WO2023199563A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2023199563A1
WO2023199563A1 PCT/JP2023/001075 JP2023001075W WO2023199563A1 WO 2023199563 A1 WO2023199563 A1 WO 2023199563A1 JP 2023001075 W JP2023001075 W JP 2023001075W WO 2023199563 A1 WO2023199563 A1 WO 2023199563A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
conversion device
power conversion
control mode
Prior art date
Application number
PCT/JP2023/001075
Other languages
English (en)
French (fr)
Inventor
和明 戸張
義行 田口
裕太 岩瀬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN202380015677.XA priority Critical patent/CN118451648A/zh
Publication of WO2023199563A1 publication Critical patent/WO2023199563A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power conversion device.
  • load torque pulsation in a compressor system or the like can be controlled by position sensorless control using a resonant filter that extracts a periodic pulsation component of the difference between the motor speed and the speed command.
  • a technique for modifying a torque current command which is an output of speed control, using a pulsating component.
  • Patent Document 1 suppresses motor speed pulsations by adding the outputs of a resonance filter and speed control, but does not consider control to suppress torque pulsations.
  • An object of the present invention is to provide a power conversion device that achieves highly accurate and highly efficient control characteristics by suppressing motor speed pulsations and torque pulsations.
  • a preferred example of the present invention is a power conversion device having a control section that controls the output frequency, output voltage, and output current of a motor,
  • the control unit includes: calculating a first torque current command from the deviation between the speed command value and the estimated speed value of the motor; switching the control mode between a control mode that suppresses pulsations in the speed of the motor and a control mode that suppresses pulsations in the torque of the motor;
  • This is a power conversion device that calculates a second torque current command from a first torque current command and a switched control mode.
  • FIG. 2 is a configuration diagram of a power conversion device and the like in Example 1.
  • FIG. 3 is a configuration diagram of a filter calculation section in Example 1.
  • 6 is a diagram showing frequency characteristics of two suppression control modes in Example 1.
  • FIG. 7 is a diagram showing control characteristics in a low speed range of a comparative example.
  • FIG. 3 is a diagram showing control characteristics in a low speed range when Example 1 is used.
  • FIG. 7 is a diagram showing control characteristics in the medium and high speed range of a comparative example.
  • FIG. 3 is a diagram showing control characteristics in the medium and high speed range when Example 1 is used.
  • FIG. 4 is a diagram illustrating verification when this embodiment is adopted.
  • FIG. 7 is a diagram showing a q-axis current waveform when this embodiment is adopted.
  • FIG. 2 is a configuration diagram of a power conversion device and the like in Example 2.
  • FIG. 3 is a configuration diagram of a filter calculation section in Example 2.
  • FIG. 3 is a configuration diagram of a power conversion device and the like in Example 3.
  • FIG. 3 is a configuration diagram of a filter calculation section of Example 3;
  • FIG. 4 is a configuration diagram of a power conversion device and the like in Example 4.
  • FIG. 7 is a configuration diagram of a power conversion device and the like in Example 5.
  • FIG. 1 shows a configuration diagram of a power conversion device and a magnet motor in Example 1.
  • the power conversion device of this embodiment includes a power converter 2, a DC power supply 3, a current detector 4, a coordinate conversion section 5, a speed control calculation section 6, a filter calculation section 7, a vector control calculation section 8, a phase error estimation calculation section 9, a frequency and phase estimation calculation section 10, and a coordinate transformation section 11.
  • This embodiment can be applied to a control technique that freely suppresses pulsations in motor torque and speed that occur due to load torque pulsations that change with one rotation of the mechanical angle when a compressor system is driven by a motor.
  • systems to which this embodiment can be applied are not limited to compressor systems.
  • the magnet motor 1 outputs a motor torque that is a combination of a torque component due to the magnetic flux of the permanent magnet and a torque component due to the inductance of the armature winding.
  • Power converter 2 includes a semiconductor element as a switching element.
  • the power converter 2 inputs three-phase AC voltage command values v u * , v v * , v w *, and generates a voltage proportional to the three-phase AC voltage command values v u * , v v * , v w *. Output the value.
  • the magnet motor 1 is driven, and the output voltage, output current, output frequency, and output current of the magnet motor 1 are variably controlled.
  • the DC power supply 3 supplies DC voltage to the power converter 2.
  • the control unit includes a coordinate conversion unit 5, a speed control calculation unit 6, a filter calculation unit 7, a vector control calculation unit 8, a phase error estimation calculation unit 9, a frequency and phase estimation calculation unit 10, and a coordinate conversion unit 11, which will be described below. Equipped with.
  • the control unit then controls the output of the power converter 2 so as to variably control the output voltage value, output frequency value, and output current of the magnet motor 1.
  • the control unit is composed of a semiconductor integrated circuit (arithmetic control means) such as a microcomputer and a DSP (Digital Signal Processor). Any or all of the control units can be configured with hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • a CPU (Central Processing Unit) of the control unit reads a program held in a recording device such as a memory, and executes processing of each unit such as the coordinate conversion unit 5 described above.
  • the coordinate conversion unit 5 converts the detected values i uc , i vc , i wc of the three-phase alternating currents i u , i v , i w and the phase estimated value ⁇ dc into detected current values i dc , i on the d-axis and q-axis. Output qc .
  • the speed control calculation unit 6 calculates and outputs a first torque current command i q0 * based on the deviation between the speed command value ⁇ r * and the estimated speed value ⁇ dc .
  • the filter calculation unit 7 outputs the first torque current command i q0 * , the speed command value ⁇ r * , and the second torque current command i q * calculated based on the quadratic transfer function filter of the Laplace operator s. do.
  • the vector control calculation unit 8 performs calculations based on the d-axis and q-axis current command values i d * , i q * , detected current values i dc , i qc , estimated speed value ⁇ dc , and electric circuit parameters of the magnet motor 1.
  • the d-axis and q-axis voltage command values v dc ** and v qc ** are output.
  • the phase error estimation calculation unit 9 calculates the voltage command values v dc ** , v qc ** of the d c axis and q c axis, which are the control axes, the estimated speed value ⁇ dc , the detected current values i dc , i qc , and the magnet motor.
  • An estimated value ⁇ c of the phase error ⁇ which is the deviation between the phase ⁇ dc of the control shaft and the phase ⁇ d of the magnet of the magnet motor 1, is output using the electric circuit parameters of 1.
  • the frequency and phase estimation calculation unit 10 outputs a speed estimated value ⁇ dc and a phase estimated value ⁇ dc based on the estimated value ⁇ c of the phase error in the low speed range.
  • the coordinate conversion unit 11 converts three-phase AC voltage command values v u * , v v * , v from the voltage command values v dc **, v qc ** of the d c axis and the q c axis, and the phase estimated value ⁇ dc . Output w * .
  • the speed control calculation unit 6 calculates the first q-axis current command i q0 * according to (Equation 1) using proportional control and integral control so that the estimated speed value ⁇ r ⁇ follows the speed command value ⁇ r * . .
  • K sp is the proportional gain of speed control
  • K si is the integral gain of speed control
  • FIG. 2 shows a block diagram of the filter calculation section 7.
  • the filter calculation section 7 includes a quadratic transfer function filter 71 of Laplace operator s, a machine speed conversion section 72, a control mode selection section 73, and a damping ratio selection section 74.
  • the second-order transfer function filter 71 uses the first q-axis current command i q0 * , the pulsation component ⁇ n which is the mechanical speed of the magnet motor 1, and the damping ratio parameters ⁇ a and ⁇ b .
  • the second-order transfer function filter 71 calculates the second torque current
  • the command i q * is calculated according to (Equation 2).
  • the mechanical speed converter 72 calculates the pulsation component ⁇ n , which is the value of the number of pole pairs P m of the magnet motor 1 and is set in the quadratic transfer function filter 71, according to (Equation 3).
  • the control mode selection unit 73 determines a low speed range, a medium speed range, and a high speed range based on the magnitude of the speed command ⁇ r * . When it is determined that the speed is in a low speed range, one of the "control mode for suppressing speed pulsation" of the magnet motor 1 is selected, and when it is determined that the speed is in a medium to high speed range, one of the "control mode for suppressing torque pulsation" is selected.
  • the damping ratio selection unit 74 sets damping ratio parameters ⁇ a and ⁇ b related to control for suppressing speed pulsation. Furthermore, when the "control mode for suppressing torque pulsation" is selected, damping ratio parameters ⁇ a and ⁇ b related to control for suppressing torque pulsation are set.
  • the damping ratio parameter ⁇ a is a coefficient of the first-order component of the Laplace operator of the numerator term of the second-order transfer function filter 71.
  • the damping ratio parameter ⁇ b is a coefficient of the first-order component of the Laplace operator of the denominator term of the second-order transfer function filter.
  • FIG. 3 shows frequency characteristics of two suppression control modes in the first embodiment.
  • the gain is set to be maximum at the pulsation component ⁇ n .
  • the gain is set to be minimum in the pulsation component ⁇ n . This characteristic can be obtained by setting the damping ratio parameters ⁇ a and ⁇ b .
  • the vector control calculation unit 8 first calculates the electrical circuit parameters of the permanent magnet motor 1, such as a winding resistance setting value R * , a d-axis inductance setting value Ld * , a q-axis inductance setting value Lq * , Using the induced voltage coefficient value K e * , the current command values i d * , i q * for the d c axis and the q c axis, and the estimated speed value ⁇ dc , the d c axis and q c axis are calculated according to (Equation 4). Output voltage reference values v dc * , v qc * .
  • T acr is the response time constant of current control.
  • the vector control calculation unit 8 performs proportional control and integral control so that the detected current values i dc and i qc of each component follow the current command values i d * and i q * of the d c and q c axes. Accordingly, the voltage correction values ⁇ v dc and ⁇ v qc of the d c axis and the q c axis are calculated according to (Equation 5).
  • K pd is the proportional gain of the current control on the d c axis
  • K id is the integral gain of the current control on the d c axis
  • K pq is the proportional gain of the current control on the q c axis
  • K iq is the current on the q c axis. is the integral gain of control.
  • the vector control calculation unit 8 calculates voltage command values v dc ** and v qc ** for the d c axis and the q c axis.
  • the phase error estimation calculation unit 9 calculates voltage command values v dc ** , v qc ** of the d c axis and q c axis, current detection values i dc , i qc , and electric circuit parameters (R * , L q * ), the estimated value ⁇ c of the phase error is calculated according to the extended induced voltage equation (Equation 7).
  • the frequency and phase estimation calculation unit 10 performs P (proportional) + I ( integral) control using (Formula 8 ), and the estimated phase value ⁇ dc is calculated using I (integral) control according to (Equation 9).
  • Kp pll is a proportional gain of PLL control
  • Ki pll is an integral gain of PLL control
  • FIG. 4 is a diagram showing control characteristics when there is load pulsating torque in a comparative example that does not use the filter calculation unit 7 of this embodiment in a low speed range.
  • the pulsating load torque a total of 100% load torque is applied in a ramp shape, with a maximum of 50% being a DC component and 50% being a pulsating component.
  • FIG. 5 shows control characteristics when the "control mode for suppressing speed pulsation" is selected using the filter calculation unit 7 of this embodiment. This is a simulation result when the speed command is set to 10% of the base speed similarly to FIG. 4.
  • the maximum value of the load pulsating torque increases to 100% at time B, but since the gain for the speed pulsating component ⁇ n increases, the motor torque follows the load pulsating torque, reducing the speed pulsating width to almost zero. Since it is possible to reduce the amount of noise, highly accurate operation can be achieved.
  • FIG. 6 is a diagram showing control characteristics when there is load pulsating torque in a comparative example in which the filter calculation unit 7 of this embodiment is not used in a high-speed range. These are simulation results when the speed command is set to 90% of the base speed.
  • the upper row shows load pulsating torque and motor torque
  • the lower row shows speed command and motor speed.
  • the speed reaches a high speed range
  • the pulsation of the motor torque decreases compared to the low speed range shown in FIG. This is determined by the control band of the speed control calculation unit 6.
  • the maximum value of the motor torque at time C in FIG. 6 is about 72%.
  • the motor output P is generated by the motor speed ⁇ r and the torque ⁇ m according to the relationship (Equation 10), so the pulsation of the motor output P is large in the high-speed range, and the motor efficiency cannot be said to be good.
  • FIG. 7 is a diagram showing control characteristics when the "control mode for suppressing torque pulsation" is selected using the filter calculation unit 7 of this embodiment. This is a simulation result when the speed command is set to 90% of the base speed similarly to FIG. 6.
  • the pulsation of the motor's output P becomes smaller, making it possible to achieve highly efficient operation.
  • control characteristics are shown when the magnitude of the speed command ⁇ r * is 10% and 90% of the base speed, but the range in which the magnet motor 1 loses synchronization due to load pulsating torque is defined as the low speed range,
  • the above range may be defined as a medium-high speed range.
  • the low-speed range and medium-high speed range may be uniquely determined based on the magnitude of the speed command.
  • by changing the damping ratio parameters ⁇ a and ⁇ b according to the magnitude of the speed command ⁇ r * it is possible to intentionally control the pulsation width of the motor speed ⁇ r and the motor torque t m .
  • a voltage detector 21 and a current detector 22 are attached to a power conversion device 20 that drives the magnet motor 1, and an encoder 23 is attached to the shaft of the magnet motor 1.
  • the vector voltage/current component calculation unit 24 includes three-phase AC voltage detection values (v uc , v vc , v wc ), which are the outputs of the voltage detector 21 , and three-phase AC current detection values (i uc , i vc , i wc ) and the position ⁇ , which is the output of the encoder, are input, and the vector voltage components v dc , v qc , the vector current components i dc , i qc , and the detected speed value ⁇ rc are calculated by differentiating the position ⁇ . do.
  • the speed command ⁇ r * given to the controller of the power converter 2 is set to a low speed range, and the compressor in which the magnet motor 1 is built is driven.
  • FIG. 9 is a diagram showing a q-axis current waveform when this embodiment is adopted.
  • the left diagram in FIG. 9 shows the waveform of the vector current component iqc in the low speed range. Since the vector current component i qc in the low speed range is proportional to the load pulsating torque, the vector current component i qc has a waveform that decreases to almost zero.
  • the speed command ⁇ r * given to the controller of the power converter 2 is set to a medium-high speed range, and the compressor in which the magnet motor 1 is built is driven.
  • the right diagram in Figure 9 shows the waveform of the vector current component iqc in the medium and high speed range. Since the vector current component i qc in the high speed range is unrelated to the load pulsating torque, i qc becomes almost a direct current component, and the pulsating component is less than 10% of the direct current component.
  • control mode that suppresses speed pulsation If you set the size of the speed command every 10% of the base speed and conduct a similar test, you can obtain "control mode that suppresses speed pulsation", “control mode that suppresses torque pulsation”, and quadratic transfer function filter.
  • the state of the control mode such as when the function of 71 is turned off, becomes clear.
  • the waveform of the vector current component i qc was observed above, the waveform of the detected speed value ⁇ rc may also be observed.
  • FIG. 10 is a configuration diagram of a power conversion device and a magnet motor in Example 2.
  • the damping ratio parameters ⁇ a and ⁇ b set in the quadratic transfer function filter 71 of the filter calculation unit 7 are set to the "control mode for suppressing speed pulsation" in the low speed range and in the medium and high speed range using the speed command.
  • the system is configured to switch to a ⁇ control mode that suppresses torque pulsation.''
  • two second-order transfer function filters 7a1 and 7a5 are prepared in the filter calculation unit 7a, and each is configured to be switched between a low speed range and a medium/high speed range.
  • the magnet motor 1 to speed control calculation unit 6 and vector control calculation unit 8 to coordinate conversion unit 11 in FIG. 10 are the same as the components with the same symbols in FIG.
  • FIG. 11 shows a block diagram of the filter calculation section 7a in the second embodiment.
  • the filter calculation unit 7a uses the first q-axis current command i q0 * , the pulsation component ⁇ n , and the damping ratio parameters ⁇ a1 and ⁇ b1 of the "control mode for suppressing speed pulsation" to calculate the Laplace operator s.
  • the quadratic transfer function filter 7a1 calculates the second torque current command i q1 * according to (Equation 11).
  • the mechanical speed converter 7a2 calculates the pulsation component ⁇ n , which is the value of the number of pole pairs P m of the magnet motor 1 and is set in the quadratic transfer function filters 7a1 and 7a5, according to the above-mentioned (Equation 3).
  • the control mode selection unit 7a3 determines a low speed range and a medium/high speed range based on the magnitude of the speed command value ⁇ r * . When it is determined that the vehicle is in a low speed range, the "control mode that suppresses speed pulsation" is selected, and when it is determined that the vehicle is in a medium-high speed range, "control mode that suppresses torque pulsation" is selected.
  • the filter switching section 7a4 converts i q1 * , which is the output of the quadratic transfer function filter 7a1, into a q-axis current command. Output as i q * .
  • the filter switching section 7a4 selects i q2 * , which is the output of the quadratic transfer function filter 7a5, as the q-axis current command. Output as i q * .
  • FIG. 12 is a configuration diagram of a power conversion device and a magnet motor in Example 3.
  • the damping ratio parameters ⁇ a and ⁇ b set in the quadratic transfer function filter 71 of the filter calculation unit 7 are set to a "control mode for suppressing speed pulsation" in the low speed range and a high speed range using the speed command.
  • the system is configured to switch to a ⁇ control mode that suppresses torque pulsation.''
  • the configuration is such that the low power range is switched to a "control mode that suppresses speed pulsation" and the medium and high power range is switched to a "control mode that suppresses torque pulsation” using the power value.
  • the magnet motor 1 to speed control calculation unit 6 and phase error estimation calculation unit 9 to coordinate conversion unit 11 in FIG. 12 are the same as the components with the same reference numerals in FIG.
  • the vector control calculation unit 8a calculates the active power Pa, which is the inner product of the electric power of the magnet motor 1, according to (Equation 13).
  • FIG. 13 shows a block diagram of the filter calculation unit 7b of the third embodiment.
  • the quadratic transfer function filter 7b1, the mechanical speed converter 7b2, and the damping ratio selector 7b4 are the same as the quadratic transfer function filter 71, the mechanical speed converter 72, and the damping ratio selector 74 shown in FIG. This explanation will be omitted.
  • a boundary power value is set for switching between "control mode for suppressing speed pulsation" and "control mode for suppressing torque pulsation.”
  • the control mode selection unit 7b3 determines a low power range and a medium-high power range based on the magnitude of the active power Pa. When it is determined that the power range is low, the "control mode that suppresses speed pulsations" is selected, and when it is determined that the power range is medium and high, the "control mode that suppresses torque pulsations" is selected.
  • the damping ratio selection unit 7b4 sets damping ratio parameters ⁇ a and ⁇ b related to control for suppressing speed pulsations.
  • the damping ratio parameters ⁇ a , ⁇ b related to the control that suppresses torque pulsation are set, and the q-axis current command i q * is calculated. .
  • the attenuation ratio parameters ⁇ a and ⁇ b are switched between the low power range and the medium-high power range in the second-order transfer function filter 7b1 of the filter calculation unit 7b.
  • the present invention is not limited to this, and similarly to the second embodiment, two second-order transfer function filters may be provided, and each may be switched between one for the low power range and one for the medium and high power range.
  • FIG. 14 is a configuration diagram of a power converter and a magnet motor in Example 4.
  • the controller (microcomputer, etc.) of the power converter is configured to control the damping ratio parameters ⁇ a and ⁇ b of the filter calculation unit, the "control mode for suppressing speed pulsations” and the “control mode for suppressing torque pulsations”.
  • the speed ⁇ chg for switching between the "control mode to suppress” or the power value for switching between "the control mode for suppressing speed pulsation” and the "control mode for suppressing torque pulsation” is set.
  • control state quantities are fed back to the higher-level IOT (Internet of Things) controller 12, and machine-learned values for switching control modes such as the above-mentioned damping ratio parameters ⁇ a and ⁇ b and switching speed ⁇ chg are determined. , the configuration is to be reset to the controller.
  • IOT Internet of Things
  • Magnet motor 1 to coordinate conversion section 11 in FIG. 14 are the same as the components with the same reference numerals in FIG.
  • the IOT controller 12 performs machine learning on control state quantities such as a voltage command value, a detected current value, a phase error, and an estimated value of speed, and calculates damping ratio parameters ⁇ a , ⁇ b and switching speed ⁇ chg .
  • the IOT controller 12 has been described here as being provided outside the power converter, the IOT controller 12 may be incorporated as a control section inside the power converter.
  • FIG. 15 is a configuration diagram of a power conversion device and a magnet motor in Example 5. This embodiment is an application of this embodiment to a magnet motor drive system.
  • the components magnet motor 1 and coordinate conversion section 5 to coordinate conversion section 11 are the same as the components with the same reference numerals in FIG.
  • the magnet motor 1 in FIG. 15 is driven by a power converter 20.
  • the coordinate conversion unit 5 to coordinate conversion unit 11 in FIG. 1 are implemented as software 20a, and the power converter 2, DC power supply 3, and current detector 4 in FIG. 1 are implemented as hardware.
  • the digital operator 20b, the personal computer 28, the tablet 29, the smartphone 30, and other host devices control the software 20a's "low speed range/medium high speed range switching speed 26 ⁇ chg " and "low speed range/medium high speed range switching speed ⁇ chg". Values for switching control modes such as damping ratio parameters ⁇ a and ⁇ b can be set and changed.
  • ⁇ chg which is the switching speed 26 between low speed range/medium high speed range
  • control mode that suppresses speed pulsation and “control mode that suppresses torque pulsation
  • the power value for switching the "control mode to be suppressed” may be set from an external device.
  • ⁇ chg which is the switching speed 26 of the low speed range/medium high speed range
  • ⁇ a , ⁇ b which are the damping ratio parameters of the low speed range/medium high speed range
  • voltage correction values ⁇ v dc and ⁇ v qc are created from current command values i d * , i q * and current detection values i dc , i qc , and these voltage correction values and vector control
  • the calculation shown in (Equation 6) was performed to add the voltage reference value, but the calculation shown in (Equation 14) used for vector control calculation from the current command values i d * , i q * and current detected values i dc , i qc was performed.
  • Intermediate current command values i d ** , i q ** may be created, and the vector control calculation shown in (Equation 15) may be performed using the estimated speed value ⁇ dc and the electric circuit parameters of the magnet motor 1.
  • K pd1 is the proportional gain of the current control on the d c axis
  • K id1 is the integral gain of the current control on the d c axis
  • K pq1 is the proportional gain of the current control on the q c axis
  • K iq1 is the current on the q c axis.
  • the integral gain of the control, T d is the d-axis electric time constant (L d /R * )
  • T q is the q-axis electric time constant (L q /R * ).
  • K pd2 is the proportional gain of the current control on the d c axis
  • K id2 is the integral gain of the current control on the d c axis
  • K pq2 is the proportional gain of the current control on the q c axis
  • K iq2 is the current on the q c axis. is the integral gain of control.
  • the switching elements constituting the power converter 2 may be Si (silicon) semiconductor elements, SiC (silicon carbide), GaN (gallium nitride), etc. It may also be a wide bandgap semiconductor device.
  • An IGBT Insulated Gate Bipolar Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • Example 1 the motor was explained using a magnet motor as an example, but even if it is replaced with an induction motor, similar effects can be obtained.
  • SYMBOLS 1 Magnet motor, 2... Power converter, 3... DC power supply, 4... Current detector, 5... Coordinate conversion section, 6... Speed control calculation section, 7... Filter calculation section, 8... Vector control calculation section, 9... Phase error estimation calculation section, 10... Frequency and phase estimation calculation section, 11... Coordinate conversion section, 20... Power conversion device, 20a... Software of the power conversion device, 20b... Digital operator of the power conversion device, 21...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

モータの出力周波数と出力電圧および出力電流を制御する制御部を有する電力変換装置であって、制御部は、モータの速度指令値と速度推定値の偏差から第1のトルク電流指令を演算し、モータの速度の脈動を抑制する制御モードと、モータのトルクの脈動を抑制する制御モードのいずれかに、制御モードを切り替え、第1のトルク電流指令と切り替えた制御モードから、第2のトルク電流指令を演算する電力変換装置。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 位置センサレス制御による圧縮機システムなどの負荷トルク脈動の制御としては、特許文献1に記載のように、モータ速度と速度指令との差の周期的な脈動成分を抽出する共振型フィルタにより抽出された脈動成分を用いて、速度制御の出力であるトルク電流指令を修正する技術の記載がある。
特開2006-191737号公報
 特許文献1は、共振型フィルタと速度制御の出力を加算して、モータの速度の脈動を抑制しているが、トルクの脈動を抑制する制御については考慮していない。
 本発明の目的は、モータの速度の脈動を抑制するとともに、トルクの脈動を抑制することより、高精度で高効率な制御特性を実現する電力変換装置を提供することにある。
 本発明の好ましい一例としては、モータの出力周波数と出力電圧および出力電流を制御する制御部を有する電力変換装置であって、
前記制御部は、
前記モータの速度指令値と速度推定値の偏差から第1のトルク電流指令を演算し、
前記モータの速度の脈動を抑制する制御モードと、前記モータのトルクの脈動を抑制する制御モードのいずれかに、制御モードを切り替え、
第1のトルク電流指令と切り替えた制御モードから、第2のトルク電流指令を演算する電力変換装置である。
 本発明によれば、モータの速度の脈動を抑制するとともに、トルクの脈動を抑制することより、高精度で高効率な制御特性を実現できる。
実施例1における電力変換装置などの構成図。 実施例1におけるフィルタ演算部の構成図。 実施例1における2つの抑制制御モードの周波数特性を示す図。 比較例の低速域の制御特性を示す図。 実施例1を用いた場合の低速域の制御特性を示す図。 比較例の中高速域の制御特性を示す図。 実施例1を用いた場合の中高速域の制御特性を示す図。 本実施例を採用した場合の検証について説明する図。 本実施例を採用した場合のq軸の電流波形を示す図。 実施例2における電力変換装置など構成図。 実施例2におけるフィルタ演算部の構成図。 実施例3における電力変換装置などの構成図。 実施例3のフィルタ演算部の構成図。 実施例4における電力変換装置などの構成図。 実施例5における電力変換装置などの構成図。
 以下、図面を用いて本実施例を詳細に説明する。以下に説明する各実施例は図示例に限定されるものではない。
 図1は、実施例1における電力変換装置および磁石モータの構成図を示す。本実施例の電力変換装置は、電力変換器2、直流電源3、電流検出器4、座標変換部5、速度制御演算部6、フィルタ演算部7、ベクトル制御演算部8、位相誤差推定演算部9、周波数および位相の推定演算部10、座標変換部11を備える。
 本実施例は、圧縮機システムをモータで駆動すると機械角度1回転で変化する負荷トルク脈動に伴い発生するモータのトルクや速度の脈動を自在に抑制する制御技術に適用できる。ただし、本実施例が適用できるシステムは、圧縮機システムに限らない。
 磁石モータ1は、永久磁石の磁束によるトルク成分と電機子巻線のインダクタンスによるトルク成分を合成したモータトルクを出力する。
 電力変換器2は、スイッチング素子としての半導体素子を備える。電力変換器2は、3相交流の電圧指令値vu *、vv *、vw *を入力し、3相交流の電圧指令値vu *、vv *、vw *に比例した電圧値を出力する。電力変換器2の出力に基づいて、磁石モータ1は駆動され、磁石モータ1の出力電圧と出力電流と出力周波数および出力電流は可変に制御される。
 直流電源3は、電力変換器2に直流電圧を供給する。
 電流検出器4は、磁石モータ1の3相の交流電流iu、iv、iwの検出値であるiuc、ivc、iwcを出力する。また、電流検出器4は、磁石モータ1の3相の内の2相、例えば、u相とw相の交流電流を検出し、v相の交流電流は、交流条件(iu+iv+iw=0)から、iv=-(iu+iw)として求めてもよい。本実施例では、電流検出器4を、電力変換装置内に設けた例を示したが、電力変換装置の外部に設けてもよい。
 制御部は、以下に説明する座標変換部5、速度制御演算部6、フィルタ演算部7、ベクトル制御演算部8、位相誤差推定演算部9、周波数および位相の推定演算部10、座標変換部11を備える。そして、制御部は、磁石モータ1の出力電圧値と出力周波数値および出力電流を可変に制御するように電力変換器2の出力を制御する。
 制御部は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)などの半導体集積回路(演算制御手段)によって構成される。制御部は、いずれかまたは全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードウェアで構成することができる。制御部のCPU(Central Processing Unit)が、メモリなどの記録装置に保持するプログラムを読み出して、上記した座標変換部5などの各部の処理を実行する。
 次に、制御部の各構成要素について、説明する。
 座標変換部5は、3相の交流電流iu、iv、iwの検出値iuc、ivc、iwcと位相推定値θdcからd軸およびq軸の電流検出値idc、iqcを出力する。
 速度制御演算部6は、速度指令値ωr *と速度推定値ωdcの偏差に基づいて第1のトルク電流指令iq0 *を演算して出力する。
 フィルタ演算部7は、第1のトルク電流指令iq0 *と速度指令値ωr *および、ラプラス演算子sの二次伝達関数フィルタに基づいて演算した第2のトルク電流指令iq *を出力する。
 ベクトル制御演算部8は、d軸およびq軸の電流指令値id *、iq *、電流検出値idc、iqc、速度推定値ωdcと磁石モータ1の電気回路パラメータに基づいて演算したd軸およびq軸の電圧指令値vdc **、vqc **を出力する。
 位相誤差推定演算部9は、制御軸であるdc軸およびqc軸の電圧指令値vdc **、vqc **、速度推定値ωdc、電流検出値idc、iqcおよび磁石モータ1の電気回路パラメータを用いて、制御軸の位相θdcと磁石モータ1の磁石の位相θdとの偏差である位相誤差Δθの推定値Δθcを出力する。
 周波数および位相の推定演算部10は、低速域の位相誤差の推定値Δθcに基づいて、速度推定値ωdcと位相推定値θdcを出力する。
 座標変換部11は、dc軸およびqc軸の電圧指令値vdc **、vqc **と、位相推定値θdcから3相交流の電圧指令値vu *、vv *、vw *を出力する。
 最初に、本実施例のフィルタ演算部7を用いた場合のセンサレスベクトル制御の基本動作について説明する。
 速度制御演算部6は、速度指令値ωr *に速度推定値ωr ^が追従するよう、比例制御と積分制御により(数式1)に従い第1のq軸の電流指令iq0 *を演算する。
ここで、Kspは速度制御の比例ゲイン、Ksiは速度制御の積分ゲインである。
 フィルタ演算部7について説明する。図2は、フィルタ演算部7のブロックを示す。フィルタ演算部7は、ラプラス演算子sの二次伝達関数フィルタ71、機械速度変換部72、制御モード選択部73、減衰比選択部74を有する。第1のq軸の電流指令iq0 *、磁石モータ1の機械速度である脈動成分ωn、減衰比パラメータζa、ζbを用いて、二次伝達関数フィルタ71は、第2のトルク電流指令iq *を(数式2)に従い演算する。
 機械速度変換部72は、磁石モータ1の極対数Pmの値であり、二次伝達関数フィルタ71に設定する脈動成分ωnを(数式3)に従い演算する。
 制御モード選択部73は、速度指令ωr *の大きさにより低速域と中速域および高速域を判定する。低速域と判断したときは磁石モータ1の「速度の脈動を抑制する制御モード」を、中高速域と判断したときは「トルクの脈動を抑制する制御モード」のどちらか一方を選択する。
 減衰比選択部74は、「速度の脈動を抑制する制御モード」が選択されたときは、速度の脈動を抑制する制御に関する減衰比パラメータζa、ζbを設定する。また、「トルクの脈動を抑制する制御モード」が選択されたときは、トルクの脈動を抑制する制御に関する減衰比パラメータζa、ζbを設定する。減衰比パラメータζaは、二次伝達関数フィルタ71の分子項のラプラス演算子の一次成分の係数である。減衰比パラメータζbは、前記二次伝達関数フィルタの分母項のラプラス演算子の一次成分の係数である。
 図3は、実施例1における2つの抑制制御モードの周波数特性を示す。「速度の脈動を抑制する制御モード」を選択する場合には、脈動成分ωnにおいてゲインは極大となるように設定する。一方、「トルクの脈動を抑制する制御モード」を選択する場合には、脈動成分ωnにおいてゲインは極小となるように設定する。この特性は減衰比パラメータζa、ζbの設定により得ることができる。
 ベクトル制御演算部8は、第1に永久磁石モータ1の電気回路パラメータである巻線抵抗の設定値R*、d軸インダクタンスの設定値Ld *、q軸のインダクタンスの設定値Lq *、誘起電圧係数の値Ke *、dc軸およびqc軸の電流指令値id *、iq *と速度推定値ωdcを用いて、(数式4)に従いdc軸およびqc軸の電圧基準値vdc *、vqc *を出力する。
ここで、Tacrは電流制御の応答時定数である。
 ベクトル制御演算部8は、第2に、dc軸およびqc軸の電流指令値id *、iq *に各成分の電流検出値idc、iqcが追従するよう比例制御と積分制御により、(数式5)に従いdc軸およびqc軸の電圧補正値Δvdc、Δvqcを演算する。
ここで、Kpdはdc軸の電流制御の比例ゲイン、Kidはdc軸の電流制御の積分ゲイン、Kpqはqc軸の電流制御の比例ゲイン、Kiqはqc軸の電流制御の積分ゲインである。
さらに(数式6)に従い、ベクトル制御演算部8は、dc軸およびqc軸の電圧指令値vdc **、vqc **を演算する。
 位相誤差推定演算部9は、dc軸およびqc軸の電圧指令値vdc **、vqc **、電流検出値idc、iqcと磁石モータ1の電気回路パラメータ (R*、Lq *)に基づき、拡張誘起電圧式(数式7)に従い、位相誤差の推定値Δθcを演算する。
 周波数および位相の推定演算部10は、前述の位相誤差の推定値Δθcが、その指令値Δθc *(=0)に追従するよう、P(比例)+I(積分)制御により(数式8)に従い速度推定値ωdcを、I(積分)制御により(数式9)に従い位相推定値θdcをそれぞれ演算する。
ここで、KppllはPLL制御の比例ゲイン、KipllはPLL制御の積分ゲインである。
 つぎに、本実施例が高精度で高効率な制御特性となる原理について説明する。
 図4は、低速域において、本実施例のフィルタ演算部7を用いない比較例における、負荷脈動トルクがあるときの制御特性を示す図である。脈動負荷トルクは直流成分が最大50%、脈動成分が最大50%の合計100%の負荷トルクをランプ状に印加している。
 速度指令を基底速度の10%に設定したときのシミュレーション結果である。図4において、上段は負荷脈動トルクとモータトルク、下段は速度指令とモータ速度を表示している。このとき負荷脈動トルクの最大値は60%程度であるが、図4の時刻Aにおいてモータ速度はゼロ付近まで減速し、磁石モータ1は脱調して停止状態となってしまう。
 図5は、本実施例のフィルタ演算部7を用いて、「速度の脈動を抑制する制御モード」を選択したときの制御特性を示す。図4と同様に速度指令を基底速度の10%に設定したときのシミュレーション結果である。
 負荷脈動トルクの最大値は時刻Bにおいて100%まで増加しているが、速度の脈動成分ωnに対するゲインが増大するため、モータトルクは負荷脈動トルクに追従し、速度の脈動幅をほぼゼロに低減することができるので、高精度な運転を実現できる。
 図6は、高速域において本実施例のフィルタ演算部7を用いない比較例における、負荷脈動トルクがあるときの制御特性を示す図である。速度指令を基底速度の90%に設定したときのシミュレーション結果である。図6において、上段は負荷脈動トルクとモータトルク、下段は速度指令とモータ速度を表示している。速度が高速域になると低速域の図4のときに比べ、モータトルクの脈動は低下する。これは速度制御演算部6の制御帯域からより決まるものである。
 脈動負荷トルクの影響で、図6の時刻Cにおけるモータトルクの最大値は72%程度である。このときモータの出力Pはモータ速度ωrとトルクτmにより(数式10)の関係で発生するため、高速域ではモータの出力Pの脈動は大きく、モータ効率は良いと言えない状態にある。
 図7は、本実施例のフィルタ演算部7を用いて、「トルクの脈動を抑制する制御モード」を選択したときの制御特性を示す図である。図6と同様に速度指令を基底速度の90%に設定したときのシミュレーション結果である。速度の脈動成分ωnに対するゲインを低減するため、モータトルクの最大値は52%となり、図6に比べてトルクの脈動幅を22%(=72-50)から2%(=52-50)へ大幅に低減することで、モータの出力Pの脈動は小さくなり、高効率な運転を実現できる。
 低速域は「速度の脈動を抑制する制御モード」、高速域は「トルクの脈動を制御する制御モード」を選択することで、本発明の効果が明白であることがわかる。
 本実施例は、例として速度指令ωr *の大きさが基底速度の10%と90%ときの制御特性を表示したが、磁石モータ1が負荷脈動トルクにより脱調する範囲を低速域、それ以上を中高速域としてもよい。さらに速度指令の大きさにより低速域と中高速を一義的に決めてもよい。また速度指令ωr *の大きさに応じて前記の減衰比パラメータζa, ζbを変更すると、モータ速度ωrとモータトルクtmの脈動幅を意図的に制御することができる。
 ここで、図8を用いて本実施例を採用した場合の検証方法について説明する。磁石モータ1を駆動する電力変換装置20に、電圧検出器21、電流検出器22を取り付け、磁石モータ1のシャフトにはエンコーダ23を取り付ける。
 ベクトル電圧・電流成分の計算部24には、電圧検出器21の出力である三相交流の電圧検出値(vuc、vvc、vwc)、三相交流の電流検出値(iuc、ivc、iwc)とエンコーダの出力である位置θが入力され、ベクトル電圧成分のvdc、vqc、ベクトル電流成分のidc、iqcと、位置θを微分した速度検出値ωrcを演算する。
 電力変換器2のコントローラに与える速度指令ωr *を低速域に設定し、磁石モータ1が内蔵された圧縮機を駆動する。
 図9は、本実施例を採用した場合のq軸の電流波形を示す図である。図9の左図に、低速域におけるベクトル電流成分iqcの波形を示す。低速域のベクトル電流成分iqcは負荷脈動トルクに比例するため、ベクトル電流成分iqcはほぼゼロまで低下する波形となる。
 つぎに電力変換器2のコントローラに与える速度指令ωr *を中高速域に設定し、磁石モータ1が内蔵された圧縮機を駆動する。図9の右図に,中高速域におけるベクトル電流成分iqcの波形を示す。高速域のベクトル電流成分iqcは負荷脈動トルクとは無関係となるため、iqcはほぼ直流成分になり、脈動成分は直流成分の10%以下となる。
 速度指令の大きさを基底速度の10%毎に設定し、同様な試験をすれば、「速度の脈動を抑制する制御モード」、「トルクの脈動を抑制する制御モード」、二次伝達関数フィルタ71の機能をOFFにしたときなどの制御モードの状態が明白となる。上記はベクトル電流成分iqcの波形を観測したが、速度検出値ωrcの波形を観測してよい。 
 図10は、実施例2における電力変換装置および磁石モータの構成図である。実施例1では、フィルタ演算部7の二次伝達関数フィルタ71に設定する減衰比パラメータζa、ζbを、速度指令を用いて低速域は「速度の脈動を抑制する制御モード」と中高速域は「トルクの脈動を抑制する制御モード」に切替える構成とした。
 本実施例では、フィルタ演算部7aに2つの二次伝達関数フィルタ7a1、7a5を用意し、それぞれを低速域と中高速域で切替える構成である。
 図10における磁石モータ1~速度制御演算部6、ベクトル制御演算部8~座標変換部11は、図1における同じ符号の構成要素と同一である。
 図11は、実施例2におけるフィルタ演算部7aのブロックを示す。フィルタ演算部7aでは、第1のq軸の電流指令iq0 *、脈動成分ωn、「速度の脈動を抑制する制御モード」の減衰比パラメータζa1、ζb1を用いて、ラプラス演算子sの二次伝達関数フィルタ7a1は、第2のトルク電流指令iq1 *を(数式11)に従い演算する。
 さらに、第1のq軸の電流指令iq0 *、脈動成分ωn、「トルクの脈動を抑制する制御モード」の減衰比パラメータζa2、ζb2を用いて、二次伝達関数フィルタ7a5は、第2のトルク電流指令iq2 *を(数式12)に従い演算する。
 機械速度変換部7a2は、磁石モータ1の極対数Pmの値であり、二次伝達関数フィルタ7a1、7a5に設定する脈動成分ωnを、上述の(数式3)に従い演算する。
 制御モード選択部7a3は、速度指令値ωr *の大きさにより低速域と中高速域を判定する。低速域と判断したときは「速度の脈動を抑制する制御モード」を、中高速域と判断したときは「トルクの脈動を抑制する制御モード」をそれぞれ選択する。
 フィルタ切替え部7a4は、制御モード選択部7a3において、「速度の脈動を抑制する制御モード」が選択されたときは、二次伝達関数フィルタ7a1の出力であるiq1 *を、q軸の電流指令iq *として出力する。制御モード選択部7a3において、「トルクの脈動を抑制する制御モード」が選択されたときは、二次伝達関数フィルタ7a5の出力であるiq2 *を、フィルタ切替え部7a4は、q軸の電流指令iq *として出力する。
 二次伝達関数フィルタを2つ準備して、低速域と中高速域で切替える本実施例を用いても実施例1と同様に、高精度で高効率な制御特性を実現することができる。
 図12は、実施例3における電力変換装置および磁石モータの構成図である。実施例1では、フィルタ演算部7の二次伝達関数フィルタ71に設定する減衰比パラメータζa、ζbを、速度指令を用いて低速域の「速度の脈動を抑制する制御モード」と高速域の「トルクの脈動を抑制する制御モード」で切替える構成とした。
 本実施例では、電力値を用いて、低電力域は「速度の脈動を抑制する制御モード」、中高電力域は「トルクの脈動を抑制する制御モード」で切替える構成である。図12における磁石モータ1~速度制御演算部6、位相誤差推定演算部9~座標変換部11は、図1の同じ符号の構成要素と同一である。
 ベクトル制御演算部8aは、(数式4)から(数式6)の演算の他に、磁石モータ1の電力の内積である有効電力Paを(数式13)に従い演算する。
 図13は、実施例3のフィルタ演算部7bのブロックを示す。ここで、二次伝達関数フィルタ7b1、機械速度変換部7b2、減衰比選択部7b4は、図2に示す二次伝達関数フィルタ71、機械速度変換部72、減衰比選択部74と同一であり、この説明は省略する。
 制御モード選択部7b3は、「速度の脈動を抑制する制御モード」と「トルクの脈動を抑制する制御モード」とを切替えるための境界の電力値が設定されている。制御モード選択部7b3は、有効電力Paの大きさにより、低電力域と中高電力域を判定する。低電力域と判断したときは「速度の脈動を抑制する制御モード」を、中高電力域と判断したときは「トルクの脈動を抑制する制御モード」を選択する。
 減衰比選択部7b4は、「速度の脈動を抑制する制御モード」が選択されたときは、速度の脈動を抑制する制御に関する減衰比パラメータζa、ζbを設定する。「トルクの脈動を抑制する制御モード」が選択されたときは、トルクの脈動を抑制する制御に関する減衰比パラメータζa、ζb、を設定して、q軸の電流指令iq *を演算する。
 低電力域と中高電力域で切替える本実施例を用いても、実施例1と同様に高精度で高効率な制御特性を実現することができる。
 ここでは、フィルタ演算部7bの二次伝達関数フィルタ7b1において、低電力域と中高電力域で減衰比パラメータζa、ζbを切替えた例を示した。これに限らず、実施例2と同様に、二次伝達関数フィルタを2つ装備し、それぞれを低電力域用と中高電力域用に切り替えるようにしてもよい。
 図14は、実施例4における電力変換装置および磁石モ-タの構成図である。実施例1から実施例3では、電力変換装置のコントローラ(マイクロコンピユータなど)にフィルタ演算部の減衰比パラメータζa、ζbや、「速度の脈動を抑制する制御モード」および「トルクの脈動を抑制する制御モード」を切替えるための速度ωchg、、または「速度の脈動を抑制する制御モード」および「トルクの脈動を抑制する制御モード」を切替えるための電力値を設定する。
 本実施例では、制御の状態量を上位のIOT(Internet of Things)コントローラ12にフィードバックし、機械学習した上述の減衰比パラメータζa、ζbおよび切替え速度ωchgなどの制御モードを切り替える値を、コントローラに再設定する構成である。
 図14における磁石モータ1~座標変換部11は、図1の同じ符号の構成要素と同一である。IOTコントローラ12は、電圧指令値および電流検出値、位相誤差および速度の推定値といった制御の状態量を機械学習し、減衰比パラメータζa、ζbおよび切替え速度ωchgを算出する。
 ここでは、IOTコントローラ12は、電力変換装置の外部に設けた場合で説明したが、IOTコントローラ12が電力変換装置の内部の制御部として組み込まれていてもかまわない。
 本実施例を用いても、実施例1と同様に、また調整レスでより高精度で高効率な制御特性を実現することができる。
 図15は、実施例5における電力変換装置および磁石モータの構成図である。本実施例は、磁石モータ駆動システムに本実施例を適用したものである。図15において、構成要素の磁石モータ1、座標変換部5~座標変換部11は、図1の同じ符号の構成要素と同じである。
 図15の磁石モータ1は、電力変換装置20により駆動される。本実施例における電力変換装置20は、図1の座標変換部5~座標変換部11がソフトウェア20a、図1の電力変換器2、直流電源3、電流検出器4がハードウェアとして実装されている。またデジタル・オペレータ20b、パーソナル・コンピュータ28、タブレット29、スマートフォン30などの上位装置により、ソフトウェア20aの「低速域/中高速域の切替速度26であるωchg」、「低速域/中高速域の減衰比パラメータであるζa  ζb」などの制御モードを切り替える値を設定・変更することができる。
 ここでは、「低速域/中高速域の切替速度26であるωchg」を例にして説明したが、実施例3のように、「速度の脈動を抑制する制御モード」および「トルクの脈動を抑制する制御モード」を切替えるための電力値を外部機器から設定するようにしてもよい。
 本実施例を磁石モータで駆動する圧縮機システムに適用すれば、位置センサレスベクトル制御においても、高精度で高効率な制御特性を実現することができる。また「低速域/中高速域の切替速度26であるωchg」、「低速域/中高速域の減衰比パラメータであるζa , ζb」は、プログラマブル・ロジック・コントローラ、コンピュータと接続するローカル・エリア・ネットワーク、IOTコントローラなどのフィールドバス上に設定してもよい。
 さらに本実施例では、実施例1を用いて説明してあるが、実施例2から実施例4を用いてもよい。
 実施例1から実施例5においては、電流指令値id *、iq *と電流検出値idc、iqcから電圧修正値Δvdc、Δvqcを作成し、この電圧修正値とベクトル制御の電圧基準値を加算する(数式6)に示す演算を行ったが、電流指令値id *、iq *と電流検出値idc、iqcからベクトル制御演算に使用する(数式14)に示す中間的な電流指令値id **、iq **を作成し、速度推定値ωdcおよび磁石モータ1の電気回路パラメータを用いて(数式15)に示すベクトル制御演算を行ってもよい。
ここで、Kpd1はdc軸の電流制御の比例ゲイン、Kid1はdc軸の電流制御の積分ゲイン、Kpq1はqc軸の電流制御の比例ゲイン、Kiq1はqc軸の電流制御の積分ゲイン、Tdはd軸の電気時定数(Ld/R*)、Tqはq軸の電気時定数(Lq/R*)である。
 あるいは、電流指令値id *、iq *と電流検出値idc、iqcから、ベクトル制御演算に使用するdc軸の比例演算成分の電圧修正値Δvd_p *、dc軸の積分演算成分の電圧修正値Δvd_i *、qc軸の比例演算成分の電圧修正値Δvq_p *、qc軸の積分演算成分の電圧修正値Δvq_i * を(数式16)により作成し、速度推定値ωdcおよび磁石モータ1の電気回路パラメータを用いた(数式17)に示すベクトル制御演算を行ってもよい。
ここで、Kpd2はdc軸の電流制御の比例ゲイン、Kid2はdc軸の電流制御の積分ゲイン、Kpq2はqc軸の電流制御の比例ゲイン、Kiq2はqc軸の電流制御の積分ゲインである。
 またdc軸の電流指令値id *およびqc軸の電流検出値iqcの一次遅れ信号iqctd、速度推定値ωdcと、磁石モータ1の電気回路パラメータを用いて(数式18)に示すベクトル制御演算を行ってもよい。
 なお、実施例1から実施例5において、電力変換器2を構成するスイッチング素子としては、Si(シリコン)半導体素子であっても、SiC(シリコンカーバイト)やGaN(ガリュームナイトライド)などのワイドバンドギャップ半導体素子であってもよい。スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)を使うようにしてもよい。
 実施例1から実施例5において、モータは、磁石モータを例にして説明したが、誘導モータに置き換えても、同様な効果を得ることができる。
1…磁石モータ、2…電力変換器、3…直流電源、4…電流検出器、5…座標変換部、6…速度制御演算部、7…フィルタ演算部、8…ベクトル制御演算部、9…位相誤差推定演算部、10…周波数および位相の推定演算部、11…座標変換部、20…電力変換装置、20a…電力変換装置のソフトウェア、20b…電力変換装置のデジタル・オペレータ、21…電圧検出器、22…電流検出器、23…エンコーダ、24…ベクトル電流成分の計算部、25…各部電流波形の観測部、26…低速域/中高速域の切替速度、27…低速域/中高速域に設定する減衰比パラメータ、28…パーソナル・コンピュータ、29…タブレット、30…スマートフォン、id *…d軸の電流指令値、iq *…q軸電流の指令値、ωdc…速度推定値、ωn…機械角速度、ωr…磁石モータの速度、vdc *、 vdc **、vdc **、vdc ***、vdc ****、vdc *****…d軸の電圧指令値、vqc *、 vqc **、vqc ***、vqc ****、vqc *****…q軸の電圧指令値、P…電力値、Pa…有効電力値、Δθc…位相誤差の推定値、ζa、ζb…減衰比パラメータ

Claims (12)

  1. モータの出力周波数と出力電圧および出力電流を制御する制御部を有する電力変換装置であって、
    前記制御部は、
    前記モータの速度指令値と速度推定値の偏差から第1のトルク電流指令を演算し、
    前記モータの速度の脈動を抑制する制御モードと、前記モータのトルクの脈動を抑制する制御モードのいずれかに、制御モードを切り替え、
    第1のトルク電流指令と切り替えた制御モードから、第2のトルク電流指令を演算する電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記モータの前記速度指令値から、二次伝達関数フィルタに設定するパラメータを変更し、
    前記制御モードを切り替える電力変換装置。
  3. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記モータの電力値を演算し、
    前記モータの前記電力値から、二次伝達関数フィルタに設定するパラメータを変更し、
    前記制御モードを切り替える電力変換装置。
  4. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記モータの速度の脈動を抑制する制御モードに対応した第1の二次伝達関数フィルタと、
    前記モータのトルクの脈動を抑制する制御モードに対応した第2の二次伝達関数フィルタとを有し、
    前記モータの前記速度指令値から、第1の二次伝達関数フィルタもしくは第2の二次伝達関数フィルタのいずれかを選択する電力変換装置。
  5. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記モータの速度の脈動を抑制する制御モードに対応した第1の二次伝達関数フィルタと、
    前記モータのトルクの脈動を抑制する制御モードに対応した第2の二次伝達関数フィルタとを有し、
    前記モータの電力値を演算し、
    前記モータの前記電力値から、第1の二次伝達関数フィルタもしくは第2の二次伝達関数フィルタのいずれかを選択する電力変換装置。
  6. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記モータの速度が、低速域の場合には、前記モータの速度の脈動を抑制する制御モードにし、
    前記モータの速度が、中高速域の場合には、前記モータのトルクの脈動を抑制する制御モードにする電力変換装置。
  7. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記モータの電力値を演算し、
    前記電力値が、低電力域の場合には、前記モータの速度の脈動を抑制する制御モードにし、
    前記電力値が、中高電力域の場合には、前記モータのトルクの脈動を抑制する制御モードにする電力変換装置。
  8. 請求項1に記載の電力変換装置において、
    前記制御部は、
    二次伝達関数フィルタに設定する減衰比パラメータを変更することで、前記制御モードを切り替える電力変換装置。
  9. 請求項8に記載の電力変換装置において、
    前記減衰比パラメータは、第1の減衰比パラメータと、第2の減衰比パラメータとからなる電力変換装置。
  10. 請求項1に記載の電力変換装置において、
    外部の機器から、
    前記制御モードを切替える値の設定をする電力変換装置。
  11. 請求項1に記載の電力変換装置において、
    電圧指令値および電流検出値、位相誤差および速度の推定値を、学習することで、前記制御部は、前記制御モードを切り替える値の設定をする電力変換装置。
  12. 請求項9に記載の電力変換装置において、
    第1の減衰比パラメータは、前記二次伝達関数フィルタの分子項のラプラス演算子の一次成分の係数であり、
    第2の減衰比パラメータは、前記二次伝達関数フィルタの分母項のラプラス演算子の一次成分の係数であり、
    前記制御部は、
    前記モータの速度の脈動を抑制する制御モードを選択した場合には、前記モータの速度の脈動を抑制する第1の減衰比パラメータおよび第2の減衰比パラメータに変更し、
    前記モータのトルクの脈動を抑制する制御モードを選択した場合には、前記モータのトルクの脈動を抑制する第1の減衰比パラメータおよび第2の減衰比パラメータに変更する電力変換装置。
PCT/JP2023/001075 2022-04-14 2023-01-17 電力変換装置 WO2023199563A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380015677.XA CN118451648A (zh) 2022-04-14 2023-01-17 功率转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022067257A JP2023157371A (ja) 2022-04-14 2022-04-14 電力変換装置
JP2022-067257 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023199563A1 true WO2023199563A1 (ja) 2023-10-19

Family

ID=88329564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001075 WO2023199563A1 (ja) 2022-04-14 2023-01-17 電力変換装置

Country Status (3)

Country Link
JP (1) JP2023157371A (ja)
CN (1) CN118451648A (ja)
WO (1) WO2023199563A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191737A (ja) 2005-01-06 2006-07-20 Sanyo Electric Co Ltd モータ制御装置及びこれを有するモータ駆動システム
JP2006340446A (ja) * 2005-05-31 2006-12-14 Hitachi Via Mechanics Ltd ディジタルサーボ制御装置及びレーザ加工装置
JP2018014854A (ja) * 2016-07-22 2018-01-25 日立ジョンソンコントロールズ空調株式会社 モータ駆動装置、及び、それを用いた冷凍空調機器
US20200153373A1 (en) * 2018-11-10 2020-05-14 Zhongshan Broad-Ocean Motor Co., Ltd. Constant torque control method for permanent magnet synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191737A (ja) 2005-01-06 2006-07-20 Sanyo Electric Co Ltd モータ制御装置及びこれを有するモータ駆動システム
JP2006340446A (ja) * 2005-05-31 2006-12-14 Hitachi Via Mechanics Ltd ディジタルサーボ制御装置及びレーザ加工装置
JP2018014854A (ja) * 2016-07-22 2018-01-25 日立ジョンソンコントロールズ空調株式会社 モータ駆動装置、及び、それを用いた冷凍空調機器
US20200153373A1 (en) * 2018-11-10 2020-05-14 Zhongshan Broad-Ocean Motor Co., Ltd. Constant torque control method for permanent magnet synchronous motor

Also Published As

Publication number Publication date
CN118451648A (zh) 2024-08-06
JP2023157371A (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
JP5937880B2 (ja) モータ制御装置及び冷蔵庫
WO2020255988A1 (ja) 回転電機制御システム
JP6055372B2 (ja) モータ制御装置
JP6199776B2 (ja) 電動機の駆動装置
JP2003219698A (ja) 同期機の制御装置
WO2020261751A1 (ja) 電力変換装置
WO2023199563A1 (ja) 電力変換装置
KR101316945B1 (ko) 고정형 교류 또는 직류 전원 입력을 갖는 이중 권선형 전동기 및 그 제어 방법
WO2022054357A1 (ja) 電力変換装置
JP7032250B2 (ja) 電力変換装置
JP7536418B2 (ja) 電力変換装置およびその制御方法
WO2022239307A1 (ja) 電力変換装置
WO2024111148A1 (ja) 電力変換装置
JP2004072856A (ja) 同期電動機の制御装置
CN110140290A (zh) 同步电动机的控制装置
JP5744151B2 (ja) 電動機の駆動装置および電動機の駆動方法
JP7368302B2 (ja) 電力変換装置
JP6259221B2 (ja) モータ制御装置
WO2023188667A1 (ja) 車両用駆動制御装置及びその方法
WO2024034259A1 (ja) モータ制御装置並びに電動車両システム
Azcue-Puma et al. Direct-FOC with Fuzzy Current Control for asynchronous machine
Elakya et al. Efficient Cost Reduction in BLDC Motor Using Four Switch Inverter and PID Controller
WO2020217438A1 (ja) モータ制御装置
JP2022034471A (ja) 交流電動機の制御装置および制御方法
JP2022101784A (ja) 制御装置、モータシステム及び同定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787986

Country of ref document: EP

Kind code of ref document: A1