, hydroxides, oxides, fluorides, chlorides, bromides, iodides, sulfates, nitrates, acetates and ammine complexes of the respective metal elements. These may be used alone or in combination of two or more.
  • the method of adding the specific additive component or the ratio of the specific additive component to the specific metal component there are no particular restrictions on the method of adding the specific additive component or the ratio of the specific additive component to the specific metal component.
  • a specific metal component can also be used in combination with a nonmetallic substance.
  • nonmetallic substances include mainly elements, carbides, nitrides, oxides, hydroxides, sulfates, carbonates, and phosphates (hereinafter referred to as "specific nonmetallic components").
  • Specific examples include graphite, diamond, activated carbon, silicon carbide, silicon nitride, aluminum nitride, boron nitride, boron oxide, aluminum oxide (alumina), silicon oxide (silica), titanium oxide, zirconium oxide, hafnium oxide, Lanthanum oxide, cerium oxide, yttrium oxide, niobium oxide, magnesium silicate, calcium silicate, magnesium aluminate, calcium aluminate, zinc oxide, chromium oxide, aluminosilicate, aluminosilicophosphate, aluminophosphate, borophosphate, magnesium phosphate , calcium phosphate, strontium phosphate, hydroxyapatite (calcium hydroxyphosphate), chlorinated apatite, fluorinated apatite, calcium sulfate, barium sulfate and barium carbonate.
  • the specific nonmetallic components may be used alone or in combination of two or more. When two or more types are used in combination, there are no particular restrictions on the combination, mixing ratio, or form, and they can be used in the form of a mixture of individual compounds, a composite compound, or a double salt.
  • specific nonmetallic components that can be easily obtained at low cost are preferred.
  • Preferred as such specific nonmetallic components are zirconium compounds, aluminum compounds, and apatite compounds, and more preferred are zirconium compounds and apatite compounds. Particularly preferred among them are zirconium oxide and hydroxyapatite (calcium hydroxyphosphate).
  • a part or all of these specific nonmetallic components may be modified or ion-exchanged using the specific additive components described above.
  • specific non-metal component carbides, nitrides, oxides, etc. of specific metal components can also be used.
  • oxides such as nickel oxide, iron oxide, cobalt oxide, molybdenum oxide, tungsten oxide and chromium oxide.
  • a specific metal component may be used alone, or a specific metal component and a specific non-metal component may be used in combination.
  • specific additive components may be included.
  • the method for producing the hydrogenation catalyst used in some embodiments of the present invention is not particularly limited, and conventionally known methods can be used. Examples include a method in which a raw material compound for a specific metal component is impregnated onto a specific non-metal component (support method), a method in which a raw material compound for a specific metal component and a raw material compound for a specific non-metal component are dissolved together in an appropriate solvent.
  • Examples include a method of simultaneously precipitating using an alkali compound or the like (co-precipitation method), and a method of mixing and homogenizing the raw material compound of the specific metal component and the specific non-metal component in an appropriate ratio (kneading method).
  • the specific metal component may be prepared in a cation state and then subjected to a reduction treatment to be converted into a metal state.
  • reducing method and reducing agent for this purpose, conventionally known ones can be used, and there are no particular limitations.
  • Reducing agents include, for example, hydrogen gas, carbon monoxide gas, ammonia, reducing inorganic gases such as hydrazine, phosphine and silane, lower oxygenates such as methanol, formaldehyde and formic acid, sodium borohydride and hydride. Examples include hydrides such as lithium aluminum.
  • the specific metal component is converted into the metal state.
  • the reduction treatment conditions at this time can be set to suitable conditions depending on the type and amount of the specific metal component and reducing agent.
  • This reduction treatment operation may be performed using a separate catalytic reduction device before the hydrogenation reduction in the production method according to some embodiments of the present invention, and the production method according to some embodiments of the present invention It may be carried out before the start of the reaction or simultaneously with the reaction operation in the reactor used for the reaction.
  • the metal content and shape of the hydrogenation catalyst used in some embodiments of the present invention there are no particular limitations on the metal content and shape of the hydrogenation catalyst used in some embodiments of the present invention. Its shape may be powder or molded, and there are no particular restrictions on the shape or molding method. For example, spherical products, tablet molded products, extrusion molded products, and shapes obtained by crushing them into appropriate sizes can be appropriately selected and used.
  • a particularly preferred specific metal component is palladium, and a catalyst using this will be described in detail below.
  • the specific metal component is palladium, considering that palladium is a noble metal, it is economically desirable that the amount used be small and that palladium be used effectively. Therefore, it is preferable to disperse and support palladium on a catalyst carrier.
  • a palladium compound that is soluble in water or an organic solvent is suitable.
  • Such palladium compounds include, for example, palladium chloride, tetrachloropalladium salt, tetraamine palladium salt, palladium nitrate, and palladium acetate.
  • palladium chloride is preferred because it has high solubility in water or organic solvents and is easy to use industrially.
  • Palladium chloride can be used by being dissolved in an aqueous sodium chloride solution, dilute hydrochloric acid, aqueous ammonia, or the like.
  • Palladium or a palladium compound is immobilized on the catalyst carrier by adding a solution of the palladium compound to the catalyst carrier, or by immersing the catalyst carrier in a solution of the palladium compound.
  • Immobilization methods generally include adsorption onto a carrier, crystallization by solvent distillation, and precipitation using a reducing substance and/or basic substance that interacts with the palladium compound, and any suitable method may be used as appropriate. is used.
  • the content of palladium in the hydrogenation catalyst prepared by such a method is preferably 0.01 to 20% by mass, more preferably 0.1 to 20% by mass, based on the total amount of the hydrogenation catalyst, in terms of metal palladium.
  • the content is 10% by mass, more preferably 0.5 to 5% by mass.
  • the palladium content is 0.01% by mass or more, a more sufficient hydrogenation rate can be obtained, and the conversion rate of the aromatic vinyl compound polymer can be further increased.
  • the palladium content is 20% by mass or less, the dispersion efficiency of palladium in the hydrogenation catalyst becomes even higher, so palladium can be used more effectively.
  • palladium may be supported on the carrier in a cationic state rather than in a metallic state.
  • supported cationic palladium for example, present in the form of a palladium compound
  • Reducing agents include, for example, hydrogen gas, carbon monoxide gas, reducing inorganic gases such as ammonia and hydrazine, lower oxygenates such as methanol, formaldehyde and formic acid, carbonized gases such as ethylene, propylene, benzene and toluene.
  • Examples include hydrides such as hydrides, sodium borohydride and lithium aluminum hydride.
  • hydrides such as hydrides, sodium borohydride and lithium aluminum hydride.
  • the conditions for the reduction treatment at this time can be set to suitable conditions depending on the type and amount of the reducing agent.
  • This reduction treatment operation may be performed separately using a catalytic reduction device before the hydrogenation reduction in the production method of this embodiment, or before the start of the reaction or in the reactor used in the production method of this embodiment. It may be carried out simultaneously with the reaction operation.
  • zirconium compound used in some embodiments of the present invention is preferably one selected from the group consisting of zirconium oxide, zirconium hydroxide, zirconium carbonate, alkaline earth zirconate, rare earth zirconate, and zircon. They may be used alone or in combination of two or more.
  • a particularly preferred zirconium compound is zirconium oxide, and there are no particular restrictions on the method for producing it.
  • a commonly known method is to decompose an aqueous solution of a soluble zirconium salt with a basic substance to produce zirconium hydroxide or zirconium carbonate, which is then thermally decomposed.
  • the raw material for the zirconium compound at this time is not limited, and examples thereof include zirconium oxychloride, zirconium oxynitrate, zirconium chloride, zirconium sulfate, zirconium tetraalkoxide, zirconium acetate, and zirconium acetylacetonate.
  • Basic substances used for decomposition include, for example, ammonia, alkyl amines, ammonium carbonate, ammonium hydrogen carbonate, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate. , magnesium hydroxide, calcium hydroxide, lanthanum hydroxide, yttrium hydroxide, and cerium hydroxide, and these may be used alone or in combination of two or more.
  • zirconium oxide As a specific nonmetallic component, there are no particular restrictions on its physical properties or shape. Furthermore, there is no particular restriction on the purity of zirconium oxide, and commercially available zirconium oxides with purity ranging from general purpose to high purity products can be used as appropriate.
  • a specific non-metallic component such as a zirconium compound
  • shape, particle size, physical properties of the carrier such as porosity, or the method of supporting the metal component.
  • shape, carrier physical properties, supporting method, etc. suitable for the reaction method and conditions can be selected and used as appropriate.
  • the concentration of the copolymer (aromatic polymer + nuclear hydrogenated polymer) in the solution during the nuclear hydrogenation reaction is usually 1 to 50% by weight, preferably 3 to 30% by weight, more preferably 5 to 25% by weight. It is.
  • the upper limit of the copolymer concentration is set to a predetermined value or less, it is possible to avoid inconvenience in handling due to a decrease in the reaction rate and an increase in solution viscosity.
  • the hydrogenation (hydrogenation) reaction in the production method according to some embodiments of the present invention is carried out using a raw material solution in which an aromatic vinyl compound polymer is dissolved in a solvent. Any of these reactions may be used, and known techniques such as batch reaction and continuous flow reaction may be used.
  • the carrier particle size is usually in the range of 0.1 to 1,000 ⁇ m, preferably 1 to 500 ⁇ m, and more preferably 5 to 200 ⁇ m. Setting the particle size to a predetermined value or more facilitates catalyst separation after the hydrogenation reaction, and setting the upper limit of the particle size to a predetermined value or less prevents the reaction rate from decreasing.
  • Preferred reaction conditions are a temperature of 60 to 250°C, a hydrogen pressure of 3 to 30 MPa, and a reaction time of 3 to 30 hours.
  • the reaction temperature By setting the reaction temperature to a predetermined temperature or higher, the reaction rate becomes faster, and by setting the upper limit of the reaction temperature to a predetermined temperature or lower, side reactions such as polymer decomposition and solvent hydrogenolysis can be suppressed. Further, the reaction rate can be accelerated by setting the hydrogen pressure to a predetermined value or higher, but from an economical point of view, the upper limit is preferably about 30 MPa.
  • a nuclear hydrogenated polymer can be obtained by separating the hydrogenation catalyst and volatile components (solvent, etc.) from the polymer solution after the hydrogenation reaction.
  • the catalyst can be separated by known techniques such as filtration or centrifugation. Considering the influence on coloring and mechanical properties, it is desirable to reduce the concentration of residual catalyst metal in the polymer as much as possible, preferably 10 ppm or less, and more preferably 1 ppm or less.
  • the method of purifying the polymer by separating volatile components such as the solvent from the obtained nuclear hydrogenated polymer solution is as follows: 1) Continuously remove the solvent from the polymer solution to form a concentrated liquid, and heat it. 2) A method in which the solvent is evaporated from the polymer solution to obtain a lump and then pelletized, 3) The polymer solution is added to a poor solvent. or 4) a method in which a poor solvent is added to a polymer solution to precipitate it and then pelletized; and 4) a method in which a lump is obtained by contacting with hot water and then pelletized.
  • a manufacturing method according to a preferred embodiment of the invention includes forming a polymeric resin by devolatilizing extrusion after a hydrogenation reaction.
  • the polymerization liquid obtained in a polymerization tank is maintained or heated at 120°C to 180°C and introduced into a devolatilizing extruder equipped with a vent port to remove volatile components. It can be done with
  • the manufacturing method according to another preferred embodiment of the present invention further includes a concentration step between the hydrogenation reaction and the devolatilization extrusion.
  • the hydrogenation rate (nuclear hydrogenation rate) of the hydrogenated polymer obtained by the method according to some embodiments of the present invention is not particularly limited, but is preferably 95% or more, more preferably 97% or more, and even more preferably 98% or more. % or more.
  • the hydrogenation rate can be determined by measuring UV spectra before and after the hydrogenation reaction, as described in Examples.
  • the glass transition point (Tgm) of the hydrogenated polymer obtained by the method according to some embodiments of the present invention is not particularly limited, but is preferably 70 to 180°C, more preferably 100 to 160°C. Note that in this specification, the glass transition point is a value determined by differential scanning calorimetry (DSC).
  • the hydrogenated polymer obtained by the method according to some embodiments of the present invention may be mixed with additives such as antioxidants, colorants, mold release agents, surfactants, antibacterial agents, etc., as appropriate, to form optical materials. It can be a thing. Since the resulting optical material composition has thermoplasticity, it is possible to precisely and economically manufacture optical articles through various thermoforming methods, such as extrusion molding, injection molding, and secondary processing molding of sheet molded bodies. It is. Specific uses of optical articles include various light guide plates and light guides, display front panels, plastic lens substrates, optical filters, optical films, lighting covers, illuminated signboards, and the like.
  • the evaluation method for the resin is as follows.
  • the nuclear hydrogenation rate was determined by UV spectrum measurements before and after the hydrogenation reaction. That is, by dissolving the resin using tetrahydrofuran (THF) as a solvent, measuring the absorption spectrum at 260 nm using a quartz cell, and calibrating it using the copolymer resin before the nuclear hydrogenation reaction, the unhydrogenated aromatic ring can be determined. The percentage was calculated.
  • the device used for the measurement was a UV-visible spectrophotometer "GENESYS 10S" manufactured by Thermo, but it is not particularly limited as long as it is an equivalent device.
  • Weight average molecular weight (Mw) was determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • RI refractive index
  • THF solvent
  • calibration was performed using standard polystyrene.
  • the device used for the measurement is a high performance liquid chromatography system "Elite LaChrom” manufactured by Shimadzu Science, but is not particularly limited as long as it is an equivalent device.
  • Tgm glass transition point of the resin was determined by differential scanning calorimetry (DSC).
  • the instrument used for the measurement was "DSC7020" manufactured by SII (currently Hitachi High-Tech Science), but there is no particular limitation as long as it is an equivalent instrument.
  • HSP of various solvents was obtained from data recorded in dedicated software (HSPiP). For those not included in the software, values calculated by the Y-MB method were used.
  • HSP Hansen solubility parameter
  • Judgment criteria were based on a penalty system: 1 point was given for ⁇ complete dissolution'', 2 points for ⁇ uniformly dispersed'', 3 points for ⁇ undissolved pellets'', and 4 points for ⁇ whitening/sedimentation''. . If the resin was insoluble, it was given a score of 0 and was distinguished from a sample in which the resin was dissolved. That is, after distinguishing insoluble cases from 0 points, for other dissolved samples, a gradient was given so that the closer to complete dissolution the smaller the penalty points.
  • the solubility data obtained for these 21 solvents is input into the dedicated software (HSPiP), the HSP value of each solvent is plotted on the Hansen space, and the Hansen sphere that includes the point of the solvent in which resin 1 is dissolved is plotted.
  • HSPiP dedicated software
  • the HSP value of each solvent was obtained from data recorded in dedicated software (HSPiP).
  • HSPiP dedicated software
  • the center coordinates of the Hansen sphere were taken as the HSP value of Resin 1. Furthermore, we found the radius of the Hansen sphere. The results obtained are shown in Table 4.
  • Preparation Example 2 (Hansen sphere of hydrogenated polystyrene (PS-H)) Resin 1 was hydrogenated to obtain hydrogenated polystyrene (resin 2). Hydrogenation was performed by the method described in Example 1 below.
  • the solubility of Resin 2 in each of the 21 types of solvents listed in Table 3 was investigated under the same conditions as in Preparation Example 1. After entering the solubility data for 21 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Furthermore, the HSP value and Hansen sphere radius of Resin 2 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 3 (Hansen sphere made of styrene maleic anhydride copolymer (SMA) resin)
  • SMA styrene maleic anhydride copolymer
  • Preparation Example 4 (Hansen sphere of hydrogenated styrene maleic anhydride copolymer (SMA-H) resin) Resin 3 was hydrogenated to obtain a styrene maleic anhydride copolymer (resin 4). Hydrogenation was carried out in the same manner as described in Example 1 below, except that the resin was changed from PS to SMA.
  • the solubility of Resin 4 in each of the 26 types of solvents listed in Table 3 (those indicated by " ⁇ " in Table 3) was investigated under the same conditions as in Preparation Example 1. After entering the solubility data for 26 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Furthermore, the HSP value and Hansen sphere radius of Resin 4 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 5 (Hansen sphere made of methyl methacrylate/styrene copolymer (MS200) resin)
  • the 24 types of solvents listed in Table 3 (indicated by " ⁇ " in Table 3) of methyl methacrylate-styrene copolymer (MS200) resin (resin 5) (manufactured by Toyo Styrene Co., Ltd., MS200) with a weight average molecular weight of 220,000
  • the solubility of each of these compounds was examined under the same conditions as in Preparation Example 1. After entering the solubility data for 24 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Furthermore, the HSP value and Hansen sphere radius of Resin 5 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 6 (Hansen sphere of hydrogenated methyl methacrylate/styrene copolymer (MS200-H) resin) Resin 5 was hydrogenated to obtain a hydrogenated methyl methacrylate/styrene copolymer (resin 6). Hydrogenation was carried out by the method described in Example 2 below, except that the resin was changed from PS to MS200.
  • the solubility of Resin 6 in each of the 24 types of solvents listed in Table 3 (those indicated by " ⁇ " in Table 3) was investigated under the same conditions as in Preparation Example 1. After entering the solubility data for 24 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Furthermore, the HSP value and Hansen sphere radius of Resin 6 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 7 (Hansen sphere made of methyl methacrylate/styrene copolymer (MS750) resin)
  • the 23 types of solvents listed in Table 3 (indicated by " ⁇ " in Table 3) of methyl methacrylate-styrene copolymer (MS750) resin (Resin 7) (manufactured by Toyo Styrene Co., Ltd., MS750) with a weight average molecular weight of 120,000
  • the solubility of each of these compounds was examined under the same conditions as in Preparation Example 1. After entering the solubility data for 23 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Further, the HSP value and Hansen sphere radius of Resin 7 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 8 (Hansen sphere of hydrogenated methyl methacrylate/styrene copolymer (MS750-H) resin) Resin 7 was hydrogenated to obtain a hydrogenated methyl methacrylate/styrene copolymer (resin 8). Hydrogenation was carried out by the method described in Comparative Example 1 below, except that the resin was changed from PS to MS750.
  • the solubility of Resin 8 in each of the 23 types of solvents listed in Table 3 (indicated by " ⁇ " in Table 3) was investigated under the same conditions as in Preparation Example 1. After entering the solubility data for 23 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Furthermore, the HSP value and Hansen sphere radius of Resin 8 were determined under the same conditions as Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 9 (Hansen sphere made of styrene-butadiene copolymer (SBC) resin)
  • SBC styrene-butadiene copolymer
  • Resin 9 styrene-butadiene copolymer resin
  • the solubility of each was investigated under the same conditions as Preparation Example 1. After entering the solubility data for 15 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Further, the HSP value and Hansen sphere radius of Resin 9 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 10 (Hansen sphere made of hydrogenated styrene-butadiene copolymer (SBC-H) resin) Resin 9 was hydrogenated to obtain a hydrogenated styrene-butadiene copolymer (resin 10). Hydrogenation was carried out by the method described in Example 2 below, except that the resin was changed from PS to SBC.
  • the solubility of Resin 10 in each of the 15 types of solvents listed in Table 3 (those indicated by " ⁇ " in Table 3) was investigated under the same conditions as in Preparation Example 1. After entering the solubility data for 15 solvents, the Hansen sphere stopped moving, so the solubility test was terminated. Furthermore, the HSP value and Hansen sphere radius of Resin 10 were determined under the same conditions as in Preparation Example 1. The results obtained are shown in Table 4.
  • Preparation Example 11 Preparation of mixed solvent to dissolve resin before and after hydrogenation Methyl isobutyrate (IBM) and cyclohexane (CH) were mixed at 11 levels so that the weight ratio of IBM:CH was 10:0 to 0:10.
  • the HSP at each ratio was calculated when the solvent and mixed solvent were prepared, and the results are shown in Table 5.
  • HSP at each ratio was determined from the volume average value of each solvent.
  • Whether or not a certain solvent fits into the Hansen sphere of a certain resin is determined by the Hansen solubility parameter (HSP) value (coordinates in three-dimensional space specified by ⁇ d, ⁇ p, and ⁇ h) of the Hansen sphere of the resin. It is judged by whether it exists inside the sphere. That is, the determination is made based on whether the Hansen solubility parameter (HSP) value of the solvent is within the radius of the Hansen sphere from the center coordinates of the Hansen sphere of the resin.
  • the inter-coordinate distance between the coordinates in a three-dimensional space specified by ⁇ d, ⁇ p, and ⁇ h of a certain solvent and the center coordinates of the Hansen sphere can be determined by the following formula.
  • Inter-coordinate distance ⁇ (( ⁇ d R - ⁇ d s ) 2 + ( ⁇ p R - ⁇ p s ) 2 + ( ⁇ h R - ⁇ h s ) 2 )
  • ⁇ d R represents the ⁇ d value of the resin
  • ⁇ p R represents the ⁇ p value of the resin
  • ⁇ h R represents the ⁇ h value of the resin
  • ⁇ d s represents the ⁇ d value of the solvent
  • ⁇ p s represents the ⁇ p value of the solvent
  • ⁇ h s represents the ⁇ h value of the solvent.
  • the Hansen solubility parameter (HSP) value (coordinates in three-dimensional space specified by ⁇ d, ⁇ p, and ⁇ h) of the solvent is It can be said that it exists inside the Hansen sphere.
  • HSP Hansen solubility parameter
  • Example 1 0.5 part of polystyrene (resin 1) (manufactured by PS Japan Co., Ltd., GPPS HF-77) with a weight average molecular weight of 200,000 was mixed with methyl isobutyrate (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter referred to as IBM) (specific gravity: 0.89 , ⁇ d: 15.6, ⁇ p: 5.1, ⁇ h: 6.1), and then the water content was reduced by distillation from the polymer solution (0.5 part was distilled off by azeotropy). went.
  • polystyrene (resin 1) manufactured by PS Japan Co., Ltd., GPPS HF-77
  • IBM methyl isobutyrate
  • Suclean 150 manufactured by Maruzen Petrochemical Co., Ltd., C9C10 alkylcyclohexane mixture, hereinafter referred to as SWC
  • SWC C9C10 alkylcyclohexane mixture
  • specific gravity 0.79, ⁇ d: 15.6, ⁇ p: 0.1, ⁇ h: 0
  • HSP of SWC is an estimated value based on the HSP of trimethylcyclohexane and tetramethylcyclohexane.
  • the raw material polymer solution was charged into a reaction vessel equipped with a stirring device together with 0.10 parts of 5.0% by weight Pd/ZrO 2 , and a hydrogenation reaction was carried out for 24 hours under the conditions of a hydrogen pressure of 9 MPa and a temperature of 180°C.
  • the catalyst was removed by filtration under a hydrogen atmosphere, IBM/SWC was distilled off under heating, and the reaction solution was concentrated to a polymer concentration of 43% by weight.
  • This concentrated liquid was introduced into a devolatilizing extruder equipped with a vent port under a nitrogen atmosphere to devolatilize volatile components, and the strands were cut to obtain pellets.
  • the nuclear hydrogenation rate of this nuclear hydrogenated polymer was 99.5%, the weight average molecular weight Mw was 140,000, and the Tgm was 136°C.
  • Example 2 After 0.5 part of Resin 1 was dissolved in 2.75 parts of IBM, the water content was reduced by distillation (0.5 part was distilled off by azeotropy) from the polymer solution. 2.25 parts of cyclohexane (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter referred to as CH) (specific gravity: 0.78, ⁇ d: 16.8, ⁇ p: 0, ⁇ h: 0.2) was added to the polymer solution after distillation and dehydration. A hydrogenation reaction raw material polymer solution was prepared. The obtained hydrogenation reaction raw material polymer solution was subjected to a hydrogenation reaction under the same conditions as in Example 1 for 10 hours.
  • CH cyclohexane
  • the catalyst was removed from the polymer solution by filtration, and then the reaction solution was dropped into excess isopropanol to precipitate the resin.
  • Dry resin powder was obtained by drying the obtained resin powder under reduced pressure.
  • the resulting resin had a nuclear hydrogenation rate of 99.7%, a weight average molecular weight of 154,000, and a Tgm of 136°C.
  • Example 3 A hydrogenation reaction raw material polymer solution was prepared in the same manner as in Example 2. A hydrogenation reaction was carried out for 24 hours under the same conditions as in Example 1, except that the obtained raw material polymer solution was charged into a reaction vessel equipped with a stirring device together with 0.05 part of 5.0% by weight Pd/ZrO 2 . The resulting resin had a nuclear hydrogenation rate of 98.9%, a weight average molecular weight of 153,000, and a Tgm of 136°C.
  • Example 4 After dissolving 0.5 parts of resin 1 in 2.75 parts of butyl acetate (specific gravity: 0.88, ⁇ d: 15.8, ⁇ p: 5.1, ⁇ h: 6.1), distillation operation was performed from the polymer solution. (0.5 part was distilled off by azeotropy) to reduce the water content. A hydrogenation reaction was carried out for 24 hours under the same conditions as in Example 2 except that 2.25 parts of Swaclean 150 was added to the polymer solution after distillation and dehydration. The resulting resin had a nuclear hydrogenation rate of 98.8%, a weight average molecular weight of 153,000, and a Tgm of 136°C.
  • Example 5 After dissolving 0.5 parts of resin 1 in 1.85 parts of methyl propionate (specific gravity: 0.92, ⁇ d: 15.5, ⁇ p: 6.5, ⁇ h: 7.7), the polymer solution was distilled. The water content was reduced by operation (distilling 0.5 part by azeotropy). The same procedure as in Example 4 was carried out except that 3.15 parts of Swaclean 150 was added to the polymer solution after distillation and dehydration. The resulting resin had a nuclear hydrogenation rate of 98.9%, a weight average molecular weight of 153,000, and a Tgm of 136°C.
  • Example 6 A hydrogenation reaction was carried out for 24 hours under the same conditions as in Example 2 except that 0.5 part of Resin 1 was changed to 0.5 part of Resin 3.
  • the resulting resin had a nuclear hydrogenation rate of 97.8%, a weight average molecular weight of 142,000, and a Tgm of 140°C.
  • Example 7 Example 6 was carried out in the same manner as in Example 6, except that 0.5 part of Resin 3 was dissolved in 2.75 parts of butyl acetate. The resulting resin had a nuclear hydrogenation rate of 97.8%, a weight average molecular weight of 142,000, and a Tgm of 139°C.
  • Example 8 After 0.5 part of resin 5 was dissolved in 4.10 parts of IBM, the water content was reduced by distillation (0.5 part was distilled off by azeotropy) from the polymer solution. A hydrogenation reaction was carried out for 24 hours under the same conditions as in Example 2, except that 0.81 part of CH was added to the polymer solution after distillation and dehydration. The resulting resin had a nuclear hydrogenation rate of 99.7%, a weight average molecular weight of 202,000, and a Tgm of 131°C.
  • Example 9 A hydrogenation reaction was carried out for 24 hours under the same conditions as in Example 2 except that 0.5 part of Resin 1 was changed to 0.5 part of Resin 9.
  • the resulting resin had a nuclear hydrogenation rate of 99.8%, a weight average molecular weight of 104,000, and a Tgm of 142°C.
  • Example 10 After 0.5 part of Resin 9 was dissolved in 3.65 parts of IBM, the water content was reduced by distillation (0.5 part was distilled off by azeotropy) from the polymer solution. The same procedure as in Example 8 was carried out except that 1.35 parts of CH was added to the polymer solution after distillation and dehydration. The resulting resin had a nuclear hydrogenation rate of 99.7%, a weight average molecular weight of 104,000, and a Tgm of 142°C.
  • Example 11 After 0.5 part of Resin 9 was dissolved in 2.75 parts of IBM, the water content was reduced by distillation (0.5 part was distilled off by azeotropy) from the polymer solution. The same procedure as in Example 1 was carried out except that 2.25 parts of CH was added to the polymer solution after distillation and dehydration. After the reaction, catalyst removal and concentration operations were performed in the same manner as in Example 1, and the concentrated liquid was introduced into a devolatilizing extruder equipped with a vent port under a nitrogen atmosphere to devolatilize volatile components, and the strands were cut to form pellets. Obtained. The resulting resin had a nuclear hydrogenation rate of 98.5%, a weight average molecular weight of 104,000, and a Tgm of 142°C.
  • SMA styrene maleic anhydride copolymer
  • the resulting resin had a nuclear hydrogenation rate of 98.4%, a weight average molecular weight of 120,000, and a Tgm of 149°C.
  • the HSP of the resin 11 before hydrogenation is ⁇ d: 19.3, ⁇ p: 5.2, and ⁇ h: 3.5, respectively
  • the HSP of the resin 11 after hydrogenation is ⁇ d: 18.3, ⁇ p: 4.4, ⁇ h: 1.6.
  • the Hansen sphere radius of the resin 11 before hydrogenation was 8.5
  • the Hansen sphere radius of the resin 11 after hydrogenation was 4.1.
  • Example 13 After 0.5 part of Resin 11 was dissolved in 3.65 parts of butyl acetate, the water content was reduced by distillation (0.5 part was distilled off by azeotropy) from the polymer solution. The same procedure as in Example 11 was carried out except that 1.35 parts of CH 2 was added to the polymer solution after distillation and dehydration. The resulting resin had a nuclear hydrogenation rate of 98.5%, a weight average molecular weight of 120,000, and a Tgm of 149°C.
  • Comparative example 1 After dissolving 0.5 parts of polystyrene (resin 1) (manufactured by PS Japan Co., Ltd., GPPS HF-77) with a weight average molecular weight of 200,000 in 5.0 parts of IBM, 0.5 parts of polystyrene (resin 1) with a weight average molecular weight of 200,000 was dissolved in 5.0 parts of IBM, and then 0.5 parts was distilled from the polymer solution (by azeotropy). The water content was reduced by distillation). The hydrogenation reaction raw material polymer solution obtained after distillation and dehydration was subjected to a hydrogenation reaction under the same conditions as in Example 1. After the reaction, the interior of the reaction vessel was made safe and then opened to confirm that the hydrogenated polymer had precipitated in the IBM solvent and was difficult to separate from the catalyst. The nuclear hydrogenation rate of the obtained resin was 97.5%.
  • Comparative example 2 A hydrogenation reaction was carried out for 16 hours under the same conditions as in Comparative Example 1 except that 0.5 parts of Resin 1 was dissolved in 5.0 parts of CH. After the reaction, the interior of the reaction vessel was made safe and then opened to confirm that the hydrogenated polymer had precipitated in the solvent and was difficult to separate from the catalyst. The nuclear hydrogenation rate of the obtained resin was 98.3%.
  • Comparative example 3 Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that 0.5 part of Resin 3 was dissolved in 5.0 parts of methyl propionate. After the reaction, the interior of the reaction vessel was made safe and then opened to confirm that the hydrogenated polymer had precipitated in the methyl propionate solvent, making it difficult to separate it from the catalyst. The nuclear hydrogenation rate of the obtained resin was 14.2%.
  • Comparative example 4 Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that 0.5 parts of Resin 5 was dissolved in 5.0 parts of IBM. After the reaction, the interior of the reaction vessel was made safe and then opened to confirm that the hydrogenated polymer had precipitated in the IBM solvent and was difficult to separate from the catalyst. The nuclear hydrogenation rate of the obtained resin was 99.6%.
  • Comparative example 5 Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that 0.5 part of Resin 11 was dissolved in 5.0 parts of IBM. After the reaction, the interior of the reaction vessel was made safe and then opened to confirm that the hydrogenated polymer had precipitated in the IBM solvent and was difficult to separate from the catalyst. The nuclear hydrogenation rate of the obtained resin was 93.8%.
  • Reference example 1 After dissolving 0.5 parts of polystyrene (resin 1) (manufactured by PS Japan Co., Ltd., GPPS HF-77) with a weight average molecular weight of 200,000 in 5.0 parts of cyclohexane, the polymer solution was distilled (azeotropically distilled to 0.5 parts). The water content was reduced by partial distillation. The obtained hydrogenation reaction raw material polymer solution after distillation dehydration was subjected to a hydrogenation reaction under the same conditions as in Example 1. The nuclear hydrogenation rate of the obtained resin was 99.7%. However, since only cyclohexane (ignition point: 268°C) was used as a solvent, volatile components were not devolatilized using a devolatilizing extruder.
  • resin 1 polystyrene (resin 1) (manufactured by PS Japan Co., Ltd., GPPS HF-77) with a weight average molecular weight of 200,000 in 5.0 parts of cycl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

水素化前後の重合体を良好に溶解する溶媒を用いた水素化方法を提供する。本発明によれば、芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、混合溶媒のハンセンの溶解度パラメーター(HSP)値が、1)水素化前の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入り、かつ、2)水素化後の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入る、水素化重合体の製造方法が提供される。

Description

複数溶媒を用いた水素化重合体の製造方法
 本発明は、複数溶媒を用いた水素化重合体の製造方法等に関する。特に、本発明は芳香族ビニル化合物系重合体の芳香環を水素化(核水素化)することによる水素化重合体の製造方法に関する。
 近年、アクリル樹脂、メタクリル樹脂、スチレン系樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂をはじめとする重合体は様々な用途で用いられており、特にその光学的特徴により、光学レンズ、光ディスク基板等の光学材料としての需要が多い。この種の光学材料においては高い透明性のみならず、高耐熱性、低吸水性、機械物性等のバランスに優れた高度な性能が要求されている。
 そのような要求に応えるため、重合体の様々な改良が行われてきており、そのような改良の一例として芳香族重合体の水素化(核水素化)が挙げられる。
 例えば、特許5540703号公報(特許文献1)は芳香族ビニル化合物/(メタ)アクリレート系共重合体の水素化に関するものであり、特開2014-77044号公報(特許文献2)は硫黄不含原料を用いた核水素化ポリマーの製造方法に関するものである。また、特許2890748号公報(特許文献3)は水素化スチレン系樹脂の製造方法に関するものであり、特表2001-527095号公報(特許文献4)、特表2002-511501号公報(特許文献5)および特表2002-511508号公報(特許文献6)は芳香族ポリマーの水素化方法に関するものである。特許4224655号公報(特許文献7)および特許5007688号公報(特許文献8)は、脂環式炭化水素系共重合体または脂環構造含有重合体に関するものであり、これらの重合体が芳香族重合体の水素化によって得ることができることを記載している。
特許5540703号公報 特開2014-77044号公報 特許2890748号公報 特表2001-527095号公報 特表2002-511501号公報 特表2002-511508号公報 特許4224655号公報 特許5007688号公報
 しかしながら、芳香族重合体の水素化において、水素化後に得られる水素化重合体が反応溶媒に対して溶解性が低いために沈澱が生じることがあり、その沈殿を除去する工程を含む分生産性が低下する可能性があった。
 上記のような状況から、水素化前後の重合体を良好に溶解する溶媒を用いた水素化方法が求められている。
 本発明者らは、鋭意検討を行った結果、芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法において、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒を用い、各溶媒またはそれらの混合溶媒のハンセンの溶解度パラメーター(HSP)を調整することで、本発明に至った。
 すなわち本発明は、次に示す製造方法などを提供するものである。
[1]
 芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、
 前記芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、
 前記溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、
 前記混合溶媒のハンセンの溶解度パラメーター(HSP)値が、
1)水素化前の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入り、かつ、
2)水素化後の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入る、
水素化重合体の製造方法。
[2]
 芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、
 前記芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、
 前記溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、
 前記少なくとも1種の第1の溶媒のハンセンの溶解度パラメーター(HSP)がそれぞれ下記のとおりであり、
δd:10~20(好ましくは11~19、より好ましくは12~18、さらにより好ましくは14~17)
δp:1~15(好ましくは2~12、より好ましくは3~10、さらにより好ましくは4~8)
δh:1~25(好ましくは2~20、より好ましくは4~15、さらにより好ましくは5~10)
 前記少なくとも1種の第2の溶媒のHSPがそれぞれ下記のとおりであり、
δd:10~20(好ましくは11~19、より好ましくは12~18、さらにより好ましくは14~18)
δp:0~1未満(好ましくは0~0.9、より好ましくは0~0.6、さらにより好ましくは0~0.4)
δh:0~2(好ましくは0~1.5、より好ましくは0~1、さらにより好ましくは0~0.8)
 前記少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1(好ましくは2:8~9:1、より好ましくは2:8~8:2)であり、
 前記第1の溶媒がエステル系溶媒、芳香族系溶媒、単環式モノテルペンおよびジオキサンからなる群から選択される溶媒である、水素化重合体の製造方法。
[3]
 前記少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1(好ましくは2:8~9:1、より好ましくは2:8~8:2)である、[1]に記載の製造方法。
[4]
 水素化前の前記芳香族ビニル化合物系重合体のハンセン球と水素化後の前記芳香族ビニル化合物系重合体のハンセン球を得ることをさらに含む、[1]または[3]に記載の製造方法。
[5]
 前記混合溶媒のHSPがそれぞれ下記のとおり
δd:15.6~16.7
δp: 0.3~4.7
δh: 0.5~5.8
である、[1]~[4]のいずれかに記載の製造方法。
[6]
 前記少なくとも1種の第1の溶媒が、酢酸メチル、酢酸エチル、酢酸ブチル、イソ酪酸メチル、プロピオン酸メチルおよびプロピレングリコールモノメチルエーテルアセテートからなる群から選択される1種以上を含み、好ましくは酢酸ブチル、イソ酪酸メチルおよびプロピオン酸メチルからなる群から選択される1種以上を含む、[1]~[5]のいずれかに記載の製造方法。
[7]
 前記少なくとも1種の第2の溶媒が、飽和炭化水素系溶媒および単環式モノテルペンの水素添加物からなる群から選択される1種以上を含む、[1]~[6]のいずれかに記載の製造方法。
[8]
 前記少なくとも1種の第2の溶媒が、シクロヘキサン、C7~C15モノアルキルシクロヘキサン、C8~C15ジアルキルシクロヘキサン、C9~C15トリアルキルシクロヘキサン、C10~C15テトラアルキルシクロヘキサン、シクロオクタン、C9~C15モノアルキルシクロオクタン、C10~C15ジアルキルシクロオクタン、C11~C15トリアルキルシクロオクタン、C12~C15テトラアルキルシクロオクタン、n-オクタンおよびn-デカンからなる群から選択される1種以上を含み、好ましくはシクロヘキサン、C7~C15モノアルキルシクロヘキサン、C8~C15ジアルキルシクロヘキサン、C9~C15トリアルキルシクロヘキサンおよびC10~C15テトラアルキルシクロヘキサンからなる群から選択される1種以上を含む、[1]~[7]のいずれかに記載の製造方法。
[9]
 前記少なくとも1種の第2の溶媒が、C9アルキルシクロヘキサンおよび/またはC10アルキルシクロヘキサンを含む、[1]~[7]のいずれかに記載の製造方法。
[10]
 前記第1の溶媒の沸点が50℃以上、かつ、発火点が400℃以上である、[1]~[9]のいずれかに記載の製造方法。
[11]
 前記第2の溶媒の沸点が80℃以上、かつ、発火点が230℃以上である、[1]~[10]のいずれかに記載の製造方法。
[12]
 前記芳香族ビニル化合物系重合体が、スチレンとブタジエンの共重合体、スチレンとイソプレンの共重合体、スチレンとメチルメタクリレートの共重合体、スチレンと無水マレイン酸の共重合体、スチレンと酢酸ビニルの共重合体およびポリスチレンからなる群から選択される一種以上を含む、[1]~[11]のいずれかに記載の製造方法。
[13]
 水素化反応後に脱揮押出によって重合体の樹脂を形成することを含む、[1]~[12]のいずれかに記載の製造方法。
[14]
 水素化反応と脱揮押出の間に濃縮工程をさらに含む、[1]~[13]のいずれかに記載の製造方法。
[15]
 前記水素化触媒が、パラジウム、白金、ルテニウム、ロジウムおよびニッケルからなる群から選択される1種以上を担持した固体触媒である、[1]~[14]のいずれかに記載の製造方法。
 本発明の一態様によれば、水素化前後の重合体を良好に溶解する溶媒を用いた芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法が提供される。本発明の好ましい態様によれば、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒を用いることで、水素化前と水素化後の両方の重合体が溶媒中に溶解した状態が維持されるため、水素化後の沈殿除去工程が不要であり、生産性が向上する。また、本発明の他の好ましい態様によれば、水素化前と水素化後の両方の重合体が溶媒中に溶解した状態が維持されるため、反応速度を向上させることができる。
 以下、本発明を詳細に説明する。以下の実施の形態は、本発明を説明するための例示であり、本発明をこの実施の形態のみに限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、様々な形態で実施をすることができる。
[水素化重合体の製造方法]
 本発明の第1の態様によれば、芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、
 前記芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、
 前記溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、
 前記混合溶媒のハンセンの溶解度パラメーター(HSP)値が、
1)水素化前の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入り、かつ、
2)水素化後の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入る、
水素化重合体の製造方法が提供される。
 本発明の第2の態様によれば、芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、
 前記芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、
 前記溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、
 前記少なくとも1種の第1の溶媒のハンセンの溶解度パラメーター(HSP)がそれぞれ下記のとおりであり、
δd:10~20
δp:1~15
δh:1~25
 前記少なくとも1種の第2の溶媒のHSPがそれぞれ下記のとおりであり、
δd:10~20
δp:0~1未満
δh:0~2
 前記少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1であり、
 前記第1の溶媒がエステル系溶媒、芳香族系溶媒、単環式モノテルペンおよびジオキサンからなる群から選択される溶媒である、水素化重合体の製造方法が提供される。
 以下に本発明の第1および第2の態様について具体的な実施形態を説明するが、特に明記が無い限り下記の実施形態は第1および第2の態様のいずれにも該当するものである。
<芳香族ビニル化合物系重合体>
 本発明のいくつかの実施形態による製造方法は、芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法に関するものである。本明細書において、「芳香族ビニル化合物系重合体」とは、芳香族ビニル化合物由来の単位を構成単位として含む重合体を意味する。したがって芳香族ビニル化合物系重合体は、1種の芳香族ビニル化合物由来の単位からなる重合体(ホモポリマー)であってもよく、2種以上の芳香族ビニル化合物由来の単位を構成単位として含むか、または1種以上の芳香族ビニル化合物由来の単位と芳香族ビニル化合物以外の1種以上の化合物由来の単位とを構成単位として含む共重合体(コポリマー)であってもよい。芳香族ビニル化合物由来の単位とは、芳香族ビニル化合物中のビニル基のC=C二重結合が重合によって開いた状態の構造を有する単位を意味する。
(モノマー)
 本発明のいくつかの実施形態による製造方法に用いる芳香族ビニル化合物系重合体としては、特に限定されないが、芳香族ビニル化合物モノマーとして、スチレン;α-メチルスチレン、α-エチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、1,3-ジメチルスチレン、p-tert-ブチルスチレンなどのアルキルスチレン(アルキル基部位の炭素数は、好ましくは1~5である。);p-ヒドロキシスチレン;p-メトキシスチレン、m-ブトキシスチレン、p-ブトキシスチレンなどのアルコキシスチレン(アルコキシ基部位の炭素数は、好ましくは1~5である。);o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,4-ジクロロスチレン、2,6-ジクロロスチレンなどのハロゲン化スチレン;ビニルナフタレンおよびビニルアントラセンなどを用いた重合体が挙げられる。これらのモノマーは1種のみを使用してもよく、複数種を組み合わせて使用してもよい。本発明の好ましい実施形態において、芳香族ビニル化合物モノマーとしてスチレンが使用される。
 本発明のいくつかの実施形態による製造方法に用いる芳香族ビニル化合物系重合体は、芳香族ビニル化合物モノマーに加え、芳香族ビニル化合物以外の化合物のモノマーを用いた重合体である。そのような、芳香族ビニル化合物以外の化合物のモノマーとしては、(メタ)アクリレート、ジエンおよび酸無水物などが挙げられる。(メタ)アクリレートとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシルなどの(メタ)アクリル酸アルキルエステル(アルキル基部位の炭素数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5である。);(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸シクロアルキルエステルまたは環式飽和炭化水素エステル(いずれも、環形成炭素数は、好ましくは5~20、より好ましくは5~10である。);(メタ)アクリル酸(2-ヒドロキシエチル)、(メタ)アクリル酸(2-ヒドロキシプロピル)、(メタ)アクリル酸(2-ヒドロキシ-2-メチルプロピル)などの(メタ)アクリル酸ヒドロキシアルキルエステル(アルキル基部位の炭素数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5である。);(メタ)アクリル酸(2-メトキシエチル)、(メタ)アクリル酸(2-エトキシエチル)などの(メタ)アクリル酸アルコキシアルキルエステル(アルキル基部位の炭素数は、好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5である。また、アルコキシ基部位の炭素数は、好ましくは1~10、より好ましくは1~5、さらに好ましくは1または2である。);(メタ)アクリル酸フェニルなどの(メタ)アクリル酸フェニルエステル;(メタ)アクリル酸ベンジルなどの(メタ)アクリル酸アリールアルキルエステル(アリール基部位の炭素数は、好ましくは6~10である。また、アルキル基部位の炭素数は、好ましくは1~5である。);2-(メタ)アクロイルオキシエチルホスホリルコリンなどのリン脂質構造を有する(メタ)アクリル酸エステルなどを挙げることができる。(メタ)アクリレートは1種を単独で使用してもよいし、2種以上を併用してもよい。(メタ)アクリレートとしては、(メタ)アクリル酸メチルが好ましい。
 ジエンとしては、例えば、1,2-ブタジエン、1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,2-ヘキサジエン、1,3-ヘキサジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,3-ヘプタジエン、1,3-オクタジエン、1,3-ノナジエン、1,3-デカジエン、イソプレン、シクロペンタジエン、1,3-シクロヘキサジエンおよび1,4-シクロヘキサジエンなどが挙げられる。ジエンとしては1種を単独で使用してもよいし、2種以上を併用してもよい。ジエンとしては、共役ジエン、例えば1,3-ブタジエンまたはイソプレンが好ましい。
 酸無水物としては、マレイン酸、イタコン酸、シトラコン酸およびアコニット酸などの酸無水物が挙げられ、その中でも無水マレイン酸が好ましい。
 本発明のいくつかの実施形態による製造方法に用いる芳香族ビニル化合物系重合体は、本発明の効果を損なわない限りにおいて、上記以外のモノマー成分を含んでいてもよい。例えば、上記以外のモノマー成分を全モノマー成分に対してモル比で0~10%または0~5%含んでいてもよい。
 本発明の好ましい実施形態において、芳香族ビニル化合物系重合体が、スチレンとブタジエン(1,2-ブタジエン、1,3-ブタジエンまたはこれらの組み合わせ)の共重合体、スチレンとイソプレンの共重合体、スチレンとメチルメタクリレートの共重合体、スチレンと無水マレイン酸の共重合体、スチレンと酢酸ビニルの共重合体およびポリスチレンからなる群から選択される一種以上を含む。本発明の他の好ましい実施形態において、芳香族ビニル化合物系重合体が、スチレンとブタジエン(1,2-ブタジエン、1,3-ブタジエンまたはこれらの組み合わせ)の共重合体、スチレンとイソプレンの共重合体、スチレンとメチルメタクリレートの共重合体、スチレンと無水マレイン酸の共重合体、スチレンと酢酸ビニルの共重合体およびポリスチレンからなる群から選択される一種の重合体である。これらの重合体は、後述のように各モノマーから重合してもよく、市販のものを用いてもよい。例えば、ポリスチレンとしては、PSジャパン製の「GPPS HF-77」などを用いることができる。
(芳香族ビニル化合物系重合体の製造方法)
 芳香族ビニル化合物系重合体は種々のモノマーを重合させることで製造することができる。1種または複数種の芳香族ビニル化合物を重合させる方法や、芳香族ビニル化合物を芳香族ビニル化合物モノマー以外のモノマーと共重合させる方法には特に制限は無く、ラジカル重合法、イオン重合法、配位重合法などの公知の方法を用いることができる。工業的にはラジカル重合法が簡便であり好ましい。ラジカル重合法としては、塊状重合法、溶液重合法、乳化重合法、懸濁重合法など、公知の方法を適宜選択することができる。例えば、塊状重合法や溶液重合法の例としては、モノマー成分、連鎖移動剤および重合開始剤(並びに溶液重合法の場合にはさらに溶媒)を混合したモノマー組成物を完全混合槽に連続的に供給し、100~180℃で重合する連続重合法などがある。溶液重合法で使用する溶媒としては、例えばトルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒;酢酸エチルなどのエステル系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒;メタノールやイソプロパノールなどのアルコール系溶媒などが挙げられる。なお、重合後の反応混合液を完全混合槽から抜き出してから脱揮押出機や減圧脱揮槽に導入し、揮発分(モノマー成分および溶媒など)を脱揮することにより、芳香族ビニル化合物の重合体や芳香族ビニル化合物を芳香族ビニル化合物モノマー以外のモノマーの共重合体(これらを総称して単に「芳香族ビニル化合物系重合体」とも称する)を得ることができる。
 芳香族ビニル化合物系重合体の構成単位においては、芳香族ビニル化合物由来の構成単位(Bモル)に対する芳香族ビニル化合物モノマー以外のモノマーの構成単位(Aモル)のモル比(A/B)は、0~4であることが好ましく、0~3であることがより好ましく、0~2であることがさらに好ましい。
 本発明のいくつかの実施形態に用いる芳香族ビニル化合物系重合体の重量平均分子量としては、10,000~1,000,000が好ましく、50,000~700,000がより好ましく、100,000~500,000がさらに好ましく、130,000~250,000が特に好ましい。10,000未満または1,000,000を超える重合体も本発明のいくつかの実施形態に係る方法によって核水素化することができるが、重量平均分子量が上記範囲内である共重合体の方が、機械強度が十分であり、実用性に耐え得ること、および粘度が適度であり、取扱いが容易であることより好ましい。なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、テトラヒドロフランを溶媒としてポリスチレン換算で求めた値である。
<水素化>
 本明細書において、「芳香族ビニル化合物系重合体の水素化」とは、芳香族ビニル化合物系重合体の芳香環に水素を付加する反応を意味し、例えば、ベンゼン環がシクロヘキサンに還元される。このような水素化は、核水素化や水添とも称される。
(溶媒)
  本発明のいくつかの実施形態で用いる芳香族ビニル化合物系重合体は適当な溶媒に溶解して水素化を行なうが、溶媒選定の際に考慮する点として、水素化前後の重合体(すなわち、芳香族ポリマーおよび水素化ポリマーの両方)の溶解性が良好であり、かつ、水素化される部位を持たないものが好ましい。さらに、反応が速やかに行なわれる溶媒であるとより好ましい。これは、水素化の速度が向上することで反応時間が短くなり、分子量の低下といったポリマーへのダメージを少なくすることが可能となるためである。また、水素化後の溶媒成分の脱揮を想定した場合、溶媒の発火点が高いことが好ましい。脱揮押出工程を行うことが出来れば、効率的に水素化重合体を製造することが出来る点で好ましい。
 本発明のいくつかの実施形態における製造方法で用いる溶媒は、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒である。ここで、第1の溶媒は水素化前の重合体の溶解性が高いものが好ましく、第2の溶媒は水素化後の重合体の溶解性が高いものが好ましい。しかしながら、重合体の溶媒への溶解性は予測が容易ではなく、このような2種類の溶媒を混合したからといって必ずしも水素化反応前後の重合体の両方が良好に溶解する溶媒が得られるわけではない。そのような状況の中、本発明者らは、予想外にも混合溶媒のハンセンの溶解度パラメーター(HSP)値が、1)水素化前の芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入り、かつ、2)水素化後の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入る溶媒を用いることで、水素化反応前後の重合体の両方が良好に溶解する溶媒が得られることを知得した(第1の態様の発明)。また、本発明者らは、少なくとも1種の第1の溶媒のハンセンの溶解度パラメーター(HSP)がそれぞれ、δd:10~20、δp:1~15およびδh:1~25であり、少なくとも1種の第2の溶媒のHSPがそれぞれ、δd:10~20、δp:0~1未満およびδh:0~2であり、少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1であり、かつ、第1の溶媒がエステル系溶媒、芳香族系溶媒、単環式モノテルペンおよびジオキサンからなる群から選択される溶媒を用いることで、水素化反応前後の重合体の両方が良好に溶解する溶媒が得られることを知得した(第2の態様の発明)。ハンセンの溶解度パラメーターおよびハンセン球について、以下に具体的に説明する。
<ハンセンの溶解度パラメーター>
 SP値(溶解度パラメーター、または溶解度因子)は、分子集団の分子間力の強さを意味する値である。SP値が近いものほど混じり合い、濡れやすく、接合するという特徴がある。SP値にはHildebrandのSP値(δt)に加えて、HansenのSP値(HSP値:London分散力項δd、双極子間力項δp、および水素結合力項δh)があり、以下の関係をもつ。
               δt2=δd2+δp2+δh2
 本明細書において、溶媒および溶質のHSPは、専用のソフトウェア(HSPiP)に記載のものを用いることができる。データベースに記載のないものについては、Y-MB法で算出することができる。なお、本明細書において、「ハンセンの溶解度パラメーター(HSP)値」と示した場合は、上記の3成分のハンセンの溶解度パラメーターから導き出されるδd軸、δp軸およびδh軸からなる三次元空間上の座標を意味する。
 本発明において用いるものを含む、各種溶媒のHSPを以下の表1および表2に示す。なお、表の備考欄に「計算値」と記載されているものはY-MB法によって求めた値を意味し、専用のソフトウェア(HSPiP 5th Edition version5.2.05)により計算することができる。
 混合溶媒のHSPは各溶媒の体積平均値から求めることができる。すなわち、溶媒Aと溶媒Bの体積比が9:1の混合溶媒のδdABを求める場合、溶媒AとBのδdをそれぞれδdAとδdBとして、「δdAB=0.9×δdA+0.1×δdB」との計算式から算出する。混合溶媒の混合比が既に判明している場合は、その混合比を用いて算出することができる。混合比が不明である場合は、ガスクロマトグラフ質量分析(GC)の内部標準法によって各溶媒の質量比を測定し、各溶媒の比重から体積比を求めることで得ることができる。
(ハンセン球(Hansen球))
 ハンセン球は、樹脂を複数の溶媒(10~30種程度の溶媒)に溶解させて溶解度を調査し、得られた結果をδd軸、δp軸およびδh軸からなる三次元空間(ハンセン空間)上にプロットすることで得ることができる球のことである。各樹脂のハンセンの溶解度パラメーター(HSP)値(δTot)はそのようにして得られたハンセン球の中心座標から得られる。具体的には、本明細書の実施例に記載の方法を用いてハンセン球を得ることができる。
 樹脂のハンセン球を得るための溶媒として、アセトン、アセトニトリル、1-ブタノール、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、シクロヘキサノール、ジアセトンアルコール、ジエチレングリコール、DMF、DMSO、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、N-メチル-2-ピロリドン、ジクロロメタン、デカリン、スチレン、エチレンジクロリド、IBM、トルエン、m-キシレン、無水酢酸、アニリン、ニトロベンゼン、炭酸プロピレン、シクロヘキサノン、シクロヘキシルアミン、2-メチル-1,3-ジオキソラン、ピペリジンおよびシクロヘキセンからなる群から選択される10種以上、好ましくは12種以上、より好ましくは14種以上の溶媒を用いることができる。本発明のいくつかの実施形態において、上記の溶媒の中からアセトン、アセトニトリル、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、DMF、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、IBMおよびトルエンを少なくとも含む14種以上の溶媒を用いることができる。また、本発明のいくつかの実施形態において、アセトン、アセトニトリル、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、DMF、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、IBM、トルエンおよびm-キシレンからなる15種の溶媒を用いて水素化前後のSBC樹脂のハンセン球を得ることができる。また、本発明のいくつかの実施形態において、アセトン、アセトニトリル、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、シクロヘキサノール、DMF、DMSO、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、N-メチル-2-ピロリドン、ジクロロメタン、デカリン、スチレン、エチレンジクロリド、IBMおよびトルエンからなる21種の溶媒を用いて水素化前後のPS樹脂のハンセン球を得ることができる。本発明のいくつかの実施形態において、アセトン、アセトニトリル、1-ブタノール、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、シクロヘキサノール、ジアセトンアルコール、ジエチレングリコール、DMF、DMSO、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、N-メチル-2-ピロリドン、ジクロロメタン、デカリン、スチレン、エチレンジクロリド、IBM、トルエン、m-キシレン、無水酢酸、アニリン、ニトロベンゼン、炭酸プロピレン、シクロヘキシルアミン、2-メチル-1,3-ジオキソラン、ピペリジンおよびシクロヘキセンからなる33種の溶媒を用いてSMA樹脂のハンセン球を得ることができる。本発明のいくつかの実施形態において、アセトン、アセトニトリル、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、シクロヘキサノール、DMF、DMSO、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、N-メチル-2-ピロリドン、ジクロロメタン、デカリン、スチレン、エチレンジクロリド、IBM、トルエン、m-キシレン、シクロヘキシルアミン、2-メチル-1,3-ジオキソラン、ピペリジンおよびシクロヘキセンからなる26種の溶媒を用いて水素化後のSMA樹脂のハンセン球を得ることができる。本発明のいくつかの実施形態において、アセトン、アセトニトリル、1-ブタノール、酢酸ブチル、γブチロラクトン、クロロホルム、シクロヘキサン、ジアセトンアルコール、DMF、1,4-ジオキサン、エタノール、酢酸エチル、MEK、MIBK、N-メチル-2-ピロリドン、ジクロロメタン、デカリン、エチレンジクロリド、IBM、トルエン、m-キシレン、ニトロベンゼンおよびシクロヘキサノンからなる23種の溶媒か、これにスチレンを加えた24種の溶媒を用いて水素化前後のMS樹脂のハンセン球を得ることができる。
 上記のように複数の溶媒に対する溶解度を専用のソフトウェア(HSPiP)に入力していくことで、徐々にハンセン球が形成されていく。そして10~30種程度の溶媒のデータを入力していくことで徐々にハンセン球の形が固定されていくため、δd、δp、δh及びハンセン球の半径の値が±0.1以上変動しなくなるまで溶解度試験を行うことで、再現性のある結果が得られる。
 本発明の第1の態様のいくつかの実施形態において、混合溶媒のハンセンの溶解度パラメーター(HSP)値が、1)水素化前の芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入り、かつ、2)水素化後の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入る溶媒を用いることで、芳香族ビニル化合物系重合体の芳香環を水素化する際に、水素化前と水素化後の両方の重合体が溶媒中に溶解した状態が維持されるため、水素化後の沈殿発生が抑えられ、生産性も向上させることができる。さらに、水素化前と水素化後の両方の重合体が溶媒中に溶解した状態が維持されるため、反応速度を向上させることができる。なお、ある溶媒のHSP値が樹脂のハンセン球の中に入るか否かは、実施例に記載の方法で判定することができる。
 ハンセン球は公知の情報が入手可能であればそれを用いてもよい。あるいは、10~30種程度の溶媒に対する溶解度を専用のソフトウェア(HSPiP)に入力して得た上で水素化反応を行ってもよい。本発明の第1の態様のいくつかの実施形態において、水素化前の芳香族ビニル化合物系重合体のハンセン球と水素化後の芳香族ビニル化合物系重合体のハンセン球を得ることをさらに含む。
 本発明の第2の態様のいくつかの実施形態において、少なくとも1種の第1の溶媒のハンセンの溶解度パラメーター(HSP)がそれぞれ下記のとおりであり、
δd:10~20
δp:1~15
δh:1~25
 少なくとも1種の第2の溶媒のHSPがそれぞれ下記のとおりであり、
δd:10~20
δp:0~1未満
δh:0~2
 少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1であり、
 前記第1の溶媒がエステル系溶媒、芳香族系溶媒および、単環式モノテルペンおよびジオキサンからなる群から選択される溶媒である。これにより、芳香族ビニル化合物系重合体の芳香環を水素化する際に、水素化前と水素化後の両方の重合体が溶媒中に溶解した状態が維持されるため、水素化後の沈殿発生が抑えられ、生産性も向上させることができる。さらに、水素化前と水素化後の両方の重合体が溶媒中に溶解した状態が維持されるため、反応速度を向上させることができる。
 本発明のいくつかの実施形態において、少なくとも1種の第1の溶媒のハンセンの溶解度パラメーター(HSP)は、δd:11~19、δp:2~12およびδh:2~20であり、δd:12~18、δp:3~10およびδh:4~15であることが好ましく、δd:14~17、δp:4~8およびδh:5~10であることがより好ましい。本発明のいくつかの実施形態において、少なくとも1種の第2の溶媒のハンセンの溶解度パラメーター(HSP)は、δd:11~19、δp:0~0.9およびδh:0~1.5であり、δd:12~18、δp:0~0.6およびδh:0~1であることが好ましく、δd:14~18、δp:0~0.4およびδh:0~0.8であることがより好ましい。
 本発明のいくつかの実施形態において、少なくとも1種の第1の溶媒の少なくとも1種の第2の溶媒に対する重量比(第1:第2)は1:9~9:1であり、好ましくは1:9~8:2、1:9~7:3、1:9~6:4、1:9~5:5、2:8~9:1、2:8~8:2、2:8~7:3、2:8~6:4、2:8~5:5、3:7~8:2、2:8~7:3、2:8~6:4、2:8~5:5、3:7~9:1、3:7~8:2、3:7~7:3、3:7~6:4または3:7~5:5であってもよい。芳香族ビニル化合物系重合体がポリスチレンの場合、第1:第2は1:9~5:5が好ましい。芳香族ビニル化合物系重合体がスチレンとメチルメタクリレートの共重合体の場合、第1:第2は3:7~7:3が好ましい。芳香族ビニル化合物系重合体がスチレンと無水マレイン酸の共重合体の場合、第1:第2は3:7~9:1が好ましい。芳香族ビニル化合物系重合体がスチレンとブタジエンまたはイソプレンとの共重合体の場合、第1:第2は1:9~7:3が好ましい。
 本発明のいくつかの実施形態において、HSPがそれぞれ、δd:15.6~16.7、δp:0.3~4.7およびδh:0.5~5.8である混合溶媒を用いることができる。本発明の他の実施形態において、HSPがそれぞれ、δd:16.2~16.7、δp:0.5~2.4およびδh:0.7~3.0である混合溶媒を用いることができる。本発明の他の実施形態において、HSPがそれぞれ、δd:16.0~16.5、δp:1.4~3.4およびδh:1.8~4.2である混合溶媒を用いることができる。本発明の他の実施形態において、HSPがそれぞれ、δd:15.6~16.5、δp:1.4~4.5およびδh:1.8~5.4である混合溶媒を用いることができる。本発明の他の実施形態において、HSPがそれぞれ、δd:16.0~16.7、δp:0.5~3.4およびδh:0.7~4.2である混合溶媒を用いることができる。
 本発明のいくつかの実施形態において、少なくとも1種の第1の溶媒が、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、イソ酪酸メチルおよびプロピレングリコールモノメチルエーテルアセテートからなる群から選択される1種以上を含む。
 本発明のいくつかの実施形態において、少なくとも1種の第2の溶媒が、飽和炭化水素系溶媒および単環式モノテルペンの水素添加物からなる群から選択される1種以上を含む。本発明の好ましい実施形態において、少なくとも1種の第2の溶媒が、シクロヘキサン、C7~C15モノアルキルシクロヘキサン、C8~C15ジアルキルシクロヘキサン、C9~C15トリアルキルシクロヘキサン、C10~C15テトラアルキルシクロヘキサン、シクロオクタン、C9~C15モノアルキルシクロオクタン、C10~C15ジアルキルシクロオクタン、C11~C15トリアルキルシクロオクタン、C12~C15テトラアルキルシクロオクタン、n-オクタンおよびn-デカンからなる群から選択される1種以上を含む。本発明の他の好ましい実施形態において、少なくとも1種の第2の溶媒が、C9アルキルシクロヘキサンおよび/またはC10アルキルシクロヘキサンを含む。C9アルキルシクロヘキサンおよび/またはC10アルキルシクロヘキサンを含む溶媒としては例えば丸善石油化学株式会社製のスワクリーン150を用いることができる。
 本発明のいくつかの実施形態において、第1の溶媒として、沸点が50℃以上、かつ、発火点が400℃以上であるものを用いることができる。発火点は好ましくは410℃以上、より好ましくは420℃以上、さらに好ましくは430℃以上である。また、沸点の上限と発火点の上限は特に限定されないが、例えば、沸点は150℃以下であり、発火点は470℃以下であることが好ましい。高い沸点および発火点を有する溶媒を用いることで、脱揮押出工程を行うことができ効率的である。そのような溶媒としては、イソ酪酸メチル、酢酸エチルおよび酢酸ブチル、プロピオン酸メチルが挙げられる。
 本発明のいくつかの実施形態において、第2の溶媒の沸点が80℃以上、かつ、発火点が230℃以上である。発火点は好ましくは250℃以上、より好ましくは280℃以上、さらに好ましくは300℃以上である。また、沸点の上限と発火点の上限は特に限定されないが、例えば、沸点は150℃以下であり、発火点は470℃以下であることが好ましい。高い沸点および発火点を有する溶媒を用いることで、脱揮押出工程を行うことができ効率的である。そのような溶媒として、シクロヘキサン、シクロペンタン、メチルシクロヘキサン、n-ヘプタン、2,2,4-トリメチルペンタン、シクロオクタン、1,3ジメチルシクロヘキサン、エチルシクロヘキサン、1,2,4-トリメチルシクロヘキサン、デカリン(cis,trans-デカヒドロナフタレン)およびスワクリーン150などが挙げられる。なお、第1の溶媒と第2の溶媒を含む混合溶媒の発火点のおおよその値は、各溶媒の発火点の値の加重平均によって求めることができる。即ち、発火点x℃の第1の溶媒をw重量部、発火点x℃の第2の溶媒をw重量部の割合で混合したとき、混合溶媒の発火点x℃は以下の式により推算できる。
      x=x×w/(w+w)+x×w/(w+w
(水素化触媒)
 本発明のいくつかの実施形態において用いられる水素化触媒の有効成分としては、接触水素化能を有する金属元素(以下、「特定金属成分」という。)が挙げられる。特定金属成分としては、例えば、ニッケル、コバルト、鉄、ルテニウム、ロジウム、パラジウム、白金、イリジウム、銅、銀、モリブデン、タングステン、クロムおよびレニウムが挙げられる。特定金属成分は、水素化能を示すのであれば、金属の状態であっても、陽イオンの状態であってもよい。これらの中では、一般的には、金属状態の方が水素化能が強く、還元雰囲気下で安定であるため、金属の状態であることが好ましい。特定金属成分は、1種を単独でまたは2種以上を組み合わせて、固体触媒に含有された状態で用いることができる。特定金属成分を2種以上用いる場合、それらの組み合わせ、混合比率および形態について特に制限はなく、個々の金属の混合物、あるいは、合金または金属間化合物のような形態で用いることができる。本発明のいくつかの実施形態において、水素化触媒は、パラジウム、白金、ルテニウム、ロジウムおよびニッケルからなる群から選択される1種以上を担持した固体触媒であることが好ましく、特に好ましくはパラジウムを担持した固体触媒である。
 これらの特定金属成分の原料に特に制限はなく、従来公知の方法により触媒を調製する際に原料として用いられるものを採用できる。そのような原料としては、例えば、それぞれの金属元素の水酸化物、酸化物、フッ化物、塩化物、臭化物、ヨウ化物、硫酸塩、硝酸塩、酢酸塩、アンミン錯体およびカルボニル錯体が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いられる。
 本発明のいくつかの実施形態において用いられる水素化触媒は、金属成分として特定金属成分を単独でまたは接触水素化能を有しない金属と組み合わせて用いることもできる。その例としては、特定金属成分の金属微粉末で構成されるパラジウムブラックおよび白金ブラックのような触媒、並びに、特定金属成分とアルミニウムと少量の添加物とから合金を形成し、その後にアルミニウムの全部または一部をリーチングさせることにより調製されるスポンジ触媒が挙げられる。
 また、触媒の活性、選択性および物性等を一層向上させるために、アルカリ金属元素としてリチウム、ナトリウム、カリウム、ルビジウムおよびセシウム、アルカリ土類金属元素としてマグネシウム、カルシウム、ストロンチウムおよびバリウム、ハロゲン元素としてフッ素、塩素、臭素およびヨウ素、補助添加元素として水銀、鉛、ビスマス、錫、テルルおよびアンチモンからなる群より選ばれる1種または2種以上の元素の化合物(以下、特定添加成分と略す。)を、前述の特定金属成分と共に触媒に添加して用いることもできる。
 これらの特定添加成分の原料に特に制限はなく、従来公知の方法により触媒を調製する際に原料として用いられたものを採用できる。そのような原料としては、例えば、それぞれの金属元素の水酸化物、酸化物、フッ化物、塩化物、臭化物、ヨウ化物、硫酸塩、硝酸塩、酢酸塩およびアンミン錯体が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いられる。また、特定添加成分の添加方法、および特定添加成分と特定金属成分との比率についても特に制限はない。
 本発明のいくつかの実施形態において用いられる水素化触媒において、特定金属成分に非金属物質を組み合わせて用いることもできる。非金属物質としては、例えば、主に、元素単体、炭化物、窒化物、酸化物、水酸化物、硫酸塩、炭酸塩およびリン酸塩が挙げられる(以下、「特定非金属成分」という。)。その具体例としては、例えば、グラファイト、ダイアモンド、活性炭、炭化ケイ素、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化ホウ素、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化ランタン、酸化セリウム、酸化イットリウム、酸化ニオブ、ケイ酸マグネシウム、ケイ酸カルシウム、アルミン酸マグネシウム、アルミン酸カルシウム、酸化亜鉛、酸化クロム、アルミノシリケート、アルミノシリコホスフェート、アルミノホスフェート、ボロホスフェート、リン酸マグネシウム、リン酸カルシウム、リン酸ストロンチウム、水酸化アパタイト(ヒドロキシリン酸カルシウム)、塩化アパタイト、フッ化アパタイト、硫酸カルシウム、硫酸バリウムおよび炭酸バリウムが挙げられる。特定非金属成分は1種を単独でまたは2種以上を組み合わせて用いられる。2種以上を組み合わせて用いる場合の組み合わせや混合比率、形態については特に制限はなく、個々の化合物の混合物、複合化合物、または複塩のような形態で用いることができる。
 工業的に用いる観点から、簡便で廉価に得られる特定非金属成分が好ましい。そのような特定非金属成分として好ましいのは、ジルコニウム化合物、アルミニウム化合物およびアパタイト化合物であり、より好ましくはジルコニウム化合物およびアパタイト化合物である。それらの中でも特に好ましいものは、酸化ジルコニウムおよび水酸化アパタイト(ヒドロキシリン酸カルシウム)である。さらには、上述の特定添加成分を用いて、これらの特定非金属成分の一部または全部を、修飾したりイオン交換したりしたものも用いることができる。
 また、特定非金属成分として、特定金属成分の炭化物、窒化物および酸化物なども用いることが可能である。ただし、これらを水素還元雰囲気下に晒すと、一部が金属にまで還元されるため、このような場合には、一部が特定金属成分として、残りが非金属成分として用いられることになる。このような場合の例としては、酸化ニッケル、酸化鉄、酸化コバルト、酸化モリブデン、酸化タングステンおよび酸化クロムなどの酸化物が挙げられる。
 本発明のいくつかの実施形態において用いられる水素化触媒として、特定金属成分を単独で用いてもよく、特定金属成分と特定非金属成分とを組み合わせて用いてもよく、場合によっては、これらに加えて特定添加成分を含んでもよい。本発明のいくつかの実施形態において用いられる水素化触媒の製造方法は特に制限はなく、従来公知の方法を用いることができる。その例として、特定金属成分の原料化合物を、特定非金属成分上に含浸する方法(担持法)、特定金属成分の原料化合物と特定非金属成分の原料化合物とを適当な溶媒に共に溶解させた後にアルカリ化合物などを用いて同時に析出させる方法(共沈法)、特定金属成分の原料化合物と特定非金属成分を適当な比率で混合均一化する方法(混練法)などが挙げられる。
 水素化触媒の組成または触媒調製法の都合によっては、特定金属成分を陽イオンの状態で調製した後に還元処理して、金属の状態とすることもできる。そのための還元方法および還元剤としては、従来公知のものを用いることができ、特に制限はない。還元剤としては、例えば、水素ガス、一酸化炭素ガス、アンモニア、ヒドラジン、ホスフィンおよびシランのような還元性無機ガス、メタノール、ホルムアルデヒドおよびギ酸のような低級含酸素化合物、水素化ホウ素ナトリウムおよび水素化リチウムアルミニウムのような水素化物が挙げられる。これらの還元剤が存在する気相中または液相中で、陽イオンの状態の特定金属成分を還元処理することにより、特定金属成分は金属の状態に変換される。この時の還元処理条件は、特定金属成分および還元剤の種類や分量などにより、好適な条件に設定することができる。この還元処理の操作は、本発明のいくつかの実施形態による製造方法における水素化還元の前に、別途、触媒還元装置を用いて行ってもよく、本発明のいくつかの実施形態による製造方法に用いる反応器中で反応開始前または反応操作と同時に行ってもよい。
 また、本発明のいくつかの実施形態において用いられる水素化触媒の金属含有量および形状にも特に制限はない。その形状は粉末状であっても成形したものであってもよく、成形した場合の形状および成形法についても特に制限はない。例えば、球状品、打錠成形品および押出成型品、並びにそれらを適当な大きさに破砕した形状を、適宜選択して用いることができる。
 特に好ましい特定金属成分はパラジウムであり、これを用いた触媒について以下に詳細に述べる。特定金属成分がパラジウムである場合、パラジウムが貴金属であることを考慮すると、その使用量は少なく、かつパラジウムが有効に利用されることが経済的に望まれる。そのため、パラジウムを触媒担体に分散させて担持して用いることが好ましい。
 パラジウムの原料となるパラジウム化合物としては、水または有機溶媒に可溶なパラジウム化合物が好適である。そのようなパラジウム化合物としては、例えば、塩化パラジウム、テトラクロロパラジウム塩、テトラアンミンパラジウム塩、硝酸パラジウムおよび酢酸パラジウムが挙げられる。これらの中では、水または有機溶媒に対する溶解度が高く、工業的に利用しやすいので、塩化パラジウムが好ましい。塩化パラジウムは、塩化ナトリウム水溶液、希塩酸、アンモニア水等に溶解して用いることができる。
 パラジウム化合物の溶液を触媒担体に添加するか、あるいは、触媒担体をパラジウム化合物の溶液に浸漬するなどして、触媒担体上にパラジウムまたはパラジウム化合物を固定化する。固定化の方法は担体への吸着、溶媒留去による晶析、パラジウム化合物と作用する還元性物質および/または塩基性物質を用いた析出沈着のような方法が一般的であり、適宜好適な方法が用いられる。このような方法により調製される水素化触媒におけるパラジウムの含有量は、金属パラジウム換算で、水素化触媒の全量に対して0.01~20質量%であると好ましく、より好ましくは0.1~10質量%であり、更に好ましくは0.5~5質量%である。パラジウムの含有量が0.01質量%以上であることにより、より十分な水素化速度が得られ、芳香族ビニル化合物系重合体の転化率が更に高くなる。一方、パラジウムの含有量が20質量%以下であると、パラジウムの水素化触媒における分散効率が更に高くなるので、より有効にパラジウムを用いることができる。
 パラジウム化合物や触媒調製法の都合によっては、パラジウムは金属の状態ではなく、陽イオンの状態で担体に担持される場合がある。その場合、担持された陽イオンのパラジウム(例えば、パラジウム化合物の状態で存在)を金属パラジウムへ還元してから用いることもできる。そのための還元方法および還元剤は、従来公知のものを採用することができ、特に制限はない。還元剤としては、例えば、水素ガス、一酸化炭素ガス、アンモニアおよびヒドラジンのような還元性無機ガス、メタノール、ホルムアルデヒドおよびギ酸のような低級含酸素化合物、エチレン、プロピレン、ベンゼンおよびトルエンのような炭化水素化合物、水素化ホウ素ナトリウムおよび水素化リチウムアルミニウムのような水素化物が挙げられる。陽イオンのパラジウムを還元剤と気相中または液相中で接触させることにより、容易に金属パラジウムに還元することができる。この時の還元処理条件は、還元剤の種類および分量などにより好適な条件に設定することができる。この還元処理の操作は、本実施形態の製造方法における水素化還元の前に、別途、触媒還元装置を用いて行ってもよく、本実施形態の製造方法に用いる反応器中で反応開始前または反応操作と同時に行ってもよい。
 特定金属成分と共に用いられる特定非金属成分として、好ましいものの1種はジルコニウム化合物であり、これを含む水素化触媒について、以下に詳細に述べる。本発明のいくつかの実施形態において用いられるジルコニウム化合物は、好ましくは、酸化ジルコニウム、水酸化ジルコニウム、炭酸ジルコニウム、ジルコン酸アルカリ土類塩、ジルコン酸希土類塩およびジルコンからなる群より選ばれる1種を単独でまたは2種以上を組み合わせたものである。
 特に好ましいジルコニウム化合物は酸化ジルコニウムであり、その製法に特に制限はない。例えば、一般的な方法として知られているのは、可溶性ジルコニウム塩の水溶液を塩基性物質で分解して、水酸化ジルコニウムまたは炭酸ジルコニウムとし、その後に熱分解するなどして調製する方法である。このときのジルコニウム化合物の原料に制限はなく、例えば、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、塩化ジルコニウム、硫酸ジルコニウム、ジルコニウムテトラアルコキシド、酢酸ジルコニウムおよびジルコニウムアセチルアセトナートが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いられる。また、分解のために用いられる塩基性物質としては、例えば、アンモニア、アルキルアミン類、炭酸アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、水酸化マグネシム、水酸化カルシウム、水酸化ランタン、水酸化イットリウムおよび水酸化セリウムが挙げられ、これらは1種を単独でまたは2種以上を組み合わせて用いられる。
 特定非金属成分として酸化ジルコニウムを用いる場合、その物性や形状などに特に制限はない。また、酸化ジルコニウムの純度にも、特に制限はなく、市販されている汎用から高純度品のレベルの純度のものを、適宜用いることができる。
 ジルコニウム化合物に代表される特定非金属成分を触媒担体として用いる際、これらの担体の形状や粒径、気孔率などの物性値や金属成分を担持する方法などについても、特に制限はない。反応方式や条件に好適な形状、担体物性、担持方法などを適宜選択して用いることができる。
(他の反応条件)
 核水素化反応時の溶液中における共重合体(芳香族ポリマー+核水素化ポリマー)の濃度は通常1~50重量%であり、好ましくは3~30重量%、さらに好ましくは5~25重量%である。共重合体の濃度の上限を所定の値以下とすることで、反応速度の低下や溶液粘性の上昇による取扱いの不便さなどを回避できる。または、濃度の下限値を所定の値以上とすることが生産性および/または経済性の面から好ましい。
  本発明のいくつかの実施形態による製造方法における水素化(水素添加)反応は、芳香族ビニル化合物系重合体を溶媒に溶解させた原料液を用いて行うが、懸濁床、または固定床での反応いずれでもよく、バッチ式反応や連続流通式反応など公知の手法を用いることができる。懸濁床で反応を行なう場合、担体粒径は通常0.1~1,000μmの範囲であり、好ましくは1~500μm、さらに好ましくは5~200μmである。粒径を所定の大きさ以上とすることで水素化反応後の触媒分離が容易となり、粒径の上限を所定の値以下とすることでと反応速度が低下することを防止し得る。
 好ましい反応条件は、60~250℃の温度、3~30MPaの水素圧、3~30時間の反応時間である。反応温度を所定の温度以上とすることで反応速度が速くなり、反応温度の上限を所定の温度以下とすることで重合体の分解や溶媒の水素化分解といった副反応を抑制し得る。また、水素圧を所定の値以上とすることで反応速度を早めることができるが、経済的な観点から上限は30MPa程度が好ましい。
 該水素化反応後のポリマー溶液から水素添加触媒および揮発成分(溶媒等)を分離することにより核水素化ポリマーを得ることができる。触媒の分離は、濾過または遠心分離などの公知の手法で行なうことができる。着色、機械物性への影響などを考慮すると、ポリマー内の残留触媒金属濃度は出来るだけ少なくすることが望ましく、10ppm以下が好ましく、さらに好ましくは1ppm以下である。
 触媒を分離後、得られた核水素化ポリマー溶液から溶媒等の揮発成分を分離してポリマーを精製する方法としては、1)ポリマー溶液から溶媒を連続的に除去して濃縮液とし、加熱しながら溶融状態で押し出すことによりペレット化する方法(脱揮押出法ともいう)、2)ポリマー溶液から溶媒を蒸発させて塊状物を得た後ペレット化する方法、3)ポリマー溶液を貧溶媒に加える、またはポリマー溶液に貧溶媒を加えて沈殿させた後ペレット化する方法、4)熱水と接触させて塊状物を得た後ペレット化する方法などの公知の方法を用いることができる。本発明の好ましい実施形態による製造方法は、水素化反応後に脱揮押出によって重合体の樹脂を形成することを含む。脱揮押出は、例えば、重合槽で得ら得た重合液を120℃~180℃に維持ないし昇温した状態で、ベント口を備えた脱揮押出機に導入して揮発分を除去することで行うことができる。本発明の他の好ましい実施形態による製造方法は、水素化反応と脱揮押出の間に濃縮工程をさらに含む。
 触媒の分離および揮発成分の分離を行う際には、不活性ガスまたは非酸化性ガス雰囲気下で操作することが望ましい。不活性ガスおよび非酸化性ガスとしては水素や窒素、ヘリウム、アルゴンが利用できるが、工業的には安価な窒素か反応ガスである水素の雰囲気下で操作することが望ましい。
 本発明のいくつかの実施形態による方法によって得られる水素化ポリマーの水素化率(核水素化率)は、特に限定されないが、好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上である。水素化率は、実施例に記載のように、水素化反応前後のUVスペクトル測定により求めることができる。
 本発明のいくつかの実施形態による方法によって得られる水素化ポリマーのガラス転移点(Tgm)は特に限定されないが、好ましくは70~180℃、より好ましくは100~160℃である。なお、本明細書において、ガラス転移点は示差操式作熱量分析(DSC)により求めた値である。
 本発明のいくつかの実施形態による方法によって得られる水素化ポリマーは、例えば適宜、酸化防止剤、着色剤、離型剤、界面活性剤、抗菌剤等の添加剤などと混合し、光学材料組成物とすることができる。得られる光学材料組成物は熱可塑性を有しているため、押し出し成型や射出成型、シート成型体の二次加工成型など、種々の熱成型によって精密かつ経済的に光学物品を製造することが可能である。光学物品の具体的な用途としては、各種導光板や導光体、ディスプレイ前面パネル、プラスチックレンズ基板、光学フィルター、光学フィルム、照明カバー、照明看板などが挙げられる。
 以下、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。なお、樹脂の評価方法は次の通りである。
(1)核水素化率は水素化反応前後のUVスペクトル測定により求めた。すなわち、テトラヒドロフラン(THF)を溶媒として樹脂を溶解し、石英セルを用いて260nmの吸収スペクトルを測定し、核水素化反応前の共重合樹脂を用いて検量することで、未水添芳香環の割合を計算した。測定に用いた機器はThermo社製紫外可視分光光度計「GENESYS 10S」であるが、同等の装置であれば特に限定されない。
(2)重量平均分子量(Mw)はゲルパーミテーションクロマトグラフィー(GPC)により求めた。検出器は示差屈折率(RI)検出器を使用し、溶媒としてTHFを用い、標準ポリスチレンで検量した。測定に用いた機器は島津サイエンス社製高速液体クロマトグラフィーシステム「Elite LaChrom」であるが、同等の装置であれば特に限定されない。
(3)樹脂のガラス転移点(Tgm)は示差操式作熱量分析(DSC)により求めた。測定に用いた機器はSII社(現:日立ハイテクサイエンス社)製「DSC7020」を用いたが、同等の装置であれば特に限定されない。
(4)混合溶媒のHSPの取得方法
 各種溶媒のHSPは、専用のソフトウェア(HSPiP)に収録のデータから得た。ソフトウェアに収録されていないものはY-MB法により算出した値を用いた。混合溶媒のHSPは各溶媒の体積平均値から求めた。すなわち、溶媒Aと溶媒Bの体積比が9:1の混合溶媒のロンドン分散力によるd成分(δdAB)を求める場合、溶媒AとBのδdをそれぞれδdAとδdBとして、「δdAB=0.9×δdA+0.1×δdB」との計算式から算出した。
(5)水素化前後の樹脂のハンセンの溶解度パラメーター(HSP)値およびハンセン球の算出
 水素化前後の樹脂のハンセン球は、樹脂を複数の溶媒(10~30種程度の溶媒)に溶解させて溶解度を調査し、得られた結果をδd軸、δp軸およびδh軸からなる三次元空間(ハンセン空間)上にプロットすることで得た。各樹脂のハンセンの溶解度パラメーター(HSP)値はそのようにして得られたハンセン球の中心座標から得た。具体的な手法については以下の調製例に示す。
調製例1(ポリスチレン(PS)のハンセン球)
 重量平均分子量20万のポリスチレン(樹脂1)(PSジャパン社製、GPPS HF-77)の、表3に記載の21種の溶媒(表3において「〇」で示したもの)それぞれに対する溶解度を調べた。その際、樹脂1の濃度が各溶媒に対して10重量%となるようにペレット状の樹脂1を各溶媒に室温で添加し、撹拌した後に溶解したか否かを判断した。各溶媒には加熱も冷却も行わなかった。判断基準はペナルティ制で行い、「完全溶解」で1点、「均一に分散」で2点、「ペレットの溶け残りあり」で3点、「白化・沈殿あり」で4点のペナルティを与えた。樹脂が不溶であった場合は0点とし、溶解したサンプルと区別した。すなわち、不溶の場合を0点と区別した後、それ以外の溶解したサンプルに関して、完全溶解に近づくほどペナルティ点が小さくなるように傾斜付けを行った。
 これらの21種の溶媒について得られた溶解度のデータを専用のソフトウェア(HSPiP)に入力し、ハンセン空間上で各溶媒のHSP値をプロットし、樹脂1を溶解した溶媒の点を包含するハンセン球を求めた。各溶媒のHSP値は専用のソフトウェア(HSPiP)に収録のデータから入手したものを用いた。21種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。そのハンセン球の中心座標を樹脂1のHSP値とした。さらに、そのハンセン球の半径を求めた。得られた結果を表4に示す。
調製例2(水素化ポリスチレン(PS-H)のハンセン球)
 樹脂1を水素化して水素化ポリスチレン(樹脂2)を得た。水素化は後述の実施例1に記載の方法で行った。表3に記載の21種の溶媒(表3において「〇」で示したもの)それぞれに対する樹脂2の溶解度を、調製例1と同様の条件で調べた。21種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂2のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例3(スチレン無水マレイン酸共重合体(SMA)樹脂のハンセン球)
 重量平均分子量16万のスチレン無水マレイン酸共重合体(SMA)樹脂(樹脂3)(POLYSCOPE POLYMERS B.V.社製、XIBOND120)の、表3に記載の33種の溶媒(表3において「〇」で示したもの)それぞれに対する溶解度を、調製例1と同様の条件で調べた。33種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂3のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例4(水素化スチレン無水マレイン酸共重合体(SMA-H)樹脂のハンセン球)
 樹脂3を水素化してスチレン無水マレイン酸共重合体(樹脂4)を得た。水素化は樹脂をPSからSMAに変更した以外は後述の実施例1に記載の方法で行った。表3に記載の26種の溶媒(表3において「〇」で示したもの)それぞれに対する樹脂4の溶解度を、調製例1と同様の条件で調べた。26種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂4のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例5(メチルメタクリレート・スチレン共重合体(MS200)樹脂のハンセン球)
 重量平均分子量22万のメチルメタクリレート・スチレン共重合体(MS200)樹脂(樹脂5)(トーヨースチレン社製、MS200)の、表3に記載の24種の溶媒(表3において「〇」で示したもの)それぞれに対する溶解度を、調製例1と同様の条件で調べた。24種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂5のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例6(水素化メチルメタクリレート・スチレン共重合体(MS200-H)樹脂のハンセン球)
 樹脂5を水素化して水素化メチルメタクリレート・スチレン共重合体(樹脂6)を得た。水素化は樹脂をPSからMS200に変更した以外は後述の実施例2に記載の方法で行った。表3に記載の24種の溶媒(表3において「〇」で示したもの)それぞれに対する樹脂6の溶解度を、調製例1と同様の条件で調べた。24種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂6のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例7(メチルメタクリレート・スチレン共重合体(MS750)樹脂のハンセン球)
 重量平均分子量12万のメチルメタクリレート・スチレン共重合体(MS750)樹脂(樹脂7)(トーヨースチレン社製、MS750)の、表3に記載の23種の溶媒(表3において「〇」で示したもの)それぞれに対する溶解度を、調製例1と同様の条件で調べた。23種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂7のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例8(水素化メチルメタクリレート・スチレン共重合体(MS750-H)樹脂のハンセン球)
 樹脂7を水素化して水素化メチルメタクリレート・スチレン共重合体(樹脂8)を得た。水素化は樹脂をPSからMS750に変更した以外は後述の比較例1に記載の方法で行った。表3に記載の23種の溶媒(表3において「〇」で示したもの)それぞれに対する樹脂8の溶解度を、調製例1と同様の条件で調べた。23種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂8のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例9(スチレン・ブタジエン共重合体(SBC)樹脂のハンセン球)
 重量平均分子量13万のスチレン・ブタジエン共重合体(SBC)樹脂(樹脂9)(デンカ社製、クリアレン530L)の、表3に記載の15種の溶媒(表3において「〇」で示したもの)それぞれに対する溶解度を、調製例1と同様の条件で調べた。15種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂9のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例10(水素化スチレン・ブタジエン共重合体(SBC-H)樹脂のハンセン球)
 樹脂9を水素化して水素化スチレン・ブタジエン共重合体(樹脂10)を得た。水素化は樹脂をPSからSBCに変更した以外は後述の実施例2に記載の方法で行った。表3に記載の15種の溶媒(表3において「〇」で示したもの)それぞれに対する樹脂10の溶解度を、調製例1と同様の条件で調べた。15種の溶媒の溶解度データを入力したところでハンセン球が動かなくなったため、溶解度テストを終了した。また、調製例1と同様の条件で樹脂10のHSP値とハンセン球の半径を求めた。得られた結果を表4に示す。
調製例11:水素化前後の樹脂を溶解する混合溶媒の調製
 イソ酪酸メチル(IBM)とシクロヘキサン(CH)を、IBM:CHの重量比が10:0~0:10となるように11水準の溶媒および混合溶媒を調製した場合の、各比率におけるHSPを計算し、結果を表5に示した。各比率におけるHSPは各溶媒の体積平均値から求めた。すなわち、IBMとCHの重量比が9:1の混合溶媒のδdは、それぞれの溶媒の比重(IBM:0.89、CH:0.778)から体積比(10.1:1.3)を算出した上で、以下の計算式から算出した。
δd=15.6×10.1/(10.1+1.3)+16.8×1.3/(10.1+1.3)≒15.7 
 ある溶媒がある樹脂のハンセン球の中に入るか否かは、当該溶媒のハンセンの溶解度パラメーター(HSP)値(δd、δpおよびδhによって特定される三次元空間上の座標)が当該樹脂のハンセン球の内部に存在するかによって判断される。すなわち、当該溶媒のハンセンの溶解度パラメーター(HSP)値が当該樹脂のハンセン球の中心座標からハンセン球半径以内に存在するか否かによって判断される。ある溶媒のδd、δpおよびδhによって特定される三次元空間上の座標とハンセン球の中心座標との座標間距離は、以下の式によって求めることができる。
 
座標間距離=√((δdR-δds+(δpR-δps+(δhR-δhs
(式中、
δdRは樹脂のδd値を示し、δpRは樹脂のδp値を示し、δhRは樹脂のδh値を示し、
δdsは溶媒のδd値を示し、δpsは溶媒のδp値を示し、δhsは溶媒のδh値を示す。)
 
 上記の式で得られる座標間距離がハンセン球半径よりも小さい場合は、当該溶媒のハンセンの溶解度パラメーター(HSP)値(δd、δpおよびδhによって特定される三次元空間上の座標)が当該樹脂のハンセン球の内部に存在するといえる。上記の式を用いて得られたイソ酪酸メチルとシクロヘキサンの混合溶媒と各樹脂のハンセン空間における座標間距離の値を、以下の表6に示す。表中、黒枠で囲った範囲はハンセン空間における座標間距離が水素添加前後の両方でハンセン球半径よりも小さかった範囲である。
 
 上記の表から、ポリスチレン(PS、樹脂1)を水素化する際に、IBM:CHの重量比が5:5~1:9であるイソ酪酸メチルとシクロヘキサンの混合溶媒を使用することで、水素化前後において、樹脂が沈殿することなく反応を終えることができると理解できる。この情報を基に、以下の実施例において、混合溶媒を用いて水素化反応を行った。 
実施例1
 重量平均分子量20万のポリスチレン(樹脂1)(PSジャパン社製、GPPS HF-77)0.5部を、イソ酪酸メチル(東京化成工業社製、以下、IBMと称する)(比重:0.89、δd:15.6、δp:5.1、δh:6.1)2.75部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にスワクリーン150(丸善石油化学社製、C9C10のアルキルシクロヘキサン混合物、以下SWCと称する)(比重:0.79、δd:15.6、δp:0.1、δh:0.1)2.25部を加え、水添反応原料ポリマー溶液を調製した。SWCのHSPはトリメチルシクロヘキサンとテトラメチルシクロヘキサンのHSPに基づく推定値である。原料ポリマー溶液を5.0重量%Pd/ZrO 0.10部と共に撹拌装置を備えた反応容器に仕込み、水素圧9MPa、温度180℃の条件にて24時間水素添加反応を行なった。反応後は水素雰囲気のまま濾過操作によって触媒を除去、IBM/SWCを加熱留去して反応液をポリマー濃度が43重量%になるまで濃縮した。この濃縮液を窒素雰囲気下、ベント口を備えた脱揮押出機に導入して揮発分を脱揮、ストランドを切断してペレットを得た。この核水素化ポリマーの核水素化率は99.5%であり、重量平均分子量Mwは14万、Tgmは136℃であった。
実施例2
 0.5部の樹脂1を、IBM2.75部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にシクロヘキサン(東京化成工業社製、以下CHと称する)(比重:0.78、δd:16.8、δp:0、δh:0.2)2.25部を加え、水添反応原料ポリマー溶液を調製した。得られた水添反応原料ポリマー溶液を実施例1と同様の条件で10時間水添反応を行った。水添反応後ポリマー溶液から濾過により触媒を除去したのち、過剰のイソプロパノール中に反応液を滴下して樹脂を析出させた。得られた樹脂粉を減圧乾燥することで乾燥樹脂粉を得た。得られた樹脂の核水素化率は99.7%、重量平均分子量は15.4万、Tgmは136℃であった。
実施例3
 実施例2と同じ手順で水添反応原料ポリマー溶液を調製した。得られた原料ポリマー溶液を5.0重量%Pd/ZrO 0.05部と共に撹拌装置を備えた反応容器に仕込んだ以外は実施例1と同様の条件で24時間水素添加反応を行った。得られた樹脂の核水素化率は98.9%、重量平均分子量は15.3万、Tgmは136℃であった。
実施例4
 0.5部の樹脂1を、酢酸ブチル(比重:0.88、δd:15.8、δp:5.1、δh:6.1)2.75部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にスワクリーン150 2.25部を加えた以外は実施例2と同様の条件で24時間水素添加反応を行った。得られた樹脂の核水素化率は98.8%、重量平均分子量は15.3万、Tgmは136℃であった。
実施例5
 0.5部の樹脂1を、プロピオン酸メチル(比重:0.92、δd:15.5、δp:6.5、δh:7.7)1.85部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にスワクリーン150 3.15部を加えた以外は実施例4と同様に実施した。得られた樹脂の核水素化率は98.9%、重量平均分子量は15.3万、Tgmは136℃であった。
実施例6
 0.5部の樹脂1を0.5部の樹脂3に変更した以外は実施例2と同様の条件で24時間水素添加反応を行った。得られた樹脂の核水素化率は97.8%、重量平均分子量は14.2万、Tgmは140℃であった。
実施例7
 0.5部の樹脂3を、酢酸ブチル2.75部に溶解した以外は実施例6と同様に実施した。得られた樹脂の核水素化率は97.8%、重量平均分子量は14.2万、Tgmは139℃であった。
実施例8
 0.5部の樹脂5を、IBM4.10部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にCH 0.81部を加えた以外は実施例2と同様の条件で24時間水素添加反応を行った。得られた樹脂の核水素化率は99.7%、重量平均分子量は20.2万、Tgmは131℃であった。
実施例9
 0.5部の樹脂1を0.5部の樹脂9に変更した以外は実施例2と同様の条件で24時間水素添加反応を行った。得られた樹脂の核水素化率は99.8%、重量平均分子量は10.4万、Tgmは142℃であった。
実施例10
 0.5部の樹脂9を、IBM3.65部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にCH1.35部を加えた以外は実施例8と同様に実施した。得られた樹脂の核水素化率は99.7%、重量平均分子量は10.4万、Tgmは142℃であった。
実施例11
 0.5部の樹脂9を、IBM2.75部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にCH2.25部を加えた以外は実施例1と同様に実施した。反応後は実施例1と同様に触媒除去、濃縮操作を行い、濃縮液を窒素雰囲気下、ベント口を備えた脱揮押出機に導入して揮発分を脱揮、ストランドを切断してペレットを得た。得られた樹脂の核水素化率は98.5%、重量平均分子量は10.4万、Tgmは142℃であった。
実施例12
 0.5部の重量平均分子量14万のスチレン無水マレイン酸共重合体(SMA)樹脂(樹脂11)(POLYSCOPE POLYMERS B.V.社製、XIBOND140、スチレン/無水マレイン酸モル比=85/15)を、酢酸ブチル3.65部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にスワクリーン150 1.35部を加えた以外は実施例2と同様の条件で24時間水素添加反応を行った。得られた樹脂の核水素化率は98.4%、重量平均分子量は12万、Tgmは149℃であった。なお、水添前の樹脂11のHSPはそれぞれδd:19.3、δp:5.2およびδh:3.5であり、水添後の樹脂11のHSPはそれぞれδd:18.3、δp:4.4、δh:1.6であった。また、水添前の樹脂11のハンセン球半径は8.5であり、水添後の樹脂11のハンセン球半径は4.1であった。
実施例13
 0.5部の樹脂11を、酢酸ブチル3.65部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。蒸留脱水後のポリマー溶液にCH 1.35部を加えた以外は実施例11と同様に実施した。得られた樹脂の核水素化率は98.5%、重量平均分子量は12万、Tgmは149℃であった。
比較例1
 重量平均分子量20万のポリスチレン(樹脂1)(PSジャパン社製、GPPS HF-77)0.5部を、IBM5.0部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。得られた蒸留脱水後の水添反応原料ポリマー溶液を実施例1と同様の条件で水素添加反応を行った。反応後の反応容器内を安全化ののち開放確認すると、水添ポリマーがIBM溶媒中で析出しており、触媒との分離が困難であった。得られた樹脂の核水素化率は97.5%であった。
比較例2
 0.5部の樹脂1をCH5.0部に溶解した以外は比較例1と同様の条件で16時間水素添加反応を行った。反応後の反応容器内を安全化ののち開放確認すると、水添ポリマーが溶媒中で析出しており、触媒との分離が困難であった。得られた樹脂の核水素化率は98.3%であった。
比較例3
 0.5部の樹脂3を、プロピオン酸メチル5.0部に溶解させた以外は比較例1と同様に実施した。反応後の反応容器内を安全化ののち開放確認すると、水添ポリマーがプロピオン酸メチル溶媒中で析出しており、触媒との分離が困難であった。得られた樹脂の核水素化率は14.2%であった。
比較例4
 0.5部の樹脂5を、IBM5.0部に溶解させた以外は比較例1と同様に実施した。反応後の反応容器内を安全化ののち開放確認すると、水添ポリマーがIBM溶媒中で析出しており、触媒との分離が困難であった。得られた樹脂の核水素化率は99.6%であった。
比較例5
 0.5部の樹脂11を、IBM5.0部に溶解させた以外は比較例1と同様に実施した。反応後の反応容器内を安全化ののち開放確認すると、水添ポリマーがIBM溶媒中で析出しており、触媒との分離が困難であった。得られた樹脂の核水素化率は93.8%であった。
参考例1
 重量平均分子量20万のポリスチレン(樹脂1)(PSジャパン社製、GPPS HF-77)0.5部を、シクロヘキサン5.0部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。得られた蒸留脱水後の水添反応原料ポリマー溶液を実施例1と同様の条件で水添反応を行った。得られた樹脂の核水素化率は99.7%であった。しかしながら、シクロヘキサン(発火点:268℃)のみを溶媒として用いていたため、脱揮押出機による揮発分の脱揮は行わなかった。
参考例2
 0.5部の樹脂3を、シクロヘキサン5.0部に溶解したのち、ポリマー溶液から蒸留操作(共沸により0.5部留出)によって水分量の低減を行った。得られた蒸留脱水後の水添反応原料ポリマー溶液を実施例1と同様の条件で63時間水添反応を行った。水添反応後ポリマー溶液から濾過により触媒を除去したのち、過剰のイソプロパノール中に反応液を滴下して樹脂を析出させた。得られた樹脂粉を減圧乾燥することで乾燥樹脂粉を得た。得られた樹脂の核水素化率は98.0%であった。
  

Claims (15)

  1.  芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、
     前記芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、
     前記溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、
     前記混合溶媒のハンセンの溶解度パラメーター(HSP)値が、
    1)水素化前の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入り、かつ、
    2)水素化後の前記芳香族ビニル化合物系重合体のδd軸、δp軸およびδh軸からなる三次元空間上におけるハンセン球の中に入る、
    水素化重合体の製造方法。
  2.  芳香族ビニル化合物系重合体の芳香環を水素化することによる水素化重合体の製造方法であって、
     前記芳香族ビニル化合物系重合体、溶媒および水素化触媒を用いて水素化反応を行うことを含み、
     前記溶媒が、少なくとも1種の第1の溶媒と、少なくとも1種の第2の溶媒とを含む混合溶媒であり、
     前記少なくとも1種の第1の溶媒のハンセンの溶解度パラメーター(HSP)がそれぞれ下記のとおりであり、
    δd:10~20
    δp:1~15
    δh:1~25
     前記少なくとも1種の第2の溶媒のHSPがそれぞれ下記のとおりであり、
    δd:10~20
    δp:0~1未満
    δh:0~2
     前記少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1であり、
     前記第1の溶媒がエステル系溶媒、芳香族系溶媒、単環式モノテルペンおよびジオキサンからなる群から選択される溶媒である、水素化重合体の製造方法。
  3.  前記少なくとも1種の第1の溶媒の前記少なくとも1種の第2の溶媒に対する重量比(第1:第2)が1:9~9:1である、請求項1に記載の製造方法。
  4.  水素化前の前記芳香族ビニル化合物系重合体のハンセン球と水素化後の前記芳香族ビニル化合物系重合体のハンセン球を得ることをさらに含む、請求項1または3に記載の製造方法。
  5.  前記混合溶媒のHSPがそれぞれ下記のとおり
    δd:15.6~16.7
    δp: 0.3~4.7
    δh: 0.5~5.8
    である、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記少なくとも1種の第1の溶媒が、酢酸メチル、酢酸エチル、酢酸ブチル、イソ酪酸メチル、プロピオン酸メチルおよびプロピレングリコールモノメチルエーテルアセテートからなる群から選択される1種以上を含む、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記少なくとも1種の第2の溶媒が、飽和炭化水素系溶媒および単環式モノテルペンの水素添加物からなる群から選択される1種以上を含む、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記少なくとも1種の第2の溶媒が、シクロヘキサン、C7~C15モノアルキルシクロヘキサン、C8~C15ジアルキルシクロヘキサン、C9~C15トリアルキルシクロヘキサン、C10~C15テトラアルキルシクロヘキサン、シクロオクタン、C9~C15モノアルキルシクロオクタン、C10~C15ジアルキルシクロオクタン、C11~C15トリアルキルシクロオクタン、C12~C15テトラアルキルシクロオクタン、n-オクタンおよびn-デカンからなる群から選択される1種以上を含む、請求項1~7のいずれか一項に記載の製造方法。
  9.  前記少なくとも1種の第2の溶媒が、C9アルキルシクロヘキサンおよび/またはC10アルキルシクロヘキサンを含む、請求項1~7のいずれか一項に記載の製造方法。
  10.  前記第1の溶媒の沸点が50℃以上、かつ、発火点が400℃以上である、請求項1~9のいずれか一項に記載の製造方法。
  11.  前記第2の溶媒の沸点が80℃以上、かつ、発火点が230℃以上である、請求項1~10のいずれか一項に記載の製造方法。
  12.  前記芳香族ビニル化合物系重合体が、スチレンとブタジエンの共重合体、スチレンとイソプレンの共重合体、スチレンとメチルメタクリレートの共重合体、スチレンと無水マレイン酸の共重合体、スチレンと酢酸ビニルの共重合体およびポリスチレンからなる群から選択される一種以上を含む、請求項1~11のいずれか一項に記載の製造方法。
  13.  水素化反応後に脱揮押出によって重合体の樹脂を形成することを含む、請求項1~12のいずれか一項に記載の製造方法。
  14.  水素化反応と脱揮押出の間に濃縮工程をさらに含む、請求項1~13のいずれか一項に記載の製造方法。
  15.  前記水素化触媒が、パラジウム、白金、ルテニウム、ロジウムおよびニッケルからなる群から選択される1種以上を担持した固体触媒である、請求項1~14のいずれか一項に記載の製造方法。 
PCT/JP2023/014477 2022-04-11 2023-04-10 複数溶媒を用いた水素化重合体の製造方法 WO2023199876A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022065175 2022-04-11
JP2022-065175 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023199876A1 true WO2023199876A1 (ja) 2023-10-19

Family

ID=88329749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014477 WO2023199876A1 (ja) 2022-04-11 2023-04-10 複数溶媒を用いた水素化重合体の製造方法

Country Status (2)

Country Link
TW (1) TW202402828A (ja)
WO (1) WO2023199876A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106107A (ja) * 1990-08-24 1992-04-08 Mitsubishi Kasei Corp 水素化スチレン系樹脂の製造方法
WO2001082298A1 (fr) * 2000-04-26 2001-11-01 Teijin Limited Support d'enregistrement optique et substrat utilise dans ce support
JP2003242836A (ja) * 2002-02-15 2003-08-29 Nippon Zeon Co Ltd 電気絶縁材料
JP2006291184A (ja) * 2005-03-14 2006-10-26 Mitsubishi Gas Chem Co Inc 水素化されたポリマーの製造方法
WO2009020096A1 (ja) * 2007-08-06 2009-02-12 Mitsubishi Gas Chemical Company, Inc. 核水素化された芳香族ビニル化合物/(メタ)アクリレート系共重合体の製造方法
JP2015113367A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 樹脂塗膜剥離剤の選定方法
CN111085268A (zh) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 聚苯乙烯加氢制聚环己烷基乙烯的加氢催化剂及制备方法和加氢方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106107A (ja) * 1990-08-24 1992-04-08 Mitsubishi Kasei Corp 水素化スチレン系樹脂の製造方法
WO2001082298A1 (fr) * 2000-04-26 2001-11-01 Teijin Limited Support d'enregistrement optique et substrat utilise dans ce support
JP2003242836A (ja) * 2002-02-15 2003-08-29 Nippon Zeon Co Ltd 電気絶縁材料
JP2006291184A (ja) * 2005-03-14 2006-10-26 Mitsubishi Gas Chem Co Inc 水素化されたポリマーの製造方法
WO2009020096A1 (ja) * 2007-08-06 2009-02-12 Mitsubishi Gas Chemical Company, Inc. 核水素化された芳香族ビニル化合物/(メタ)アクリレート系共重合体の製造方法
JP2015113367A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 樹脂塗膜剥離剤の選定方法
CN111085268A (zh) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 聚苯乙烯加氢制聚环己烷基乙烯的加氢催化剂及制备方法和加氢方法

Also Published As

Publication number Publication date
TW202402828A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP2006283010A (ja) 光学フィルム
JP5540703B2 (ja) 核水素化された芳香族ビニル化合物/(メタ)アクリレート系共重合体の製造方法
TWI396701B (zh) 氫化聚合物之製法
WO2023199876A1 (ja) 複数溶媒を用いた水素化重合体の製造方法
JP5023519B2 (ja) 水素化されたポリマーの製造方法
WO2023199874A1 (ja) 水素化重合体の製造方法
EP1702934B1 (en) Method of producing hydrogenated polymers
WO2023199875A1 (ja) 光学材料の製造方法
JP5109533B2 (ja) 芳香族ポリマー水素化触媒
JP5145728B2 (ja) 水素化ポリマーの製造方法
EP1317492A2 (en) Improved process for hydrogenating unsaturated polymers
JP3094555B2 (ja) 水素化スチレン系樹脂の製造方法
JP5461180B2 (ja) β−ピネン系共重合体及びその製造方法
JP6102165B2 (ja) 着色の少ない核水素化ポリマーの製造方法
TWI568785B (zh) Thermoplastic resin
JP2002003524A (ja) 芳香族ビニル重合体水素添加物またはシクロアルケンビニル重合体水素添加物の製造方法
JP2011213851A (ja) β−ピネン系重合体の製造方法
JP4479894B2 (ja) 光拡散性樹脂
JP2004149549A (ja) 水素化スチレン系ブロック共重合体の連続製造方法
JP6787034B2 (ja) 熱可塑性共重合樹脂
JP2014077044A (ja) 硫黄不含原料を用いた核水素化ポリマーの製造方法
JP2004244594A (ja) 環状共役ジエン系共重合体
JP2024518442A (ja) 芳香族ポリマーの水素化方法、及び水素化ブロックコポリマー、並びにそれらの使用
JP2003240964A (ja) 導光板
JP2005255732A (ja) 環状共役ジエン系共重合体およびその水素化体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024514950

Country of ref document: JP

Kind code of ref document: A