WO2023193647A1 - 气溶胶产生装置及统计用户的抽吸口数的方法 - Google Patents

气溶胶产生装置及统计用户的抽吸口数的方法 Download PDF

Info

Publication number
WO2023193647A1
WO2023193647A1 PCT/CN2023/084846 CN2023084846W WO2023193647A1 WO 2023193647 A1 WO2023193647 A1 WO 2023193647A1 CN 2023084846 W CN2023084846 W CN 2023084846W WO 2023193647 A1 WO2023193647 A1 WO 2023193647A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heater
user
threshold
change speed
Prior art date
Application number
PCT/CN2023/084846
Other languages
English (en)
French (fr)
Inventor
樊珑
龙智明
余培侠
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023193647A1 publication Critical patent/WO2023193647A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the embodiments of the present application relate to the field of aerosol generation technology, and in particular to an aerosol generation device and a method for counting the number of puffs taken by a user.
  • the aerosol generating device includes a heater and a power source.
  • the heater is used to heat the aerosol generating article to generate aerosol;
  • the power source is connected to the heater to provide the heater with the power required for heating. Only when the heater has sufficient temperature can the aerosol-generating product generate a sufficient amount of aerosol.
  • Some existing solutions only determine the change in airflow flowing through the heater by detecting the difference between the temperature and the target temperature to determine the user's puffing event. However, this method may be directly affected by the setting of the target temperature, leading to misjudgment of the suction event.
  • Embodiments of the present application provide an aerosol generating device and a method for counting the number of puffs taken by a user.
  • the number of puffs taken by the user is counted based on the temperature change speed of the actual temperature of the heater relative to the target temperature, which can improve the accuracy of statistics. .
  • a power source electrically connected to the heater, so that the temperature on the heater reaches the target temperature corresponding to each puff of the user;
  • a controller connected to the heater
  • the controller is used to detect the actual temperature of the heater and determine the temperature change speed during the operation of the aerosol generating device; determine whether the temperature change speed meets the preset conditions; if the temperature change speed meets the preset conditions; If the condition is set, the number of puffs taken by the user is accumulated once, and the number of puffs is recorded;
  • the temperature change speed is the change amount of the actual temperature of the heater relative to the target temperature per unit time.
  • the controller is configured to determine whether the temperature change speed is greater than the first threshold, and if the temperature change speed is greater than the first threshold, accumulate the number of puffs taken by the user once.
  • the controller is configured to determine the acceleration of the temperature change speed; and determine whether the acceleration is greater than a second threshold; if the acceleration is greater than the second threshold, accumulate the number of puffs taken by the user once;
  • the acceleration is the change amount of the temperature change speed per unit time.
  • the controller is configured to determine the difference ⁇ T1 between the target temperature and the actual temperature of the heater when the temperature change speed is at a first threshold; determine that the acceleration of the temperature change speed is at a second threshold When, the difference ⁇ T2 between the target temperature and the actual temperature of the heater; determine the absolute change ⁇ according to ⁇ T2 and ⁇ T1; and determine whether the absolute change ⁇ is greater than the third threshold; if the absolute change ⁇ If the value is greater than the third threshold, the number of puffs taken by the user is accumulated once.
  • the absolute change amount ⁇ ⁇ T2- ⁇ T1.
  • the first threshold for the user to suck the N+Mth mouth is less than the first threshold for the user to suck the Nth mouth, N is an integer and greater than or equal to 2, M is an integer and greater than or equal to 1; and / or
  • the third threshold for the user to suck the N+Mth mouth is smaller than the third threshold for the user to suck the Nth mouth, N is an integer and greater than or equal to 2, and M is an integer and greater than or equal to 1.
  • the first threshold and/or the third threshold gradually decrease as the number of puffs taken by the user increases.
  • the temperature change speed is maximum.
  • the controller is connected to the power source, and is used to control the power source to perform power compensation to the heater when the acceleration is equal to the second threshold, so that the heater reaches the corresponding of the target temperature.
  • the target temperature for the user to draw the N+Mth port is less than the target temperature for the user to draw the Nth port
  • N is an integer and greater than or equal to 2
  • M is an integer and greater than or equal to 1.
  • the target temperature continuously decreases as the number of puffs taken by the user increases.
  • the target temperature remains unchanged as the number of puffs taken by the user increases.
  • An embodiment of the present application provides a method for counting the number of puffs taken by a user of an aerosol generating device, which includes a heater, a power source for supplying power to the heater, and a controller; Methods include:
  • the step of determining whether the temperature change speed meets a preset condition, and if the temperature change speed meets the preset condition, accumulating the number of puffs taken by the user once includes:
  • the number of puffs taken by the user is accumulated once.
  • the method also includes:
  • the acceleration of the temperature change speed is greater than the second threshold, the number of puffs taken by the user is accumulated once.
  • the method also includes:
  • the difference ⁇ T1 between the target temperature and the actual temperature of the heater is determined to be the first threshold, the difference ⁇ T1 between the target temperature and the actual temperature of the heater;
  • the number of puffs taken by the user is accumulated once, including:
  • the number of puffs taken by the user is accumulated once.
  • the preset target temperature does not remain unchanged.
  • An embodiment of the present application provides a non-volatile computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the controller causes the controller to Perform the method described above.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are controlled by a controller, When executed, the controller is caused to execute the method as described above.
  • the controller determines the temperature change rate by detecting the actual temperature of the heater and combining it with the set target temperature, that is, the unit The actual temperature of the heater within the time period is changed relative to the target temperature of the current stage, and it is judged whether the temperature change speed meets the preset conditions. If it is satisfied, the number of puffs taken by the user is accumulated once, and the number of puffs is recorded; Determining the number of puffs taken by the user by changing the temperature is simple, convenient and highly accurate; especially when the set target temperature changes with the puffing time during the operation of the aerosol generating device. , identifying the number of puffs through the temperature change speed can avoid being affected by changes in the target temperature itself, and contribute to the accuracy of the number of puffs identification.
  • Figure 1 is a schematic diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 2 is a schematic circuit diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 3 is an ideal state diagram of the heater target during user puffing provided by an embodiment of the present application.
  • Figure 4 is an actual state diagram of the heater target temperature during user puffing provided by an embodiment of the present application.
  • Figure 5 is a chart of the change rate of the difference between the target temperature and the heater temperature within a detection period provided by another embodiment of the present application;
  • Figure 6 is a temperature change speed-time chart within a detection period provided by another embodiment of the present application.
  • Figure 7 is an acceleration-time chart within a detection cycle provided by another embodiment of the present application.
  • Figure 8 is a flow chart of a method for counting the number of puffs provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a method for counting the number of puffs provided by another embodiment of the present application.
  • Figure 10 is a flow chart of a method for counting the number of puffs provided by another embodiment of the present application.
  • Figure 11 is a flow chart of a method for counting the number of puffs provided by another embodiment of the present application.
  • Figure 12 is a flow chart of a method for counting the number of puffs provided by another embodiment of the present application.
  • Figure 13 is a flow chart of a method for counting the number of puffs provided by another embodiment of the present application.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number or order of indicated technical features. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are for explanation only. In a specific posture (as shown in the accompanying drawings), the relative positional relationship or movement conditions between the components, etc., if the specific posture changes, the directional indication will also change accordingly. Furthermore, the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes Other steps or units inherent to such processes, methods, products or devices.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • An embodiment of the present application provides an aerosol-generating device, which can be used to heat an aerosol-generating product so that the aerosol-generating product volatilizes aerosol for smoking.
  • the aerosol can include Chinese herbal medicine, nicotine or tobacco flavorings. and other flavor substances.
  • the aerosol-generating product 1 is a smoking product (such as cigarettes, cigars, etc.), but this is not limited.
  • the aerosol generating device includes a receiving chamber for receiving the aerosol generating article 1 and a heater 2 for heating the aerosol generating article 1, and also includes a power source 3.
  • the power source 3 Used to provide power for heater 2 to work.
  • the aerosol generating device has an insertion opening through which the aerosol generating article 1, such as a cigarette, is removably received in the receiving cavity; at least a portion of the heater 2 extends longitudinally in the receiving cavity, and Heating is generated by electromagnetic induction under a changing magnetic field, or by resistance when energized, or by radiating infrared rays to the aerosol-generating product when excited, thereby heating the aerosol-generating product 1 such as a cigarette, so that the aerosol-generating product 1 At least one component volatilizes to form an aerosol for inhalation; the power source 3 includes a battery core, which is a rechargeable DC battery core and can output DC current.
  • the battery core may also be a disposable battery, which is not rechargeable or does not need to be charged.
  • the power source 3 can be a wired power supply, and the wired power supply is directly connected to the mains through a plug to power the aerosol generating device.
  • the DC power supply voltage provided by the battery core is in the range of about 2.5V to about 9.0V, and the ampere of the DC current provided by the battery core is in the range of about 2.5A to about 20A.
  • Power may be supplied to the heater 2 as a pulse signal, and the amount of power delivered to the heater 2 may be adjusted by changing the duty cycle or pulse width or pulse amplitude of the power signal.
  • the aerosol-generating article 1 is preferably made of a tobacco-containing material that releases volatile compounds from the smokable article when heated; or it may be a non-tobacco material that can be heated and then suitable for electric heating to produce cigarettes.
  • the aerosol-generating product 1 preferably adopts a solid matrix, which may include one or more powders, granules, fragments, thin strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the aerosol-generating article 1 may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the aerosol-generating article 1 is heated.
  • the aerosol-generating article 1 is prepared in the shape of a conventional cigarette or cigar.
  • the aerosol generating article 1 may be included in a smoking article.
  • the smoking article comprising the aerosol-generating article 1 may be completely contained within the aerosol-generating device.
  • the user can puff on the mouthpiece of the aerosol generating device.
  • the mouthpiece may be any part of the aerosol-generating device that is placed in the user's mouth for direct inhalation of the aerosol generated by the aerosol-generating article 1 or the aerosol-generating device.
  • the aerosol is delivered to the user's mouth via the mouthpiece.
  • the smoking article comprising the aerosol generating article 1 may be partially contained in the aerosol generating device during operation. In this case, the user can draw directly on the mouthpiece of the smoking article.
  • the heater 2 contains grade 430 stainless steel (SS430), or grade 420 stainless steel (SS420), or alloy materials containing iron and nickel (such as permalloy), etc., which can be used in a changing magnetic field.
  • SS430 grade 430 stainless steel
  • SS420 grade 420 stainless steel
  • alloy materials containing iron and nickel such as permalloy
  • a magnetically sensitive material that generates heat so that the heater 2 can generate heat in a changing magnetic field, and in the changing magnetic field, it will self-heat due to the generation of eddy currents and hysteresis, and conduct and/or radiate heat to the aerosol-generating product 1, Produce product 1 by heating aerosol.
  • the aerosol generation device also includes a magnetic field generator, such as an induction coil, for generating a changing magnetic field under alternating current
  • a magnetic field generator such as an induction coil
  • the controller 2 is connected to the electric core and the induction coil, and can convert the direct current output by the electric core into It is an alternating current, and preferably the frequency of the alternating current is between 80KHz and 400KHz; more specifically, the frequency can be in the range of about 200KHz to 300KHz.
  • the heater 2 is provided with an infrared coating, and the infrared coating receives electrical power to generate Heat is generated to produce infrared rays of a certain wavelength, such as far-infrared rays of 8 ⁇ m to 15 ⁇ m.
  • the wavelength of the infrared ray matches the absorption wavelength of the aerosol-generating article 1, the energy of the infrared ray is easily absorbed by the aerosol-generating article.
  • the infrared coating is preferably made of far-infrared electrothermal ink, ceramic powder and inorganic binder, which are fully mixed and evenly coated on the outer surface of the substrate, and then dried and cured for a certain period of time.
  • the thickness of the infrared coating is 30 ⁇ m-50 ⁇ m; of course , the infrared coating can also be coated on the outer surface of the substrate by mixing and stirring tin tetrachloride, tin oxide, antimony trichloride, titanium tetrachloride and anhydrous copper sulfate in a certain proportion; or it can be a silicon carbide ceramic layer , carbon fiber composite layer, zirconium-titanium oxide ceramic layer, zirconium-titanium nitride ceramic layer, zirconium-titanium boride ceramic layer, zirconium-titanium carbide ceramic layer, iron-based oxide ceramic layer, iron-based nitride ceramic layer , iron bor
  • the heater 2 is made of resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, or contains at least one of the above conductive materials, so that When conducting electricity, the aerosol-generating product 1 can be heated by generating resistance, so that at least one component in the aerosol-generating product 1 can be volatilized to form an aerosol.
  • resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, or contains at least one of the above conductive materials, so that When conducting electricity, the aerosol-generating product 1 can be heated by generating resistance, so that at least one component in the aerosol-generating product 1 can be volatilized to form an aerosol.
  • the heater 1 is generally in the shape of a pin or a needle or a token, which is advantageous for insertion into the aerosol-generating article 1 .
  • the heater 2 may have a length of approximately 12 to 19 mm and a diameter of 2.0 to 2.6 mm. Its cross-section can be circular, straight, elliptical or polygonal, etc.
  • the heater 2 may be substantially cylindrical, or may be provided with other structures on the periphery of the aerosol-generating article 1 to conduct and radiate heat from the periphery of the aerosol-generating article 1 to the aerosol-generating article.
  • the aerosol generating device may comprise a single heater 2, alternatively the aerosol generating device may comprise more than one heater 2, the heater 2 or heaters 2 may be suitably arranged to most efficiently heat the aerosol.
  • a plurality of heaters 2 can be configured to heat the aerosol-generating product in stages, and at least two of the plurality of heaters 2 can have different heating methods or heating efficiencies.
  • the heater 2 can heat the aerosol-generating article 1 by conduction.
  • the heater 2 may be at least partially in contact with the aerosol-generating article 1 or the aerosol-generating article 1 carrier. Alternatively, heat from the heater 2 may be conducted to the aerosol generating article 1 through a thermally conductive element.
  • the heater 2 may heat the aerosol-generating article 1 by convection; alternatively, the ambient air may be heated by the heater 2 before passing through the aerosol-generating article 1; alternatively, the heater 2 may heat the aerosol-generating article 1 by radiation. .
  • power is supplied to the heaters 2 until the heater or heaters reach a temperature of between approximately 250°C and 440°C to generate aerosol from the aerosol-generating article 1 .
  • the aerosol generating device is preferably a handheld aerosol generating device.
  • the aerosol-generating device includes an insertion detector 4 and a user interface 5 (eg a combination of graphic displays or LED indicator lights, etc.) that conveys information about the aerosol-generating device to the user.
  • a user interface 5 eg a combination of graphic displays or LED indicator lights, etc.
  • the insertion detector 4 can detect the presence and properties of an aerosol-generating article 1 in proximity to the heater 2 in the heat transfer path and signal the presence of the aerosol-generating article 1 to the controller 6 . It will be appreciated that the provision of the insertion detector 4 is optional but not essential.
  • the controller 6 controls the user interface 5 to display system information, such as cell power, temperature, status of the aerosol-generating article 1, number of puffs, other information, or a combination thereof.
  • the controller 6 is electrically connected to the power source 3 and the heater 2, and is used to control the current, voltage or electric power output of the power source 3, and detect the temperature change speed of the actual temperature of the heater 2 relative to the target temperature, etc.
  • the controller 6 can also obtain the temperature change speed of the actual temperature of the heater 2 relative to the target temperature by other means besides detecting the actual temperature of the heater 2, for example, by detecting the actual temperature of the heater 2. Resistance or resistance changes, etc.
  • Controller 6 may include a programmable microprocessor.
  • the controller 6 may include a dedicated electronic chip, such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the controller 6 is configured to detect a temperature change rate of the actual temperature of the heater 2 relative to the target temperature to detect an event indicative of a user puff.
  • the controller 6 may include storage components, which may include memory and/or cache.
  • the storage component may be configured to record detected changes in airflow or user puffing.
  • the storage component may record a count of puffs taken by the user or the time of each puff.
  • the storage assembly may be further configured to record the temperature of the heater element and the power supplied during each puff.
  • the recorded data can be displayed through the user interface 5 under the call of the controller 5, or output and displayed through other output interfaces, when the number of recorded puffs reaches the preset total number of puffs of the aerosol-generating product.
  • the controller 6 can be reset, or the controller 2 can clear the recorded number of puffs, or the controller 6 controls the aerosol generating device to shut down, or Or the controller 6 controls the power source 3 to stop continuing to provide power to the heater 2, or the controller prompts the user through sound, light, vibration, etc. that the aerosol-generating product 1 has reached the suction limit.
  • the user's puff count data may be transferred to an external memory or processing device via any suitable data output device.
  • the aerosol generating device may include a radio, Bluetooth, or a Universal Serial Bus (USB) socket connected to the controller 6 or memory.
  • the aerosol generating device may be configured to transfer data from the memory to external memory in the cell charging device each time the aerosol generating device is recharged via an appropriate data connection.
  • the actual temperature of the heater 2 is not only affected by the power supplied to it, the air flow past the heater 2 during suction will also cool the heater 2 and reduce its temperature. This cooling effect can be used to detect puff events from the user. When the air flow increases due to suction, the actual temperature of heater 2 will decrease.
  • the present application provides for detecting changes in airflow through an aerosol generating device, particularly inhalation or puffing by a user, without the need for a dedicated airflow sensor. This reduces the cost and complexity of providing a device for detecting user inhalation compared to existing devices that include dedicated airflow sensors, and increases reliability since there are fewer parts that may potentially fail.
  • an aerosol generating device requires an initial period of high power at the beginning of use in order to allow the heater 2 to rise as quickly as possible to the first target temperature for the user's first puff. Once the first target temperature is reached, the applied power is reduced to maintain the heater 2 at the second target temperature to meet the user's subsequent puffing needs.
  • FIG. 3 shows the heater during the user's inhalation.
  • line 71 is the target temperature under the ideal state, which belongs to the reference temperature.
  • the above-mentioned second target temperature is almost constant.
  • the constant described in this application includes very small changes in temperature, such as Within a temperature detection cycle, if the temperature change does not exceed the error temperature, it is considered to be a constant temperature.
  • the error temperature can be ⁇ 5°C, etc.; due to reasons such as path loss, interference, matrix reduction or energy saving in aerosol-generating products, etc.
  • Figure 4 is a diagram of the actual state of the target temperature of the heater 2 during the user's puffing.
  • Line 72 is the target temperature in the actual state, so in practice, the target temperature changes with time, and even the target temperature may fluctuate.
  • the user takes a puff each time.
  • the target temperatures corresponding to the puffs may be different; in some embodiments, the target temperature for the user to puff on the N+Mth port is smaller than the target temperature for the user to puff on the Nth port, N is an integer greater than 1, and M is greater than 0.
  • the target temperature gradually decreases.
  • the power provided by the power source 3 to the heater 2 is not constant. Usually, after a period of suction, the power provided by the power source 3 to the heater 2 gradually decreases, which also causes the target temperature to decrease to a certain extent.
  • the airflow that the user inhales and passes through the heater 2 will take away the heat of the heater 2, causing the temperature of the heater 2 to drop during suction.
  • the power provided by power source 3 to heater 2 is reduced, or the target temperature still fluctuates after the first puff caused by other reasons, it will result in that if only by checking the real-time temperature of heater 2, it will be different from the default constant
  • the difference between the target temperature and the user's puffing event is not accurate; for example, if the difference between the real-time temperature of heater 2 and the target temperature increases or decreases, it may be caused by a decrease or increase in the target temperature. It is not caused by the actual temperature change of the heater 2, which leads to misdetection and misjudgment.
  • one embodiment of the present application uses a controller to detect the actual temperature of the heater 2 and determine the temperature change speed of the actual temperature of the heater 2 relative to the target temperature. When the temperature change speed meets the preset conditions, the number of puffs taken by the user is counted.
  • the technical solution adopted in this application to determine the temperature change speed of the actual temperature of the heater 2 relative to the target temperature can also be applied to the case where the target temperature is constant after the first puff, and is used as a statistic. Basis for the number of puffs taken by the user.
  • the temperature change speed of the actual temperature of the heater 2 relative to the target temperature may be the first-order derivative obtained by deriving the time derivative of the difference between the target temperature and the temperature of the heater 2 .
  • the controller 6 is preferably configured to detect the actual temperature of the heater 2 Whether the temperature change rate relative to the target temperature exceeds the If the temperature change speed is less than or equal to the first threshold, it is considered an interference event, and the number of puffs taken by the user will not be counted, thereby improving the accuracy of counting the number of puffs taken by the user. If the temperature change speed is greater than the first threshold, it is determined that the user has puffing time, or the next step can be entered for more accurate determination.
  • the controller controls to accumulate the number of puffs taken by the user once to count the number of puffs taken by the user. That is, in some embodiments, the temperature change speed being greater than the first threshold becomes the preset condition for the controller 6 to detect the user's puffing event.
  • the controller 6 confirms the acceleration of the temperature change rate of the actual temperature of the heater 2 relative to the target temperature.
  • the acceleration is the change rate of the above-mentioned temperature change speed per unit time, which is used to represent the change trend of the temperature change speed of the actual temperature of the heater relative to the target temperature, or the acceleration can be the change rate of the actual temperature of the heater 2 relative to the target temperature.
  • the second-order derivative is obtained by deriving the time derivative of the temperature change speed of the target temperature, or the second-order time derivative of the change amount of the actual temperature of the heater 2 relative to the target temperature.
  • the acceleration When the acceleration is greater than 0, it means that the temperature change speed is increasing, and at the same time, it means that the absolute value of the difference between the actual temperature of heater 2 and the target temperature is continuing to increase rapidly.
  • the acceleration decreases to zero, it means that the absolute value of the difference between the actual temperature of heater 2 and the target temperature is continuing to increase rapidly.
  • the temperature change speed of the actual temperature relative to the target temperature reaches the maximum, which means that the speed or flow rate of the airflow flowing through the heater 2 reaches the maximum.
  • the controller 6 is configured to confirm whether the acceleration of the temperature change rate of the actual temperature of the heater 2 relative to the target temperature is greater than a second threshold. If it is not greater than the second threshold, it can be identified as a heater.
  • the temperature change on 2 is caused by non-sucking events to eliminate the interference of events such as the sudden change in ambient temperature that accelerates the heat dissipation of heater 2 and decreases the temperature. For example, when the user is not smoking, he suddenly enters from a high-temperature outdoor environment. In low-temperature indoor environments and sudden changes in ambient temperature, it is likely that the heat dissipation of the heater 2 will be accelerated and the temperature will decrease, thereby constituting an interference event for judging the user's puffing event.
  • the interference event will usually cause the acceleration of the temperature drop of the heater 2 to be smaller than that of the pump.
  • the acceleration of the temperature decrease of the heater 2 caused by the suction event is used as the judgment condition, so the acceleration is greater than the second threshold, which can further reduce misjudgment events and improve the accuracy of statistics. That is, in some embodiments, the acceleration being greater than the second threshold becomes a preset condition for the controller 6 to detect the user's suction event.
  • the controller 2 is configured to adjust the power supplied to the heater 2 when a drop in acceleration is detected to a second threshold. For example, when the controller 6 detects that the acceleration drops to zero (that is, the second threshold is zero), the power source 3 is controlled to increase the power supplied to the heater 2 to compensate for the temperature loss on the heater 2 and quickly Call back to the corresponding target temperature.
  • the controller 6 is configured to adjust the power supplied to the heater 2 to increase or decrease the power supplied to the heater 2 when it detects that the temperature of the heater does not match the target temperature at the corresponding moment. 2 is maintained at the corresponding target temperature. After the heater 2 is temperature compensated or adjusted, the difference between the corresponding target temperature and its actual temperature will decrease, the acceleration will decrease, and the temperature change speed will decrease.
  • the controller 6 is configured to detect an event of user puffing by comparing the actual temperature of the heater 2 with respect to the absolute change amount from the target temperature.
  • the controller 6 is configured to detect an event of user puffing by comparing the actual temperature of the heater 2 with respect to the absolute change amount from the target temperature.
  • Figure 5 When the temperature change speed of the actual temperature of heater 2 relative to the target temperature is the first threshold, the difference between the target temperature and the actual temperature of heater 2 is ⁇ T1, and the corresponding time is t1′.
  • the preset speed is equal to the temperature change speed when the acceleration is the second threshold. From t1′ to t2′, the acceleration gradually decreases. When the acceleration is 0, the temperature change speed reaches the maximum, so that the preset speed is the temperature change speed. The maximum speed that can be reached. It is not excluded that in other mathematical models, within a temperature detection period, the temperature change speed equal to the first threshold also uniquely corresponds to ⁇ T1, and the preset speed uniquely corresponds to ⁇ T2.
  • the absolute change amount ⁇ ⁇ T2- ⁇ T1.
  • the target temperature The difference from the actual temperature of heater 2 is ⁇ T2.
  • the controller 6 is configured to confirm whether the absolute change amount ⁇ exceeds a third threshold. If it does not exceed the third threshold, it is determined to be a non-puffing event. If it exceeds the third threshold, it is considered to be a puffing event. Inhalation event, the number of puffs can be increased by one. That is, in some embodiments, whether the absolute change amount ⁇ exceeds the third threshold becomes a preset condition for the controller 6 to detect the user's puffing event.
  • the actual temperature on the heater 2 will change at an accelerated rate.
  • the heater 2 is temporarily disconnected and the power source 3 suspends heating.
  • the heater 2 provides power, so that the heater 2 begins to naturally dissipate heat and cool down.
  • the lower the ambient temperature it is in the faster its natural cooling speed and the greater the acceleration.
  • the temperature change on the heater 2 The trend is slower than the trend of temperature changes on the heater caused by suction events.
  • the absolute changes caused by the above-mentioned non-suction events are relatively small, so this type of change can be excluded through the third threshold.
  • the interference of the event on the number of puffs can be improved to improve the statistics of the number of puffs. accuracy.
  • the controller 6 is configured to detect an event of user puffing by the absolute change slope of the actual temperature of the heater 2 relative to the target temperature.
  • the controller accumulates the number of puffs once, otherwise, it is determined as a non-puff event. That is, in some embodiments, the absolute change slope being greater than the fourth threshold becomes a preset condition for the controller 6 to detect the user's puffing event.
  • the acceleration of the temperature change rate of the actual temperature of the heater 2 relative to the target temperature drops to zero, the difference between the target temperature and the actual temperature of the heater 2 is ⁇ T2.
  • the controller 2 is configured After each puff count is accumulated, at least one of the first threshold, the third threshold, and the fourth threshold is lowered. Preferably, the first threshold and the third threshold are lowered by an appropriate amount at the same time. The amount of lowering depends on the specific aerosol generating device. Related to hardware configuration or composition characteristics of aerosol-generating products.
  • the first threshold for the user to suck the N+Mth mouth is less than the first threshold for the user to suck the Nth mouth, N is an integer and greater than or equal to 2, M is an integer and greater than or equal to 1; and/ Or, the third threshold for the user to suck the N+Mth mouth is less than the third threshold for the user to suck the Nth mouth, N is an integer and greater than or equal to 2, and M is an integer and greater than or equal to 1. It can be understood that lowering the fourth threshold has the same effect as lowering the third threshold.
  • the temperature change speed of the actual temperature of the heater 2 relative to the target temperature may be the ratio of the change amount of the actual temperature of the heater 2 in unit time to the change amount of the target temperature in unit time, that is, (T real 2 -T real 1 )/(T real 2 -T real 1 ), T real 2 is the target temperature at time t 2, T real 1 is the target temperature at time t 1 , and T real 2 is the target temperature at time t 2 The actual temperature of heater 2, Tact1 is the actual temperature of heater 2 at time t1 .
  • the controller 6 can determine the user's puff event, and then accumulate the number of puffs. That is, (T real 2 -T real 1 )/(T real 2 -T real 1 ) exceeding the threshold becomes a preset condition for the controller 6 to detect the user's puffing event.
  • the actual temperature of the heater 2 can be detected by a dedicated temperature sensor 8.
  • the temperature sensor 8 is connected to the controller 6 and the heater 2 for obtaining the temperature of the heater 2 and then transmits the temperature to the controller 6 . Please refer to Figure 2.
  • the controller 6, the power source 3 and the heater 2 form two A closed loop, the first closed loop: the controller 6 connects the first switch K1 through its first pin that outputs the first pulse signal PWM1, and adjusts the power supplied to the heater 2 through the first switch K1 in conjunction with the boost inductor W, and then increases
  • the piezoelectric inductor W is connected to the first conversion pin ADC1 of the controller to form a feedback loop;
  • the second closed loop the controller 6 is connected to the second switch K2 through its second pin that outputs the second pulse signal PWM2, and is connected to the second switch K2 through the second switch K2.
  • the temperature sensor 8 is connected to the heater 2 and the second conversion pin ADC1 of the controller 6 to form a feedback loop.
  • the heater 2 can be connected in parallel with a capacitor C.
  • the controller 6 can control the first switch K1 and use the boost inductor W to increase the response. Supply power of heater 2.
  • the controller 6 may be configured to detect the actual temperature of the heater 2 based on a measurement of the resistance of the heater 2; this allows detection of the actual temperature of the heater 2 without the need for additional sensing hardware. temperature.
  • the resistivity of a conductor depends on its temperature.
  • the resistivity ⁇ changes with temperature.
  • the actual resistivity p characteristic will vary depending on the exact composition of the conductor and the geometry of the heater 2 and an empirically determined relationship may be used in the controller 6 .
  • the known resistivity p at any given time can be used to derive the actual temperature of the heater 2 of the heater element.
  • ⁇ (T) is the temperature-dependent resistivity
  • L is the length
  • S is the cross-sectional area of the heater 2 .
  • L and S are fixed and can be measured.
  • R is proportional to ⁇ (T).
  • ⁇ 0 is the resistivity at the target temperature T 0 and ⁇ 1 and ⁇ are the polynomial coefficients.
  • the process may be simplified by representing the resistivity p versus temperature curve in one or more (preferably two) linear approximations over the temperature range applicable to the aerosol-generating article 1 . This simplifies the estimation of the temperature, which is desirable in a controller 6 with limited computing resources.
  • the controller 6 includes a measurement unit and a control unit.
  • the measuring unit is designed to determine the resistance R of the heater 2 .
  • the measuring unit transmits the resistance measurements to the control unit.
  • the control unit then controls the power supply from the battery core to the heater 2 via the switch.
  • Controller 6 may include a microprocessor as well as separate electronic control circuitry.
  • the microprocessor may include standard functions such as an internal clock, among other functions.
  • a value for the target temperature of the aerosol generating device is selected. The selection is based on the release temperature of the volatile compounds that should and should not be released. The value of this target temperature is then stored in the control unit.
  • the control unit includes non-volatile memory.
  • the controller 6 controls the heating of the heater 2 by controlling the supply of electric energy from the battery core to the heater 2 .
  • the controller 6 only allows power to be supplied to the heater 2 if the insertion detector 4 has detected the aerosol generating article 1 and the user has activated the device.
  • power is supplied as a pulse signal.
  • the pulse width or duty cycle of the signal can be modulated by the control unit to vary the energy supplied to the heater 2 .
  • the duty cycle may be limited to 60-80%. This may provide additional safety and prevent the user from inadvertently raising the compensation temperature of the heater 2 so that the aerosol-generating article 1 reaches a temperature above the aerosol-generating temperature.
  • the controller measures the resistivity ⁇ of heater 2.
  • the controller 6 then converts the resistivity of the heater into a value for the actual temperature of the heater by comparing the measured resistivity p with a lookup table. This can be done within the measuring unit or via the control unit.
  • the controller 6 compares the actual derived operating temperature with the target temperature.
  • the temperature values in the heating curve are converted into resistance values beforehand so that the controller 6 adjusts the resistance instead of adjusting the temperature, which avoids the real-time calculation of converting the resistance into temperature during the smoking experience.
  • the control unit supplies additional electric energy to the heater 2 or boosts the voltage of the heater 2 through the boost inductor W to increase the actual temperature of the heater 2 . If the actual temperature of the heater 2 is higher than the target temperature, the control unit reduces the electrical energy supplied to the heater 2 so as to effect a reduction in operating temperature back to the target temperature.
  • the control unit may implement any suitable control technique to regulate temperature, such as a simple thermostatic feedback loop or proportional integral derivative (PID) control technique.
  • PID proportional integral derivative
  • K p and K i can be adjusted to only oscillate once.
  • the actual temperature of the heater 2 may be detected at predetermined time intervals, for example every few milliseconds, which may be implemented continuously or only during the period when power is supplied to the heater 2 .
  • the aerosol-generating product 1 has a preset total number of puffs, and the controller 6 can be configured to reset when the detected number of puffs exceeds the preset total number of puffs, ready to detect the next aerosol puffed by the user.
  • the controller 6 can be configured to reset when the detected number of puffs exceeds the preset total number of puffs, ready to detect the next aerosol puffed by the user.
  • the total number of suction ports counted by the controller 6 is equal to the preset total number of suction ports, it can be determined that the aerosol-generating product 1 has been completely smoked, and the aerosol-generating product 1 can be replaced. If the aerosol-generating device is A disposable device means the aerosol-generating device can be replaced.
  • prompt information such as sound, vibration, and light can be emitted to prevent the user from continuing to puff without knowing it, resulting in a reduced user experience.
  • the controller 6 also includes a signal processor. After the actual temperature information on the heater 2 obtained by the measurement unit passes through the signal processor, it is then transmitted to the control unit in the controller 6, and then the control unit performs the heating operation. 2. Comparison and calculation of actual temperature and target temperature, etc.
  • the signal processor can perform noise reduction processing on the temperature information, eliminate the interference of airflow other than the airflow generated by suction and/or eliminate electrical interference, magnetic interference, etc., on the other hand, it can convert the collected temperature information into control The signal that the unit can recognize. After noise reduction processing by the signal processor, the measured temperature of heater 2 may be lower than the target temperature.
  • the signal processor can be a digital filter. More specifically, the signal processor can be a low-pass filter with a cutoff frequency of 0.5Hz, and only retain signals with a period of more than 2 seconds. In actual applications, appropriate filters can be selected according to specific application needs.
  • a method for counting the number of suction ports is provided, which method is based on the temperature change rate of the temperature of the heater 2 relative to the target temperature.
  • step S100 the temperature change speed of the actual temperature of the heater 2 relative to the target temperature is obtained; in step S110, it is determined whether the speed is greater than the first threshold. If it is greater than the first threshold, then enter step S120 to start. Detect the acceleration of the temperature change speed of the actual temperature of the heater 2 relative to the target temperature; if the speed is not greater than the first threshold, then enter step S130 to determine that the aerosol generating device is in a non-sucking state, and the number of puffs remains unchanged. .
  • the preset speed is equal to the temperature change speed when the acceleration is the second threshold. From t1′ to t2′, the acceleration gradually decreases (as shown in the model shown in Figure 7, in this model, a is the acceleration). When the acceleration When is 0, the temperature change speed reaches the maximum, so that the preset speed is the maximum speed that the temperature change speed can reach (as shown in the model shown in Figure 6, in this model, V1 is the temperature change speed at the first threshold, V2 is the default speed).
  • a method for counting the number of puffs is provided, which method is based on the temperature change rate of the temperature of the heater 2 relative to the target temperature and the acceleration of the temperature change rate.
  • step S200 determines whether the temperature change rate of the actual temperature of the heater 2 relative to the target temperature. If the speed is not greater than the first threshold, then enter step S230 to determine that the aerosol generating device is in a non-sucking state, and the number of puffs remains unchanged; Step S240, determine whether the acceleration is greater than the second threshold.
  • step S230 determines that the aerosol generating device is in a non-sucking state, and the number of puffs remains unchanged; if the speed is greater than the first threshold, and the acceleration is greater than the second threshold, then step S250 is entered to accumulate the number of puffs once.
  • a method for counting the number of puffs is provided, which method is based on the temperature change rate of the temperature of the heater 2 relative to the target temperature and the acceleration of the temperature change rate.
  • step S300 the temperature change speed of the actual temperature of the heater 2 relative to the target temperature is obtained; in S310, the acceleration of the temperature change speed of the actual temperature of the heater 2 relative to the target temperature is obtained; step S320, Determine whether the temperature change speed is greater than the first threshold.
  • step S330 determines that the aerosol generating device is in a non-sucking state and the number of puffs remains unchanged; step S340, determine whether the acceleration is greater than second threshold, if the acceleration is not greater than the second threshold, then enter step S330 to determine that the aerosol generating device is in a non-sucking state, and the number of puffs remains unchanged; if the speed is greater than the first threshold, and the acceleration is greater than two thresholds, then enter step S350 to determine the difference ⁇ T1 between the target temperature and the actual temperature of the heater 2 when the temperature change speed is equal to the first threshold; and enter step S360 to determine the difference between the target temperature and the actual temperature of the heater 2 when the acceleration is equal to the second threshold.
  • the time when the temperature change speed is equal to the first threshold, the time is t1', when the acceleration is the temperature change speed of the second threshold, and when the acceleration is equal to the second threshold, the time is t2'.
  • a method for counting the number of puffs is provided, which method is based on the temperature change rate of the temperature of the heater 2 relative to the target temperature and the acceleration of the temperature change rate.
  • step S400 determine the temperature change speed
  • step S410 determine the difference ⁇ T1 between the target temperature and the actual temperature of the heater 2 when the temperature change speed is equal to the first threshold
  • step S430 determine the acceleration of the temperature change speed
  • step S440 determine the difference ⁇ T2 between the target temperature and the actual temperature of the heater 2 when the acceleration is equal to the second threshold
  • step S460 determine whether the absolute change is greater than the third threshold. If it is greater, proceed to step S470 and accumulate the number of puffs once. Otherwise, proceed to step S480.
  • the time when the temperature change speed is equal to the first threshold, the time is t1', when the acceleration is the temperature change speed of the second threshold, and when the acceleration is equal to the second threshold, the time is t2'.
  • a method for counting the number of suction ports is provided, which method is based on the temperature change speed of the temperature of the heater 2 relative to the target temperature.
  • step S500 determine the temperature change speed
  • step S510 determine whether the temperature change speed is greater than the first threshold, if it is greater, proceed to step S520, and accumulate the number of puffs; otherwise, proceed to step S530, the number of puffs constant.
  • a method for counting the number of puffs is provided, which method is based on the acceleration of the temperature change rate of the temperature of the heater 2 relative to the target temperature.
  • step S600 determine the acceleration of the temperature change speed
  • step S610 determine whether the acceleration is greater than the second threshold, if it is greater, proceed to step S620, and accumulate the number of puffs; otherwise, proceed to step S630, the number of puffs constant.
  • This application provides a working method of an aerosol generating device, including steps:
  • S700 Control the power supplied from power source 3 to heater 2 to maintain the temperature on heater 2 at or close to the target temperature:
  • the power source 3 provides greater power to the heater 2 so that the heater can quickly rise to the target temperature to heat the aerosol-generating product and achieve rapid generation of aerosol. sol.
  • S710 Detect the actual temperature of heater 2: The frequency of temperature collection by controller 6 can be set to obtain the actual temperature of heater 2 at different times more intensively.
  • S720 Determine the temperature change speed of the actual temperature of the heater relative to the target temperature: the controller 6 compares the actual temperature of the heater 2 with the target temperature, and determines the temperature change speed of the heater 2 relative to the target temperature according to the actual temperature of the heater 2 relative to the target temperature.
  • the internal change amount that is, the temperature change speed, is used to determine the user's puffing event.
  • the controller 6 When an inhalation event representing the user is detected, the controller 6 accumulates the number of puffs once. When the accumulated number of puffs reaches the preset number of puffs of the aerosol-generating product, the controller 6 controls the aerosol-generating device to emit a sound. , light, vibration and other signals are used to prompt the user, and can also cause the power source 3 to stop supplying power to the heater 2, or can also reset the aerosol generating device, or can also clear the number of puffs, etc.
  • the above-mentioned aerosol generating device and method use the controller to confirm the change amount of the actual temperature of the heater relative to the target temperature per unit time to indicate how fast the temperature of the heater changes relative to the target temperature, thereby allowing more accurate measurement. Determining the user's puffing events and counting the number of puffs taken by the user can avoid missed detections and false detections. It can also avoid the impact of target temperature changes on the detection results, thereby reducing misjudgments of puffing events. , helps to improve the accuracy of detection.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a controller, such as the controller 6 in Figure 1 , so that the above controller can execute the method for the aerosol generating device to count the number of puffs taken by the user in any of the above method embodiments, for example, execute the method in Figure 8 described above Step S100 to step S180.
  • a controller such as the controller 6 in Figure 1
  • Embodiments of the present application provide a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are described When the controller is executed, the controller is enabled to execute the method for the aerosol generating device to count the number of puffs taken by the user in any of the above method embodiments, for example, execute the above-described method steps S100 to S180 in Figure 8 .
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Control Of Temperature (AREA)

Abstract

一种气溶胶产生装置及检测用户抽吸的方法,包括加热器(2),用于加热气溶胶生成制品(1),以产生气溶胶供用户抽吸;功率源(3),电连接加热器(2),以使加热器(2)上的温度达到用户每口抽吸所对应的目标温度;控制器(6),连接加热器(2);控制器(6)用于在气溶胶产生装置工作过程中,检测加热器(2)的实际温度,确定温度变化速度,在温度变化速度满足预设条件时,则累加一次用户的抽吸口数,并将抽吸口数予以记录;其中,温度变化速度为单位时间内的加热器(2)的实际温度相对于目标温度的变化量。

Description

气溶胶产生装置及统计用户的抽吸口数的方法
相关申请的交叉参考
本申请要求于2022年4月7日提交中国专利局,申请号为202210361280.3,发明名称为“气溶胶产生装置及统计用户的抽吸口数的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及气溶胶产生技术领域,特别涉及气溶胶产生装置及统计用户的抽吸口数的方法。
背景技术
气溶胶产生装置包括加热器和功率源,加热器用于加热气溶胶生成制品,以产生气溶胶;功率源连接加热器,以为加热器提供加热所需的功率。加热器在具有足够的温度时方能使气溶胶生成制品产生足量的气溶胶。
然而在抽吸的过程中,经过加热器的气流的变化会降低加热器的温度,所以可以通过检测加热器的温度来判断用户的抽吸事件。
现有的一些方案仅通过检测温度与目标温度之差值来判定流经加热器的气流变化,来判断用户的抽吸事件。但是这种方式可能直接受到目标温度的设定影响,而导致对于抽吸事件的误判。
发明内容
本申请实施例提供一种气溶胶产生装置及统计用户的抽吸口数的方法,通过加热器的实际温度相对于目标温度的温度变化速度,以统计用户的抽吸口数,可以提高统计的准确度。
本申请实施例提供的一种气溶胶产生装置,包括:
加热器,用于加热气溶胶生成制品,以产生气溶胶供用户抽吸;
功率源,电连接所述加热器,以使所述加热器上的温度达到用户每口抽吸所对应的目标温度;
控制器,连接所述加热器;
所述控制器用于在所述气溶胶产生装置工作过程中,检测所述加热器的实际温度,确定温度变化速度;判断所述温度变化速度是否满足预设条件;若所述温度变化速度满足预设条件则累加一次用户的抽吸口数,并将所述抽吸口数予以记录;
其中,所述温度变化速度为单位时间内的所述加热器的实际温度相对于所述目标温度的变化量。
可选的,所述控制器用于判断所述温度变化速度是否大于所述第一阈值,若所述温度变化速度大于所述第一阈值则累加一次用户的抽吸口数。
可选的,所述控制器用于确定所述温度变化速度的加速度;并判断所述加速度是否大于第二阈值;若所述加速度大于所述第二阈值则累加一次用户的抽吸口数;
其中,所述加速度为所述温度变化速度在单位时间内的变化量。
可选的,所述控制器用于确定所述温度变化速度在第一阈值时,所述目标温度和所述加热器的实际温度之差值ΔT1;确定所述温度变化速度的加速度在第二阈值时,所述目标温度和所述加热器的实际温度之差值ΔT2;根据ΔT2和ΔT1确定绝对变化量Δ;并判断所述绝对变化量Δ是否大于第三阈值;若所述绝对变化量Δ大于所述第三阈值则累加一次用户的抽吸口数。
可选的,所述绝对变化量Δ=ΔT2-ΔT1。
可选的,用户抽吸第N+M口的所述第一阈值小于用户抽吸第N口的所述第一阈值,N为整数且大于或者等于2,M为整数且大于或者等于1;和/或
用户抽吸第N+M口的所述第三阈值小于用户抽吸第N口的所述第三阈值,N为整数且大于或者等于2,M为整数且大于或者等于1。
可选的,所述第一阈值和/或所述第三阈值,随着所述用户的抽吸口数的增加而逐步减少。
可选的,所述加速度等于所述第二阈值时,所述温度变化速度最大。
可选的,所述控制器连接所述功率源,用于在所述加速度等于所述第二阈值时,控制所述功率源向所述加热器进行功率补偿,以使所述加热器达到对应的所述目标温度。
可选的,用户抽吸第N+M口的目标温度小于用户抽吸第N口的目标温度,N为整数且大于或者等于2,M为整数且大于或者等于1。
可选的,所述目标温度随着用户的抽吸口数的增加而连续下降。
可选的,所述目标温度随着用户的抽吸口数的增加而保持不变。
本申请实施例提供的一种用于统计气溶胶产生装置用户的抽吸口数的方法,所述气溶胶产生装置包括加热器、用于供应功率至所述加热器的功率源和控制器;该方法包括:
检测所述加热器的实际温度;
确定所述加热器的实际温度相对于目标温度的温度变化速度,其中,所述目标温度为预设的用户每口抽吸所对应的目标温度,所述温度变化速度为单位时间内的所述加热器的实际温度相对于所述目标温度的变化量;
判断所述温度变化速度是否满足预设条件;
若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数;
将所述抽吸口数记录。
可选的,所述判断所述温度变化速度是否满足预设条件,若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数,包括:
判断所述温度变化速度是否大于第一阈值;
若所述温度变化速度大于第一阈值时,则累加一次用户的抽吸口数。
可选的,所述方法还包括:
确定所述温度变化速度的加速度,其中所述加速度为所述温度变化速度在单位时间内的变化量;
所述判断所述温度变化速度是否满足预设条件,若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数,包括:
判断所述温度变化速度是否大于第二阈值;
若所述温度变化速度的加速度大于第二阈值,则累加一次用户的抽吸口数。
可选的,所述方法还包括:
确定所述温度变化速度为第一阈值时,所述目标温度和所述加热器的实际温度之差值ΔT1;
确定所述温度变化速度的加速度,其中所述加速度为所述温度变化速度在单位时间内的变化量;
确定所述加速度大于第二阈值时所述目标温度和所述加热器的实际温度之差值ΔT2;
确定所述加热器的实际温度相对于所述目标温度的绝对变化量Δ,其中所述的绝对变化量=ΔT2-ΔT1;
所述若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数,包括:
判断所述绝对变化量是否与第三阈值;
若所述绝对变化量大于所述第三阈值,则累加一次用户的抽吸口数。
可选的,在用户的抽吸过程中,预设的所述目标温度非保持不变。
本申请实施例提供的一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被控制器执行时,使所述控制器执行如上所述的方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被控制器执行时,使所述控制器执行如上所述的方法。
上述的气溶胶产生装置和统计用户的抽吸口数的方法,在气溶胶产生装置工作过程中,控制器通过检测加热器的实际温度,结合所设定的目标温度来确定温度变化速度,即单位时间内的加热器的实际温度相对于当前阶段的目标温度的变化量,并且判断温度变化速度是否满足预设条件,满足则累加一次用户的抽吸口数,并将所述抽吸口数予以记录;通过在温度的变化量来确定用户的抽吸口数,简单且便捷,精确度高;尤其在在气溶胶产生装置的工作过程中,所设定的目标温度随着抽吸时间而有所变化时,通过温度变化速度来进行识别抽吸口数,可以避免受到目标温度自身变化的影响,有助于抽吸口数识别的准确性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例所提供的气溶胶产生装置的示意图;
图2是本申请一实施例所提供的气溶胶产生装置的电路示意图;
图3是本申请一实施例所提供的用户抽吸期间加热器目标的理想状态图表;
图4是本申请一实施例所提供的用户抽吸期间加热器目标温度的实际状态图表;
图5是本申请另一实施例所提供的一个检测周期内目标温度与加热器温度之差变化率的图表;
图6是本申请另一实施例所提供的一个检测周期内温度变化速度-时间的图表;
图7是本申请另一实施例所提供的一个检测周期内加速度-时间的图表;
图8是本申请一实施例提供的统计抽吸口数的方法的流程图;
图9是本申请另一实施例提供的统计抽吸口数的方法的流程图;
图10是本申请另一实施例提供的统计抽吸口数的方法的流程图;
图11是本申请另一实施例提供的统计抽吸口数的方法的流程图;
图12是本申请另一实施例提供的统计抽吸口数的方法的流程图;
图13是本申请另一实施例提供的统计抽吸口数的方法的流程图;
图中:
1、气溶胶生成制品;
2、加热器;
3、功率源;
4、插入检测器;
5、用户界面;
6、控制器;
8、温度传感器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对于重要性或者隐含指明所指示的技术特征的数量或者次序。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释 在某一特定姿态(如附图所示)下各部件之间的相对位置关系或者运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件,或者其间可能同时存在一个或者多个居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请的一实施例提供了一种气溶胶产生装置,该装置可用于加热气溶胶生成制品,使气溶胶生成制品挥发出气溶胶来,以供吸食,气溶胶可以包括中草药、尼古丁或比如烟草香料等风味物质。在如图1所示的实施例中,气溶胶生成制品1为烟制品(如烟支、雪茄等),但不对此做出限定。
在如图1所示的实施例中,气溶胶产生装置包括用于接收气溶胶生成制品1的接收腔和用于加热气溶胶生成制品1的加热器2,还包括功率源3,功率源3用于为加热器2工作提供功率。
请参照图1和2,气溶胶产生装置具有插入口,气溶胶生成制品1例如烟支通过插入口可移除地接收在接收腔内;加热器2至少一部分在接收腔内沿纵向延伸,并在变化的磁场下通过电磁感应发热,或者在通电时通过电阻发热,或者在受激时向气溶胶生成制品辐射红外线,进而使气溶胶生成制品1例如烟支受热,使气溶胶生成制品1的至少一种成分挥发,形成供抽吸的气溶胶;功率源3包括电芯,电芯为可充电的直流电芯,可以输出直流电流。在其他的实施例中,电芯还可以为一次性电池,不可充电或无需对其进行充电。在其他实施 中,功率源3可以为有线电源,有线电源通过插头直接连接市电来为气溶胶产生装置供电。
在一个优选的实施例中,电芯提供的直流供电电压在约2.5V至约9.0V的范围内,电芯可提供的直流电流的安培数在约2.5A至约20A的范围内。
功率可作为脉冲信号被供应到加热器2,传送到加热器2的功率的量可通过改变功率信号的占空比或脉冲宽度或脉冲幅度而调整。
进一步在可选的实施中,气溶胶生成制品1优选采用加热时从可抽吸制品中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品1优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,气溶胶生成制品1可以包含附加的烟草或非烟草的挥发性香味化合物,以在气溶胶生成制品1受热时被释放。在一些可选的实施中,气溶胶生成制品1制备成具有常规的香烟或雪茄的形状。
进一步在可选的实施中,气溶胶生成制品1可被包含在发烟物品中。在操作期间,包含气溶胶生成制品1的发烟物品可被完全包含在气溶胶产生装置内。在这种情况下,用户可在气溶胶产生装置的嘴件上抽吸。嘴件可以是气溶胶产生装置的放置在用户的嘴中以便直接吸入由气溶胶生成制品1或气溶胶产生装置产生的气溶胶的任何部分。气溶胶经由嘴件输送到用户的嘴中。可替代地,在操作期间,包含气溶胶生成制品1的发烟物品可被部分包含在气溶胶产生装置中。在这种情况下,用户可在发烟物品的嘴件上直接抽吸。
在一优选的实施中,加热器2中含有等级430的不锈钢(SS430),或含有等级420的不锈钢(SS420),或含有铁镍的合金材料(比如坡莫合金)等可在变化的磁场中发热的磁感性材料,从而加热器2在变化的磁场中可以发热,进而在变化的磁场中,因为产生涡电流和磁滞而自发热,并向气溶胶生成制品1传导和/或辐射热量,以加热气溶胶生成制品1。相应的,气溶胶产生装置还包括磁场发生器,例如感应线圈,用于在交变电流下产生变化的磁场,且控制器2连接电芯和感应线圈,并且可将电芯输出的直流电流转化为交变电流,优选该交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一优选的实施中,加热器2上具有红外涂层,红外涂层接受电功率产生 热量,进而产生一定波长的红外线,例如:8μm~15μm的远红外线。当红外线的波长与气溶胶生成制品1的吸收波长匹配时,红外线的能量易于被气溶胶生成制品吸收。
红外涂层优选的由远红外电热油墨、陶瓷粉末和无机粘合剂充分搅拌均匀后涂印在基体的外表面上,然后烘干固化一定的时间,红外涂层的厚度为30μm-50μm;当然,红外涂层还可以由四氯化锡、氧化锡、三氯化锑、四氯化钛以及无水硫酸铜按一定比例混合搅拌后涂覆到基体的外表面上;或者为碳化硅陶瓷层、碳纤维复合层、锆钛系氧化物陶瓷层、锆钛系氮化物陶瓷层、锆钛系硼化物陶瓷层、锆钛系碳化物陶瓷层、铁系氧化物陶瓷层、铁系氮化物陶瓷层、铁系硼化物陶瓷层、铁系碳化物陶瓷层、稀土系氧化物陶瓷层、稀土系氮化物陶瓷层、稀土系硼化物陶瓷层、稀土系碳化物陶瓷层、镍钴系氧化物陶瓷层、镍钴系氮化物陶瓷层、镍钴系硼化物陶瓷层、镍钴系碳化物陶瓷层或高硅分子筛陶瓷层中的一种;红外涂层还可以是现有的其他材料涂层。
在一优选的实施中,加热器2由铁铬铝合金、镍铬合金、镍铁合金、铂、钨、银、导电陶瓷等电阻性导电材料制成,或者包含上述至少其一的导电材料,从而在导电时可以通过电阻发热,来加热气溶胶生成制品1,使气溶胶生成制品1中的至少一种成分挥发,形成气溶胶。
在一优选的实施中,加热器1大体呈销钉或者针状或者令牌的形状,进而对于插入至气溶胶生成制品1内是有利的。同时,加热器2可以具有大约12~19毫米的长度,2.0~2.6mm的直径。其横截面可以是圆形、一字形、椭圆形或多边形等。在其他实施例中,加热器2可以大致为筒状,或者其他能够设置在气溶胶生成制品1外围,以从气溶胶生成制品1的外围向气溶胶生成制品传导、辐射热量的结构。
气溶胶产生装置可以包括单个加热器2,可替代地,气溶胶产生装置可包括多于一个加热器2,该加热器2或该多个加热器2可被适当地布置以便最有效地加热气溶胶生成制品1,其中,多个加热器2可以构成对气溶胶产生物分段加热,多个加热器2中其中可以至少有两个加热器2具有不同的加热方式或加热效率。
加热器2可通过传导加热气溶胶生成制品1。加热器2可以是至少部分与气溶胶生成制品1或气溶胶生成制品1载体接触。可替代地,来自加热器2的热量可通过导热元件传导到气溶胶生成制品1。
可替代的,加热器2可通过对流加热气溶胶生成制品1;或者,环境空气可在通过气溶胶生成制品1之前被加热器2加热;或者,加热器2可通过辐射加热气溶胶生成制品1。
在一个实施例中,功率被供应到加热器2直到一个或多个加热器达到大约250℃和440℃之间的温度,以便由气溶胶生成制品1产生气溶胶。
气溶胶产生装置优选地是手持式气溶胶产生装置。
此外,气溶胶产生装置包括插入检测器4和向用户传送关于气溶胶产生装置的信息的用户界面5(例如图形显示器或LED指示灯的组合等)。
插入检测器4可检测与加热器2在传热路径上接近的气溶胶生成制品1的存在和特性,且将气溶胶生成制品1的存在的信号发送给控制器6。可以理解的是,插入检测器4的提供是可选而非必要的。
控制器6控制用户界面5以显示系统信息,例如电芯功率、温度、气溶胶生成制品1的状态、抽吸口数、其它信息或其组合。
控制器6电连接功率源3和加热器2,用于控制功率源3的电流、电压或电功率的输出,和检测加热器2的实际温度相对于目标温度的温度变化速度等。当然不排除在其他实施例中,控制器6还可以通过除检测加热器2的实际温度外的其他方式获取加热器2的实际温度相对于目标温度的温度变化速度等,例如通过检测加热器的电阻或电阻变化等。
控制器6可包括可编程微处理器。在另一实施例中,控制器6可包括专用电子芯片,诸如现场可编程门阵列(FPGA)或特定用途集成电路(ASIC)。通常,能够提供能够控制加热器的信号的任何装置可以与本文讨论的实施例一起使用。在一个实施例中,控制器6被构造成检测加热器2的实际温度相对于目标温度的温度变化速度,以检测表示用户抽吸事件。
控制器6可包括存储组件,存储组件可以包括存储器和/或缓存器。存储组件可被构造成记录检测的气流或用户抽吸的变化。存储组件可记录用户抽吸的计数或每次抽吸的时间。存储组件可还被构造成记录加热器元件的温度和在每个抽吸期间供应的功率。被记录下的数据,可以在控制器5的调用下通过用户界面5进行显示,或者通过其他输出接口进行输出显示,当被记录的抽吸口数达到气溶胶生成制品预设的总抽吸口数时,控制器6可以复位重置,或者控制器2可以清零被记录的抽吸口数,或者控制器6控制气溶胶产生装置关机,或 者控制器6控制功率源3停止继续向加热器2提供功率,或者控制器通过声、光、震动等提示用户气溶胶生成制品1已经达到抽吸极限等。
用户抽吸对于接下来的研究以及装置维修和设计可以是有用的。用户的抽吸口数数据可通过任何适当数据输出装置传输到外部存储器或处理装置。例如,气溶胶产生装置可包括连接到控制器6或存储器的无线电、蓝牙或连接到控制器6或存储器的通用串行总线(USB)插槽。可替代地,气溶胶产生装置可被构造成每当气溶胶产生装置经由适当数据连接再充电时将来自存储器的数据传输到电芯充电装置中的外部存储器。
加热器2的实际温度不仅受供应到其上的功率的影响,抽吸时经过加热器2的气流亦会冷却加热器2,降低其温度。这种冷却效果可被用来检测用户的抽吸事件。当由于抽吸导致气流增加时,加热器2的实际温度将下降。
本申请提供用于检测通过气溶胶产生装置的气流的变化,尤其是检测用户的吸入或抽吸,而不需要专用气流传感器。与包括专用气流传感器的现有装置相比,这减少提供用于检测用户吸入的成本和复杂性,且由于存在较少可能潜在故障的部件,所以增加可靠性。
通常,气溶胶产生装置在使用开始时需要一段初始时间的高功率,以便使加热器2尽可能快速地上升至用户抽吸第一口的第一目标温度。一旦达到第一目标温度,施加的功率下降至使加热器2维持在第二目标温度,以满足用户后续的抽吸需求。
然而在实际应用中,气溶胶生成制品1在装入气溶胶产生装置后,功率源3对加热器2提供的功率不是恒定值,可以参照图3和4,图3是用户抽吸期间加热器目标温度的理想状态图表,线71是理想状态下的目标温度,属于参考温度,参考温度中,上述的第二目标温度几乎是恒定的,本申请所述的恒定包括温度非常微小的变化,如在一个温度检测周期内,温度的变化不超过误差温度,则认为是恒定的温度,该误差温度可以为±5℃等;由于路损、干扰、气溶胶生成制品中基质减少或节能等原因,图4是用户抽吸期间加热器2目标温度的实际状态图表,线72是实际状态下的目标温度,所以实际中,目标温度是随时间变化的,甚至目标温度可能会波动,用户每口抽吸对应的目标温度可能不尽相同;在一些实施例中,户抽吸第N+M口的目标温度小于用户抽吸第N口的目标温度,N为大于1的整数,M为大于0的整数;在一些实施例中,随着用户的抽吸口 数的增加,目标温度逐渐下降。功率源3对加热器2提供的功率也不是恒定的,通常在抽吸一段时间后,功率源3对加热器2提供的功率逐渐减低,从而也会在一定程度上导致目标温度降低。
用户吸入的经过加热器2的气流,会带走加热器2的热量,使在抽吸时加热器2的温度下降。但是,当功率源3对加热器2提供的功率降低,或者其他原因引起的目标温度在第一口抽吸后仍具有波动的事件,导致若仅通过检查加热器2的实时温度与默认恒定的目标温度之差值,并以此表示用户的抽吸事件,并不准确;例如:加热器2的实时温度与目标温度之差值增大或者减小,可能是目标温度降低或者升高引起,而非由于加热器2的实际温度变化引起,从而导致误检、误判。本申请为克服该问题,排除目标温度变化对检测结果的干扰,本申请的一实施例采用控制器检测加热器2的实际温度,确定加热器2的实际温度相对于目标温度的温度变化速度,在温度变化速度满足预设条件时,统计用户的抽吸口数。当然可以理解的是,本申请采用的确定加热器2的实际温度相对于目标温度的温度变化速度等技术方案也可以应用到第一口抽吸后目标温度恒定的情况下,以此来作为统计用户抽吸口数的依据。
在一个实施例中,加热器2的实际温度相对于目标温度的温度变化速度可以为加热器2的实际温度相对于目标温度在单位时间内的变化量,即[(T实1-T实2)-(T目1-T目2)]/Δt,T目2为t2时刻的目标温度,T目1为t1时刻的目标温度,T实2为t2时刻的加热器2的实际温度,T实1为t1时刻的加热器2的实际温度,Δt为单位时间,Δt=t2-t1。在一些实施例中,加热器2的实际温度相对于目标温度的温度变化速度可以是对目标温度与加热器2温度之差值的时间求导,得到的一阶导数。
通过控制器6确认加热器2的实际温度相对于目标温度的温度变化速度,可以排除目标温度变化对检测结果的影响,从而可以避免对用户抽吸口数统计的错检或误判。若目标温度不变,则T目1-T目2=0,亦不影响检测结果,所以,无论目标温度是否会发生变化,均可采用本申请提供的方案来统计用户的抽吸口数。
为了避免干扰事件,比如微小气流波动,或者磁干扰等导致的功率供应波动等引起的加热器2的温度暂时波动等给统计结果造成的干扰,优选控制器6被构造成检测加热器2的实际温度相对于目标温度的温度变化速度是否超出第 一阈值,温度变化速度小于或等于第一阈值,则认为是干扰事件,不进行用户的抽吸口数的统计,从而提高统计用户抽吸口数的准确率。温度变化速度大于第一阈值,则判定具有用户抽吸时间,或者可以进入下一环节,以便更精准的判定。当判定具有用户抽吸事件时,控制器控制累加一次用户的抽吸口数,以统计用户的抽吸口数。即,在一些实施例中,温度变化速度大于第一阈值成为控制器6检测用户抽吸事件的预设条件。
为了进一步提供检测用户抽吸事件的准确率,在一进一步的实施例中,控制器6确认加热器2的实际温度相对于目标温度的温度变化速度的加速度。在一个实施例中,加速度为单位时间内上述温度变化速度的变化率,用于表示加热器的实际温度相对于目标温度的温度变化速度的变化趋势,或者加速度可以是加热器2的实际温度相对于目标温度的温度变化速度的时间求导,或者是对加热器2的实际温度相对于目标温度之变化量的二阶时间求导,得到的二阶导数。在加速度大于0时,表示温度变化速度正在增大,同时表示加热器2的实际温度与目标温度之差值的绝对值正在继续快速地增大,在加速度降低为零时,表示加热器2的实际温度相对于目标温度的温度变化速度达到最大,此时表示流经加热器2的气流的速度或流量达到最大。
在一优选的实施例中,控制器6被构造成确认加热器2的实际温度相对于目标温度的温度变化速度的加速度是否大于第二阈值,若未大于第二阈值,则可认定为加热器2上的温度变化是由非抽吸事件引起的,以排除环境温度骤变导致的加热器2散热加快温度降低等事件的干扰,如用户在未抽吸时,突然从高温的室外环境进入到低温的室内环境,环境温度骤变,很可能会导致加热器2的散热加快,使温度降低,从而构成判断用户抽吸事件的干扰事件,干扰事件导致加热器2温度降低的加速度通常会小于抽吸事件导致的加热器2温度降低的加速度,所以加速度大于第二阈值作为判断条件,可以进一步减少误判事件,提高统计的准确率。即,在一些实施例中,加速度大于第二阈值成为控制器6检测用户抽吸事件的预设条件。
在一优选的实施例中,控制器2被构造成当检测到加速度下降至第二阈值时调整供应到加热器2的功率。如,在控制器6检测到加速度下降至零(即第二阈值为零)时,控制功率源3提高供应到加热器2的功率,以对加热器2上流失的温度进行补偿,将之快速回调至对应的目标温度。当然,不以此为限, 即控制器6被构造成当检测到加热器的温度与对应时刻的目标温度不相符的适合时刻,调整供应到加热器2的功率,以增加或降低供应到加热器2的功率,以将加热器2维持在相应的目标温度。加热器2在被进行温度补偿或者温度调整后,对应的目标温度与其实际温度与之间的差值会减小,加速度减小,温度变化速度减小。
在一优选的实施例中,控制器6被构造成加热器2的实际温度相对于与目标温度之绝对变化量,以检测用户抽吸的事件。请参照图5,加热器2的实际温度相对于目标温度的温度变化速度为第一阈值时,目标温度和加热器2的实际温度之差值为ΔT1,对应的时间为t1′,可以参考图5所示模型中的A点;加热器2的实际温度相对于目标温度的温度变化速度的加速度为第二阈值时,或者温度变化速度达到预设速度时,目标温度和加热器2的实际温度之差值为ΔT2,对应的时间为t2′,可以参考图5所示模型中的B点。其中,预设速度等于加速度为第二阈值时的温度变化速度,从t1′到t2′,加速度逐渐减小,当加速度为0时,温度变化速度达到最大,从而使得预设速度是温度变化速度能够到的最大速度。不排除在其他的数学模型中,在一个温度检测周期内,等于第一阈值的温度变化速度亦与ΔT1唯一对应,预设速度与ΔT2唯一对应。
绝对变化量Δ=ΔT2-ΔT1,为了使得绝对变化量Δ更容易被识别或者被捕捉,优选的,加热器2的实际温度相对于目标温度的温度变化速度的加速度降至为零时,目标温度和加热器2的实际温度之差值为ΔT2。
在一优选的实施例中,控制器6被构造成确认绝对变化量Δ是否超过第三阈值,若未超过第三阈值,则判定为非抽吸事件,若超过第三阈值,则认为是抽吸事件,抽吸次数可以增一。即,在一些实施例中,绝对变化量Δ是否超过第三阈值成为控制器6检测用户抽吸事件的预设条件。
由于功率源3与加热器2之间电连接断路或者短路事件,或者其他非抽吸事件,会导致加热器2上的实际温度加速变化,比如加热器2被临时断路,功率源3暂停对加热器2提供功率,从而使得加热器2开始自然散热降温,此时,其所处环境温度越低,其自然降温速度越快,加速度越大,然而这种将情况下的加热器2上温度变化趋势相对于抽吸事件引起的加热器上的温度变化的趋势较缓,在相同的时间内,上述的非抽吸事件引起的绝对变化量相对较小,故可通过第三阈值来排除此类事件对抽吸口数统计的干扰,来提高对抽吸口数统计 的准确率。
在一优选的实施例中,控制器6被构造成加热器2的实际温度相对于目标温度之绝对变化量斜率,以检测用户抽吸的事件。
绝对变化量斜率=Δ/(t2′-t1′)=(ΔT2-ΔT1)/(t2′-t1′),同理,绝对变化量斜率若超过第四阈值,则认定检测到用户抽吸事件,控制器累加一次抽吸口数,否则,判定为非抽吸事件。即,在一些实施例中,绝对变化量斜率大于第四阈值成为控制器6检测用户抽吸事件的预设条件。
为了使绝对变化量斜率易于识别,优选加热器2的实际温度相对于目标温度的温度变化速度的加速度降至为零时,目标温度和加热器2的实际温度之差值为ΔT2。
由于随着抽吸口数的增加,功率源3为加热器2供应的功率逐渐下降,目标温度亦是逐渐降低,为了避免漏检抽吸口数,在一优选的实施例中,控制器2被构造成在每累加一次抽吸口数后,下调第一阈值和第三阈值、第四阈值至少之一,优选,同时适量下调第一阈值和第三阈值,其下调量与具体的气溶胶产生装置的硬件配置或者气溶胶生成制品的成份特征相关。在一实施例中,用户抽吸第N+M口的第一阈值小于用户抽吸第N口的第一阈值,N为整数且大于或者等于2,M为整数且大于或者等于1;和/或,用户抽吸第N+M口的第三阈值小于用户抽吸第N口的第三阈值,N为整数且大于或者等于2,M为整数且大于或者等于1。其中,可以理解的是,下调第四阈值与下调第三阈值具有相同的效果。
在另一个实施例中,加热器2的实际温度相对于目标温度的温度变化速度可以为加热器2的实际温度在单位时间内的变化量与目标温度在单位时间内的变化量之比值,即(T实2-T实1)/(T目2-T目1),T目2为t2时刻的目标温度,T目1为t1时刻的目标温度,T实2为t2时刻的加热器2的实际温度,T实1为t1时刻的加热器2的实际温度。如,在(T实2-T实1)/(T目2-T目1)超过阈值时,控制器6则可判定用户抽吸事件,进而累加一次抽吸口数。即,(T实2-T实1)/(T目2-T目1)超过阈值成为控制器6检测用户抽吸事件的预设条件。
在一个实施例中,如图2所示,加热器2的实际温度可通过专用温度传感器8检测。温度传感器8连接控制器6和加热器2,用于获取加热器2的温度,然后将温度传至控制器6。请参照图2,控制器6与功率源3和加热器2构成两 个闭环,第一闭环:控制器6通过其输出第一脉冲信号PWM1的第一引脚连接第一开关K1,通过第一开关K1配合升压电感W调整供应给加热器2的功率,然后升压电感W连接控制器的第一转换引脚ADC1,形成反馈回路;第二闭环:控制器6通过其输出第二脉冲信号PWM2的第二引脚连接第二开关K2,通过第二开关K2用于启动加热器2,然后温度传感器8连接加热器2和控制器6的第二转换引脚ADC1,形成反馈回路。为了防止加热器意外掉电,加热器2可以与一电容C并联。
为了保证用户的抽吸体验,当控制器6检测到加热器的温度与目标温度不相符或者检测到抽吸事件等时,控制器6可控制第一开关K1,利用升压电感W来提高对加热器2的供应功率。当然,还可以通过改变功率信号的占空比等来提高对加热器2的供应功率,或者通过其他方式增加对加热器2的供应功率,以确保用户抽吸时气溶胶生成制品1能够受热快速地产生足量的气溶胶,供用户抽吸。
在另一个实施例中,控制器6可被构造成基于加热器2的电阻的测量值来检测加热器2的实际温度;这使得在不需要另外感测硬件的情况下检测加热器2的实际温度。
具体的,导体的电阻率取决于其温度。电阻率ρ随着温度变化而变化。实际电阻率ρ特性将根据导体的确切成分和加热器2的几何构造而改变,在控制器6中可使用经验确定的关系。因而,在任何给定时间获知的电阻率ρ可被用来推导加热器元件的加热器2的实际温度。
加热器2的电阻R=V/I,其中,V是横跨该加热器元件的电压,I是通过该加热器的电流。电阻R取决于加热器的构造以及温度,且通过以下关系表达:
R=ρ(T)*L/S   (1)
其中ρ(T)是取决于温度的电阻率,L是长度,S是加热器2的截面积。对于给定加热器2的构造,L和S是固定的,且可被测量。因而,对于给定加热器2设计,R与ρ(T)成正比。
加热器2的电阻率ρ(T)可由如下多项式表达:
ρ(T)=ρ0*(1+α1T+α2T2)   (2)
其中ρ0是在目标温度T0下的电阻率,且α1和α是多项式系数。
因而,知道加热器2的长度和截面,通过测量加热器2电压V和电流I,能 够确定在给定温度下的电阻R和由此能够确定电阻率ρ。可从所使用的加热器2的特性电阻率对温度关系的查找表或通过求上述方程式(2)的多项式简单地获得温度。在一个实施例中,通过以在可应用于气溶胶生成制品1的温度范围内的一个或更多(优选两个)线性近似表示电阻率ρ相对于温度的曲线,可简化处理。这简化了温度的估算,这在具有有限计算资源的控制器6中是期望的。
控制器6包括测量单元和控制单元。测量单元被构造成确定加热器2的电阻R。测量单元将电阻测量值传送至控制单元。然后控制单元通过切换开关控制从电芯到加热器2的功率供应。控制器6可包括微处理器以及分离的电子控制电路。在一个实施例中,除了其它功能之外,微处理器可包括标准功能,例如内部时钟。
在控制温度的准备步骤中,选择用于气溶胶产生装置的目标温度的值。该选择基于应该和不应该释放的挥发性化合物的释放温度。然后该目标温度的值被储存在控制单元中。控制单元包括非易失性存储器。
通过控制从电芯到加热器2的供应电能,控制器6控制加热器2的加热。如果插入检测器4已检测到气溶胶生成制品1且用户已启动该装置,控制器6仅允许功率供应到加热器2。通过切换开关K1,功率被作为脉冲信号提供。信号的脉冲宽度或占空比可通过控制单元调制以改变供应到加热器2的能量。在一个实施例中,占空比可被限制到60-80%。这可提供另外的安全性且防止用户不注意地升高加热器2的补偿温度,使得气溶胶生成制品1达到产生气溶胶温度之上的温度。
在使用中,控制器测量加热器2的电阻率ρ。控制器6然后通过将测量的电阻率ρ与查找表比较,将加热器的电阻率转换成用于加热器的实际温度的值。这可以在测量单元内完成或通过控制单元完成。在接下来的步骤中,控制器6将实际导出的操作温度与目标温度进行比较。可替代地,将加热曲线中的温度值事先转换成电阻值,从而该控制器6调整电阻来取代调整温度,这避免在发烟经历期间将电阻转换成温度的实时计算。
如果加热器2的实际温度低于目标温度,则控制单元向该加热器2供应额外电能,或者通过升压电感W对加热器2升压,以便增加该加热器2的实际温度。如果加热器2的实际温度高于目标温度,则该控制单元减少供应到该加热器2的电能,以便使实施操作温度降低返回至目标温度。
控制单元可实施任何适当控制技术以调整温度,例如简单的恒温反馈回路或比例积分微分(PID)控制技术。
采用比例积分微分(PID)控制技术时,假设抽吸前e(t)=0,则其控制控制规律为:

其中,PN为抽吸时流失的功率,α为抽吸时长,c为比热容,u(t)为单位阶跃函数,Kp为比例系数,Ki为积分系数。此式表明,抽吸会引起逐渐衰减的震荡,Kp越大,衰减越快,但太大控制器6容易失去稳定;Ki越小,控制器6的震荡周期越长,但太小会使加大稳态误差。为了方便统计抽吸口数,Kp、Ki可以调到只震荡一次。
在一实施例中,可以预定时间间隔例如每几毫秒检测加热器2的实际温度,这可被连续地或仅在功率被供应到加热器2的期间实施。
气溶胶生成制品1都有预设的总抽吸口数,控制器6可被构造成当检测的抽吸口数超过预设的总抽吸口数时重置,准备检测用户抽吸下一只气溶胶生成制品,当控制器6统计的总抽吸口数等于预设的总抽吸口数时,可认定该气溶胶生成制品1已经被抽完全,可以更换气溶胶生成制品1,如果气溶胶产生装置为一次性装置,则表示可以更换气溶胶产生装置。当控制器6统计的总抽吸口数等于预设的总抽吸口数时,可以发出声音、震动、光亮等提示信息,避免用户在不知情的情况下继续抽吸,导致降低用户体验。
在一个实施例中,控制器6还包括信号处理器,测量单元获取的加热器2上的实际温度信息通过信号处理器后,再传入控制器6中的控制单元,然后控制单元进行加热器2的实际温度与目标温度的比较和运算等。信号处理器一方面可对温度信息进行降噪处理,排除非抽吸产生的气流之外的气流的干扰和/或排除电干扰、磁干扰等,另一方面可将采集的温度信息转换为控制单元能够识别的信号。经过信号处理器降噪处理后,加热器2的测量温度可能会低于目标 温度。
具体的,信号处理器可以为数字滤波器。更为具体的,信号处理器可以为截止频率为0.5Hz的低通滤波器,只保留周期2秒以上的信号。实际应用中,可以根据具体应用需要,选择适当的滤波器。
在一实施例中,提供了一种统计抽吸口数的方法,该方法是基于加热器2温度相对于目标温度的温度变化速度。
请参照图8,在S100中,获取加热器2的实际温度相对于目标温度的温度变化速度;步骤S110,判断该速度是否大于第一阈值,若大于第一阈值,则进入步骤S120中,开始检测加热器2的实际温度相对于目标温度的温度变化速度的加速度;若该速度不大于第一阈值,则进入步骤S130中,判定气溶胶产生装置处于非抽吸状态,抽吸次数保持不变。在步骤S140中,确定加热器的实际温度相对于目标温度的温度变化速度等于第一阈值时,对应的时间是t1′,目标温度与加热器的实际温度之差值ΔT1;步骤S150中,确定加速度等于第二阈值时,对应的时间是t2′,目标温度与加热器的实际温度之差值ΔT2;步骤S160,确定加热器的实际温度相对于目标温度之绝对变化量,绝对变化量Δ=ΔT2-ΔT1;步骤S170,判断绝对变化量是否大于第三阈值,若大于,则进入步骤S180,累加一次抽吸抽数,否则,进入步骤S130中。
在其他实施例中,上述的步骤S160还可以变更为:确定加热器的实际温度相对于目标温度之绝对变化量斜率,绝对变化量斜率=Δ/(t2′-t1′);对应的,步骤S170变更为,判断绝对变化量斜率是否大于第四阈值,若大于,则累加一次抽吸抽数,否则,进入步骤S130中。
其中,预设速度等于加速度为第二阈值时的温度变化速度,t1′至t2′期间,加速度逐渐减小(如图7所示的模型所示,该模型中,a为加速度),当加速度为0时,温度变化速度达到最大,从而使得预设速度是温度变化速度能够到的最大速度(如图6所示的模型所示,该模型中,V1为第一阈值时的温度变化速度,V2为预设速度)。
在一实施例中,提供了一种统计抽吸口数的方法,该方法是基于加热器2温度相对于目标温度的温度变化速度和温度变化速度的加速度。
请参照图9,在S200中,获取加热器2的实际温度相对于目标温度的温度变化速度;在S210中,获取加热器2的实际温度相对于目标温度的温度变化速 度的加速度;步骤S220,判断温度变化速度是否大于第一阈值,若该速度不大于第一阈值,则进入步骤S230中,判定气溶胶产生装置处于非抽吸状态,抽吸次数保持不变;步骤S240,判断加速度是否大于第二阈值,若该加速度不大于第二阈值,则进入步骤S230中,判定气溶胶产生装置处于非抽吸状态,抽吸次数保持不变;若该速度大于第一阈值,且该加速度大于第二阈值,则进入步骤S250,累加一次抽吸口数。
如图6和7所示,通过同时确认温度变化速度和加速度,可以规避在t2′之后,将温度变化速度大于第一阈值,但加速度小于第二阈值(或者加速度为负)的事件误判为抽吸事件引起的,从而错误累加抽吸口数。
在一实施例中,提供了一种统计抽吸口数的方法,该方法是基于加热器2温度相对于目标温度的温度变化速度和温度变化速度的加速度。
请参照图10,在S300中,获取加热器2的实际温度相对于目标温度的温度变化速度;在S310中,获取加热器2的实际温度相对于目标温度的温度变化速度的加速度;步骤S320,判断温度变化速度是否大于第一阈值,若该速度不大于第一阈值,则进入步骤S330中,判定气溶胶产生装置处于非抽吸状态,抽吸次数保持不变;步骤S340,判断加速度是否大于第二阈值,若该加速度不大于第二阈值,则进入步骤S330中,判定气溶胶产生装置处于非抽吸状态,抽吸次数保持不变;若该速度大于第一阈值,且该加速度大于第二阈值,则进入步骤S350,确定温度变化速度等于第一阈值时,目标温度与加热器2的实际温度之差值ΔT1;和进入步骤S360,确定加速度等于第二阈值时,目标温度与加热器2的实际温度之差值ΔT2。在步骤S370中,确定加热器的实际温度相对于目标温度之绝对变化量,绝对变化量Δ=ΔT2-ΔT1;步骤S380,判断绝对变化量是否大于第三阈值,若大于,则进入步骤S390,累加一次抽吸抽数,否则,进入步骤S330中。
在其他实施例中,上述的步骤S370还可以变更为:确定加热器的实际温度相对于目标温度之绝对变化量斜率,绝对变化量斜率=Δ/(t2′-t1′);对应的,步骤S380变更为,判断绝对变化量斜率是否大于第四阈值,若大于,则累加一次抽吸抽数,否则,进入步骤S330中。
其中,温度变化速度等于第一阈值时,时间为t1′,加速度为第二阈值时的温度变化速度,和加速度等于第二阈值时,时间为t2′。
在一实施例中,提供了一种统计抽吸口数的方法,该方法是基于加热器2温度相对于目标温度的温度变化速度和温度变化速度的加速度。
请参照图11,步骤S400,确定温度变化速度;步骤S410,确定温度变化速度等于第一阈值时,目标温度与加热器2的实际温度之差值ΔT1;步骤S430,确定温度变化速度的加速度;步骤S440,确定加速度等于第二阈值时,目标温度与加热器2的实际温度之差值ΔT2;在步骤S450中,确定加热器的实际温度相对于目标温度之绝对变化量,绝对变化量Δ=ΔT2-ΔT1;步骤S460,判断绝对变化量是否大于第三阈值,若大于,则进入步骤S470,累加一次抽吸抽数,否则,进入步骤S480中。
在其他实施例中,上述的步骤S450还可以变更为:确定加热器2的实际温度相对于目标温度之绝对变化量斜率,绝对变化量斜率=Δ/(t2′-t1′);对应的,步骤S460变更为,判断绝对变化量斜率是否大于第四阈值,若大于,则累加一次抽吸抽数,否则,进入步骤S480中。
其中,温度变化速度等于第一阈值时,时间为t1′,加速度为第二阈值时的温度变化速度,和加速度等于第二阈值时,时间为t2′。
提供了一种统计抽吸口数的方法,该方法是基于加热器2温度相对于目标温度的温度变化速度。
请参照图12,步骤S500,确定温度变化速度;步骤S510,确定温度变化速度是是否大于第一阈值时,若大于,则进入步骤S520,累加一次抽吸口数;否则进入步骤S530,抽吸口数保持不变。
为了保证准确率,需严格控制每个检测周期的时间或在统计一次抽吸口数后的温度再次采样的等待时间等。
在一实施例中,提供了一种统计抽吸口数的方法,该方法是基于加热器2温度相对于目标温度的温度变化速度的加速度。
请参照图13,步骤S600,确定温度变化速度的加速度;步骤S610,确定加速度是是否大于第二阈值时,若大于,则进入步骤S620,累加一次抽吸口数;否则进入步骤S630,抽吸口数保持不变。
为了保证准确率,需严格控制每个检测周期的时间或在统计一次抽吸口数后的温度再次采样的等待时间等。
本申请提供气溶胶产生装置的工作方法,包括步骤:
S700:控制从功率源3供应到加热器2的功率,以将加热器2上的温度维持在或趋近目标温度:为了满足快速出烟的需求,请参照图4,在气溶胶产生装置中装入气溶胶生成制品后,且启动气溶胶产生装置后,功率源3为加热器2提供较大的功率,以使加热器快速升至目标温度,以加热气溶胶生成制品,实现快速产生气溶胶。
S710:检测加热器2的实际温度:可以设置控制器6的采集温度的频率,以较为密集地获取加热器2上不同时间的实际温度。
S720:确定所述加热器的实际温度相对于所述目标温度的温度变化速度:控制器6对比较加热器2的实际温度与目标温度,根据加热器2的实际温度相对于目标温度在单位时间内变化量,即所述的温度变化速度,来判断用户抽吸的事件,相对于简单的分析加热器2的实际温度相对于目标温度之差值,本方法可以排除目标温度变化对检测结果的影响,从而减少误判,提高检测的准确性;
S730:当检测到表示用户抽吸事件时,调整功率源3供应到加热器2的功率的步骤,以使加热器2的温度趋近或者达到目标温度,进而充分地烘烤气溶胶生成制品,满足用户的抽吸需求。
S740:当检测到表示用户抽吸事件时,控制器6累加一次抽吸口数,可以在累加的抽吸口数达到气溶胶生成制品的预设口数时,控制器6控制气溶胶产生装置可以发出声、光、震动等信号,用于提示用户,并且还可以使功率源3停止向加热器2供应功率,或者还可以重置气溶胶产生装置,或者还可以清零抽吸口数等。
上述的气溶胶产生装置和方法,通过控制器来确认单位时间内的加热器的实际温度相对于目标温度的变化量,以表示加热器的温度相对于目标温度变化的快慢,从而可以更加准确地判定用户的抽吸事件,统计用户的抽吸口数,可以避免漏检和错检,同时还可以避免目标温度变化对避免目标温度变化对检测结果的影响,从而能够减少对抽吸事件的误判,有助于提高检测的准确性。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被控制器执行,例如图1中的控制器6,可使得上述控制器可执行上述任意方法实施例中的用于气溶胶产生装置统计用户的抽吸口数的方法,例如,执行以上描述的图8中的方法 步骤S100至步骤S180。
本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述控制器执行时,使所述控制器能够执行上述任意方法实施例中的用于气溶胶产生装置统计用户的抽吸口数的方法,例如,执行以上描述的图8中的方法步骤S100至步骤S180。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (17)

  1. 一种气溶胶产生装置,其特征在于,包括:
    加热器,用于加热气溶胶生成制品,以产生气溶胶供用户抽吸;
    功率源,电连接所述加热器;
    控制器,连接所述加热器,用于控制所述功率源提供功率给所述加热器,以使所述加热器上的温度达到用户每口抽吸所对应的目标温度;
    所述控制器还用于在所述气溶胶产生装置工作过程中,检测所述加热器的实际温度,确定温度变化速度;并且判断所述温度变化速度是否满足预设条件;若所述温度变化速度满足预设条件则累加一次用户的抽吸口数,并将所述抽吸口数予以记录;
    其中,所述温度变化速度为单位时间内所述加热器的实际温度相对于所述目标温度的变化量。
  2. 如权利要求1所述的气溶胶产生装置,其特征在于,所述控制器用于判断所述温度变化速度是否大于所述第一阈值,若所述温度变化速度大于所述第一阈值则累加一次用户的抽吸口数。
  3. 如权利要求1或2所述的气溶胶产生装置,其特征在于,所述控制器用于确定所述温度变化速度的加速度;并判断所述加速度是否大于第二阈值;若所述加速度大于所述第二阈值则累加一次用户的抽吸口数;
    其中,所述加速度为所述温度变化速度在单位时间内的变化量。
  4. 如权利要求1所述的气溶胶产生装置,其特征在于,所述控制器用于确定所述温度变化速度在第一阈值时,所述目标温度和所述加热器的实际温度之差值ΔT1;确定所述温度变化速度的加速度在第二阈值时,所述目标温度和所述加热器的实际温度之差值ΔT2;根据ΔT2和ΔT1确定绝对变化量Δ;并判断所述绝对变化量Δ是否大于第三阈值;若所述绝对变化量Δ大于所述第三阈值则累加一次用户的抽吸口数。
  5. 如权利要求4所述的气溶胶产生装置,其特征在于,所述绝对变化量Δ=ΔT2-ΔT1。
  6. 如权利要求2或4所述的气溶胶产生装置,其特征在于,用户抽吸第N+M口的所述第一阈值小于用户抽吸第N口的所述第一阈值,N为整数且大于或者等于2,M为整数且大于或者等于1;和/或
    用户抽吸第N+M口的所述第三阈值小于用户抽吸第N口的所述第三阈值,N为整数且大于或者等于2,M为整数且大于或者等于1。
  7. 如权利要求6所述的气溶胶产生装置,其特征在于,所述第一阈值和/或所述第三阈值,随着所述用户的抽吸口数的增加而逐步减少。
  8. 如权利要求3或5所述的气溶胶产生装置,其特征在于,所述加速度等于所述第二阈值时,所述温度变化速度最大。
  9. 如权利要求4所述的气溶胶产生装置,其特征在于,所述控制器连接所述功率源,用于在所述加速度等于所述第二阈值时,控制所述功率源向所述加热器进行功率补偿,以使所述加热器达到对应的所述目标温度。
  10. 如权利要求1所述的气溶胶产生装置,其特征在于,用户抽吸第N+M口的目标温度小于用户抽吸第N口的目标温度,N为整数且大于或者等于2,M为整数且大于或者等于1。
  11. 如权利要求10所述的气溶胶产生装置,其特征在于,所述目标温度随着用户的抽吸口数的增加而连续下降。
  12. 如权利要求1所述的气溶胶产生装置,其特征在于,所述目标温度随着用户的抽吸口数的增加而保持不变。
  13. 一种用于气溶胶产生装置统计用户的抽吸口数的方法,其特征在于,所述气溶胶产生装置包括加热器、用于供应功率至所述加热器的功率源和控制器;该方法包括:
    检测所述加热器的实际温度;
    确定所述加热器的实际温度相对于目标温度的温度变化速度,其中,所述目标温度为预设的用户每口抽吸所对应的目标温度,所述温度变化速度为单位时间内的所述加热器的实际温度相对于所述目标温度的变化量;
    判断所述温度变化速度是否满足预设条件;
    若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数;
    将所述抽吸口数记录。
  14. 如权利要求13所述的方法,其特征在于,所述判断所述温度变化速度是否满足预设条件,若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数,包括:
    判断所述温度变化速度是否大于第一阈值;
    若所述温度变化速度大于第一阈值时,则累加一次用户的抽吸口数。
  15. 如权利要求13或14所述的方法,其特征在于,所述方法还包括:
    确定所述温度变化速度的加速度,其中所述加速度为所述温度变化速度在单位时间内的变化量;
    所述判断所述温度变化速度是否满足预设条件,若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数,包括:
    判断所述温度变化速度是否大于第二阈值;
    若所述温度变化速度的加速度大于第二阈值,则累加一次用户的抽吸口数。
  16. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    确定所述温度变化速度为第一阈值时,所述目标温度和所述加热器的实际温度之差值ΔT1;
    确定所述温度变化速度的加速度,其中所述加速度为所述温度变化速度在单位时间内的变化量;
    确定所述加速度大于第二阈值时所述目标温度和所述加热器的实际温度之差值ΔT2;
    确定所述加热器的实际温度相对于所述目标温度的绝对变化量Δ,其中所述的绝对变化量=ΔT2-ΔT1;
    所述若所述温度变化速度满足预设条件,则累加一次用户的抽吸口数,包括:
    判断所述绝对变化量是否与第三阈值;
    若所述绝对变化量大于所述第三阈值,则累加一次用户的抽吸口数。
  17. 如权利要求13-16任一项所述的方法,其特征在于,在用户的抽吸过程中,预设的所述目标温度非保持不变。
PCT/CN2023/084846 2022-04-07 2023-03-29 气溶胶产生装置及统计用户的抽吸口数的方法 WO2023193647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210361280.3A CN116919013A (zh) 2022-04-07 2022-04-07 气溶胶产生装置及统计用户的抽吸口数的方法
CN202210361280.3 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193647A1 true WO2023193647A1 (zh) 2023-10-12

Family

ID=88244024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084846 WO2023193647A1 (zh) 2022-04-07 2023-03-29 气溶胶产生装置及统计用户的抽吸口数的方法

Country Status (2)

Country Link
CN (1) CN116919013A (zh)
WO (1) WO2023193647A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109998178A (zh) * 2019-05-09 2019-07-12 东莞市麦斯莫科电子科技有限公司 电子烟的抽烟口数检测方法及其电子烟
CN110191650A (zh) * 2017-01-18 2019-08-30 韩国烟草人参公社 微细颗粒产生装置
CN111671166A (zh) * 2020-05-08 2020-09-18 昂纳自动化技术(深圳)有限公司 一种防止电子烟干烧的方法、装置及电子烟
US20210015165A1 (en) * 2019-05-09 2021-01-21 Dongguan Mysmok Electronic Technology Co., Ltd Method for detecting the number of puffs of an electronic cigarette, and electronic cigarette
CN112471612A (zh) * 2020-12-18 2021-03-12 惠州市沛格斯科技有限公司 电子烟吸烟口数的判断方法、装置、电子烟以及存储介质
WO2021220384A1 (ja) * 2020-04-28 2021-11-04 日本たばこ産業株式会社 吸引装置、制御方法、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191650A (zh) * 2017-01-18 2019-08-30 韩国烟草人参公社 微细颗粒产生装置
CN109998178A (zh) * 2019-05-09 2019-07-12 东莞市麦斯莫科电子科技有限公司 电子烟的抽烟口数检测方法及其电子烟
US20210015165A1 (en) * 2019-05-09 2021-01-21 Dongguan Mysmok Electronic Technology Co., Ltd Method for detecting the number of puffs of an electronic cigarette, and electronic cigarette
WO2021220384A1 (ja) * 2020-04-28 2021-11-04 日本たばこ産業株式会社 吸引装置、制御方法、及びプログラム
CN111671166A (zh) * 2020-05-08 2020-09-18 昂纳自动化技术(深圳)有限公司 一种防止电子烟干烧的方法、装置及电子烟
CN112471612A (zh) * 2020-12-18 2021-03-12 惠州市沛格斯科技有限公司 电子烟吸烟口数的判断方法、装置、电子烟以及存储介质

Also Published As

Publication number Publication date
CN116919013A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US11395515B2 (en) Aerosol generating device with air flow detection
US11969024B2 (en) Heated aerosol-generating device and method for generating aerosol with consistent properties
JP6143784B2 (ja) 消費量を監視及びフィードバックするエアロゾル発生システム
WO2019227381A1 (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
KR102389828B1 (ko) 에어로졸 생성 장치 및 이를 제어하는 방법
CN108618207A (zh) 控制气雾生成装置中气雾产生的方法和气雾生成装置
CN116963627A (zh) 气溶胶供应系统
WO2023193647A1 (zh) 气溶胶产生装置及统计用户的抽吸口数的方法
CN217429267U (zh) 加热组件及气溶胶产生装置
WO2023198215A1 (zh) 加热器、加热组件、加热模组及气溶胶产生装置
CN115024527A (zh) 气溶胶生成装置及其控制方法
CN118843401A (zh) 气溶胶产生装置
CN113243564A (zh) 电子烟
UA114806C2 (uk) Система для утворення аерозолю з відстежуванням споживання та зворотним зв'язком
NZ624139B2 (en) Aerosol generating system with consumption monitoring and feedback
NZ624115B2 (en) Aerosol generating device with air flow detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784211

Country of ref document: EP

Kind code of ref document: A1