WO2023198215A1 - 加热器、加热组件、加热模组及气溶胶产生装置 - Google Patents

加热器、加热组件、加热模组及气溶胶产生装置 Download PDF

Info

Publication number
WO2023198215A1
WO2023198215A1 PCT/CN2023/088660 CN2023088660W WO2023198215A1 WO 2023198215 A1 WO2023198215 A1 WO 2023198215A1 CN 2023088660 W CN2023088660 W CN 2023088660W WO 2023198215 A1 WO2023198215 A1 WO 2023198215A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heating
heater
aerosol
tubular body
Prior art date
Application number
PCT/CN2023/088660
Other languages
English (en)
French (fr)
Inventor
吴涛
郑文
戚祖强
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220879035.7U external-priority patent/CN217446681U/zh
Priority claimed from CN202220879053.5U external-priority patent/CN217429267U/zh
Priority claimed from CN202220879040.8U external-priority patent/CN217446682U/zh
Priority claimed from CN202220879062.4U external-priority patent/CN217826747U/zh
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023198215A1 publication Critical patent/WO2023198215A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the technical field of aerosol generation, and in particular to a heater, a heating component, a heating module and an aerosol generation device.
  • the aerosol-generating device typically includes a heater for heating the aerosol-generating article so that it generates aerosol.
  • the air heater can heat the air flowing through it to form high-temperature air, and then the high-temperature air enters the aerosol-generating product, and bakes the aerosol-generating product in the process of contact with the aerosol-generating product, causing it to generate volatilization Aerosol volatiles.
  • Embodiments of the present application provide a heater, a heating component, a heating module and an aerosol generating device.
  • the detection part of the first temperature detector is arranged inside the heater to detect the internal temperature of the heater. degree to help control the temperature of the heater.
  • the embodiment of the present application provides a heater for heating the air flowing through, and then heating the aerosol-generating products through the hot air, including:
  • the base body is penetrated by a plurality of first pores, the first pores allow air to pass through, and the air is heated by the base body when flowing through the first pores;
  • Mounting holes are provided inside the base body
  • a first temperature detector has a detection portion disposed in the mounting hole to detect the temperature inside the base body.
  • An embodiment of the present application provides a heating assembly, including a tubular body and the heater.
  • the heater includes a fixing part provided on at least part of the side surface of the base body, and the base body is connected to the base body through the fixing part.
  • the tubular bodies are embedded and connected.
  • a thermal insulation shell with a first accommodation cavity formed therein for accommodating at least part of the aerosol-generating product, and a first insertion opening connected to the first accommodation cavity is provided at the proximal end of the thermal insulation shell;
  • the heating component is arranged in the first containing cavity and is used to heat the aerosol-generating product to generate aerosol;
  • the distal end of the thermal insulation shell is sealed.
  • An aerosol generating device provided by an embodiment of the present application includes the heater, the heating component, or the heating module.
  • the above-mentioned heater, heating component, heating module and aerosol generating device realizes that the detection part of the first temperature detector is arranged inside the base body by arranging the detection part of the first temperature detector in the mounting hole, so that the first temperature detector It can detect the temperature change inside the substrate. Compared with detecting the temperature on the surface of the substrate, detecting the temperature inside can not only reduce the detection error caused by the temperature gradient between the surface of the substrate and the inside of the substrate, but also can not be affected by the insulation layer set on the periphery of the heater. Influence. Specifically, the detection part is arranged in the installation hole. When the air flows through the first air hole, the temperature inside the base body will first be reduced.
  • the detection part can detect in real time and sensitively. to the temperature changes of the substrate caused by changes in air flow, thereby providing more accurate and timely temperature parameters; at the same time, it also improves the performance of the aerosol generating device. Temperature control is very beneficial.
  • Figure 1 is a schematic diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 2 is a partial schematic diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a heater provided by an embodiment of the present application.
  • Figure 4 is another schematic diagram of a heater provided by an embodiment of the present application.
  • Figure 5 is another schematic diagram of a heater provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a heater provided by another embodiment of the present application.
  • Figure 7 is a schematic diagram of a heater provided by yet another embodiment of the present application.
  • Figure 8 is a perspective cross-sectional view of a heater provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a heater provided by yet another embodiment of the present application.
  • Figure 10 is a partial schematic diagram of an aerosol generating device provided by another embodiment of the present application.
  • Figure 11 is a schematic diagram of a heater provided by yet another embodiment of the present application.
  • Figure 12 is a perspective cross-sectional view of a heating assembly provided by an embodiment of the present application.
  • Figure 13 is a perspective cross-sectional view of a heating assembly provided by another embodiment of the present application.
  • Figure 14 is a perspective cross-sectional view of a heating module provided by an embodiment of the present application.
  • Figure 15 is a perspective cross-sectional view of a heating assembly provided by an embodiment of the present application.
  • Heater 31. Base body; 311. First surface; 32. Fixed part; 33. First air hole; 341. Groove; 342. Second air hole; 35. First temperature detector; 351. First thermoelectric Couple wire; 352, second thermocouple wire; 36, mounting hole; 37, first part; 38, second part; 39, third air hole;
  • Insulation shell 81. First accommodation cavity; 82. Arched bottom; 83. convex air cavity;
  • a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes Other steps or units inherent to such processes, methods, products or devices.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are independent or alternative embodiments mutually exclusive of other embodiments. Example. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • An embodiment of the present application provides an aerosol-generating device, which can be used to heat an aerosol-generating product so that the aerosol-generating product volatilizes aerosol for smoking.
  • the aerosol can include Chinese herbal medicine, nicotine or tobacco flavorings. and other flavor substances.
  • the aerosol-generating product 1 is a smoking product (such as cigarettes, cigars, etc.), but this is not limited.
  • the aerosol-generating device includes a receiving chamber for receiving the aerosol-generating article 1 and a heater 3 for heating the aerosol-generating article 1 , and also includes a power source 4 . Used to provide power for heater 3 to work.
  • the aerosol generating device has an insertion opening, through which the aerosol generating article 1, such as a cigarette, is removably received in the receiving cavity; at least a portion of the heater 3 extends longitudinally in the receiving cavity, and Heating is generated by electromagnetic induction under a changing magnetic field, or by resistance when energized, or by radiating infrared rays to the aerosol-generating product when excited, thereby heating the aerosol-generating product 1 such as a cigarette, so that the aerosol-generating product 1 At least one component volatilizes to form an aerosol for inhalation; the power source includes a battery core 41, which is a rechargeable DC battery core and can output DC current.
  • the battery core 41 may also be a disposable battery, which is not rechargeable or does not need to be charged.
  • the power source 4 can be a wired power supply, and the wired power supply is directly connected to the mains through a plug to power the aerosol generating device.
  • the DC power supply voltage provided by the battery core 41 is in the range of about 2.5V to about 9.0V, and the DC current ampere provided by the battery core 41 is in the range of about 2.5A to about 20A.
  • Power may be supplied to the heater 3 as a pulse signal, and the amount of power delivered to the heater 3 may be adjusted by changing the duty cycle or pulse width or pulse amplitude of the power signal.
  • the aerosol generating device may comprise a single heater 3, alternatively the aerosol generating device may comprise More than one heater 3, the heater 3 or the plurality of heaters 3 may be suitably arranged to most efficiently heat the aerosol-generating article 1, wherein the plurality of heaters 3 may constitute a segmentation of the aerosol-generating article. For heating, at least two heaters 3 among the plurality of heaters 3 may have different heating methods or heating efficiencies.
  • the heater 3 can heat the aerosol-generating article 1 by conduction.
  • the heater 3 may be at least partially in contact with the aerosol-generating article 1 or the aerosol-generating article 1 carrier. Alternatively, heat from the heater 3 may be conducted to the aerosol generating article 1 through a thermally conductive element.
  • At least one of the heaters 3 can heat the aerosol-generating article 1 by convection; alternatively, the ambient air can be heated by at least one of the heaters 3 before passing through the aerosol-generating article 1; alternatively, the heater 3 can heat the aerosol-generating article by radiation.
  • Product 1 can heat the aerosol-generating article 1 by convection; alternatively, the ambient air can be heated by at least one of the heaters 3 before passing through the aerosol-generating article 1; alternatively, the heater 3 can heat the aerosol-generating article by radiation.
  • the heater 3 may have one or more heaters 3 and power is supplied to the heater 3 until the one or more heaters 3 reaches a temperature of between about 150°C and 440°C in order to generate the article 1 from the aerosol Generate aerosols.
  • the aerosol generating device is preferably a handheld aerosol generating device.
  • the aerosol-generating device includes a controller 42, an insertion detector, and a user interface (eg, a combination of a graphical display or LED indicator lights, etc.) that communicates information about the aerosol-generating device to the user.
  • the insertion detector may detect the presence and properties of the aerosol-generating article 1 in proximity to the heater 3 in the heat transfer path and signal the presence of the aerosol-generating article 1 to the controller 42 . It will be understood that the provision of an insertion detector is optional but not required.
  • the controller 42 controls the user interface to display system information, such as cell power, temperature, status of the aerosol-generating article 1, number of puffs, other information, or a combination thereof.
  • the controller 42 is electrically connected to the power source and the heater 3 and is used to control the current, voltage or electric power output of the power source, etc., thereby controlling the temperature of the heater 3 .
  • Controller 42 may include a programmable microprocessor.
  • the controller 42 may include a dedicated electronic chip, such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • any device capable of providing a signal capable of controlling a heater may be used with the embodiments discussed herein.
  • the controller 42 is configured to detect a temperature change in the actual temperature of the heater 3 relative to the target temperature to detect an event indicative of a user puff.
  • Controller 42 may include storage components, which may include memory and/or cache.
  • the storage component may be configured to record detected changes in airflow or user puffing.
  • the storage component may record a count of puffs taken by the user or the time of each puff.
  • the storage assembly may further be configured to record the temperature of the heater 3 and the power supplied during each puff.
  • the recorded data can be displayed through the user interface under the call of the controller 42, or output and displayed through other output interfaces, when the number of recorded puffs reaches the preset total number of puffs of the aerosol generating product 1 , the controller 42 can be reset, or the controller 42 can clear the recorded number of puffs, or the controller 42 controls the aerosol generating device to shut down, or the controller 42 controls the battery core 41 to stop continuing to provide power to the heater 3 , or the controller 42 prompts the user that the aerosol-generating product 1 has reached the suction limit through sound, light, vibration, etc.
  • the user's puff count data may be transferred to an external memory or processing device via any suitable data output device.
  • the aerosol generating device may include a radio, Bluetooth, or a Universal Serial Bus (USB) socket connected to the controller or memory.
  • the aerosol generating device may be configured to transfer data from the memory to external memory in the cell charging device each time the aerosol generating device is recharged via an appropriate data connection.
  • the aerosol-generating article 1 is preferably made of a tobacco-containing material that releases volatile compounds from the smokable article when heated; or it may be a non-tobacco material that can be heated and then suitable for electric heating to produce cigarettes.
  • the aerosol-generating product 1 preferably adopts a solid matrix, which may include one or more powders, granules, fragments, thin strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the aerosol-generating article 1 may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the aerosol-generating article 1 is heated.
  • the aerosol-generating article 1 is prepared in the shape of a conventional cigarette or cigar.
  • the aerosol generating article 1 may be included in a smoking article.
  • the smoking article comprising the aerosol-generating article 1 may be completely contained within the aerosol-generating device.
  • the user can puff on the mouthpiece of the aerosol generating device.
  • the mouthpiece may be any part of the aerosol-generating device that is placed in the user's mouth for direct inhalation of the aerosol generated by the aerosol-generating article 1 or the aerosol-generating device.
  • the aerosol is delivered to the user's mouth via the mouthpiece.
  • the smoking article comprising the aerosol-generating article may be partially contained within the aerosol-generating device during operation. In this case, the user can draw directly on the mouthpiece of the smoking article.
  • a heater 3 includes a base 31, which is penetrated by one or more first air holes 33.
  • the first air holes 33 allow air to pass through, and the air passes through the first air holes.
  • it can be heated into hot air by the base 31 , and the hot air is used to enter the aerosol-generating article 1 and fully and evenly bake the aerosol-generating article 1 by flowing through almost all the gaps inside the aerosol-generating article 1 .
  • the heater 3 may further include a fixing part 32 , which is disposed on the side surface of the base 31 .
  • the air may also flow through the fixing part 32 , and then flow through the fixing part 32 When heated, hot air is formed, and the hot air will also enter the aerosol-generating product 1, and then bake the aerosol-generating product 1 to generate aerosol.
  • the heater 3 also includes an air channel. When the air flows through the air channel, it flows through the fixing part 32 .
  • the aerosol generating device further includes a housing 2 , the above-mentioned receiving cavity for receiving the aerosol generating product 1 is formed inside the housing 3 , and a housing 3 is also formed inside.
  • the fixing portion 32 is connected to at least part of the cavity wall of the mounting cavity 21, and is retained in the mounting cavity 21 through the connection.
  • the base 31 is connected to the fixing portion 32 and is thus retained in the mounting cavity 21. Therefore, the fixing part 32 can also be used to retain the base body 31 within the housing 2 .
  • the heating body 3 contains grade 430 stainless steel (SS430), or grade 420 stainless steel (SS420), or an alloy material containing iron and nickel (such as permalloy), or a graphite alloy, which can be changed.
  • the heating element 3 is a magnetically sensitive material that generates heat in a changing magnetic field. The heating element 3 generates heat due to the generation of eddy currents and hysteresis in the changing magnetic field, and heats the air flowing through it, thereby using the air to heat the aerosol-generating product 1 .
  • the aerosol generation device also includes a magnetic field generator 5, such as an induction coil, for generating a changing magnetic field under alternating current, and the controller 42 is connected to the electric core 41 and the induction coil, and can output the electric core 41.
  • the direct current is converted into an alternating current, and preferably the frequency of the alternating current is between 80KHz and 400KHz; more specifically, the frequency can be in the range of approximately 200KHz to 300KHz.
  • At least one of the base body 31 and the fixing part 32 contains grade 430 stainless steel (SS430), or grade 420 stainless steel (SS420), or an alloy material containing iron and nickel (such as permalloy). alloy), or contain magnetically sensitive materials such as graphite alloys that can generate heat in a changing magnetic field, so that at least one of the base 31 and the fixed portion 32 heats itself due to the generation of eddy currents, hysteresis, etc. in the changing magnetic field, and The air flowing through is heated, and the air is used to heat the aerosol-generating product 1.
  • the aerosol generating device also includes a magnetic field generator 5, such as an induction coil, for producing changes under alternating current.
  • the magnetic field, and the controller 42 connects the battery core 41 and the induction coil, and can convert the DC current output by the battery core 41 into an alternating current, preferably the frequency of the alternating current is between 80KHz and 400KHz; more specifically, the The frequency can range from approximately 200KHz to 300KHz.
  • At least one of the base 31 and the fixed part 32 is made of resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, etc., or includes the above At least one of the conductive materials can generate heat through the electrothermal effect of the resistance during conduction to heat the aerosol-generating product 1 and volatilize at least one component of the aerosol-generating product 1 to form an aerosol.
  • resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, etc.
  • the fixed portion 32 and the base 31 in the heater 3 can be integrally formed of the same material, such as graphite alloy powder and other magnetically sensitive materials.
  • At least one of the base 31 and the fixing part 32 can generate heat. If only one of the base body 31 and the fixing part 32 can generate heat, the other one will heat up through heat transfer, and then heat the air flowing through it.
  • At least one of the base 31 and the fixing part 32 includes a thermal conductor and a heating element.
  • the heating element can generate heat by electrothermal effect, or use electromagnetic induction to generate heat, or use infrared radiation to heat the thermal conductor.
  • the thermal conductor can There are the above-mentioned first air holes 33 or the air can flow through the thermal conductor, and when the air flows through the thermal conductor, it can exchange heat with the thermal conductor and be heated into hot air.
  • at least part of the heating body may be disposed on the periphery of the thermal conductor.
  • the heating body may be a resistance film, an electric heating wire, a magnetic induction ring, a conductive ceramic ring, etc.
  • the thermal conductor having the first air holes 33 is penetrated by the first air holes 33 .
  • the base 31 and the fixing part 32 are an integral structure made of the same material, so that the base 31 and the fixing part 32 have approximately the same heating efficiency per unit area or unit volume; in other embodiments , the base 31 and the fixing part 32 are an integrated structure made of different materials, so that the base 31 and the fixing part 32 have different heating efficiencies per unit area or unit volume, so that the heating efficiency can be adjusted according to the flow through different sections. Different temperatures of the air require setting the position of the fixing part 32, or the position of the fixing part 32 can be set according to the heat dissipation trend of the heater 3, etc. Of course, it is not ruled out that the fixing part 32 can be formed separately from the base body 31 and then connected to each other.
  • the side surface of the base 31 includes a first surface 311 and a second surface.
  • the first surface 311 and the second surface are distributed along the axial direction of the heater 3 and along the direction of air flow. direction, the second surface is located downstream of the first surface 311 .
  • the fixing part 32 is disposed on the side surface of the base 31. In one embodiment, the fixing part 32 only occupies a partial area of the side surface of the base 31.
  • the fixing part 32 can be disposed on the first surface 311; or, the fixing part 32 can be disposed on the second surface (as shown in Figures 3 and 4); or, the fixing portion 32 connects the first surface 311 and the second surface, and occupies part of the first surface 311 and part of the second surface.
  • the fixing part 32 connects the first surface 311 and the second surface, and the length of the fixing part 32 along the axial direction of the heater 2 may not be less than the length of the first surface 311 and the second surface along the axial direction of the heater 3 The sum of the lengths.
  • the contours of the first surface 311 and the second surface are both circular.
  • the contours of the first surface 311 can be regular shapes such as square, ellipse, triangle, etc.
  • the outline of the second surface can also be one of various regular graphics or irregular graphics, which may be consistent with the outline of the first surface, or may not be consistent.
  • the side surface of the fixing part 32 is recessed to form a groove 341 , and the groove 341 forms an air passage for air to pass through.
  • the distance between the groove bottom of the groove 341 and the central axis of the base 31 can be greater than the distance from the corresponding single side of the base 31 to the central axis of the base 31, so that the air flowing through the groove 341 will contact the fixed part 32 to undergo heat exchange, and then be The fixing part 32 is heated.
  • a partial surface of the base 31 may constitute the groove bottom of the groove 341, so that the air flowing through the groove 341 will contact the fixing part and the base 31 to cause heat exchange, and then be heated by the fixing part. 32 and the outer surface of the base 31 are heated.
  • the groove 341 may be in a linear shape extending along the axial direction of the heater; in another embodiment, the groove 341 may be in a meandering or zigzag shape that runs through the proximal and distal ends of the fixing part 32 ; In another embodiment, the groove 341 may be a diagonal shape, an arc shape, a spiral shape, etc. that runs through the fixing portion 32 .
  • the “near end” and “distant end” mentioned in the various embodiments of this specification are relative to the user when using them.
  • the “near end” refers to the end close to the user, and the “distant end” refers to the end far away from the user. end, shall not be used to limit this application.
  • the groove widths of the same groove 341 are the same everywhere, so that the air has substantially the same contact area with the groove 341 everywhere, and thus has substantially the same heat exchange efficiency.
  • the uniform distribution here includes: 1. All grooves 341 can have approximately the same size and shape; 2. At the same axial height of the heater 3, the distance between two adjacent grooves 341 is the same as the distance between any other two adjacent grooves 341. The distance is the same.
  • the fixing part 32 forms an annular shape surrounding the base 31 , so that the grooves 341 formed on the fixing part 32 are annularly distributed around the periphery of the base 31 , and may be Distribute evenly.
  • the distribution of the plurality of grooves 341 on the fixing part may be uneven.
  • the fixing portion 32 may not be annular, but may be one or more block-shaped bodies or arc-shaped bodies provided on the surface of the base body 31 , and the groove 341 is provided on the surface of the block-shaped body or arc-shaped body.
  • the fixed portion 32 is penetrated by a second air hole 342 along the axial direction of the heater 3 , and the second air hole 342 forms at least part of an air passage for air to pass through.
  • the fixing part 32 may form an annular shape surrounding the base body 31 , or the fixing part 32 may be arranged on the base body 31 A block or arc-shaped body on the side surface.
  • the air in the second air hole 342 can also be heated by the base body 31 .
  • the diameter of the second air hole 342 may be smaller than the diameter of the first air hole 33 .
  • FIG. 7 there are multiple fixed portions 32 , at least two, and at least part of an air passage for air to pass is formed between two adjacent fixed portions 32 . Therefore, when the air passes through the air passage, it is contacted by the fixing part 32 and the base 31 at the same time and is heated by both of them.
  • fixing part 32 is optional and not required.
  • the heater 3 also includes a mounting hole 36 and a first temperature detector 35.
  • the first temperature detector 35 is installed on In the mounting hole 36, the temperature of the heater 3 is detected by the first temperature detector 35, and then the controller 42 obtains the temperature data, then analyzes the temperature data, and finally controls the temperature of the heater 3.
  • the reasons for this inconspicuousness may be multiple, including: 1.
  • the periphery of the heater 3 It has an insulation layer, which makes the outer surface temperature of the heater 3 relatively stable; or 2. the heater mainly generates heat through its surface layer, so that it can keep the surface temperature relatively constant during operation and is not affected by changes in its internal temperature. wait.
  • this application adopts the method of arranging the first temperature detector 35 inside the heater 3 instead of the existing first temperature detector 35 . placed on the surface of heater 3.
  • the mounting hole 36 is disposed inside the base 31 , and the detection portion of the first temperature detector 35 can be disposed in the mounting hole 36 , so that the temperature inside the base 31 can be detected.
  • the mounting hole 36 is a blind hole, which is provided inside the base 31 but does not penetrate the base 31 , or the mounting hole 36 is a through hole with at least one end blocked, so that air cannot pass through the mounting hole 36 , but due to the installation
  • the hole 36 is disposed inside the base 31
  • the detection part of the first temperature detector 35 is disposed inside the mounting hole 36 .
  • the first temperature detector 35 can also be used. Intuitively and accurately capture the temperature inside the substrate 31, and then record or reflect the temperature inside the substrate 31.
  • the mounting hole 36 is a through hole that penetrates the base 31 , and after the first temperature detector 35 is installed, air can still pass through the mounting hole 36 , so that during suction, the air can pass through the mounting hole 36 and connect to the base 31 .
  • the first air hole 33 makes the mounting hole 36 and the first air hole 33 have approximately the same degree of temperature change, so that the temperature data of the base 31 obtained by the first temperature detector 35 in the mounting hole 36 is closer to the actual temperature of the first air hole 33 , which has more reference value.
  • the mounting hole 36 is formed by one of the first air holes 33 , so that the first temperature detector 35 located in the first air hole 33 can detect the temperature of the first air hole 33 when air flows through.
  • an air channel of the fixing part 32 forms the mounting hole 36, so that the first temperature detector 35 located in the mounting hole 36 can detect the temperature of the air channel when the air flows through the air channel.
  • the first temperature detector 35 is disposed on the surface of the heater.
  • the pores or air ducts of the heater When air flows rapidly through the pores or air ducts of the heater due to suction, the pores or air ducts are in direct contact with air with a lower temperature. The temperature will drop significantly.
  • the surface of the heater such as the surface of the base, is not in direct contact with the cold air, the temperature change on the surface of the heater in a short period of time is relatively small during suction. Obviously, this results in lower detection sensitivity of the first temperature detector 35 .
  • the temperature of the air in the first pore 33 or airway can be obtained directly, quickly and timely, so that the temperature data of the air can be obtained more accurately.
  • the detection sensitivity is high and the temperature data is conducive to the controller 42 timely and Accurately controlling the temperature of the heater 3 can promptly prevent the temperature from being too high and burning the aerosol to generate the product 1, or it can promptly increase the power supply to the heater 3 so that the heater 3 can quickly recover to meet the current suction target. Temperature, or returning to a target temperature that meets the requirements of the next puff, helps improve the user experience.
  • the first temperature detector 35 is disposed in the central area of the base 31 , such as the mounting hole 36 is disposed in the very center of the base 31 .
  • the first temperature detector 35 can also be set away from the center in an area with dense air flow or in an area with large air flow, because the temperature changes in the center, the area with dense air flow, or the area with large air flow are relatively more dramatic and can better reflect the heater 3 The actual temperature should be collected.
  • the detection portions of a plurality of different first temperature detectors 35 are disposed at different positions in the mounting hole 36 , such as being disposed at different axial depths of the mounting hole 36 .
  • the aperture of the installation hole 36 is larger than the aperture of the first air hole 33 where the first temperature detector 35 does not need to be installed. Of course, this is not excluded.
  • the diameter of the mounting hole 36 may be the same as the diameter of the first air hole 33 .
  • first air holes 33 can be distributed around the periphery of the mounting hole 36 , including being surrounded by multiple first air holes 33 , or multiple first air holes 33 .
  • the first air hole 33 surrounds at least part of the mounting hole 36, so that the mounting hole 36 is at least partially surrounded by the airflow during suction or natural convection, or is located at the center or edge of the airflow dense area, so that there are many airflows around it.
  • the temperature change of the first air hole 33 has a great influence on the temperature change of the mounting hole 36 . It is preferred that the mounting hole 36 is evenly surrounded by a plurality of first air holes 33 so that the temperature field distribution in the mounting hole 36 is relatively uniform and the temperature data obtained by the first temperature detector 35 is more reliable.
  • the detection portion of the first temperature detector 35 is located in the middle of the axial length of the mounting hole 36 .
  • the first temperature detector 35 includes a first thermocouple wire 351 and a second thermocouple wire 352 .
  • At least part of the base 31 is made of conductive material, and preferably the conductive material is disposed in the mounting hole 36 .
  • the first thermocouple wire 351 and the second thermocouple wire 352 are electrically connected to each other through the conductive material, thereby forming a thermocouple for detecting the temperature of the base body 31 , wherein the conductive material forms a detection part of the thermocouple.
  • At least part of the fixing part 32 is made of conductive material.
  • the conductive material is disposed in the airway, and the first thermocouple wire 351 and the second thermocouple wire 352 are realized through the conductive material. They are electrically connected to each other to form a thermocouple for detecting the temperature of the fixed part 32 , wherein the conductive material forms the detection part of the thermocouple.
  • the entire base body 31 is made of conductive material, and/or the entire fixing portion 32 is made of conductive material.
  • first thermocouple wire 351 and the second thermocouple wire 352 are located in the same mounting hole 36 .
  • the first thermocouple wire 351 and the second thermocouple wire 352 can be located in different mounting holes 36.
  • the mounting hole 36 is larger than the first air hole 33 that does not accommodate the thermocouple wire, so that air can pass through the installation. hole 36, or it is convenient to arrange at least part of the first thermocouple wire 351 and the second thermocouple wire 352 in the mounting hole 36.
  • the first thermocouple wire 351 and the second thermocouple wire 352 are made of different wire materials.
  • the first thermocouple wire 351 and the second thermocouple wire 352 are made of nickel. , nickel-chromium alloy, nickel-silicon alloy, nickel-chromium-copper, constant bronze, iron-chromium alloy and other galvanic materials. That is, the first thermocouple wire 351 and the second thermocouple wire 352 are made of different materials.
  • the first temperature detector 35 is embedded inside the base 31 or the fixing part 32 .
  • the detection part of the first temperature detector 35 may be disposed in the first air hole 33 , or It is provided on the second air hole 342 of the fixed part 32, so that when the air flows through the first air hole 33 or the second air hole 342, the temperature of the first air hole 33 or the second air hole 342 can be detected, and thus the heated air can be obtained more accurately.
  • the temperature of the air, the change of the air temperature in the first air hole 33 or the second air hole 342 can It is captured by the first temperature detector 35 relatively promptly and directly.
  • the first temperature detector 35 is disposed on the surface of the heater 3.
  • the first air hole 33 or the second air hole 342 of the heater 3 When air flows rapidly through the first air hole 33 or the second air hole 342 of the heater 3 due to suction, the first air hole 33 or the second air hole 342 342's temperature will drop significantly due to direct contact with lower-temperature air.
  • the surface of the heater 3, such as the surface of the base 31, is not in direct contact with the cold air, so it is heated during suction.
  • the temperature change on the surface of the device 3 is relatively insignificant, resulting in low detection sensitivity of the first temperature detector 35 .
  • the temperature of the air in the first air hole 33 or the second air hole 342 can be obtained directly, quickly and timely, so that the temperature data of the air can be obtained more accurately.
  • the detection sensitivity is high and the temperature data is beneficial to the controller.
  • Timely and accurate temperature control of the heater 3 can prevent the temperature from being too high and burn the aerosol to generate the product 1, or it can increase the power supply to the heater 3 in a timely manner so that the heater 3 can quickly recover to meet the current pumping requirements.
  • the target temperature for puffing, or restoring the target temperature that meets the requirements of the next puff, can help improve the user experience.
  • the above-mentioned heater and aerosol generating device realizes that the detection part of the first temperature detector 35 is arranged inside the base body by arranging the detection part of the first temperature detector 35 in the mounting hole, so that the first temperature detector 35 can detect the temperature inside the base body. Temperature changes, compared with detecting the temperature of the surface of the substrate, detecting the internal temperature can not only reduce the detection error caused by the temperature gradient, but also is not affected by the insulation layer set around the heater.
  • the detection part is arranged in the installation hole. When the air flows through the first air hole, the temperature inside the base body will be reduced. Therefore, when the air flow rate and flow rate increase greatly due to suction by the user, the detection part can detect in real time and sensitively the base body due to air flow. Temperature changes caused by changes, thereby providing more accurate and timely temperature parameters, which is very beneficial for temperature control of heaters.
  • a heater 3 includes a first part 37 and a second part 38.
  • the first part 37 and the second part 38 are simultaneously penetrated by one or more first air holes 33.
  • the first air holes 33 Air is allowed to pass, and when the air passes through the first air hole 33, it can be heated by the heater 3 into hot air.
  • the hot air is used to enter the aerosol-generating product 1, by flowing through almost all the gaps inside the aerosol-generating product 1, Thereby, the aerosol-generating article 1 can be baked sufficiently and uniformly.
  • a heating component is also provided.
  • the heating component includes a heater 3 and a tubular body 6.
  • the tubular body 6 is tubular, with upper and lower ends connected through it, and air can flow from its lower end to its upper end.
  • Part of the heater 3 is embedded and fixed with the tubular body 6, and the heater 3 is held in the accommodation cavity of the aerosol generating device through the tubular body 6.
  • the tubular body 6 is an electromagnetic heating body, a resistance heating body, an infrared heating body or a thermal insulation tube.
  • the second air hole 342 can also be jointly defined by the tubular body 6 and the second part 38 . Air can enter the aerosol-generating article 1 through the second air hole 342 , and the air can pass through the second air hole 342 and enter the aerosol-generating article 1 . When the air hole 342 is opened, it is heated by at least the second part 38, thereby forming hot air.
  • the second air holes 342 may be evenly distributed, including the second air holes 342 having the same hole diameter, and the distance between any two adjacent second air holes 342 having the same hole diameter. Same etc. However, this is not a limitation, that is, the second air holes 342 may be distributed unevenly. Of course, the second air hole 342 may be linear, or may be curved or bent.
  • At least part of the outer surface of the second part 38 has a gear-shaped or lace-shaped cross-section, and at least part of the gear-shaped or lace-shaped outer surface of the second part 38 is consistent with
  • the tubular bodies 6 are embedded and fixed, so that the overlapping area of the second part 38 and the tubular body 6 can allow air to pass (ie, pass through the second air hole 342), and when the air passes, it will be at least blocked by the outside of the second part 38.
  • the sides are heated, creating hot air.
  • At least part of the inner surface of the tubular body 6 has a gear-shaped or lace-shaped cross-section, and the second part 38 is embedded and fixed with at least part of the gear-shaped or lace-shaped inner surface of the tubular body 6, thereby defining the second part 38 .
  • the second part 38 is located downstream of the first part 37. Therefore, when the heater 3 and the tubular body 6 are embedded and fixed, the first part 37 protrudes. outside the tubular body 6.
  • the cross-sectional area of the second part 38 is larger than the cross-sectional area of the first part 37 , so that a step surface is formed between the second part 38 and the first part 37 , and the step surface is provided with
  • the cross-sectional area of the first part 37 can be made smaller than the cross-sectional area of the second part 38 by cutting, casting and other available process means. For example, by cutting, the part of the first part 37 penetrated by the third air hole 39 Peel away. As a result, the overall mass of the heater 3 is reduced.
  • the heater 3 has a first air hole 33 , a second air hole 342 and a third air hole 39 at the same time.
  • the heater 3 only has the first air hole 33 and the second air hole 342 at the same time, that is, the step surface between the second part 38 and the first part 37 is discontinuous (as shown in Figure 7), so that the second At least part of the outer surface of the part 38 is contoured as a gear, and there is no third air hole 39 on the gear; or the height of the step surface between the second part 38 and the first part 37 is too low (as shown in Figures 3 to 5), which is insufficient.
  • the third air hole 39 is opened, so that at least part of the outer surface of the second part 38 has a lace shape with smaller amplitude.
  • the third air holes 39 are evenly distributed on the step surface, including multiple third air holes 39 having the same hole diameter, and any two adjacent third air holes 39 having the same distance between them.
  • the third air holes 39 may be distributed unevenly.
  • At least one of the heating body 3 and the tubular body 6 contains grade 430 stainless steel (SS430), or grade 420 stainless steel (SS420), or an alloy material containing iron and nickel (such as permalloy). alloy), or contain magnetically sensitive materials such as graphite alloys that can generate heat in a changing magnetic field, so that at least one of the two tubular bodies 6 self-heats due to the generation of eddy currents, hysteresis, etc. in a changing magnetic field, and heats the flow through of air, and then use the air to heat the aerosol-generating product 1.
  • SS430 grade 430 stainless steel
  • SS420 grade 420 stainless steel
  • an alloy material containing iron and nickel such as permalloy). alloy
  • magnetically sensitive materials such as graphite alloys that can generate heat in a changing magnetic field
  • the aerosol generation device also includes a magnetic field generator 5, such as an induction coil, for generating a changing magnetic field under alternating current, and the controller 42 is connected to the electric core 41 and the induction coil, and can output the electric core 41.
  • the direct current is converted into an alternating current, and preferably the frequency of the alternating current is between 80KHz and 400KHz; more specifically, the frequency can be in the range of approximately 200KHz to 300KHz.
  • the tubular body 6 is made of resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, or contains at least one of the above conductive materials, so that When conducting electricity, the aerosol-generating product 1 can be heated by generating heat through the electrothermal effect of the resistance, so that at least one component in the aerosol-generating product 1 can be volatilized to form an aerosol.
  • resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, or contains at least one of the above conductive materials, so that When conducting electricity, the aerosol-generating product 1 can be heated by generating heat through the electrothermal effect of the resistance, so that at least one component in the aerosol-generating product 1 can be volatilized to form an aerosol.
  • the tubular body 6 cannot generate heat and is mainly used for heat preservation to reduce the heat loss rate around the heater 3 or to reduce the temperature loss rate inside the aerosol-generating product 1, thereby reducing heating.
  • tubular body 6 may be located only on the periphery of the second part 38, so that only the second part 38 Insulate; or
  • the tubular body 6 is formed with a receiving cavity 61 , a part of the receiving cavity 61 is used to accommodate the aerosol-generating product 1 , and the remaining area can be used to accommodate at least part of the second part 38 , so that the tubular body 6 can be used to at least support the heater 3
  • the second part 38 can be used for insulation, reducing the energy consumption of the heater 3, and can also keep the aerosol-generating product 1 warm, preventing the aerosol from condensing in the aerosol-generating product 1, or preventing the aerosol-generating product 1 from being fully baked. Baking causes waste, and at the same time, the tubular body 6 also keeps the heater 3 in the aerosol generating device.
  • the tubular body 6 is made of thermal insulation and thermal insulation materials, such as ceramics.
  • the tubular body 6 has a vacuum insulation layer in its wall.
  • the tubular body 6 can generate heat, and can be an electromagnetic heating element, a resistance heating element, an infrared heating element, etc.
  • the tubular body 6 generates heat to maintain a high-temperature environment inside the second accommodation chamber 61 to prevent aerosol from generating products.
  • the temperature of the hot air in 1 is reduced so that the aerosol-generating product 1 cannot be fully baked, and at the same time, condensation of the aerosol in the aerosol-generating product 1 can be avoided; in another embodiment, the tubular body 6 is used when the user has just inhaled.
  • the aerosol-generating product 1 When the aerosol-generating product 1 is used, the aerosol-generating product 1 operates at high power to quickly heat the aerosol-generating product 1 so that the aerosol-generating product 1 can quickly generate aerosol to meet the user's demand for rapid smoke/fog release, thereby improving the user experience.
  • the tubular body 6 after meeting the user's demand for quick smoke/mist release on the first puff, the tubular body 6 can enter a low-power working state to cooperate with other heaters such as air heaters to maintain the aerosol. Generate a high-temperature environment inside the product 1 to prevent excessive cooling of the air inside the aerosol-generating product 1 .
  • the heating component 3 only includes a tubular body 6, and the aerosol-generating article 1 inside the tubular body 6 is heated to generate aerosol.
  • the tubular body 6 may be an insulating tube, which is mainly used to insulate the aerosol-generating product 1 and prevent the airflow temperature in the aerosol-generating product 1 from decreasing too quickly.
  • the heater 3 and the tubular body 6 both contain grade 430 stainless steel (SS430), or grade 420 stainless steel (SS420), or alloy materials containing iron and nickel (such as permalloy), or graphite alloys, etc., they can be changed.
  • Magnetic-sensitive materials generate heat in a changing magnetic field.
  • Magnetic-sensitive materials can generate eddy currents and hysteresis in changing magnetic fields, thereby generating heat. Therefore, both the heater 3 and the tubular body 6 can generate heat in a changing magnetic field.
  • the fixing part Since at least part of the second part 38 is located in the tubular body 6, or at least part of the fixing part is located in the tubular body 6, at least part of the fixing part may It is magnetically shielded by the tubular body 6 and cannot generate eddy currents (at this time, the magnetic induction generator that generates the changing magnetic field is located on the periphery of the heating component. It can be understood that if the magnetic induction generator that generates the changing magnetic field is located on the inside of the heating component, Then a part of the tubular body 6 may be heated by the heater 3 Magnetic shielding), at this time, the temperature of the second part 38 and the temperature of the base 31 inside the second part 38 can be heated up through heat conduction.
  • the heat source of the heat conduction is the tubular body 6 in the overlapping area and the base 31 exposed outside the tubular body 6 . Therefore, local magnetic shielding will not affect the heating effect of the air flowing through the fixed part.
  • the second part 38 is located upstream of the first part 37 along the direction of hot air flow. Therefore, when the heater 3 and the tubular body 6 are embedded and fixed, when the tubular body 6 is long enough, the first part 38 37 is located inside the tubular body 6. If the tubular body 6 has a shorter axial length, at least part of the first portion 37 can be exposed outside the tubular body 6.
  • the heater 3 is integrally formed, so that the first part 37 and the second part 38 have substantially the same heating efficiency per unit area or unit volume; in other embodiments, the first part 37 and the second part 38 It is an integrated structure made of different materials after separate molding, so that the first part 37 and the second part 38 have different heating efficiencies per unit area or unit volume.
  • the outlines of the first part 37 and the second part 38 are both circular.
  • the outline of the first part 37 may be a regular shape such as a square, an ellipse, a triangle, or the like.
  • the outline of the second part 38 can also be one of various regular graphics or irregular graphics, which may or may not be consistent with the outline of the first part 37 .
  • the heater 3 is embedded and connected to the tubular body 6 through a fixing part 32. At least part of the fixing part 32 is located in the receiving cavity 61 of the tubular body 6. That is, at least part of the fixing part 32 is located between the heater 3 and the tubular body 6. Body 6 overlap area.
  • the second part 38 is embedded and fixed with the tubular body 6 through the fixing part 32 , so that the first part 37 protrudes outside the tubular body 6 , and at least part of the fixing part 32 is embedded in the tubular body 6 , so that there is an overlapping area between the fixing part 32 and the tubular body 6 .
  • the fixing part 32 may be provided on the second part 38 , or the fixing part 32 connects the second part 38 and the first part 37 .
  • the groove 341 and the inner wall of the tubular body 6 jointly define a second air hole 342 . Therefore, when the air passes through the second air hole 342, it contacts the fixing part 32 and the tubular body 6 at the same time and is heated by both of them.
  • the second air hole 342 contacts the fixing part 32 and the tubular body 6 at the same time and is heated by both of them.
  • the fixing portion 32 is provided on the first portion 37 of the base 31 so that the entire The heaters 3 are all located in the receiving cavity 61 of the tubular body 6 , or only the partial fixing part 32 and the base 31 inside the fixing part 32 are exposed outside the tubular body 6 .
  • the fixing part 32 connects the first part 37 and the second part 38 , part of the heater 3 is exposed outside the tubular body 6 , and part is located inside the tubular body 6 .
  • the heater 3 is used to heat the air entering the receiving cavity 61 inside the tubular body 6 , and the tubular body 6 is used to maintain the high-temperature environment of the receiving cavity 61 , thereby preventing the air from entering the receiving cavity 61 .
  • the temperature drops excessively, which helps to improve the adequacy of air baking of the aerosol-generating product and prevents aerosol from condensing in the aerosol-generating product.
  • the above-mentioned heating components and aerosol generating devices reduce the local cross-sectional area of the heater 3 through cutting, casting and other various process means, that is, the cross-sectional area of the first part 37 is smaller than the cross-sectional area of the second part 38, thereby It can effectively reduce the overall mass of the heater 3, thereby reducing the energy consumed by the heater 3 to rise to the preset temperature, which helps to improve the thermal quality of the heater 3.
  • Part of the heater 3 is embedded and fixed with the tubular body 6. On the one hand, the heater 3 can be kept in the aerosol generating device through the tubular body 6. On the other hand, the contact area between the heater 3 and the tubular body 6 can be reduced, increasing the The thermal resistance between the large tubular body 6 and the heater 3 can further hinder heat dissipation and reduce energy consumption.
  • the heating assembly also includes an auxiliary heating element 7.
  • the auxiliary heating element 7 is located downstream of the heater 3. Both the auxiliary heating element 7 and the heater 3 are in contact with the tubular body. 6 are embedded and fixed, and the auxiliary heating element 7 is an electromagnetic heating element, a resistance heating element, an infrared heating element or a thermal insulation tube, etc.
  • the auxiliary heating element 7 can extend the axial length of the receiving cavity, thereby adapting to longer cigarettes.
  • a heating module is also provided.
  • the heating module includes a heating component and a thermal insulation shell 8.
  • the heating component may include a single heater 3.
  • the heating component may include more than one heater.
  • the heater 3 , the single heater 3 or the plurality of heaters 3 may be suitably arranged to most efficiently heat the aerosol-generating article 1 , wherein the plurality of heaters 3 may constitute segmented heating of the aerosol-generating article 1 , at least two heaters 3 among the plurality of heaters 3 may have different heating methods or heating efficiencies.
  • a first accommodation cavity 81 is formed inside the insulation shell 8.
  • the aerosol-generating product 1 At least part of the aerosol-generating product 1 can be accommodated in the first accommodation cavity 81; the proximal end of the insulation shell 8 is provided with a first insertion port connected to the first accommodation cavity 81.
  • the distal end of the insulation shell 8 is sealed.
  • the heating component is arranged in the first accommodation chamber 81 and generates heat in the first accommodation chamber 81 to heat the aerosol-generating article 1 to thereby generate aerosol.
  • the thermal insulation shell 8 has the function of heat preservation and insulation. Its side wall is located on the lateral periphery of the heating component, and its distal end (bottom) is located below the heating component and is sealed, thereby providing more complete thermal insulation for the heating component, which helps Further reduce the energy consumption of the heating module.
  • the distal end of the insulation shell 8 is a convex arched bottom 82.
  • the arched bottom 82 can accommodate a thicker air layer, so that thicker air can pass through it. To more effectively hinder the heat transfer to the insulation shell 8 and extend the insulation time.
  • the arched bottom 82 is configured to reflect infrared light.
  • the infrared reflective layer is made of bright material, such as aluminum foil, nickel foil, etc., or a metal coating, such as gold plating film, silver plating film, etc.
  • the infrared rays are reflected by the arched bottom 82 to block the outward transfer of heat and keep the heat in the first accommodation cavity 81, thereby enhancing the heat preservation effect of the heating component.
  • the arched bottom 82 has a larger flood infrared ray reflection area, resulting in better thermal insulation effect.
  • the heating module is exposed to the reflection range of the arched bottom 82; or, after the aerosol-generating product 1 is accommodated in the first containing cavity 81, it is at least partially exposed to the reflection range of the arched bottom 82. Therefore, the infrared rays reflected by the arched bottom 82 can be emitted to the heating component or the aerosol-generating product 1, so that the reflected infrared rays can heat the heating component or the aerosol-generating product 1, thereby further achieving energy saving. Among them, it is preferable to set the curvature of the arched bottom 82 so that the reflected infrared rays converge on the heating component or on the aerosol-generating product 1.
  • the thermal insulation shell 8 By configuring the distal end of the insulation shell 8 into a convex arch shape, it can be made The emitted infrared rays are more concentrated.
  • the thermal insulation shell 8 is an integrated structure, so that the side wall and the bottom are seamlessly connected, so that the arched bottom 82 can better seal the far end of the thermal insulation shell 8 and at the same time reduce the diffuse reflection inside the thermal insulation shell 8. It improves the concentration of reflected light and prevents heat from being concentrated at the seams, causing local temperatures to be too high.
  • an infrared reflective layer can also be provided on the inside or outside of the side wall of the thermal insulation shell 8 , thereby increasing the thermal insulation effect of the side wall of the thermal insulation shell 8 .
  • the thermal insulation shell 8 is made of thermal insulation material. Furthermore, the thermal insulation shell 8 is made of thermal insulation material. There is a vacuum interlayer in the wall of the thermal shell 8, including a vacuum interlayer in the wall of the arched bottom 82, and/or a vacuum interlayer in the side wall of the thermal insulation shell 8. The vacuum interlayer improves the thermal insulation effect.
  • the heating assembly only includes a tubular body 6, and the aerosol-generating product 1 inside is heated through the tubular body 6 to generate aerosol.
  • the tubular body 6 may be an insulating tube, which is mainly used to insulate the aerosol-generating product 1 and prevent the airflow temperature in the aerosol-generating product 1 from decreasing too quickly.
  • the air in the first accommodation cavity 81 enters the receiving cavity 61 of the tubular body 6 from the distal end of the tubular body 6 along the airflow channel.
  • the air flow channel in the first accommodation cavity 81 includes a first air flow channel and a second air flow channel. Part of the air in the first receiving cavity 81 flows to the first air hole 33 through the first air flow channel, and enters the receiving cavity 61 through the first air hole 33, wherein the distal end of the insulation shell 8 defines a convex air cavity 83.
  • the convex air cavity 83 constitutes a part of the first air flow channel, and the convex air cavity 83 can be located directly below the first air hole 33; at least part of the second air flow channel is arranged around the outer surface of the tubular body 6, and the first accommodation cavity Part of the air in 81 flows from the proximal end of the tubular body 6 to the distal end of the second air hole 342 along the first airflow channel against the outer wall of the tubular body 6, and enters the receiving cavity 61 through the second air hole 342.
  • the tubular body 6 generates heat. , its side wall can heat the air in the second air flow channel, and the air in the second air flow channel can fully utilize the waste heat of the tubular body 6 .
  • the air in the first air flow channel flows from the proximal end of the insulation shell 8 to the distal end, then passes through the convex air cavity 83 , passes through the heating body 3 , and finally enters the receiving cavity 61 in the tubular body 6 .
  • the second air flow channel is provided close to the outer surface of the tubular body 6 to fully utilize the waste heat of the tubular body 6 .
  • the first air hole 33 is connected with the distal end of the second air hole 342.
  • the air flowing out from the first air flow channel mainly enters the receiving cavity 61 through the first air hole 33, but some air also enters through the second air hole 342.
  • the air flowing out from the second air flow channel mainly enters the receiving cavity 61 through the second air hole 342 , but some air also enters the receiving cavity 61 through the first air hole 33 .
  • the heating module also includes a bracket 36. At least part of the bracket 36 is arranged in the first accommodation cavity 81, and the bracket 36 is connected to the insulation shell 8.
  • the heating assembly is connected to the bracket 9 and is held by the bracket 9.
  • the side walls of the bracket 9 and the side walls of the insulation shell 8 define the first air flow channel.
  • the side wall of the bracket 9 and the tubular body 6 define at least part of the second air flow channel, so that at least part of the first air flow channel and the second air flow channel are separated by the side wall of the bracket 9 .
  • a second insertion port 91 is formed at the proximal end of the stent 9 , and at least part of the second insertion port 91 is located in the first insertion port, or the second insertion port 91 is connected to the first insertion port. , the aerosol-generating product 1 needs to enter the first containing cavity 81 through the second insertion opening 91 .
  • the bracket 9 also includes a shoulder 92 and a bracket body.
  • the shoulder 92 is arranged around the second insertion opening 91 and connects the bracket body and the insulation shell 8 so that at least part of the first accommodation cavity 81 is defined by the insulation shell 8 and the shoulder 92 , the shoulder 92 can be an integral structure with the insulation shell 8; or the shoulder 92 can be integrally injection molded with the bracket body; or the shoulder 92 can be injection molded separately from the bracket body, and then assembled with each other to form an integrated structure.
  • the shoulder 92 is provided with a first air hole 921, and air enters the first receiving cavity 81 through the first air hole 371. That is, the first air hole 921 is provided at the proximal end of the heating module. Specifically, the first air hole 921 can be provided corresponding to the first air flow channel and connected with the first air flow channel.
  • a second air hole 93 is provided on the side wall of the bracket 9. The second air hole 93 connects the first air flow channel and the first air flow channel. Two air flow channels; alternatively, the first air hole 921 can be provided corresponding to the second air flow channel and connected with the second air flow channel.
  • a second air hole 93 is provided on the side wall of the bracket 9, and the second air hole 93 is connected to the first air flow.
  • the air entering the first accommodation cavity 81 through the first air hole 921 can enter the first air flow channel and the second air flow channel. That is, part of the air in the first air flow channel is diverted to the second air flow channel through the second air hole 93, and the second air hole 93 is located on the side wall of the bracket 9, so the air that is diverted to the second air flow channel still flows along the It flows from the proximal end of the tubular body 6 to its distal end.
  • the second air hole 93 is provided corresponding to the proximal end of the tubular body 6 .
  • the heating module also includes a magnetic induction generator (magnetic field generator 5).
  • the magnetic induction generator is wound around the outside of the bracket 9 and is held by the bracket 9.
  • the magnetic induction generator is located between the bracket 9 and the thermal insulation shell 8 .
  • the heating module further includes a shielding layer 101.
  • the shielding layer 101 is arranged on the periphery of the magnetic induction generator.
  • the shielding layer 101 is located in the first accommodation cavity 81 and between the insulation shell 8 and the magnetic induction generator (magnetic field generator). between generator 5).
  • the shielding layer 101 is a magnetic shielding layer, which is used to prevent the magnetic field generated by the magnetic induction generator from leaking out, so that the magnetic field can be more concentrated on the magnetically sensitive materials, improving the utilization of the magnetic field and improving the magnetically sensitive materials. heating efficiency.
  • a second temperature detector 102 may be provided to detect the temperature of the tubular body 6 .
  • the second temperature detector 102 may be connected to the outer surface of the side wall of the tubular body 6 and connected to the controller 42 .
  • the controller 42 controls the temperature of the tubular body 6 based on the acquired temperature data detected by the second temperature detector 102 .
  • the tubular body 6 and the heater 3 do not overlap.
  • the heating module also includes a lead electrically connected to the magnetic induction generator, the heating component, or the temperature detector.
  • the lead passes through the first air flow channel or the second air flow channel, and then is led out through the first air hole 921 . That is, the first air hole 33 can not only allow air to enter the first accommodation cavity 81 , but also allow the leads in the first accommodation cavity 81 to pass out and thereby be electrically connected to the controller 41 .
  • the heater 3 and the tubular body 6 are made of different magnetically sensitive materials, thereby having different heating efficiencies under the same changing magnetic field.
  • the tubular body 6 is arranged intermittently along the axial direction of the first accommodation chamber 81 , that is, the tubular body 6 may include multiple magnetic sensing rings distributed along the axial direction, and two adjacent magnetic sensing rings are not connected to each other.
  • different magnetic induction loops can correspond to different magnetic induction generators, so the controller 42 controls the working sequence or working power of different magnetic induction generators to cause the tubular body 6 to heat the aerosol-generating product 1 in sections.
  • each magnetic sensing loop can be placed in the same changing magnetic field, and each magnetic sensing loop can be made of the same material, or made of different materials.
  • the proximal end of the thermal insulation shell 8 has a first insertion port and a distal sealing structure.
  • the heating component is arranged in the thermal insulation shell 8, so that the heating component generates heat within the thermal insulation shell 8.
  • the heat It is confined inside the thermal insulation shell 8, so that the heating component can be more effectively insulated, which helps to reduce the power consumption of the heating module.

Landscapes

  • Resistance Heating (AREA)

Abstract

本申请涉及一种加热器、加热组件、加热模组及气溶胶产生装置,包括基体,被多个第一气孔贯穿,第一气孔允许空气通过,空气流经第一气孔时被基体加热,基体内部还开设有安装孔;第一温度检测器,其探测部设置在安装孔中,以检测基体内部的温度。

Description

加热器、加热组件、加热模组及气溶胶产生装置
相关申请的交叉参考
本申请要求:
于2022年04月16日提交中国专利局,申请号为202220879035.7,发明名称为“加热模组及气溶胶产生装置”的中国专利申请;
于2022年04月16日提交中国专利局,申请号为202220879040.8,发明名称为“加热组件及气溶胶产生装置”的中国专利申请;
于2022年04月16日提交中国专利局,申请号为202220879053.5,发明名称为“加热组件及气溶胶产生装置”的中国专利申请;
于2022年04月16日提交中国专利局,申请号为202220879062.4,发明名称为“加热器及气溶胶产生装置”的中国专利申请;
的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及气溶胶产生技术领域,特别涉及一种加热器、加热组件、加热模组及气溶胶产生装置。
背景技术
气溶胶产生装置通常包括加热器,加热器用于加热气溶胶生成制品,以使其产生气溶胶。
其中空气加热器可以加热流经的空气,使空气形成高温空气,然后高温空气进入气溶胶生成制品中,并在与气溶胶生成制品接触的过程中烘烤气溶胶生成制品,使之产生形成挥发气溶胶的挥发物。
为了实现对空气加热的温控,需要探测温度加热器的温度。
发明内容
本申请实施例提供一种加热器、加热组件、加热模组及气溶胶产生装置,通过将第一温度检测器的探测部设置在加热器的内部,来检测加热器的内部温 度,有助于对加热器进行温控。
本申请实施例提供的一种加热器,用于加热流经的空气,进而通过热空气加热气溶胶生成制品,包括:
基体,被多个第一气孔贯穿,所述第一气孔允许空气通过,空气流经所述第一气孔时被所述基体加热;
安装孔,设置在所述基体内部;
第一温度检测器,其探测部设置在所述安装孔中,以检测所述基体内部的温度。
本申请实施例提供的一种加热组件,包括管状体和所述的加热器,所述加热器包括设置在所述基体至少局部的侧表面上的固定部,所述基体通过所述固定部与所述管状体相嵌连接。
本申请实施例提供的一种加热模组,包括:
保温壳,其内形成有第一容纳腔,用于容纳气溶胶生成制品的至少局部,所述保温壳的近端开设有与所述第一容纳腔连通的第一插入口;
所述的加热组件,布置在所述第一容纳腔中,用于加热所述气溶胶生成制品,使之产生气溶胶;
其中,所述保温壳的远端密封。
本申请实施例提供的一种气溶胶产生装置,包括所述的加热器,或者包括所述的加热组件,或者包括所述的加热模组。
上述的加热器、加热组件、加热模组及气溶胶产生装置,通过将第一温度检测器的探测部设置在安装孔内,来实现将探测部设置在基体的内部,从而第一温度检测器能够检测基体内部的温度变化,相比检测基体表面的温度,检测内部的温度既能降低基体表面与基体内部之间的温度梯度引起的检测误差,又能不受设置在加热器外围的保温层影响。具体的,将探测部设置在安装孔中,空气流经第一气孔时会先降低基体内部的温度,尤其在用户频繁抽吸导致空气流速、流量大增时,探测部能够实时且敏感地检测到基体由于气流变化引起的温度变化,从而提供更加准确且及时的温度参数;同时也对气溶胶产生装置的 温控十分有利。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例所提供的气溶胶产生装置的示意图;
图2是本申请一实施例所提供的气溶胶产生装置的局部示意图;
图3是本申请一实施例所提供的加热器的示意图;
图4是本申请一实施例所提供的加热器的另一示意图;
图5是本申请一实施例所提供的加热器的又一示意图;
图6是本申请另一实施例所提供的加热器的示意图;
图7是本申请又一实施例所提供的加热器的示意图;
图8是本申请一实施例所提供的加热器的立体剖视图;
图9是本申请又一实施例所提供的加热器的示意图;
图10是本申请另一实施例所提供的气溶胶产生装置的局部示意图;
图11是本申请又一实施例所提供的加热器的示意图;
图12是本申请一实施例所提供的加热组件的立体剖视图;
图13是本申请另一实施例所提供的加热组件的立体剖视图;
图14是本申请一实施例所提供的加热模组的立体剖视图;
图15是本申请一实施例所提供的加热组件的立体剖视图。
图中:
1、气溶胶生成制品;
2、壳体;21、安装腔;
3、加热器;31、基体;311、第一表面;32、固定部;33、第一气孔;341、凹槽;342、第二气孔;35、第一温度检测器;351、第一热电偶线;352、第二热电偶线;36、安装孔;37、第一部分;38、第二部分;39、第三气孔;
4、功率源;41、电芯;42、控制器;
5、磁场发生器;
6、管状体;61、接纳腔;
7、辅助加热件;
8、保温壳;81、第一容纳腔;82、拱形底部;83、凸形空气腔;
9、支架;91、第二插入口;92、肩部;921、第一过气孔;93、第二过气孔;101、屏蔽层;102、第二温度检测器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对于重要性或者隐含指明所指示的技术特征的数量或者次序。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系或者运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实 施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件,或者其间可能同时存在一个或者多个居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请的一实施例提供了一种气溶胶产生装置,该装置可用于加热气溶胶生成制品,使气溶胶生成制品挥发出气溶胶来,以供吸食,气溶胶可以包括中草药、尼古丁或比如烟草香料等风味物质。在如图1所示的实施例中,气溶胶生成制品1为烟制品(如烟支、雪茄等),但不对此做出限定。
在如图1所示的实施例中,气溶胶产生装置包括用于接收气溶胶生成制品1的接收腔和用于加热气溶胶生成制品1的加热器3,还包括功率源4,功率源4用于为加热器3工作提供功率。
请参照图1和2,气溶胶产生装置具有插入口,气溶胶生成制品1例如烟支通过插入口可移除地接收在接收腔内;加热器3至少一部分在接收腔内沿纵向延伸,并在变化的磁场下通过电磁感应发热,或者在通电时通过电阻发热,或者在受激时向气溶胶生成制品辐射红外线,进而使气溶胶生成制品1例如烟支受热,使气溶胶生成制品1的至少一种成分挥发,形成供抽吸的气溶胶;功率源包括电芯41,电芯41为可充电的直流电芯,可以输出直流电流。在其他的实施例中,电芯41还可以为一次性电池,不可充电或无需对其进行充电。在其他实施中,功率源4可以为有线电源,有线电源通过插头直接连接市电来为气溶胶产生装置供电。
在一个优选的实施例中,电芯41提供的直流供电电压在约2.5V至约9.0V的范围内,电芯41可提供的直流电流的安培数在约2.5A至约20A的范围内。
功率可作为脉冲信号被供应到加热器3,传送到加热器3的功率的量可通过改变功率信号的占空比或脉冲宽度或脉冲幅度而调整。
气溶胶产生装置可以包括单个加热器3,可替代地,气溶胶产生装置可包括 多于一个加热器3,该加热器3或该多个加热器3可被适当地布置以便最有效地加热气溶胶生成制品1,其中,多个加热器3可以构成对气溶胶产生物分段加热,多个加热器3中其中可以至少有两个加热器3具有不同的加热方式或加热效率。
加热器3可通过传导加热气溶胶生成制品1。加热器3可以是至少部分与气溶胶生成制品1或气溶胶生成制品1载体接触。可替代地,来自加热器3的热量可通过导热元件传导到气溶胶生成制品1。
其中至少一个加热器3可通过对流加热气溶胶生成制品1;或者,环境空气可在通过气溶胶生成制品1之前被其中至少一个加热器3加热;或者,加热器3可通过辐射加热气溶胶生成制品1。
在一个实施例中,加热器3可以具有一个或者多个,功率被供应到加热器3直到一个或多个加热器3达到大约150℃和440℃之间的温度,以便由气溶胶生成制品1产生气溶胶。
气溶胶产生装置优选地是手持式气溶胶产生装置。
此外,气溶胶产生装置包括控制器42、插入检测器和向用户传送关于气溶胶产生装置的信息的用户界面(例如图形显示器或LED指示灯的组合等)。
插入检测器可检测与加热器3在传热路径上接近的气溶胶生成制品1的存在和特性,且将气溶胶生成制品1的存在的信号发送给控制器42。可以理解的是,插入检测器的提供是可选而非必要的。
控制器42控制用户界面以显示系统信息,例如电芯功率、温度、气溶胶生成制品1的状态、抽吸口数、其它信息或其组合。
控制器42电连接功率源和加热器3,用于控制功率源的电流、电压或电功率的输出等,从而可控制加热器3的温度。
控制器42可包括可编程微处理器。在另一实施例中,控制器42可包括专用电子芯片,诸如现场可编程门阵列(FPGA)或特定用途集成电路(ASIC)。通常,能够提供能够控制加热器的信号的任何装置可以与本文讨论的实施例一起使用。在一个实施例中,控制器42被构造成检测加热器3的实际温度相对于目标温度的温度变化,以检测表示用户抽吸事件。
控制器42可包括存储组件,存储组件可以包括存储器和/或缓存器。存储组件可被构造成记录检测的气流或用户抽吸的变化。存储组件可记录用户抽吸的计数或每次抽吸的时间。存储组件可还被构造成记录加热器3的温度和在每个抽吸期间供应的功率。被记录下的数据,可以在控制器42的调用下通过用户界面进行显示,或者通过其他输出接口进行输出显示,当被记录的抽吸口数达到气溶胶生成制品1预设的总抽吸口数时,控制器42可以复位重置,或者控制器42可以清零被记录的抽吸口数,或者控制器42控制气溶胶产生装置关机,或者控制器42控制电芯41停止继续向加热器3提供功率,或者控制器42通过声、光、震动等提示用户气溶胶生成制品1已经达到抽吸极限等。
用户抽吸对于接下来的研究以及装置维修和设计可以是有用的。用户的抽吸口数数据可通过任何适当数据输出装置传输到外部存储器或处理装置。例如,气溶胶产生装置可包括连接到控制器或存储器的无线电、蓝牙或连接到控制器或存储器的通用串行总线(USB)插槽。可替代地,气溶胶产生装置可被构造成每当气溶胶产生装置经由适当数据连接再充电时将来自存储器的数据传输到电芯充电装置中的外部存储器。
进一步在可选的实施中,气溶胶生成制品1优选采用加热时从可抽吸制品中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品1优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,气溶胶生成制品1可以包含附加的烟草或非烟草的挥发性香味化合物,以在气溶胶生成制品1受热时被释放。在一些可选的实施中,气溶胶生成制品1制备成具有常规的香烟或雪茄的形状。
进一步在可选的实施中,气溶胶生成制品1可被包含在发烟物品中。在操作期间,包含气溶胶生成制品1的发烟物品可被完全包含在气溶胶产生装置内。在这种情况下,用户可在气溶胶产生装置的嘴件上抽吸。嘴件可以是气溶胶产生装置的放置在用户的嘴中以便直接吸入由气溶胶生成制品1或气溶胶产生装置产生的气溶胶的任何部分。气溶胶经由嘴件输送到用户的嘴中。可替代地,在操作期间,包含气溶胶生成制品的发烟物品可被部分包含在气溶胶产生装置中。在这种情况下,用户可在发烟物品的嘴件上直接抽吸。
在一实施例中,可以参照图3-8,其中一加热器3包括基体31,基体31被一个或者多个第一气孔33贯穿,第一气孔33允许空气通过,且空气在通过第一气孔33时,能够被基体31加热成热空气,热空气用于进入气溶胶生成制品1中,通过流经气溶胶生成制品1内部的几乎所有空隙来充分且均匀地烘烤气溶胶生成制品1。
在一实施例中,可以参照图3-8,加热器3还可以包括固定部32,固定部32设置在基体31的侧表面,空气亦可流经固定部32,并在流经固定部32时受热,形成热空气,该热空气亦会进入气溶胶生成制品1中,进而烘烤气溶胶生成制品1,使之产生气溶胶。具体的,加热器3还包括气道,空气流经气道时,流经固定部32。
在一实施例中,可以参照图2,气溶胶产生装置还包括壳体2,上述的用于接收气溶胶生成制品1的接收腔形成在壳体3的内部,壳体3的内部还形成有安装腔21,固定部32与安装腔21的至少局部腔壁连接,并且通过连接而保持在安装腔21中,基体31因与固定部32连接而随之保持在安装腔21中。所以,固定部32还可用于将基体31保持在壳体2内。
在一实施例中,加热体3含有等级430的不锈钢(SS430),或含有等级420的不锈钢(SS420),或含有铁镍的合金材料(比如坡莫合金),或含有石墨合金等可在变化的磁场中发热的磁感性材料,加热体3在变化的磁场中因为产生涡电流和磁滞等而自发热,并加热流经的空气,进而利用空气加热气溶胶生成制品1。相应的,气溶胶产生装置还包括磁场发生器5,例如感应线圈,用于在交变电流下产生变化的磁场,且控制器42连接电芯41和感应线圈,并且可将电芯41输出的直流电流转化为交变电流,优选该交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一优选的实施例中,基体31和固定部32二者至少之一中含有等级430的不锈钢(SS430),或含有等级420的不锈钢(SS420),或含有铁镍的合金材料(比如坡莫合金),或含有石墨合金等可在变化的磁场中发热的磁感性材料,从而基体31和固定部32二者至少之一在变化的磁场中因为产生涡电流和磁滞等而自发热,并加热流经的空气,进而利用空气加热气溶胶生成制品1。相应的,气溶胶产生装置还包括磁场发生器5,例如感应线圈,用于在交变电流下产生变化 的磁场,且控制器42连接电芯41和感应线圈,并且可将电芯41输出的直流电流转化为交变电流,优选该交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一优选的实施中,基体31和固定部32二者至少之一由铁铬铝合金、镍铬合金、镍铁合金、铂、钨、银、导电陶瓷等电阻性导电材料制成,或者包含上述至少其一的导电材料,从而在导电时可以通过电阻的电热效应发热,来加热气溶胶生成制品1,使气溶胶生成制品1中的至少一种成分挥发,形成气溶胶。
在一优选的实施中,加热器3中的固定部32与基体31可以由同一种材料一体成型,如由石墨合金粉末等磁感性材料一体成型。
在一优选的实施中,基体31和固定部32二者至少之一可以发热。若基体31和固定部32中仅一者可以发热,则另一者通过热传递升温,然后加热流经的空气。
在一优选的实施中,基体31和固定部32二者至少之一包括导热体和发热体,发热体可以利用电热效应发热,或者利用电磁感应发热,或者利用红外辐射加热导热体等,导热体上具有上述的第一气孔33或者空气可流经导热体,并且在空气流经导热体时可与导热体发生热交换,进而被加热成热空气。具体的,至少部分加热体可以设置在导热体的外围,如加热体为设置在导热体的外表面的电阻膜、电热丝、磁感应环、导电陶瓷环等,在其他实施例中,至少部分加热体还可以设置在导热体的内部,如设置在第一气孔33的壁上等,从而加热体可以直接或者间接地加热流经的空气。在本实施例中,由于基体31被一个或者多个第一气孔33贯穿,因此具备第一气孔33的导热体被第一气孔33贯穿。
在一优选的实施中,基体31与固定部32为由同种材料一体成型制成的一体结构,从而单位面积或者单位体积的基体31与固定部32具有大致相同的加热效率;在其他实施例中,基体31与固定部32为由不同种材料一体成型制成的一体结构,从而单位面积或者单位体积的基体31与固定部32具有不尽相同的加热效率,从而可以根据流经不同区间的空气的不同温度需求设置固定部32的位置,或者可以根据加热器3的散热趋势等,设置固定部32的位置。当然,不排除固定部32可以与基体31分体成型,然后再相互连接的可能。
在一实施例中,可参照图3和4,基体31的侧表面包括第一表面311和第二表面,第一表面311和第二表面沿加热器3的轴向分布,且沿空气流动的方向,第二表面位于第一表面311的下游。固定部32设置在基体31的侧表面,在一个实施例中,固定部32仅占据基体31侧表面的局部区域,具体的,固定部32可以设置在第一表面311;或者,固定部32可以设置在第二表面(如图3和4所示);或者,固定部32连接第一表面311和第二表面,且占据第一表面311的局部,同时占据第二表面的局部。当然在另一实施例中,固定部32连接第一表面311和第二表面,且固定部32沿加热器2轴向的长度可以不小于第一表面311和第二表面沿加热器3轴向长度之和。
在一些可选的实施例中,第一表面311和第二表面的轮廓均为圆形,在其他可选的实施例中,第一表面311的轮廓可以为方形、椭圆形、三角形等规则图形或者不规则图形,第二表面的轮廓也可以为各种规则图形或者不规则图形中的一种,其可以与第一表面的轮廓一致,也可以不一致。
在一实施例中,可参照图3-5,固定部32的侧表面凹陷形成凹槽341,凹槽341形成供空气通过的气道。凹槽341的槽底距离基体31中心轴的距离可以大于基体31的相应单边到基体31中心轴的距离,从而流经凹槽341的空气会与固定部32接触而发生热交换,进而被固定部32加热。可以理解的是,在一些实施例中,基体31的局部表面可以构成凹槽341的槽底,从而流经凹槽341的空气会与固定部和基体31接触而发生热交换,进而被固定部32和基体31的外表面加热。
在进一步的实施例中,凹槽341可以为沿加热器的轴向延伸的直线形;在另一实施例中,凹槽341可以为贯穿固定部32近端和远端的蛇行形或者折线形;在另一实施例中,凹槽341可以为贯穿固定部32的斜线形或者弧线形或者螺旋形等。
本说明书各实施例中所说的“近端”和“远端”是相对于使用者在使用时而言的,"近端"是指靠近使用者的一端,"远端"是指远离使用者的一端,不用来限度本申请。
在进一步的实施例中,同一凹槽341各处的槽宽相同,从而空气在凹槽341各处与凹槽341具有大致相同的接触面积,进而具有大致相同的换热效率。
凹槽341可以有且仅有一个。优选,固定部32上的凹槽341具有多个,这些凹槽341均匀地分布在固定部31上,从而流经固定部32的空气能够被均匀地加热,这里所述的均匀地分布包括:1、所有的凹槽341可以具有大致相同的尺寸和形状;2、在加热器3的同一轴向高度上,相邻两凹槽341之间的间距与其他任意相邻两凹槽341之间的距离相同。
在更进一步的实施例中,可以参照图3-6,固定部32构成环绕基体31设置的环形,从而使得固定部32上形成的凹槽341呈环形地分布在基体31的外围,且可以是均匀地分布。
而在有些实施例中,固定部上的多个凹槽341的分布可以不均匀。当然,固定部32可以不构成环形,而是设置在基体31表面的一个或者多个块状体或者弧形体,凹槽341设置在块状体或者弧形体的表面。
在一实施例中,可参照图6,固定部32被第二气孔342沿加热器3的轴向贯穿,第二气孔342形成供空气通过的气道的至少局部。同上,第二气孔342可以具有多个,多个第二气孔342可以均匀或者不均匀地分布在固定部32中,固定部32可以构成环绕基体31的环形,或者固定部32为设置在基体31侧表面的块状体或者弧形体。空气通过第二气孔342时,与固定部32接触,从而与固定部32发生热交换,而被加热。当第二气孔342的局部孔壁由基体31界定时,则第二气孔342中的空气还可以被基体31加热。第二气孔342的孔径可以小于第一气孔33的孔径。
在一实施例中,可参照图7,固定部32具有多个,至少具有两个,相邻两固定部32之间形成有供空气通过的气道的至少局部。从而,空气通过该气道时,同时被固定部32和基体31接触而同时被双方加热。
可以理解的是,固定部32是可选项,不是必选项。
为了方便控制器42对加热器3进行温控,在如图2和8所示的实施例中,加热器3还包括安装孔36和第一温度检测器35,第一温度检测器35安装在安装孔36中,通过第一温度检测器35来检测加热器3的温度,然后控制器42获取该温度数据,进而分析该温度数据,最后对加热器3进行温度控制。
由于空气从加热器3内部流经时,会带走加热器3内部的热量,导致加热 器3内部的温度变化,而加热器3的侧壁外表面在空气通过加热器3内部时温度变化不明显,引起这种不明显的原因可能是多重的,包括:1、加热器3的外围具有保温层,保温层使得加热器3的外表面温度较为稳定;或者2、加热器主要通过其表层进行发热,从而其在工作时能够使表层温度较为恒定,而不受其内部温度变化的影响等。为了第一温度检测器35设置在加热器表面带来的温度检测问题,本申请采用将第一温度检测器35设置在加热器3的内部,来代替现有的将第一温度检测器设35置在加热器3的表面。
可以参照图8,安装孔36设置在基体31的内部,第一温度检测器35的探测部可以设置在安装孔36中,从而可以检测基体31内部的温度。
在一实施例中,安装孔36为盲孔,设置在基体31内部却未贯穿基体31,或者安装孔36为至少一端被封堵的通孔,导致空气不能穿过安装孔36,但由于安装孔36设置在基体31的内部,第一温度检测器35的探测部设置在安装孔36的内部,在空气通过第一气孔33导致基体31内部温度变化时,第一温度检测器35也能够较为直观和准确地捕获基体31内部的温度,进而记录或者反映基体31内部的温度。
在一实施例中,安装孔36为贯穿基体31的通孔,且在安装第一温度检测器35后,空气仍可通过该安装孔36,使得在抽吸时,空气能够通过安装孔36与第一气孔33,使得安装孔36与第一气孔33具有大致相同的温度变化程度,从而使得第一温度检测器35在安装孔36中获得基体31的温度数据更接近第一气孔33的实际温度,更具有参考价值。或者,安装孔36由其中一第一气孔33构成,从而位于该第一气孔33中的第一温度检测器35可以检测当空气流经时,该第一气孔33的温度。
在一实施例中,固定部32的一气道构成安装孔36,从而位于安装孔36中的第一温度检测器35可以检测当空气流经气道时,该气道的温度。
传统的,第一温度检测器35设置在加热器的表面,当因抽吸导致空气快速地流经加热器的气孔或气道时,气孔或气道因与温度较低的空气直接接触而导致其温度会较大幅度地降低,但是,加热器的表面,如基体的表面,因未与冷空气直接接触,所以在抽吸时,在短时间内加热器表面的温度变化相对而言并不明显,从而导致第一温度检测器35的检测灵敏度较低。
采用本申请的方案,能够直接、快速、及时地获得第一气孔33或气道中空气的温度,从而能够更加准确的获取空气的温度数据,检测灵敏度高且该温度数据有利于控制器42及时且准确地对加热器3进行温控,能够及时阻止温度过高而烤糊气溶胶生成制品1,或者能够及时对提高对加热器3的功率供应,使得加热器3快速恢复满足当下抽吸的目标温度,或者恢复满足下一口抽吸要求的目标温度,有助于提高用户体验。
在一优选的实施例中,第一温度检测器35设置在基体31的中心区域中,如安装孔36设置在基体31的正中心。当然,也可以偏离正中心设置在气流密集区域或者设置在气流流量大的区域,因为正中心、气流密集区域或气流流量大的区域温度变化相较而言更加剧烈,且更能反映加热器3的实际应采集温度。
在一优选的实施例中,安装孔36有且仅有一个,第一温度检测器35也可以有且仅有一个,当然,第一温度检测器35可以具有多个,且其探测部均设置在该安装孔36中,优选多个不同的第一温度检测器35的探测部设置在该安装孔36中的不同位置处,如设置在安装孔36不同的轴向深度上等。
在一优选的实施例中,安装孔36可以具有多个,第一温度检测器35随之亦可以具有多个,分别设置在多个不同的安装孔36中,如设置在不同安装孔36中的相同轴向深度处等,从而可以根据多个第一温度检测器35获取的加热器3温度数据了解加热器3的温度分布信息,或者了解加热器3内部的实时的平均温度数据,有助于实现控制器42对加热器3更加准确的温度控制。
为了方便安装第一温度检测器35,或者为了不影响空气从安装孔36中通过,优选安装孔36的孔径大于无需安装第一温度检测器35的第一气孔33的孔径,当然,也不排除安装孔36的孔径与第一气孔33的孔径相同的可能。
请参照图8,无论安装孔36为允许空气通过的孔,还是不允许空气通过的孔,安装孔36外围都可以分布多个第一气孔33,包括被多个第一气孔33环绕,或者多个第一气孔33包围安装孔36的至少局部,从而使安装孔36在抽吸时或自然对流下处于被气流至少局部环绕的位置,或者处于气流密集区域的中心或者边缘,从而使得其周围多个第一气孔33温度的变化对安装孔36的温度变化具有较大的影响。优选安装孔36被多个第一气孔33均匀地环绕,以使安装孔36内的温场分布较为均匀,使第一温度检测器35获取的温度数据更加可靠。
优选,第一温度检测器35的探测部位于安装孔36轴向长度的中间。
在一实施例中,可以参照图3和4,第一温度检测器35包括第一热电偶线351和第二热电偶线352。
在一优选的实施例中,基体31的至少局部由导电材料构成,优选该导电材料设置在安装孔36中。第一热电偶线351和第二热电偶线352通过该导电材料实现相互电连接,从而构成检测基体31温度的热电偶,其中,该导电材料构成热电偶的探测部。
同理,在另一优选的实施例中,固定部32的至少局部由导电材料构成,优选该导电材料设置在气道中,第一热电偶线351和第二热电偶线352通过该导电材料实现相互电连接,从而构成检测固定部32温度的热电偶,其中,该导电材料构成热电偶的探测部。
在进一步的实施例中,整个基体31由导电材料制成,和/或者全部固定部32由导电材料制成。
在一优选的实施例中,第一热电偶线351和第二热电偶线352位于同一安装孔36中。当然,不排除第一热电偶线351和第二热电偶线352可以位于不同的安装孔36中,优选安装孔36比未容纳电偶线的第一气孔33的孔径大,从而空气能够通过安装孔36,或者方便将第一热电偶线351和第二热电偶线352的至少局部设置在安装孔36中。
在一优选的实施例中,第一热电偶线351和第二热电偶线352分别采用不同的电偶丝材质制备,例如,第一热电偶线351和第二热电偶线352分别是采用镍、镍铬合金、镍硅合金、镍铬-考铜、康青铜、铁铬合金等电偶材料中的两种不同材质制备的。即第一热电偶线351和第二热电偶线352由不同的材料制成。
在一实施例中,可以参照图4,第一温度检测器35埋设在基体31或固定部32的内部,具体的,第一温度检测器35的探测部可以设置在第一气孔33中,或者设置在固定部32的第二气孔342上,从而可以检测当空气流经第一气孔33或第二气孔342时该第一气孔33或第二气孔342的温度,进而能够更加准确地获取被加热的空气的温度,第一气孔33或第二气孔342中空气温度的变化能够 较为及时和直地被第一温度检测器35捕获。传统的,第一温度检测器35设置在加热器3的表面,当因抽吸导致空气快速地流经加热器3的第一气孔33或第二气孔342时,第一气孔33或第二气孔342因与温度较低的空气直接接触而导致其温度会较大幅度地降低,但是,加热器3的表面,如基体31的表面,因未与冷空气直接接触,所以在抽吸时,加热器3表面的温度变化相对而言并不明显,从而导致第一温度检测器35的检测灵敏度较低。采用本申请的方案,能够直接、快速、及时地获得第一气孔33或第二气孔342中空气的温度,从而能够更加准确的获取空气的温度数据,检测灵敏度高且该温度数据有利于控制器42及时且准确地对加热器3进行温控,能够及时阻止温度过高而烤糊气溶胶生成制品1,或者能够及时对提高对加热器3的功率供应,使得加热器3快速恢复满足当下抽吸的目标温度,或者恢复满足下一口抽吸要求的目标温度,有助于提高用户体验。
上述的加热器及气溶胶产生装置,通过将第一温度检测器35的探测部设置在安装孔内,来实现将探测部设置在基体的内部,从而第一温度检测器35能够检测基体内部的温度变化,相比检测基体表面的温度,检测内部的温度既能降低温度梯度引起的检测误差,又能不受设置在加热器外围的保温层影响。将探测部设置在安装孔中,空气流经第一气孔时会降低基体内部的温度,从而在用户因抽吸导致空气流速、流量大增时,探测部能够实时且敏感地检测到基体由于气流变化引起的温度变化,从而提供更加准确且及时的温度参数,这对加热器进行温控十分有益。
在一实施例中,可以参照图9,其中一加热器3包括第一部分37和第二部分38,第一部分37和第二部分38被一个或者多个第一气孔33同时贯穿,第一气孔33允许空气通过,且空气在通过第一气孔33时,能够被加热器3加热成热空气,热空气用于进入气溶胶生成制品1中,通过流经气溶胶生成制品1内部的几乎所有空隙,从而可以充分且均匀地烘烤气溶胶生成制品1。
在一实施例中,还提供一种加热组件,可以参照图10,加热组件包括加热器3和管状体6,管状体6为管状,其上下两端贯通,空气可从其下端流向其上端。加热器3的局部与管状体6相嵌固定,加热器3通过管状体6保持在气溶胶产生装置的容纳腔中。
在一实施例中,管状体6为电磁加热体、电阻加热体、红外加热体或者保温管等。
在一实施例中,可以参照图10,第二气孔342还可以由管状体6与第二部分38共同界定,空气可以通过第二气孔342进入气溶胶生成制品1中,且空气在通过第二气孔342时,至少被第二部分38加热,从而形成热空气。
在一实施例中,第二气孔342可以均匀地分布,包括个第二气孔342具有相同的孔径,任意相邻两第二气孔342之间具有相同的距离,每一第二气孔342各处孔径相同等。但是不以此为限,即第二气孔342可以不均匀地分布。当然,第二气孔342可以是直线形的,也可以是弯曲或者弯折的。
在一可选的实施例中,可以参照图9,第二部分38至少局部的外侧面的截面为齿轮状或者花边状,第二部分38上的齿轮状或者花边状的外侧面的至少局部与管状体6相嵌固定,从而使得第二部分38与管状体6相嵌的重合区域可以允许空气通过(即从第二气孔342通过),且空气通过时,至少会被第二部分38的外侧面加热,从而形成热空气。当然不排除,管状体6的至少局部内侧面的截面为齿轮状或者花边状,第二部分38与管状体6上的齿轮状或者花边状内侧面的至少局部相嵌固定,从而界定出第二气孔342。
在一实施例中,可以参照图9和图10,沿热空气流动的方向,第二部分38位于第一部分37的下游,从而,加热器3与管状体6相嵌固定时,第一部分37凸显在管状体6之外。
在一实施例中,可以参照图9,第二部分38的横截面积大于第一部分37的横截面积,从而使得第二部分38和第一部分37之间形成有台阶面,该台阶面上设置有第三气孔39,空气可通过第三气孔39,进而进入气溶胶生成制品1中,其中,第三气孔39仅贯通第二部分38。可以通过削减、铸造等各种可用的工艺手段使第一部分37的横截面积小于第二部分38的横截面积,例如,通过削减的手段,将第一部分37上被第三气孔39贯通的部分削去。从而使得加热器3的总体质量减轻,根据热量公式:Q=CMΔT(Q代表热容为C、质量为M的物体在温度变化量为ΔT时,所吸收或者释放的热量),在物体的C值不变和ΔT相同的情况下,质量M越小,其所吸收或者释放的热量越少,所以,通过降低加热器3的质量,可以降低加热器3在升温过程中的能量消耗,起到降低能耗 的作用。
在一实施例中,如图11所示,加热器3同时具有第一气孔33、第二气孔342和第三气孔39。在一实施例中,加热器3只同时具有第一气孔33和第二气孔342,即第二部分38与第一部分37之间的台阶面不连贯(如图7所示),从而使得第二部分38的外侧面至少局部轮廓为齿轮,且齿轮上未开设第三气孔39;或者第二部分38与第一部分37之间的台阶面高度过低(如图3至图5所示),不足以开设第三气孔39,从而使得第二部分38的外侧面至少局部轮廓为波幅较小的花边形。
在一实施例中,第三气孔39均匀地分布在台阶面上,包括多个第三气孔39具有相同的孔径,任意相邻两第三气孔39之间具有相同的距离等。但是不以此为限,即第三气孔39可以不均匀地分布。
在一优选的实施中,加热体3和管状体6二者至少之一中含有等级430的不锈钢(SS430),或含有等级420的不锈钢(SS420),或含有铁镍的合金材料(比如坡莫合金),或含有石墨合金等可在变化的磁场中发热的磁感性材料,从而管状体6二者至少之一在变化的磁场中因为产生涡电流和磁滞等而自发热,并加热流经的空气,进而利用空气加热气溶胶生成制品1。相应的,气溶胶产生装置还包括磁场发生器5,例如感应线圈,用于在交变电流下产生变化的磁场,且控制器42连接电芯41和感应线圈,并且可将电芯41输出的直流电流转化为交变电流,优选该交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一优选的实施中,管状体6由铁铬铝合金、镍铬合金、镍铁合金、铂、钨、银、导电陶瓷等电阻性导电材料制成,或者包含上述至少其一的导电材料,从而在导电时可以通过电阻的电热效应发热,来加热气溶胶生成制品1,使气溶胶生成制品1中的至少一种成分挥发,形成气溶胶。
在一可选的实施中,管状体6不可以发热,其主要用于保温,以降低加热器3外围的热量散失速度,或者降低气溶胶生成制品1内部温度流失的速度,从而能够实现降低加热器3的能耗。
具体的,管状体6可以仅仅位于第二部分38的外围,从而只对第二部分38 进行保温;或者
管状体6形成有接纳腔61,接纳腔61的一部分区域用于容纳气溶胶生成制品1,其余区域可以用来容纳第二部分38的至少局部,从而管状体6既能对至少对加热器3的第二部分38进行保温、降低加热器3的能耗,又能对气溶胶生成制品1进行保温,防止气溶胶在气溶胶生成制品1中冷凝,或者防止气溶胶生成制品1不能被充分烘烤导致浪费,同时,管状体6还能将加热器3保持在气溶胶产生装置中。可选的,管状体6由保温、隔热材料制成,如陶瓷等。可选的,管状体6的壁中具有真空隔热层。
管状体6可以发热,可以为电磁加热件、电阻加热件、红外加热件等,在一实施例中,管状体6通过发热来维持第二容纳腔61内部的高温环境,以防止气溶胶生成制品1内的热空气温度降低而不能充分烘烤气溶胶生成制品1,同时可以避免气溶胶在气溶胶生成制品1中发生冷凝;在另一实施例中,管状体6用于在用户刚抽吸气溶胶生成制品1时,高功率工作,以快速加热气溶胶生成制品1,使得气溶胶生成制品1能够迅速地产生气溶胶,以满足用户快速出烟/出雾的需求,从而提高用户体验。在进一步的实施例中,在满足用户第一口抽吸快速出烟/出雾的需求后,管状体6可以进入低功率的工作状态中,以配合其他加热器如空气加热器,维持气溶胶生成制品1内部的高温环境,防止空气在气溶胶生成制品1内部过度降温。在又一实施例中,加热组件3仅包括管状体6,通过管状体6来加热其内部的气溶胶生成制品1,使之产生气溶胶。在其他实施例中,管状体6可以为保温管,主要用于对气溶胶生成制品1进行保温,防止气溶胶生成制品1中的气流温度过快降低。
当加热器3和管状体6均含有等级430的不锈钢(SS430),或含有等级420的不锈钢(SS420),或含有铁镍的合金材料(比如坡莫合金),或含有石墨合金等可在变化的磁场中发热的磁感性材料,磁感性材料可在变化的磁场中产生涡流和磁滞,进而发热。从而加热器3和管状体6均可在变化的磁场中发热,由于第二部分38的至少局部位于管状体6中,或者固定部的至少局部位于管状体6中,从而固定部的至少局部可能被管状体6磁屏蔽而不能产生涡流(此时,产生变化的磁场的磁感发生器位于加热组件的外围,可以理解的是,若产生变化的磁场的磁感发生器位于加热组件的内侧,则管状体6的局部可能被加热器3 磁屏蔽),此时,第二部分38的温度和第二部分38内侧的基体31的温度可以通过热传导升温,热传导的热量来源为重合区的管状体6和显露在管状体6外的基体31。所以局部的磁屏蔽不会影响对流经固定部的空气的加热效果。
在一实施例中,沿热空气流动的方向,第二部分38位于第一部分37的上游,从而,加热器3与管状体6相嵌固定时,在管状体6足够长的情况下,第一部分37位于在管状体6的内部,若管状体6具有较短的轴向长度,则第一部分37的至少局部可以暴露在管状体6之外。
在一可选的实施中,加热器3一体成型,从而单位面积或者单位体积的第一部分37与第二部分38具有大致相同的加热效率;在其他实施例中,第一部分37与第二部分38为由不同种材料分体成型后在制成的一体结构,从而单位面积或者单位体积的第一部分37与第二部分38具有不尽相同的加热效率。
在一些可选的实施例中,第一部分37和第二部分38的轮廓均为圆形,在其他可选的实施例中,第一部分37的轮廓可以为方形、椭圆形、三角形等规则图形或者不规则图形,第二部分38的轮廓也可以为各种规则图形或者不规则图形中的一种,其可以与第一部分37的轮廓一致,也可以不一致。
在一实施例中,加热器3通过固定部32与管状体6相嵌连接,固定部32的至少局部位于管状体6的接纳腔61中,即固定部32的至少局部位于加热器3与管状体6重合区中。
在一实施例中,可参照图9,第二部分38通过固定部32与管状体6相嵌固定,从而第一部分37凸显在管状体6之外,且固定部32的至少局部嵌入管状体6中,从而固定部32与管状体6之间具有重叠区。其中,固定部32可以设置在第二部分38,或者固定部32连接第二部分38与第一部分37。
请参照图3至图5,凹槽341与管状体6的内壁共同界定第二气孔342。从而,空气通过第二气孔342时,同时与固定部32和管状体6接触而同时被双方加热。当固定部32具有多个,相邻两固定部32之间具有一第二气孔342时,可参照图7,并且空气通过第二气孔342时,空气同时与固定部32、基体31和管状体6接触而同时被三方加热。
在其他实施例中,固定部32设置在基体31的第一部分37上,从而整个加 热器3均位于管状体6的接纳腔61内,或者仅局部固定部32和该固定部32内侧的基体31显露在管状体6之外。
在其他实施例中,固定部32连接第一部分37和第二部分38,加热器3的局部显露在管状体6之外,局部位于管状体6的内部。
上述的加热组件及气溶胶产生装置,加热器3用于加热进入管状体6内部接纳腔61的空气,管状体6用于维持接纳腔61的高温环境,从而防止空气在接纳腔61内的气溶胶生成制品中流动时,温度过度下降,有助于提高空气烘烤气溶胶生成制品的充分度,和防止气溶胶在气溶胶生成制品冷凝。
上述的加热组件及气溶胶产生装置,通过削减、铸造等各种工艺手段使加热器3的局部截面积减小,即使得第一部分37的横截面积小于第二部分38的横截面积,从而能够有效地降低加热器3的总体质量,进而降低加热器3升至预设温度消耗的能量,有助于提高加热器3的热质量。加热器3的局部与管状体6相嵌固定,一方面加热器3可以通过管状体6保持在气溶胶产生装置中,另一方面,可以减小加热器3与管状体6的接触面积,增大管状体6与加热器3之间的热阻,可以进一步地阻碍热量散失,减小能耗。
在一实施例中,可以参照图13,加热组件还包括辅助加热件7,沿热空气流动的方向,辅助加热件7位于加热器3的下游,辅助加热件7与加热器3均与管状体6相嵌固定,其中辅助加热件7为电磁加热体、电阻加热体、红外加热体或者保温管等。辅助加热件7可以延长接纳腔的轴向长度,从而可以适配更长的烟支。
在一实施例中,还提供一种加热模组,可以参照图14,加热模组包括加热组件和保温壳8,加热组件可以包括单个加热器3,可替代地,加热组件可包括多于一个加热器3,该单个加热器3或该多个加热器3可被适当地布置以便最有效地加热气溶胶生成制品1,其中,多个加热器3可以构成对气溶胶产生制品1分段加热,多个加热器3中至少有两个加热器3可以具有不同的加热方式或加热效率。
请继续参阅图14,保温壳8内部形成有第一容纳腔81,气溶胶生成制品1 的至少局部可容纳于第一容纳腔81中;保温壳8的近端开设有与第一容纳腔81连通的第一插入口,气溶胶生成制品1的至少局部进入第一容纳腔81时,需穿过第一插入口;保温壳8的远端密封。
加热组件布置在第一容纳腔81中,其在第一容纳腔81中发热,以加热气溶胶生成制品1,进而生成气溶胶。保温壳8具有保温和隔热功能,其侧壁位于加热组件的侧向外围,其远端(底部)位于加热组件的下方,且密封,从而能够为加热组件提供更加完善的保温,有助于进一步降低加热模组的能耗。
在一实施例中,可参照图14,保温壳8的远端为外凸的拱形底部82,相对与平面底部,拱形底部82能够容纳更厚的空气层,从而可以通过更厚的空气来更加有效地阻碍热量向保温壳8传递,延长保温时间。
优选,拱形底部82经配置可以反射红外线。在一实施例中,拱形底部82内侧具有红外反射层,红外反射层为光亮材料,如铝箔、镍箔等,或者为金属镀膜,如镀金膜、镀银膜等。通过拱形底部82反射红外线,来阻隔热量向外传递,使热量保持在第一容纳腔81中,从而增强对加热组件的保温效果。而且相对平面底部,拱形底部82具有更大的洪红外线反射面积,从而保温效果更好。
进一步的,加热模组的至少局部暴露在拱形底部82的反射范围中;或者,气溶胶生成制品1容纳在第一容纳腔81后,其至少局部暴露在拱形底部82的反射范围中。从而拱形底部82反射的红外线能够射到加热组件上,或者射到气溶胶生成制品1上,使得被反射的红外线能够使加热组件或者气溶胶生成制品1升温,从而进一步地实现节能。其中,优选将拱形底部82的弧度设置为其反射的红外线汇合在加热组件上或者汇合在气溶胶生成制品1上,通过将保温壳8的远端设置为外凸的拱形,能够使其发射的红外线更加集中。优选,保温壳8为一体结构,从而其侧壁与底部之间无缝连接,使得拱形底部82能够更好的密封保温壳8的远端,同时能够减小保温壳8内部的漫反射,提高反射光线的集合度,并且还能防止热量在接缝处集中,导致局部温度过高。
在一些实施例中,保温壳8侧壁的内侧或者外侧也可以设置红外反射层,从而增加保温壳8侧壁的保温效果。
在一实施例中,可参照图14,保温壳8有绝热材料制成,更进一步的,保 温壳8的壁中具有真空夹层,包括拱形底部82的壁中具有真空夹层,和/或保温壳8的侧壁中具有真空夹层,通过真空夹层提高保温隔热效果。
在又一实施例中,加热组件仅包括管状体6,通过管状体6来加热其内部的气溶胶生成制品1,使之产生气溶胶。在其他实施例中,管状体6可以为保温管,主要用于对气溶胶生成制品1进行保温,防止气溶胶生成制品1中的气流温度过快降低。
第一容纳腔81内具有气流通道,抽吸气溶胶生成制品1时,第一容纳腔81内的空气沿气流通道从管状体6的远端进入管状体6的接纳腔61中。
第一容纳腔81内的气流通道包括第一气流通道和第二气流通道。第一容纳腔81中的部分空气通过第一气流通道流向第一气孔33,并通过所述第一气孔33进入接纳腔61中,其中,保温壳8的远端界定有凸形空气腔83,凸形空气腔83构成所述第一气流通道的一部分,凸形空气腔83可以位于第一气孔33的正下方;第二气流通道的至少局部环绕管状体6的外侧面设置,第一容纳腔81内的部分空气沿第一气流通道贴着管状体6的外侧壁从管状体6的近端流向第二气孔342的远端,并通过第二气孔342进入接纳腔61中,管状体6发热时,其侧壁可以加热第二气流通道中的空气,第二气流通道中的空气能够充分地利用管状体6的余热。即第一气流通道的至少部分空气从保温壳8的近端流向其远端,再通过凸形空气腔83,并经过加热体3,最终进入管状体6内的接纳腔61中。
进一步的,第二气流通道紧贴着管状体6的外侧面设置,以充分地利用管状体6的余热。
在一实施例中,第一气孔33与第二气孔342的远端连通,从第一气流通道流出的空气主要通过第一气孔33进入接纳腔61中,但也有部分空气通过第二气孔342进入接纳腔61中,同理,从第二气流通道流出的空气主要通过第二气孔342进入接纳腔61中,但也有部分空气通过第一气孔33进入接纳腔61中。
请参照图14,加热模组还包括支架36,支架36的至少局部布置在第一容纳腔81中,且支架36与所述保温壳8连接,加热组件连接支架9,并被支架9保持在第一容纳腔81中,支架9的侧壁与保温壳8的侧壁界定第一气流通道的 一部分,支架9的侧壁与管状体6界定第二气流通道的至少部分,从而第一气流通道和第二气流通道的至少局部通过支架9的侧壁分隔。
在一实施例中,可以参照图14,支架9的近端形成有第二插入口91,第二插入口91的至少局部位于第一插入口中,或者第二插入口91与第一插入口连通,气溶胶生成制品1需通过第二插入口91进入第一容纳腔81中。
支架9还包括肩部92和支架本体,肩部92环绕第二插入口91设置,且连接支架支架本体与保温壳8,使得第一容纳腔81的至少局部由保温壳8与肩部92界定,肩部92可以与保温壳8为一体结构;或者肩部92可以与支架本体一体注塑成型;或者肩部92可以与支架本体分体注塑成型,然后相互组装成一体结构。
其中,肩部92上开设有第一过气孔921,空气通过第一过气孔371进入第一容纳腔81,即加热模组的近端设置有第一过气孔921。具体的,第一过气孔921可以对应第一气流通道设置,并与第一气流通道连通,支架9的侧壁上开设有第二过气孔93,第二过气孔93连通第一气流通道和第二气流通道;或者,第一过气孔921可以对应第二气流通道设置,并与第二气流通道连通,支架9的侧壁上开设有第二过气孔93,第二过气孔93连通第一气流通道和第二气流通道;从而,通过第一过气孔921进入第一容纳腔81中的空气可以进入第一气流通道和第二气流通道中。即第一气流通道中的部分空气通过第二过气孔93分流到第二气流通道中,并且第二过气孔93位于支架9的侧壁,因此分流至第二气流通道内的气体依然是沿着从管状体6的近端流向其远端。
进一步的,请参照图14,第二过气孔93对应管状体6的近端设置。
当加热组件包括在变化的磁场中可发热的磁感性材料时,加热模组还包括磁感发生器(磁场发生器5),磁感发生器绕制在支架9的外侧,且通过支架9保持在第一容纳腔81中,请参照图14,磁感发生器位于支架9与保温壳8之间。
在一实施例中,加热模组还包括屏蔽层101,屏蔽层101设置在磁感发生器的外围,屏蔽层101位于第一容纳腔81中,且处于保温壳8与磁感发生器(磁场发生器5)之间。屏蔽层101为磁屏蔽层,用于防止磁感发生器产生的磁场外漏,使得磁场更能集中在磁感性材料上,提高磁场的利用率和提高磁感性材料 的发热效率。
可以参照图15,亦可以有第二温度检测器102检测管状体6的温度,第二温度检测器102可以连接管状体6的侧壁外表面,并且连接控制器42。控制器42根据获取的第二温度检测器102检测的温度数据,对管状体6进行温控。在图15所示的实施例中,管状体6与加热器3未重合。
加热模组还包括与磁感发生器或者加热组件或者温度检测器电连接的引线,引线通过穿过第一气流通道或者第二气流通道,然后通过第一过气孔921引出。即,第一气孔33既能允许空气进入第一容纳腔81中,又能允许第一容纳腔81中的引线穿出,进而与控制器41电连接。
可选的,加热器3与管状体6由不同的磁感性材料制作,从而在相同的变化的磁场下具有不同的发热效率。
可选的,管状体沿6第一容纳腔81的轴向是断续设置的,即管状体6可以包括沿轴向分布的多个磁感受环,相邻两磁感受环相互之间不连接,不同的磁感受环可以对应不同的磁感发生器,从而控制器42通过控制不同的磁感发生器的工作顺序或者工作功率等使管状体6对气溶胶生成制品1分段加热。当然,各磁感受环可以置于相同的变化的磁场中,各磁感受环可以由相同的材料制成,或者由不同的材料制成。
上述的加热模组及气溶胶产生装置,保温壳8的近端具有第一插入口、远端密封的结构,加热组件设置在保温壳8中,从而加热组件在保温壳8之内发热,热量被保温壳8局限在其内部,从而能够对加热组件进行更加有效的保温,有助于降低加热模组的功耗。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (35)

  1. 一种加热器,用于加热流经其中的空气形成热空气,再通过热空气加热气溶胶生成制品,其特征在于,包括:
    基体,被多个第一气孔贯穿,所述第一气孔允许空气通过,空气流经所述第一气孔时被所述基体加热;
    安装孔,设置在所述基体内部;
    第一温度检测器,其探测部设置在所述安装孔中,以检测所述基体内部的温度。
  2. 如权利要求1所述的加热器,其特征在于,所述安装孔为通孔,允许空气通过;或者
    所述安装孔为盲孔;或者
    所述安装孔为通孔,其至少一端被封堵。
  3. 如权利要求1所述的加热器,其特征在于,所述安装孔位于所述基体的正中心。
  4. 如权利要求1所述的加热器,其特征在于,多个所述第一气孔均匀地环绕所述安装孔分布。
  5. 如权利要求1所述的加热器,其特征在于,所述安装孔比所述第一气孔的孔径大。
  6. 如权利要求1所述的加热器,其特征在于,所述基体包括导电材料;所述第一温度检测器包括第一热电偶线和第二热电偶线,所述第一热电偶线和所述第二热电偶线由不同的材料制成;
    所述导电材料被配置为所述探测部的至少局部,所述第一热电偶线、所述第二热电偶线通过所述基体电连接,从而形成用于检测所述基体内部温度的热电偶。
  7. 如权利要求6所述的加热器,其特征在于,所述安装孔仅有一个,所述第一热电偶线和所述第二热电偶线均至少局部的位于所述安装孔中;或者
    所述安装孔具有多个,所述第一热电偶线和所述第二热电偶线的至少局部的位于不同的所述安装孔中。
  8. 如权利要求1所述的加热器,其特征在于,所述基体由电阻性导电材料制成,从而能够通过电热效应发热;或者
    所述基体由磁感性材料制成,从而能够在变化的磁场中发热;或者
    所述基体包括导热体和发热体,所述发热体用于发热,且设置在所述导热体的外围或者内部,所述第一气孔贯穿所述导热体。
  9. 如权利要求1所述的加热器,其特征在于,所述探测部位于所述安装孔轴向长度的中间。
  10. 如权利要求1所述的加热器,其特征在于,所述基体包括石墨合金。
  11. 一种加热组件,其特征在于,包括:
    管状体;
    如权利要求1至10任一项所述的加热器,所述加热器包括设置在所述基体至少局部的侧表面上的固定部,所述基体通过所述固定部与所述管状体相嵌连接。
  12. 如权利要求11所述的加热组件,其特征在于,所述基体包括第一部分和第二部分,所述第一部分和所述第二部分沿所述加热器的轴向并列地布置,所述固定部设置在所述第二部分上,或者所述固定部连接所述第二部分与所述第一部分。
  13. 如权利要求12所述的加热组件,其特征在于,所述第一部分凸显在所述管状体之外。
  14. 如权利要求12所述的加热组件,其特征在于,所述第一部分的横截面积小于所述第二部分的横截面积。
  15. 如权利要求12所述的加热组件,其特征在于,沿热空气流动的方向,所述第二部分位于所述第一部分的下游。
  16. 如权利要求12所述的加热组件,其特征在于,所述固定部与所述管状体 共同界定有第二气孔。
  17. 如权利要求12所述的加热组件,其特征在于,所述第二部分至少局部的外侧面的截面为齿轮状或者花边状,所述第二部分上的齿轮状或者花边状的外侧面的至少局部与所述管状体相嵌固定。
  18. 如权利要求12所述的加热组件,其特征在于,所述第二部分与第一部分之间形成有台阶面,所述台阶面上设置有第三气孔,所述第三气孔仅贯穿所述第二部分。
  19. 如权利要求11所述的加热组件,其特征在于,所述管状体为电磁加热体、电阻加热体、红外加热体或者保温管。
  20. 如权利要求12所述的加热组件,其特征在于,所述管状体内形成有用于容纳气溶胶生成制品的接纳腔,所述第二部分的至少局部位于所述接纳腔中。
  21. 如权利要求11所述的加热组件,其特征在于,所述加热组件还包括辅助加热件;沿热空气流动的方向,所述辅助加热件位于所述加热器的下游,所述辅助加热件与所述加热器共同与所述管状体相嵌固定;
    其中所述辅助加热件为电磁加热体、电阻加热体、红外加热体或者保温管。
  22. 一种加热模组,其特征在于,包括:
    保温壳,其内形成有第一容纳腔,用于容纳气溶胶生成制品的至少局部,所述保温壳的近端开设有与所述第一容纳腔连通的第一插入口;
    如权利要求11-21任一项所述的加热组件,布置在所述第一容纳腔中,用于加热所述气溶胶生成制品,使之产生气溶胶;
    其中,所述保温壳的远端密封。
  23. 根据权利要求22所述的加热模组,其特征在于,所述保温壳的远端为外凸的拱形底部。
  24. 如权利要求22所述的加热模组,其特征在于,所述保温壳为一体结构。
  25. 如权利要求23所述的加热模组,其特征在于,所述拱形底部经配置可反射并聚焦红外线。
  26. 如权利要求25所述的加热模组,其特征在于,所述加热组件的至少局部暴露在所述拱形底部的反射范围中;或者,所述气溶胶生成制品容纳在所述第一容纳腔后,其至少局部暴露在所述拱形底部的反射范围中。
  27. 如权利要求22所述的加热模组,其特征在于,所述保温壳的侧壁中具有真空夹层。
  28. 如权利要求22所述的加热模组,其特征在于,所述加热模组的近端设置有第一过气孔,以允许空气进入所述第一容纳腔中;所述保温壳的底部界定一凸形空气腔;
    所述第一容纳腔内具有第一气流通道,所述第一气流通道的至少部分空气从所述保温壳的近端流向其远端,再通过所述凸形空气腔,最终进入所述管状体内的接纳腔中。
  29. 如权利要求28所述的加热模组,其特征在于,所述加热模组还包括第二气流通道,所述第二气流通道紧贴着所述管状体的外侧面设置;
    所述第一气流通道中的部分空气通过第二过气孔分流到所述第二气流通道中,并沿着从所述管状体的近端流向其远端。
  30. 如权利要求29所述的加热模组,其特征在于,所述第二气流通道的空气通过所述第二气孔进入所述接纳腔中。
  31. 如权利要求22所述的加热模组,其特征在于,所述加热模组还包括支架,所述支架包括肩部或者支架本体;所述肩部与所述保温壳的连接,共同界定所述第一容纳腔;所述加热组件固定在所述支架本体上,并保持在所述第一容纳腔内。
  32. 如权利要求31所述的加热模组,其特征在于,所述肩部上设置有供所述第一容纳腔进气的过气孔和/或供所述加热模组的引线通过的穿线孔。
  33. 如权利要求31所述的加热模组,其特征在于,所述加热组件还包括在变化的磁场中可发热的磁感性材料;
    所述加热模组还包括磁场发生器,所述磁场发生器绕制在所述支架的外侧。
  34. 如权利要求33所述的加热模组,其特征在于,所述加热模组还包括屏蔽 层,所述屏蔽层设置在所述第一容纳腔中,且位于所述磁场发生器的外围。
  35. 一种气溶胶产生装置,其特征在于,包括权利要求1-10任一项所述的加热器,或者包括权利要求11-21任一项所述的加热组件,或者包括权利要求22-34任一项所述的加热模组。
PCT/CN2023/088660 2022-04-16 2023-04-17 加热器、加热组件、加热模组及气溶胶产生装置 WO2023198215A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202220879053.5 2022-04-16
CN202220879062.4 2022-04-16
CN202220879035.7U CN217446681U (zh) 2022-04-16 2022-04-16 加热模组及气溶胶产生装置
CN202220879040.8 2022-04-16
CN202220879035.7 2022-04-16
CN202220879053.5U CN217429267U (zh) 2022-04-16 2022-04-16 加热组件及气溶胶产生装置
CN202220879040.8U CN217446682U (zh) 2022-04-16 2022-04-16 加热组件及气溶胶产生装置
CN202220879062.4U CN217826747U (zh) 2022-04-16 2022-04-16 空气加热器及气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023198215A1 true WO2023198215A1 (zh) 2023-10-19

Family

ID=88329091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088660 WO2023198215A1 (zh) 2022-04-16 2023-04-17 加热器、加热组件、加热模组及气溶胶产生装置

Country Status (1)

Country Link
WO (1) WO2023198215A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210353179U (zh) * 2019-06-21 2020-04-21 深圳市新宜康科技股份有限公司 基于红外加热装置的加热不燃烧装置
CN111743204A (zh) * 2020-04-02 2020-10-09 深圳市美深威科技有限公司 一种快速加热的发热体
CN112218554A (zh) * 2018-06-07 2021-01-12 菲利普莫里斯生产公司 用于加热气溶胶形成基质的电加热组件
CN114259087A (zh) * 2022-01-17 2022-04-01 深圳市吉迩科技有限公司 一种红外加热的气溶胶发生装置及气溶胶发生系统
CN217429267U (zh) * 2022-04-16 2022-09-16 深圳市合元科技有限公司 加热组件及气溶胶产生装置
CN217446682U (zh) * 2022-04-16 2022-09-20 深圳市合元科技有限公司 加热组件及气溶胶产生装置
CN217446681U (zh) * 2022-04-16 2022-09-20 深圳市合元科技有限公司 加热模组及气溶胶产生装置
CN217826747U (zh) * 2022-04-16 2022-11-18 深圳市合元科技有限公司 空气加热器及气溶胶产生装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218554A (zh) * 2018-06-07 2021-01-12 菲利普莫里斯生产公司 用于加热气溶胶形成基质的电加热组件
CN210353179U (zh) * 2019-06-21 2020-04-21 深圳市新宜康科技股份有限公司 基于红外加热装置的加热不燃烧装置
CN111743204A (zh) * 2020-04-02 2020-10-09 深圳市美深威科技有限公司 一种快速加热的发热体
CN114259087A (zh) * 2022-01-17 2022-04-01 深圳市吉迩科技有限公司 一种红外加热的气溶胶发生装置及气溶胶发生系统
CN217429267U (zh) * 2022-04-16 2022-09-16 深圳市合元科技有限公司 加热组件及气溶胶产生装置
CN217446682U (zh) * 2022-04-16 2022-09-20 深圳市合元科技有限公司 加热组件及气溶胶产生装置
CN217446681U (zh) * 2022-04-16 2022-09-20 深圳市合元科技有限公司 加热模组及气溶胶产生装置
CN217826747U (zh) * 2022-04-16 2022-11-18 深圳市合元科技有限公司 空气加热器及气溶胶产生装置

Similar Documents

Publication Publication Date Title
CN108618207A (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
JP6062457B2 (ja) 空気流検出を備えるエアロゾル発生装置
ES2905680T3 (es) Dispositivo de generación de aerosol y cámara de calentamiento para el mismo
JP6145458B2 (ja) エアロゾル発生装置内のエアロゾル形成基材の検出
TW202037296A (zh) 氣溶膠產生裝置
WO2022166327A1 (zh) 一种涡流加热的发热组件及气溶胶生成装置
JP7224457B2 (ja) エアロゾル生成装置及びエアロゾル生成システム
WO2019227381A1 (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
CN204146307U (zh) 一种电子烟草蒸发器
CN211910544U (zh) 加热器以及包括该加热器的烟具
JP2022525092A (ja) エアロゾル供給デバイス
CN217446681U (zh) 加热模组及气溶胶产生装置
CA3173225A1 (en) Aerosol generator for an electronic aerosol provision system
CN217429267U (zh) 加热组件及气溶胶产生装置
CN217826747U (zh) 空气加热器及气溶胶产生装置
WO2023208053A1 (zh) 加热模组及气雾生成装置
CN217446682U (zh) 加热组件及气溶胶产生装置
EP4197356A1 (en) Aerosol generating device
CN214677573U (zh) 具有复合型导热发热体的加热卷烟烟具
WO2023198215A1 (zh) 加热器、加热组件、加热模组及气溶胶产生装置
CN218354609U (zh) 气溶胶产生装置
CN217547293U (zh) 一种加热组件及气溶胶产生装置
CN209047462U (zh) 一种电子烟
WO2023193647A1 (zh) 气溶胶产生装置及统计用户的抽吸口数的方法
CN218474052U (zh) 加热模组及气雾生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787857

Country of ref document: EP

Kind code of ref document: A1