WO2021220384A1 - 吸引装置、制御方法、及びプログラム - Google Patents

吸引装置、制御方法、及びプログラム Download PDF

Info

Publication number
WO2021220384A1
WO2021220384A1 PCT/JP2020/018065 JP2020018065W WO2021220384A1 WO 2021220384 A1 WO2021220384 A1 WO 2021220384A1 JP 2020018065 W JP2020018065 W JP 2020018065W WO 2021220384 A1 WO2021220384 A1 WO 2021220384A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
unit
threshold value
suction device
Prior art date
Application number
PCT/JP2020/018065
Other languages
English (en)
French (fr)
Inventor
健太郎 山田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2020/018065 priority Critical patent/WO2021220384A1/ja
Priority to JP2022518472A priority patent/JP7284347B2/ja
Priority to EP20933376.4A priority patent/EP4074200A4/en
Priority to TW109130427A priority patent/TW202139866A/zh
Publication of WO2021220384A1 publication Critical patent/WO2021220384A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to a suction device, a control method, and a program.
  • the suction device uses a base material containing an aerosol source for producing an aerosol, a flavor source for imparting a flavor component to the produced aerosol, and the like to generate an aerosol to which the flavor component is added.
  • the user can taste the flavor by sucking the aerosol to which the flavor component is added (hereinafter, also referred to as puff) generated by the suction device.
  • Patent Document 1 discloses a technique for detecting a puff based on a decrease in the temperature of a heating portion, focusing on a phenomenon in which the temperature of the heating portion decreases with the puff. Has been done.
  • an object of the present invention is to provide a mechanism capable of improving the detection accuracy of a puff.
  • the temperature is raised by the heating unit that heats the aerosol source and the heat generated by the heating by the heating unit, and the aerosol source is heated by the heating unit.
  • a temperature changing unit whose temperature is lowered by sucking the aerosol generated from the above, and a control unit for detecting that the aerosol is sucked when the mode of temperature decrease of the temperature changing unit satisfies the detection standard.
  • the control unit is provided with a suction device that changes the detection reference based on the elapsed time from when the heating unit starts heating the aerosol source.
  • the control unit controls the heating unit so as to heat according to a predetermined heating profile, and the detection reference is based on the elapsed time from when the heating unit starts heating according to the heating profile. May be changed.
  • the detection standard may be that the deviation width between the reference temperature and the temperature of the temperature changing portion is equal to or greater than a predetermined threshold value.
  • the control unit uses the first threshold value as the predetermined threshold value when the elapsed time is less than the first time, and sets the second threshold value when the elapsed time is equal to or longer than the first time. You may use it.
  • the first threshold value may be smaller than the second threshold value.
  • the control unit uses the second threshold value as the predetermined threshold value when the elapsed time is equal to or longer than the first time and less than the second time, and the elapsed time is the second time.
  • the third threshold value may be used.
  • the third threshold value may be smaller than the second threshold value.
  • the third threshold value may be larger than the first threshold value.
  • the control unit When the temperature of the temperature changing unit is equal to or higher than a predetermined value when the control unit detects an input instructing the heating unit to start heating, the control unit does not have to execute the heating by the heating unit.
  • the control unit may change the detection standard depending on whether or not the temperature of the temperature changing unit when detecting an input instructing the heating unit to start heating is equal to or higher than a predetermined value. ..
  • the control unit sets a value closer to the second threshold value as compared with the case where the temperature of the temperature changing unit is less than the predetermined value. It may be used as a threshold value of 1.
  • the control unit sets a value closer to the third threshold value as compared with the case where the temperature of the temperature changing unit is less than the predetermined value. It may be used as a threshold value of 2.
  • the control unit uses a time earlier than the case where the temperature of the temperature changing unit is less than the predetermined value as the first time. May be good.
  • the control unit uses a time earlier than the case where the temperature of the temperature changing unit is less than the predetermined value as the second time. May be good.
  • the detection criterion may be that the temperature of the temperature changing portion is equal to or less than a predetermined threshold value.
  • the control unit may start detecting that the aerosol has been sucked after the elapsed time exceeds a predetermined time.
  • the control unit may change the detection reference based on the temperature assumed as the temperature of the temperature change unit in the elapsed time.
  • the temperature is raised by the heating unit for heating the aerosol source and the heat generated by the heating by the heating unit, and the temperature is raised by the heating unit.
  • a control method including changing the detection standard based on time and detecting that the aerosol has been sucked when the mode of temperature decrease of the temperature changing portion satisfies the detection standard is provided.
  • the temperature is raised by the heating unit for heating the aerosol source and the heat generated by the heating by the heating unit, and the temperature is raised by the heating unit.
  • a computer that controls a suction device having a temperature changing unit whose temperature is lowered by sucking the aerosol generated from the aerosol source.
  • a program for executing a process of changing the detection standard and a process of detecting that the aerosol has been sucked when the mode of temperature reduction of the temperature changing portion satisfies the detection standard is provided. ..
  • a mechanism capable of improving the detection accuracy of the puff is provided.
  • the suction device is a device that produces a substance that is sucked by the user.
  • the substance produced by the suction device will be described as being an aerosol.
  • the substance produced by the suction device may be a gas.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a heating unit 121, a holding unit 140, and Includes insulation 144.
  • the power supply unit 111 stores electric power. Then, the power supply unit 111 supplies electric power to each component of the suction device 100 based on the control by the control unit 116.
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the sensor unit 112 acquires various information about the suction device 100.
  • the sensor unit 112 is composed of a pressure sensor such as a microphone capacitor, a flow rate sensor, a temperature sensor, or the like, and acquires a value associated with suction by the user.
  • the sensor unit 112 is composed of an input device such as a button or a switch that receives input of information from the user.
  • the notification unit 113 notifies the user of the information.
  • the notification unit 113 is composed of, for example, a light emitting device that emits light, a display device that displays an image, a sound output device that outputs sound, a vibrating vibration device, and the like.
  • the storage unit 114 stores various information for the operation of the suction device 100.
  • the storage unit 114 is composed of a non-volatile storage medium such as a flash memory.
  • the communication unit 115 is a communication interface capable of performing communication conforming to any wired or wireless communication standard.
  • a communication standard for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the control unit 116 functions as an arithmetic processing unit and a control device, and controls the overall operation in the suction device 100 according to various programs.
  • the control unit 116 is realized by, for example, an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the holding portion 140 has an internal space 141, and holds the stick-type base material 150 while accommodating a part of the stick-type base material 150 in the internal space 141.
  • the holding portion 140 has an opening 142 that communicates the internal space 141 to the outside, and holds the stick-type base material 150 inserted into the internal space 141 from the opening 142.
  • the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141.
  • the holding portion 140 also has a function of defining a flow path of air supplied to the stick-type base material 150.
  • the air inflow hole which is the inlet of air to such a flow path, is arranged at, for example, the bottom 143.
  • the air outflow hole which is an outlet for air from such a flow path, is an opening 142.
  • the stick-type base material 150 includes a base material portion 151 and a mouthpiece portion 152.
  • the base material portion 151 contains an aerosol source.
  • the aerosol source is not limited to a liquid, but may be a solid.
  • the heating unit 121 heats the aerosol source to atomize the aerosol source and generate an aerosol.
  • the heating unit 121 is formed in a film shape and is arranged so as to cover the outer periphery of the holding unit 140. Then, when the heating unit 121 generates heat, the base material portion 151 of the stick-type base material 150 is heated from the outer periphery to generate an aerosol.
  • the heating unit 121 generates heat when power is supplied from the power supply unit 111.
  • power may be supplied when the sensor unit 112 detects that the user has started suction and / or that predetermined information has been input. Then, when the sensor unit 112 detects that the user has finished the suction and / or that the predetermined information has been input, the power supply may be stopped.
  • the heat insulating portion 144 prevents heat transfer from the heating portion 121 to other components.
  • the heat insulating portion 144 is made of a vacuum heat insulating material, an airgel heat insulating material, or the like.
  • suction device 100 has been described above.
  • the configuration of the suction device 100 is not limited to the above, and various configurations exemplified below can be adopted.
  • the heating portion 121 may be configured in a blade shape and may be arranged so as to project from the bottom portion 143 of the holding portion 140 into the internal space 141. In that case, the blade-shaped heating portion 121 is inserted into the base material portion 151 of the stick-type base material 150, and the base material portion 151 of the stick-type base material 150 is heated from the inside. As another example, the heating portion 121 may be arranged so as to cover the bottom portion 143 of the holding portion 140. Further, the heating unit 121 is a combination of two or more of a first heating unit that covers the outer periphery of the holding unit 140, a blade-shaped second heating unit, and a third heating unit that covers the bottom portion 143 of the holding unit 140. May be configured as.
  • the holding portion 140 may include an opening / closing mechanism such as a hinge that opens / closes a part of the outer shell forming the internal space 141. Then, the holding portion 140 may sandwich the stick-type base material 150 inserted in the internal space 141 by opening and closing the outer shell.
  • the heating unit 121 may be provided at the sandwiching portion of the holding unit 140 and may be heated while pressing the stick-type base material 150.
  • the means for atomizing the aerosol source is not limited to heating by the heating unit 121.
  • the means for atomizing the aerosol source may be induction heating.
  • Temperature change of temperature change part The heating part 121 heats an aerosol source. Specifically, the heating unit 121 heats the aerosol source contained in the stick-type base material 150 by heating the stick-type base material 150 held by the holding unit 140. As a result, aerosols are produced.
  • the sensor unit 112 includes a temperature change unit as a temperature sensor.
  • the temperature changing portion is a member whose temperature is raised and lowered by heat transfer.
  • the temperature changing part is heated by the heat generated by the heating by the heating part 121.
  • the temperature changing unit may be provided in the vicinity of the heating unit 121. In that case, the temperature changing portion is heated by transferring heat from the heating portion 121 via the housing.
  • the temperature changing portion may be provided near the air flow path between the air inflow hole and the air outflow hole. In that case, the temperature change portion is heated by transferring heat from the aerosol when the aerosol generated from the aerosol source heated by the heating portion 121 flows out to the flow path.
  • the temperature changing part is lowered by sucking the aerosol generated from the aerosol source heated by the heating part 121. Specifically, when the puff is performed by the user, outside air flows into the air flow path in exchange for the aerosol being sucked by the user. Since the outside air is not affected by the heating by the heating unit 121, the temperature of the outside air is lower than that of the existing air in the flow path. Therefore, when the outside air flows into the air flow path, each component near the flow path is cooled by the outside air. Along with this, the temperature of the temperature changing part also decreases.
  • the control unit 116 detects the temperature of the temperature change unit.
  • the temperature changing part may be a thermistor.
  • a thermistor is a member whose electrical resistance changes in response to a temperature change. In that case, the control unit 116 detects the temperature of the temperature changing unit based on the electrical resistance of the thermistor.
  • control unit 116 may detect the temperature of the heating unit 121.
  • the heating unit 121 may include a conductive track including a resistor. In that case, the control unit 116 detects the temperature of the heating unit 121 based on the electrical resistance of the conductive truck.
  • a thermistor may be provided in the vicinity of the heating unit 121. In that case, the control unit 116 detects the temperature of the heating unit 121 based on the electric resistance of the thermistor.
  • the heating control unit 116 controls the heating unit 121 so as to heat according to a predetermined heating profile.
  • the heating profile is information that defines the temperature of the heating unit 121 that changes with the elapsed time from the start of heating.
  • the control unit 116 controls the heating unit 121 so that the heating unit 121 realizes a temperature change similar to the temperature change in the heating profile.
  • the control of the heating unit 121 can be realized, for example, by controlling the power supply from the power supply unit 111 to the heating unit 121.
  • the power supply may be controlled by, for example, PWM (Pulse Width Modulation) control.
  • FIG. 2 is a graph showing an example of the relationship between the heating profile and the assumed temperature of the temperature changing portion.
  • the assumed temperature here is a temperature assumed as the temperature of the temperature changing part.
  • the horizontal axis of this graph is the elapsed time from the start of heating by the heating unit 121.
  • the vertical axis of this graph is the temperature.
  • Line 90 shows an example of a heating profile.
  • Line 10 shows an example of the temperature change assumed in the temperature change part.
  • the suction device 100 controls the heating unit 121 so that the heating unit 121 realizes a temperature change similar to the temperature change in the heating profile shown by the wire 90.
  • the temperature change shown by line 10 is realized in the temperature change section.
  • the heating rate of the temperature changing section is slower than the heating rate of the heating section 121. This is because there is a time lag in heat transfer.
  • the maximum temperature of the temperature changing portion is lower than the maximum temperature of the heating portion 121. This is because the heating unit 121 and the temperature changing unit are provided at separate positions.
  • the heating performed by the heating unit 121 can be classified into preheating and main heating.
  • the preheating is heating that is performed until a predetermined time elapses from the start of heating according to the heating profile, or until the temperature of the heating unit 121 reaches a predetermined temperature.
  • the main heating is the heating performed after the preheating. In the example shown in FIG. 2, the heating performed until the time T 0 elapses is the preheating, and the heating performed after the time T 0 elapses is the main heating.
  • the elapsed time from the start of heating is also simply referred to as an elapsed time.
  • the assumed temperature of the temperature change part at the timing when the preheating ends is also referred to as the first target temperature.
  • the first target temperature is such that when the temperature of the temperature changing portion reaches the first target temperature due to the heating of the stick-type base material 150 by the heating unit 121, the aerosol from the stick-type base material 150 is sufficient. It is the temperature that is expected to occur in. For example, when the temperature of the temperature changing portion reaches the first target temperature, a large amount of aerosol that is sufficient for the user to suck is generated. Therefore, the user can suck a sufficient amount of aerosol by holding and sucking the stick-type base material 150 after preheating.
  • the first target temperature is a temperature higher than the lower limit of the temperature of the temperature changing portion where the aerosol is expected to be generated. That is, the aerosol can be generated even if the temperature of the temperature changing portion does not reach the first target temperature.
  • the temperature change part can be heated not only during the period during which the preheating is performed but also during the period during which the main heating is performed. As a result, the temperature of the temperature changing portion reaches the second target temperature higher than the first target temperature. With such a configuration, it is possible to continuously generate a sufficient amount of aerosol from the stick-type base material 150. With reference to line 10 of FIG. 2, it is assumed that the temperature change portion is heated until it reaches the second target temperature by heating along the heating profile, and then is maintained at the second target temperature.
  • the suction device 100 performs puff detection focusing on the fact that the temperature of the temperature changing portion decreases with the puff.
  • the control unit 116 detects that the aerosol has been sucked, that is, the puff, when the mode of temperature decrease of the temperature changing unit satisfies the detection standard.
  • the control unit 116 changes the detection criteria based on the elapsed time since the heating unit 121 started heating the aerosol source.
  • the mode of temperature decrease of the temperature changing portion accompanying the puff may change depending on the elapsed time from the start of heating. In this respect, it is possible to improve the accuracy of puff detection by such a configuration.
  • control unit 116 changes the detection standard based on the elapsed time since the heating unit 121 started heating according to the heating profile.
  • the mode of temperature reduction of the temperature changing portion associated with the puff can change depending on the heating profile. In this respect, it is possible to improve the accuracy of puff detection by such a configuration.
  • the detection standard may be that the deviation width between the reference temperature and the temperature of the temperature changing portion is equal to or larger than a predetermined threshold value (hereinafter, the first puff detection threshold value). That is, the control unit 116 detects the puff when the deviation width between the reference temperature and the temperature of the temperature changing unit is equal to or larger than the first puff detection threshold value. On the other hand, the control unit 116 does not detect the puff when the deviation width between the reference temperature and the temperature of the temperature changing unit is less than the first puff detection threshold value.
  • the reference temperature may be the assumed temperature of the temperature change portion.
  • the control unit 116 detects the puff when the deviation width between the temperature of the temperature change unit at a certain elapsed time and the assumed temperature of the temperature change unit at the same elapsed time is equal to or larger than the first puff detection threshold value.
  • the reference temperature may be the temperature of the temperature change portion before a predetermined time.
  • the deviation width between the temperature of the temperature changing unit at a certain elapsed time and the temperature of the temperature changing unit before a predetermined time (for example, immediately before) of the elapsed time is equal to or larger than the first puff detection threshold value.
  • detect puffs According to such a configuration, it is possible to detect the puff based on the temperature drop width of the temperature changing portion accompanying the puff.
  • Puff detection can be performed to determine the life of the stick-type base material 150.
  • the life of the stick-type base material 150 is the period until the aerosol source contained in the stick-type base material 150 is exhausted.
  • the life of the stick-type base material 150 is shortened as the amount of aerosol generated by heating by the heating unit 121 increases and as the aerosol is sucked by puffing.
  • the mode of temperature decrease of the temperature changing portion accompanying the puff may change according to the elapsed time from the start of heating.
  • the temperature drop width of the temperature changing portion accompanying the puff can change according to the elapsed time from the start of heating. Therefore, if the same value is continuously used as the first puff detection threshold value regardless of the elapsed time from the start of heating, the puff detection accuracy may decrease. For example, a puff may be detected even though the user has actually performed the puff, or a puff may be erroneously detected even though the user has not actually performed the puff.
  • control unit 116 controls to change the first puff detection threshold value by changing the detection reference. With such a configuration, it is possible to improve the detection accuracy of the puff.
  • a control example of the first puff detection threshold value will be described.
  • the control unit 116 uses the first threshold value as the first puff detection threshold value when the elapsed time is less than the first time. Then, the control unit 116 uses the second threshold value as the first puff detection threshold value when the elapsed time is equal to or longer than the first time. With such a configuration, it is possible to change the detection standard according to the change in the temperature drop width of the temperature changing portion accompanying the puff, so that the detection accuracy of the puff is expected to be improved. However, the first threshold is smaller than the second threshold. With such a configuration, it is possible to improve the detection accuracy of the puff, as will be described in detail with reference to FIG.
  • FIG. 3 is a graph for explaining a first control example of the first puff detection threshold value according to the present embodiment.
  • the horizontal axis of this graph is the elapsed time from the start of heating by the heating unit 121.
  • the vertical axis of this graph is the temperature.
  • the line 10 is an example of the temperature change assumed in the temperature change part.
  • Line 20 shows an example of the actual temperature change of the temperature change part.
  • Time T 1 is an example of the first time.
  • the threshold value TH a is an example of the first threshold value.
  • the threshold TH b is an example of the second threshold. That is, the threshold value TH a is smaller than the threshold value TH b.
  • the control unit 116 when the divergence TMP DIFF between the actual temperature of the assumed temperature and the temperature change of the temperature change portion is the threshold value TH a more senses puff.
  • the temperature of the temperature change portion is low. Therefore, before the time T 1 is passed, as compared to after the time T 1, the temperature difference between the temperature change unit and the ambient air is small, considered temperature range of decrease of the temperature change portion with the puff small Be done.
  • the control unit 116 detects the puff when the deviation width TMP DIFF between the assumed temperature of the temperature changing unit and the actual temperature of the temperature changing unit is equal to or greater than the threshold value TH b.
  • the temperature of the temperature change portion is high. Therefore, after a lapse of time T 1, as compared with before the time T 1 is elapsed, since a large temperature difference between the temperature change unit and the ambient air, the temperature range of decrease of the temperature change portion with the puff considered large Be done.
  • the temperature of the temperature changing part rises.
  • the temperature distribution in the temperature change part is not always uniform, and it is considered that a part having a high temperature and a part having a low temperature are mixed in the temperature change part.
  • the temperature changing portion may actually include a portion that has not reached the second target temperature. Then, as time elapses after it is detected that the temperature of the temperature changing portion has reached the second target temperature, the portion of the temperature changing portion that has not reached the second target temperature decreases.
  • the puff detection accuracy may decrease.
  • the control unit 116 uses the first threshold value as the first puff detection threshold value when the elapsed time is less than the first time. Then, the control unit 116 uses the second threshold value as the first puff detection threshold value when the elapsed time is equal to or longer than the first time and less than the second time. Then, the control unit 116 uses a third threshold value as the first puff detection threshold value when the elapsed time is the second time or more.
  • the first threshold is smaller than the second threshold.
  • the third threshold is smaller than the second threshold. With such a configuration, it is possible to improve the detection accuracy of the puff, as will be described in detail with reference to FIG.
  • FIG. 4 is a graph for explaining a second control example of the first puff detection threshold value according to the present embodiment.
  • the horizontal axis of this graph is the elapsed time from the start of heating by the heating unit 121.
  • the vertical axis of this graph is the temperature.
  • the line 10 is an example of the temperature change assumed in the temperature change part.
  • Line 20 shows an example of the actual temperature change of the temperature change part.
  • Time T 1 is an example of the first time.
  • Time T 2 is an example of a second time.
  • the threshold TH A is an example of the first threshold.
  • the threshold TH B is an example of a second threshold.
  • the threshold TH C is an example of a third threshold. That is, the threshold TH A is smaller than the threshold TH B. Also, the threshold TH C is smaller than the threshold TH B.
  • the control unit 116 when the divergence TMP DIFF between the actual temperature of the assumed temperature and the temperature change of the temperature change portion is equal to or greater than the threshold TH A, detects the puff. With such a configuration, it is possible to improve the detection accuracy of the puff as described above with respect to the first control example.
  • the control unit 116 After the time T 1 has elapsed and until the time T 2 has elapsed, the control unit 116 has a threshold value TH B of the deviation width TMP DIFF between the assumed temperature of the temperature change unit and the actual temperature of the temperature change unit. If the above is the case, the puff is detected. With such a configuration, it is possible to improve the detection accuracy of the puff as described above with respect to the first control example.
  • the control unit 116 detects the puff when the deviation width TMP DIFF between the assumed temperature of the temperature changing unit and the actual temperature of the temperature changing unit is equal to or greater than the threshold value TH C.
  • the temperature decrease width associated with the puff at time T 2 is considered to be smaller than the temperature decrease width associated with the puff at time T 1.
  • the third threshold value may be larger than the first threshold value. That is, the threshold TH A ⁇ threshold TH C ⁇ threshold TH B may be satisfied.
  • the threshold TH A ⁇ threshold TH C ⁇ threshold TH B may be satisfied.
  • the temperature of the temperature changing portion is higher than that before the elapse of the time T 1. Therefore, after the elapse of the time T 2 , the temperature difference between the temperature changing portion and the outside air is larger than that before the elapse of the time T 1, and it is considered that the temperature decrease width of the temperature changing portion due to the puff is large. Be done.
  • by performing the puff detection based on a relatively large threshold value TH C it becomes possible to improve the detection accuracy of the puff. For example, it is possible to prevent a situation in which a puff is erroneously detected with a small temperature drop width such that wind enters the air flow path.
  • the control unit 116 may start puff detection after the elapsed time exceeds a predetermined time.
  • a predetermined time is the time when the first target temperature is reached. That is, the control unit 116 may start puff detection after the preheating is completed and the main heating is started. In the example shown in FIGS. 3 and 4, the control unit 116 may start the puff detection after the time T 0 has elapsed.
  • the stick-type base material 150 is not sufficiently warmed, and the amount of aerosol generated is smaller than that at the time of main heating, so that the life of the stick-type base material 150 is shortened even if puffing is performed. hard. Therefore, when puff detection is performed to determine the life of the stick-type base material 150, the accuracy of the life determination of the stick-type base material 150 is improved by excluding the preheating from the target of puff detection by such a configuration. It becomes possible to make it.
  • the control unit 116 heats the heating unit 121. Does not have to be executed. If the interval between the previous heating and the current heating is short, residual heat due to the previous heating may be generated in the temperature change part. If heating is started in that state, the temperature of the temperature changing portion deviates from the assumed temperature even when the puff is not performed, so that the detection accuracy of the puff may decrease. In this regard, puff detection is also not performed because heating is not performed in the first place due to this configuration. Therefore, it is possible to prevent false detection of the puff.
  • a predetermined value hereinafter, also referred to as a residual heat determination threshold value
  • the control unit 116 may execute the heating by the heating unit 121. good. In that case, the control unit 116 changes the detection standard according to whether or not the temperature of the temperature changing unit when detecting the input instructing the heating unit 121 to start heating is equal to or higher than the residual heat determination threshold value. ..
  • the control unit 116 sets the first puff detection threshold value in consideration of the deviation. With such a configuration, it is possible to maintain the detection accuracy of the puff even when the interval between the previous heating and the current heating is short.
  • the control unit 116 has a control unit 116 when the temperature of the temperature change unit is equal to or higher than the residual heat determination threshold value, as compared with the case where the temperature of the temperature change unit is less than the residual heat determination threshold value.
  • a value close to the threshold value of 2 may be used as the first threshold value.
  • the control unit 116 sets a higher value as the first threshold value as compared with the case where the temperature of the temperature changing unit is less than the residual heat determination threshold value. You may use it.
  • the control unit 116 may bring the threshold value TH a closer to the threshold value TH b in the example shown in FIG.
  • the mode of temperature decrease of the temperature change part due to the puff in the section to which the first threshold value is applied is the mode of the temperature decrease of the temperature change part due to the puff in the section to which the second threshold value is applied. This is to get closer to. With such a configuration, it is possible to maintain the detection accuracy of the puff.
  • the control unit 116 sets a value closer to the third threshold value as compared with the case where the temperature of the temperature changing unit is less than the residual heat determination threshold value. It may be used as a threshold value of 2. In other words, when the temperature of the temperature changing unit is equal to or higher than the residual heat determination threshold value, the control unit 116 sets a lower value as a second threshold value as compared with the case where the temperature of the temperature changing unit is less than the residual heat determination threshold value. You may use it. For example, the control unit 116 may bring the threshold value TH B closer to the threshold value TH C in the example shown in FIG.
  • the mode of temperature decrease of the temperature change part due to the puff in the section to which the second threshold value is applied is the mode of the temperature decrease of the temperature change part due to the puff in the section to which the third threshold value is applied. This is to get closer to. With such a configuration, it is possible to maintain the detection accuracy of the puff.
  • the control unit 116 is faster when the temperature of the temperature change unit is equal to or higher than the residual heat determination threshold value as compared with the case where the temperature of the temperature change unit is less than the residual heat determination threshold value. Time may be used as the first time. This is because the timing at which the second threshold value should be applied comes early due to the influence of the residual heat. From another viewpoint, when the temperature of the temperature changing unit is equal to or higher than the residual heat determination threshold value, the control unit 116 has a first threshold value as compared with the case where the temperature of the temperature changing unit is less than the residual heat determination threshold value. May be shortened. With such a configuration, it is possible to maintain the detection accuracy of the puff.
  • the control unit 116 sets a time earlier than the case where the temperature of the temperature changing unit is less than the residual heat determination threshold value as the second time. You may use it. This is because the timing at which the third threshold value should be applied comes early due to the influence of the residual heat. From another viewpoint, when the temperature of the temperature changing unit is equal to or higher than the residual heat determination threshold value, the control unit 116 has a second threshold value as compared with the case where the temperature of the temperature changing unit is less than the residual heat determination threshold value. May be shortened. With such a configuration, it is possible to maintain the detection accuracy of the puff.
  • FIG. 5 is a flowchart showing an example of the flow of the puff detection process executed by the suction device 100 according to the present embodiment. This flow shows an example of the flow of the puff detection process in the example shown in FIG.
  • the suction device 100 determines whether or not the heating start instruction by the user is detected (step S102). For example, the suction device 100 determines whether or not a button provided on the suction device 100 has been pressed. When the heating start instruction by the user is not detected (step S102: NO), the suction device 100 waits until the heating start instruction by the user is detected.
  • step S102 When the heating start instruction by the user is detected (step S102: YES), the suction device 100 starts heating according to the heating profile (step S104).
  • the suction device 100 determines whether the elapsed time T 0 (step S106). If it is determined that the time T 0 has not elapsed (step S106: NO), the suction device 100 waits until the time T 0 has elapsed.
  • the suction device 100 detects the puff based on the threshold value TH A (step S108). For example, the control unit 116 detects the puff when the deviation width TMP DIFF between the assumed temperature of the temperature change unit and the actual temperature of the temperature change unit is equal to or greater than the threshold value TH A.
  • the suction device 100 determines whether the elapsed time T 1 (step S110). When it is determined that the time T 1 has not elapsed (step S110: NO), the suction device 100 executes the process according to the step S108 until the time T 1 elapses.
  • the suction device 100 detects the puff based on the threshold value TH B (step S112). For example, the control unit 116 detects the puff when the deviation width TMP DIFF between the assumed temperature of the temperature change unit and the actual temperature of the temperature change unit is equal to or greater than the threshold value TH B.
  • the suction device 100 determines whether or not the time T 2 has elapsed (step S114). When it is determined that the time T 2 has not elapsed (step S114: NO), the suction device 100 executes the process according to the step S112 until the time T 2 elapses.
  • the suction device 100 detects the puff based on the threshold value TH C (step S116). For example, the control unit 116 detects the puff when the deviation width TMP DIFF between the assumed temperature of the temperature change unit and the actual temperature of the temperature change unit is equal to or greater than the threshold value TH C.
  • step S116 may be continuously executed until the heating according to the heating profile is completed.
  • FIG. 6 is a block diagram showing a configuration example of the suction device 900 according to the second embodiment.
  • the suction device 900 includes a heating unit 910, a temperature changing unit 920, and a control unit 930.
  • the heating unit 910 heats the aerosol source.
  • the temperature change unit 920 is heated by the heat caused by the heating by the heating unit 910, and the temperature is lowered by sucking the aerosol generated from the aerosol source heated by the heating unit 910.
  • the control unit 930 detects that the aerosol has been sucked when the mode of temperature decrease of the temperature change unit 920 satisfies the detection standard. In particular, the control unit 930 changes the detection criteria based on the elapsed time since the heating unit 910 started heating the aerosol source.
  • FIG. 7 is a flowchart showing an example of the flow of processing executed by the suction device 900 according to the present embodiment.
  • control unit 930 changes the detection standard based on the elapsed time since the heating unit 910 starts heating the aerosol source (step S202).
  • control unit 930 detects that the aerosol has been sucked when the mode of the temperature decrease of the temperature change unit 920 satisfies the detection standard (step S204).
  • the mode of temperature decrease of the temperature changing unit 920 due to the suction of the aerosol can change according to the elapsed time from the start of heating of the aerosol source by the heating unit 910.
  • the detection standard changes according to the elapsed time from the start of heating of the aerosol source by the heating unit 910. Therefore, the control unit 930 can detect that the aerosol has been sucked in response to the change in the mode of temperature decrease of the temperature changing unit 920 accompanying the suction of the aerosol. That is, according to the present embodiment, it is possible to improve the accuracy of detecting that the aerosol has been sucked.
  • the detection reference describes an example in which the deviation width between the reference temperature and the temperature of the temperature changing portion is equal to or larger than the first puff detection threshold value, but the present invention is not limited to such an example.
  • the detection standard may be that the temperature of the temperature changing portion becomes equal to or lower than a predetermined threshold value (hereinafter, also referred to as a second puff detection threshold value).
  • the second puff detection threshold value may be set as a value obtained by subtracting a predetermined value from the assumed temperature of the temperature changing portion.
  • the control unit 116 changes the second puff detection threshold value according to the elapsed time, as in the above embodiment. According to such a configuration, it is possible to obtain the same effect as that of the above embodiment.
  • the control unit 116 Until time T 1 is passed, the value obtained by subtracting the threshold value TH a from an expected temperature of the temperature change portion, as a second puff detection threshold You may use it. Similarly, after the time T 1 has elapsed, the control unit 116 may use a value obtained by subtracting the threshold value TH b from the assumed temperature of the temperature change unit as the second puff detection threshold value.
  • the control unit 116 may use a value obtained by subtracting the threshold value TH C from the assumed temperature of the temperature change unit as the second puff detection threshold value.
  • the second puff detection threshold value may be set in advance based on the assumed temperature of the temperature changing portion.
  • the detection standard is changed according to the elapsed time from the start of heating, but the present invention is not limited to such an example.
  • the control unit 116 may change the detection standard with or instead of the elapsed time from the start of heating, based on the assumed temperature of the temperature changing unit in the elapsed time from the start of heating.
  • the assumed temperature of the temperature changing portion may be further increased or decreased after reaching the second target temperature.
  • the control unit 116 changes the detection reference according to the change in the assumed temperature.
  • the control unit 116 may reduce the first puff detection threshold value as the assumed temperature of the temperature change unit decreases.
  • the control unit 116 may increase the first puff detection threshold value as the assumed temperature of the temperature change unit rises. This is because as the assumed temperature of the temperature changing part rises, the assumed temperature difference between the temperature changing part and the outside air becomes larger, and the temperature decrease width of the temperature changing part due to the puff is expected to become larger. .. According to such a configuration, it is possible to use an appropriate detection standard according to the assumed temperature difference between the temperature changing portion and the outside air, which changes according to the assumed temperature of the temperature changing portion, so that the detection accuracy of the puff can be used. Can be improved.
  • each device described in the present specification may be realized by using any of software, hardware, and a combination of software and hardware.
  • the programs constituting the software are stored in advance in, for example, a recording medium (non-transitory media) provided inside or outside each device. Then, each program is read into RAM at the time of execution by a computer and executed by a processor such as a CPU.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via, for example, a network without using a recording medium.
  • Suction device 100 Suction device 111 Power supply unit 112 Sensor unit 113 Notification unit 114 Storage unit 115 Communication unit 116 Control unit 121 Heating unit 140 Holding unit 141 Internal space 142 Opening 143 Bottom 144 Insulation unit 150 Stick type base material 151 Base material unit 152 Suction unit

Landscapes

  • Control Of Resistance Heating (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

【課題】パフの検知精度を向上させることが可能な仕組みを提供する。 【解決手段】エアロゾル源を加熱する加熱部と、前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、前記温度変化部の温度低下の態様が検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知する制御部と、を備え、前記制御部は、前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて前記検知基準を変化させる、吸引装置。

Description

吸引装置、制御方法、及びプログラム
 本発明は、吸引装置、制御方法、及びプログラムに関する。
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引する(以下、パフとも称する)ことで、香味を味わうことができる。
 吸引装置では、パフが行われたことを検知することで、検知結果に応じた各種サービスを提供することが検討されている。パフの検知方法は種々存在するが、その一例として、下記特許文献1では、パフに伴い加熱部の温度が低下する現象に着目し、加熱部の温度低下に基づいてパフを検知する技術が開示されている。
特許第6143784号明細書
 しかし、温度低下に基づいてパフを検知する技術は、開発されてから未だ日が浅く、さらなる精度向上が求められている。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、パフの検知精度を向上させることが可能な仕組みを提供することにある。
 上記課題を解決するために、本発明のある観点によれば、エアロゾル源を加熱する加熱部と、前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、前記温度変化部の温度低下の態様が検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知する制御部と、を備え、前記制御部は、前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて前記検知基準を変化させる、吸引装置が提供される。
 前記制御部は、予め定められた加熱プロファイルに沿って加熱するよう前記加熱部を制御し、且つ前記加熱部が前記加熱プロファイルに沿った加熱を開始してからの経過時間に基づいて前記検知基準を変化させてもよい。
 前記検知基準は、基準とする温度と前記温度変化部の温度との乖離幅が所定の閾値以上であることであってもよい。
 前記制御部は、前記所定の閾値として、前記経過時間が第1の時間未満である場合に第1の閾値を用い、前記経過時間が前記第1の時間以上である場合に第2の閾値を用いてもよい。
 前記第1の閾値は、前記第2の閾値よりも小さくてもよい。
 前記制御部は、前記所定の閾値として、前記経過時間が前記第1の時間以上であって第2の時間未満である場合に前記第2の閾値を用い、前記経過時間が前記第2の時間以上である場合に第3の閾値を用いてもよい。
 前記第3の閾値は、前記第2の閾値よりも小さくてもよい。
 前記第3の閾値は、前記第1の閾値よりも大きくてもよい。
 前記制御部は、前記加熱部による加熱を開始するよう指示する入力を検知した際の前記温度変化部の温度が所定値以上である場合、前記加熱部による前記加熱を実行させなくてもよい。
 前記制御部は、前記加熱部による加熱を開始するよう指示する入力を検知した際の前記温度変化部の温度が所定値以上であるか否かに応じて、前記検知基準を変更してもよい。
 前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して前記第2の閾値に近い値を、前記第1の閾値として用いてもよい。
 前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して前記第3の閾値に近い値を、前記第2の閾値として用いてもよい。
 前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して早い時間を、前記第1の時間として用いてもよい。
 前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して早い時間を、前記第2の時間として用いてもよい。
 前記検知基準は、前記温度変化部の温度が所定の閾値以下になることであってもよい。
 前記制御部は、前記経過時間が所定の時間以上になってから、前記エアロゾルが吸引されたことの検知を開始してもよい。
 前記制御部は、前記経過時間における前記温度変化部の温度として想定される温度にさらに基づいて、前記検知基準を変化させてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、エアロゾル源を加熱する加熱部と、前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、を有する吸引装置を制御する制御方法であって、前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて検知基準を変化させることと、前記温度変化部の温度低下の態様が前記検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知することと、を含む制御方法が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、エアロゾル源を加熱する加熱部と、前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、を有する吸引装置を制御するコンピュータに、前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて検知基準を変化させる処理と、前記温度変化部の温度低下の態様が前記検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知する処理と、を実行させるためのプログラムが提供される。
 以上説明したように本発明によれば、パフの検知精度を向上させることが可能な仕組みが提供される。
第1の実施形態に係る吸引装置の構成例を模式的に示す模式図である。 加熱プロファイルの一例を示すグラフである。 同実施形態に係る第1のパフ検知閾値の第1の制御例を説明するためのグラフである。 同実施形態に係る第1のパフ検知閾値の第2の制御例を説明するためのグラフである。 同実施形態に係る吸引装置により実行されるパフ検知処理の流れの一例を示すフローチャートである。 第2の実施形態に係る吸引装置の構成例を示すブロック図である。 同実施形態に係る吸引装置により実行される処理の流れの一例を示すフローチャートである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <<1.第1の実施形態>>
 <1.1.吸引装置の構成例>
 吸引装置は、ユーザにより吸引される物質を生成する装置である。以下では、吸引装置により生成される物質が、エアロゾルであるものとして説明する。他に、吸引装置により生成される物質は、気体であってもよい。
 図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、加熱部121、保持部140、及び断熱部144を含む。
 電源部111は、電力を蓄積する。そして、電源部111は、制御部116による制御に基づいて、吸引装置100の各構成要素に電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。
 センサ部112は、吸引装置100に関する各種情報を取得する。一例として、センサ部112は、マイクロホンコンデンサ等の圧力センサ、流量センサ又は温度センサ等により構成され、ユーザによる吸引に伴う値を取得する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。
 通知部113は、情報をユーザに通知する。通知部113は、例えば、発光する発光装置、画像を表示する表示装置、音を出力する音出力装置、又は振動する振動装置等により構成される。
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。
 通信部115は、有線又は無線の任意の通信規格に準拠した通信を行うことが可能な通信インタフェースである。かかる通信規格としては、例えば、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、スティック型基材150へ供給される空気の流路を画定する機能も有する。かかる流路への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。
 スティック型基材150は、基材部151、及び吸口部152を含む。基材部151は、エアロゾル源を含む。なお、本構成例において、エアロゾル源は液体に限られるものではなく、固体であってもよい。スティック型基材150が保持部140に保持された状態において、基材部151の少なくとも一部は内部空間141に収容され、吸口部152の少なくとも一部は開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から内部空間141に空気が流入し、基材部151から発生するエアロゾルと共にユーザの口内に到達する。
 加熱部121は、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。図1に示した例では、加熱部121は、フィルム状に構成され、保持部140の外周を覆うように配置される。そして、加熱部121が発熱すると、スティック型基材150の基材部151が外周から加熱され、エアロゾルが生成される。加熱部121は、電源部111から給電されると発熱する。一例として、ユーザが吸引を開始したこと、及び/又は所定の情報が入力されたことが、センサ部112により検出された場合に、給電されてもよい。そして、ユーザが吸引を終了したこと、及び/又は所定の情報が入力されたことが、センサ部112により検出された場合に、給電が停止されてもよい。
 断熱部144は、加熱部121から他の構成要素への伝熱を防止する。例えば、断熱部144は、真空断熱材、又はエアロゲル断熱材等により構成される。
 以上、吸引装置100の構成例を説明した。もちろん吸引装置100の構成は上記に限定されず、以下に例示する多様な構成をとり得る。
 一例として、加熱部121は、ブレード状に構成され、保持部140の底部143から内部空間141に突出するように配置されてもよい。その場合、ブレード状の加熱部121は、スティック型基材150の基材部151に挿入され、スティック型基材150の基材部151を内部から加熱する。他の一例として、加熱部121は、保持部140の底部143を覆うように配置されてもよい。また、加熱部121は、保持部140の外周を覆う第1の加熱部、ブレード状の第2の加熱部、及び保持部140の底部143を覆う第3の加熱部のうち、2以上の組み合わせとして構成されてもよい。
 他の一例として、保持部140は、内部空間141を形成する外殻の一部を開閉する、ヒンジ等の開閉機構を含んでいてもよい。そして、保持部140は、外殻を開閉することで、内部空間141に挿入されたスティック型基材150を挟持してもよい。その場合、加熱部121は、保持部140における当該挟持箇所に設けられ、スティック型基材150を押圧しながら加熱してもよい。
 また、エアロゾル源を霧化する手段は、加熱部121による加熱に限定されない。例えば、エアロゾル源を霧化する手段は、誘導加熱であってもよい。
 <1.2.技術的特徴>
 (1)温度変化部の温度変化
 加熱部121は、エアロゾル源を加熱する。詳しくは、加熱部121は、保持部140により保持されたスティック型基材150を加熱することで、スティック型基材150に含まれるエアロゾル源を加熱する。その結果、エアロゾルが生成される。
 センサ部112は、温度センサとして、温度変化部を含む。温度変化部は、熱移動により昇温及び降温される部材である。
 温度変化部は、加熱部121による加熱に起因する熱によって昇温される。一例として、温度変化部は、加熱部121付近に設けられてもよい。その場合、温度変化部は、加熱部121から筐体を経由して伝熱されることで、昇温される。他の一例として、温度変化部は、空気流入孔から空気流出孔までの間の、空気の流路付近に設けられてもよい。その場合、温度変化部は、加熱部121により加熱されたエアロゾル源から発生したエアロゾルが流路に流れ出た際に、エアロゾルから伝熱されることで、昇温される。
 温度変化部は、加熱部121により加熱されたエアロゾル源から発生したエアロゾルが吸引されることによって降温される。詳しくは、ユーザによりパフが行われると、エアロゾルがユーザにより吸引されるのと引き換えに、空気の流路には外気が流入する。外気は、加熱部121による加熱の影響を受けていないので、流路内の既存の空気よりも温度が低い。従って、空気の流路に外気が流入すると、流路付近の各構成要素が外気により冷却される。それに伴い、温度変化部の温度も低下する。
 制御部116は、温度変化部の温度を検知する。例えば、温度変化部は、サーミスタであってもよい。サーミスタとは、温度変化に応じて電気抵抗が変化する部材である。その場合、制御部116は、サーミスタの電気抵抗に基づいて、温度変化部の温度を検知する。
 さらに、制御部116は、加熱部121の温度を検知してもよい。一例として、加熱部121は、抵抗器を含む導電トラックを含んでいてもよい。その場合、制御部116は、導電トラックの電気抵抗に基づいて加熱部121の温度を検知する。他の一例として、加熱部121付近に、サーミスタが設けられていてもよい。その場合、制御部116は、サーミスタの電気抵抗に基づいて、加熱部121の温度を検知する。
 (2)加熱プロファイルに沿った加熱
 制御部116は、予め定められた加熱プロファイルに沿って加熱するよう加熱部121を制御する。加熱プロファイルとは、加熱開始からの経過時間に伴い変化する加熱部121の温度を定義する情報である。制御部116は、加熱プロファイルにおける温度変化と同様の温度変化が加熱部121において実現されるよう、加熱部121を制御する。加熱部121の制御は、例えば電源部111から加熱部121への給電を制御することにより、実現され得る。給電の制御は、例えば、PWM(Pulse Width Modulation)制御により行われてもよい。
 加熱部121が加熱プロファイルに沿った加熱を行う場合、温度変化部の温度変化を予め想定することができる。図2は、加熱プロファイルと温度変化部の想定温度との関係の一例を示すグラフである。ここでの想定温度とは、温度変化部の温度として想定される温度である。本グラフの横軸は、加熱部121による加熱が開始されてからの経過時間である。本グラフの縦軸は、温度である。線90は、加熱プロファイルの一例を示す。線10は、温度変化部に想定される温度変化の一例を示す。吸引装置100は、線90に示す加熱プロファイルにおける温度変化と同様の温度変化が加熱部121において実現されるよう、加熱部121を制御する。その結果、線10に示す温度変化が温度変化部において実現される。図2に示すように、温度変化部の昇温速度は、加熱部121の昇温速度よりも遅いことが想定される。これは伝熱にタイムラグが生じるためである。また、図2に示すように、温度変化部の最高温度は、加熱部121の最高温度よりも低いことが想定される。これは、加熱部121と温度変化部とが離れた位置に設けられるためである。
 加熱部121により実行される加熱は、予備加熱と本加熱とに分類され得る。予備加熱とは、加熱プロファイルに沿った加熱を開始してから所定時間経過するまで、又は加熱部121の温度が所定の温度に到達するまでに実行される加熱である。本加熱とは、予備加熱の後に実行される加熱である。図2に示した例においては、時間Tが経過するまでの間に実行される加熱が予備加熱であり、時間Tが経過した後に実行される加熱が本加熱である。以下、加熱開始からの経過時間を、単に経過時間とも称する。
 予備加熱が終了するタイミングにおける、温度変化部の想定温度を、第1の目標温度とも称する。第1の目標温度は、加熱部121によるスティック型基材150の加熱に起因して温度変化部の温度が当該第1の目標温度に達した場合に、当該スティック型基材150からエアロゾルが十分に発生することが想定される温度である。例えば、温度変化部の温度が当該第1の目標温度に達した場合には、ユーザが吸引するのに十分な多量のエアロゾルが発生する。そのため、ユーザは、予備加熱後にスティック型基材150を咥えて吸引することで、十分な量のエアロゾルを吸引することができる。なお、第1の目標温度は、エアロゾルが発生することが想定される温度変化部の温度の下限値よりも高い温度である。即ち、温度変化部の温度が第1の目標温度に達していなくても、エアロゾルは発生し得る。
 温度変化部は、予備加熱が行われる期間だけでなく、本加熱が行われる期間にも、昇温され得る。その結果、温度変化部の温度は、第1の目標温度よりも高い第2の目標温度に達する。かかる構成により、スティック型基材150から継続的に十分な量のエアロゾルを発生させることが可能となる。図2の線10を参照すると、加熱プロファイルに沿った加熱により、温度変化部は第2の目標温度に達するまで昇温し、その後第2の目標温度のまま維持されることが想定される。
 (3)パフ検知
 本実施形態に係る吸引装置100は、パフに伴い温度変化部の温度が低下することに着目したパフ検知を行う。詳しくは、制御部116は、温度変化部の温度低下の態様が検知基準を満たす場合に、エアロゾルが吸引されたこと、即ちパフを検知する。とりわけ、制御部116は、加熱部121がエアロゾル源の加熱を開始してからの経過時間に基づいて、検知基準を変化させる。パフに伴う温度変化部の温度低下の態様は、加熱開始から経過時間に応じて変化し得る。この点、かかる構成により、パフ検知の精度を向上させることが可能である。
 詳しくは、制御部116は、加熱部121が加熱プロファイルに沿った加熱を開始してからの経過時間に基づいて検知基準を変化させる。パフに伴う温度変化部の温度低下の態様は、加熱プロファイルに応じて変化し得る。この点、かかる構成により、パフ検知の精度を向上させることが可能である。
 検知基準は、基準とする温度と温度変化部の温度との乖離幅が所定の閾値(以下、第1のパフ検知閾値)以上であることであってもよい。即ち、制御部116は、基準とする温度と温度変化部の温度との乖離幅が第1のパフ検知閾値以上である場合に、パフを検知する。他方、制御部116は、基準とする温度と温度変化部の温度との乖離幅が第1のパフ検知閾値未満である場合に、パフを検知しない。一例として、基準とする温度は、温度変化部の想定温度であってもよい。この場合、制御部116は、ある経過時間における温度変化部の温度と、同経過時間における温度変化部の想定温度と、の乖離幅が第1のパフ検知閾値以上である場合に、パフを検知する。他の一例として、基準とする温度は、所定時間前の温度変化部の温度であってもよい。この場合、制御部116は、ある経過時間における温度変化部の温度と、同経過時間の所定時間前(例えば、直前)の温度変化部の温度との乖離幅が第1のパフ検知閾値以上である場合に、パフを検知する。かかる構成によれば、パフに伴う温度変化部の温度低下幅に基づいて、パフを検知することが可能である。
 パフ検知は、スティック型基材150の寿命判定のために行われ得る。スティック型基材150の寿命とは、スティック型基材150に含まれるエアロゾル源が枯渇するまでの期間である。加熱部121による加熱により発生したエアロゾルの量が増加するほど、またパフが行われてエアロゾルが吸引されるほど、スティック型基材150の寿命は縮まる。
 (4)検知基準の制御
 上記説明したように、パフに伴う温度変化部の温度低下の態様は、加熱開始から経過時間に応じて変化し得る。具体的には、パフに伴う温度変化部の温度低下幅が、加熱開始から経過時間に応じて変化し得る。そのため、第1のパフ検知閾値として、加熱開始からの経過時間によらず同一の値を使用し続けた場合、パフの検知精度は低下し得る。例えば、ユーザが実際にパフを行ったにもかかわらずパフが検知されたり、ユーザが実際にはパフを行っていないにもかかわらずパフが誤って検知されたりし得る。
 そこで、制御部116は、検知基準を変化させることとして、第1のパフ検知閾値を変化させる制御を行う。かかる構成により、パフの検知精度を向上させることが可能である。以下、第1のパフ検知閾値の制御例を説明する。
 -第1の制御例
 加熱開始から時間が経過するほど、温度変化部の温度が上昇する。即ち、加熱開始からの経過時間によって、温度変化部と外気との温度差が変化するので、パフに伴う温度変化部の温度低下幅も変化する。よって、第1のパフ検知閾値として、加熱開始からの経過時間によらず同一の値を使用し続けた場合、パフの検知精度は低下してしまい得る。
 上記課題に鑑み、制御部116は、経過時間が第1の時間未満である場合に、第1のパフ検知閾値として第1の閾値を用いる。そして、制御部116は、経過時間が第1の時間以上である場合に、第1のパフ検知閾値として第2の閾値を用いる。かかる構成により、パフに伴う温度変化部の温度低下幅の変化に応じた検知基準の変更を実現することができるので、パフの検知精度向上が期待される。ただし、第1の閾値は、第2の閾値よりも小さい。かかる構成により、図3を参照しながら詳しく説明するように、パフの検知精度を向上させることが可能である。
 図3は、本実施形態に係る第1のパフ検知閾値の第1の制御例を説明するためのグラフである。本グラフの横軸は、加熱部121による加熱が開始されてからの経過時間である。本グラフの縦軸は、温度である。線10は、温度変化部に想定される温度変化の一例である。線20は、温度変化部の実際の温度変化の一例を示す。時間Tは、第1の時間の一例である。閾値THは、第1の閾値の一例である。閾値THは、第2の閾値の一例である。即ち、閾値THは、閾値THよりも小さい。
 時間Tが経過するまでの間、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。図3に示すように、時間Tが経過する前は、時間Tが経過した後と比較して、温度変化部の温度が低い。よって、時間Tが経過する前は、時間Tが経過した後と比較して、温度変化部と外気との温度差が小さいので、パフに伴う温度変化部の温度低下幅は小さいと考えられる。この点、比較的小さい閾値THに基づいてパフ検知を行うことで、パフの検知精度を向上させることが可能となる。例えば、ユーザがパフを行ったにもかかわらず検知されない、といった事態を防止することが可能となる。
 他方、時間Tが経過した後、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。図3に示すように、時間Tが経過した後は、時間Tが経過する前と比較して、温度変化部の温度が高い。よって、時間Tが経過した後は、時間Tが経過する前と比較して、温度変化部と外気との温度差が大きいので、パフに伴う温度変化部の温度低下幅は大きいと考えられる。この点、比較的大きい閾値THに基づいてパフ検知を行うことで、パフの検知精度を向上させることが可能となる。例えば、空気の流路に風が入った程度の小さな温度低下幅でパフが誤って検知されるような事態を防止することができる。
 -第2の制御例
 加熱開始から時間が経過するほど、温度変化部の温度は上昇する。ただし、温度変化部における温度分布は一様であるとは限らず、温度変化部の中には温度が高い部位と低い部位とが混在すると考えられる。例えば、温度変化部の温度が第2の目標温度に達したと検知された時点で、実際には、温度変化部には第2の目標温度に達していない部位が含まれ得る。そして、温度変化部の温度が第2の目標温度に達したと検知されてから時間が経過するほど、温度変化部のうち第2の目標温度に達していない部位が減少していく。それに伴い温度変化部全体の蓄熱量が上昇するので、外気による冷却効果が薄まり、その結果、パフに伴う温度変化部の温度低下幅は小さくなる。よって、このような温度変化部の温度分布の変化が考慮されない場合、パフの検知精度は低下してしまい得る。
 上記課題に鑑み、制御部116は、経過時間が第1の時間未満である場合に、第1のパフ検知閾値として第1の閾値を用いる。そして、制御部116は、経過時間が第1の時間以上であって第2の時間未満である場合に、第1のパフ検知閾値として第2の閾値を用いる。そして、制御部116は、経過時間が第2の時間以上である場合に、第1のパフ検知閾値として第3の閾値を用いる。かかる構成により、パフに伴う温度変化部の温度低下幅の変化に応じた検知基準の変更を実現することができるので、パフの検知精度向上が期待される。ただし、第1の閾値は、第2の閾値よりも小さい。また、第3の閾値は、第2の閾値よりも小さい。かかる構成により、図4を参照しながら詳しく説明するように、パフの検知精度を向上させることが可能である。
 図4は、本実施形態に係る第1のパフ検知閾値の第2の制御例を説明するためのグラフである。本グラフの横軸は、加熱部121による加熱が開始されてからの経過時間である。本グラフの縦軸は、温度である。線10は、温度変化部に想定される温度変化の一例である。線20は、温度変化部の実際の温度変化の一例を示す。時間Tは、第1の時間の一例である。時間Tは、第2の時間の一例である。閾値THは、第1の閾値の一例である。閾値THは、第2の閾値の一例である。閾値THは、第3の閾値の一例である。即ち、閾値THは、閾値THよりも小さい。また、閾値THは、閾値THよりも小さい。
 時間Tが経過するまで、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。かかる構成により、第1の制御例に関し上記説明したように、パフの検知精度を向上させることが可能となる。
 時間Tが経過した後であって、時間Tが経過するまでの間、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。かかる構成により、第1の制御例に関し上記説明したように、パフの検知精度を向上させることが可能となる。
 さらに、時間Tが経過した後、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。上記説明したように、温度変化部の温度が第2の目標温度に達したと検知されてから時間が経過するほど、パフに伴う温度変化部の温度低下幅は小さくなると考えられる。例えば、時間Tの時点でのパフに伴う温度低下幅は、時間Tの時点でのパフに伴う温度低下幅と比較して、小さいと考えられる。この点、閾値THよりも小さい閾値THに基づいてパフ検知を行うことで、パフの検知精度を向上させることが可能となる。例えば、ユーザがパフを行ったにもかかわらず検知されない、といった事態を防止することが可能となる。
 ここで、第3の閾値は、第1の閾値よりも大きくてもよい。即ち、閾値TH<閾値TH<閾値THであってもよい。図4に示すように、時間Tが経過した後は、時間Tが経過する前と比較して、温度変化部の温度が高い。よって、時間Tが経過した後は、時間Tが経過する前と比較して、温度変化部と外気との温度差が大きいので、パフに伴う温度変化部の温度低下幅は大きいと考えられる。この点、比較的大きい閾値THに基づいてパフ検知を行うことで、パフの検知精度を向上させることが可能となる。例えば、空気の流路に風が入った程度の小さな温度低下幅でパフが誤って検知されるような事態を防止することができる。
 (5)パフ検知に関する他の特徴
 制御部116は、経過時間が所定の時間以上になってから、パフ検知を開始してもよい。所定の時間の一例は、第1の目標温度に達した時間である。即ち、制御部116は、予備加熱が終わり本加熱に移行した後に、パフ検知を開始してもよい。図3及び図4に示した例では、制御部116は、時間Tが経過した後に、パフ検知を開始してもよい。予備加熱時は、スティック型基材150が十分に温まっておらず、エアロゾルの発生量は本加熱時と比較して少ないので、パフが行われたとしてもスティック型基材150の寿命は短くなり辛い。そのため、スティック型基材150の寿命判定のためにパフ検知を行う場合には、かかる構成により予備加熱時をパフ検知の対象から除外することで、スティック型基材150の寿命判定の精度を向上させることが可能となる。
 制御部116は、加熱部121による加熱を開始するよう指示する入力を検知した際の温度変化部の温度が所定値(以下、残熱判定閾値とも称する)以上である場合、加熱部121による加熱を実行させなくてもよい。前回の加熱と今回の加熱とのインターバルが短い場合、前回の加熱に起因する残熱が温度変化部に生じている場合がある。その状態で加熱を開始すると、パフが行われていない状態でも、温度変化部の温度は想定温度から乖離するため、パフの検知精度が低下してしまい得る。この点、かかる構成により加熱がそもそも実行されないので、パフの検知もまた実行されない。従って、パフの誤検知を防止することが可能となる。
 もちろん、制御部116は、加熱部121による加熱を開始するよう指示する入力を検知した際の温度変化部の温度が残熱判定閾値以上であっても、加熱部121による加熱を実行させてもよい。その場合、制御部116は、加熱部121による加熱を開始するよう指示する入力を検知した際の温度変化部の温度が残熱判定閾値以上であるか否かに応じて、検知基準を変更する。上述したように、前回の加熱と今回の加熱とのインターバルが短い場合、前回の加熱に起因する残熱が温度変化部に生じている場合がある。その状態で加熱を開始すると、パフが行われていない状態でも、温度変化部の温度は想定温度から乖離する。そこで、制御部116は、当該乖離を考慮した第1のパフ検知閾値を設定する。かかる構成により、前回の加熱と今回の加熱とのインターバルが短い場合であっても、パフの検知精度を維持することが可能となる。
 検知基準の変更の第1の例として、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して第2の閾値に近い値を、第1の閾値として用いてもよい。換言すると、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して高い値を、第1の閾値として用いてもよい。例えば、制御部116は、図3に示した例において、閾値THを、閾値THに近付けてもよい。残熱の影響で、第1の閾値が適用される区間におけるパフに伴う温度変化部の温度低下の態様が、第2の閾値が適用される区間におけるパフに伴う温度変化部の温度低下の態様に近付くためである。かかる構成により、パフの検知精度を維持することが可能となる。
 他方、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して第3の閾値に近い値を、第2の閾値として用いてもよい。換言すると、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して低い値を、第2の閾値として用いてもよい。例えば、制御部116は、図4に示した例において、閾値THを、閾値THに近付けてもよい。残熱の影響で、第2の閾値が適用される区間におけるパフに伴う温度変化部の温度低下の態様が、第3の閾値が適用される区間におけるパフに伴う温度変化部の温度低下の態様に近付くためである。かかる構成により、パフの検知精度を維持することが可能となる。
 検知基準の変更の第2の例として、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して早い時間を、第1の時間として用いてもよい。残熱の影響で、第2の閾値が適用されるべきタイミングが早期に到来するためである。別の観点で言えば、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して、第1の閾値を適用する期間を短縮してもよい。かかる構成により、パフの検知精度を維持することが可能となる。
 同様に、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して早い時間を、第2の時間として用いてもよい。残熱の影響で、第3の閾値が適用されるべきタイミングが早期に到来するためである。別の観点で言えば、制御部116は、温度変化部の温度が残熱判定閾値以上である場合、温度変化部の温度が残熱判定閾値未満である場合と比較して、第2の閾値を適用する期間を短縮してもよい。かかる構成により、パフの検知精度を維持することが可能となる。
 (6)処理の流れ
 図5は、本実施形態に係る吸引装置100により実行されるパフ検知処理の流れの一例を示すフローチャートである。本フローは、図4に示した例におけるパフ検知処理の流れの一例を示している。
 図5に示すように、まず、吸引装置100は、ユーザによる加熱開始指示が検知されたか否かを判定する(ステップS102)。例えば、吸引装置100は、吸引装置100に設けられたボタンが押下されたか否かを判定する。ユーザによる加熱開始指示が検知されない場合(ステップS102:NO)、吸引装置100は、ユーザによる加熱開始指示が検知されるまで待機する。
 ユーザによる加熱開始指示が検知された場合(ステップS102:YES)、吸引装置100は、加熱プロファイルに従った加熱を開始する(ステップS104)。
 次いで、吸引装置100は、時間Tが経過したか否かを判定する(ステップS106)。時間Tが経過していないと判定された場合(ステップS106:NO)、吸引装置100は、時間Tが経過するまで待機する。
 時間Tが経過したと判定された場合(ステップS106:YES)、吸引装置100は、閾値THに基づいてパフを検知する(ステップS108)。例えば、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。
 次に、吸引装置100は、時間Tが経過したか否かを判定する(ステップS110)。時間Tが経過していないと判定された場合(ステップS110:NO)、吸引装置100は、時間Tが経過するまで、ステップS108に係る処理を実行する。
 時間Tが経過したと判定された場合(ステップS110:YES)、吸引装置100は、閾値THに基づいてパフを検知する(ステップS112)。例えば、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。
 次いで、吸引装置100は、時間Tが経過したか否かを判定する(ステップS114)。時間Tが経過していないと判定された場合(ステップS114:NO)、吸引装置100は、時間Tが経過するまで、ステップS112に係る処理を実行する。
 時間Tが経過したと判定された場合(ステップS114:YES)、吸引装置100は、閾値THに基づいてパフを検知する(ステップS116)。例えば、制御部116は、温度変化部の想定温度と温度変化部の実際の温度との乖離幅TMPDIFFが閾値TH以上である場合に、パフを検知する。
 以上、パフ検知処理の流れの一例を説明した。なお、上記ステップS116にかかる処理は、加熱プロファイルに沿った加熱が終了するまで継続的に実行されてもよい。
 <<2.第2の実施形態>>
 図6は、第2の実施形態に係る吸引装置900の構成例を示すブロック図である。図6に示すように、吸引装置900は、加熱部910、温度変化部920、及び制御部930を含む。
 加熱部910は、エアロゾル源を加熱する。
 温度変化部920は、加熱部910による加熱に起因する熱によって昇温され、加熱部910により加熱されたエアロゾル源から発生したエアロゾルが吸引されることによって降温される。
 制御部930は、温度変化部920の温度低下の態様が検知基準を満たす場合に、エアロゾルが吸引されたことを検知する。とりわけ、制御部930は、加熱部910がエアロゾル源の加熱を開始してからの経過時間に基づいて検知基準を変化させる。
 続いて、本実施形態に係る吸引装置900における処理の流れを説明する。図7は、本実施形態に係る吸引装置900により実行される処理の流れの一例を示すフローチャートである。
 図7に示すように、まず、制御部930は、加熱部910がエアロゾル源の加熱を開始してからの経過時間に基づいて検知基準を変化させる(ステップS202)。
 そして、制御部930は、温度変化部920の温度低下の態様が検知基準を満たす場合に、エアロゾルが吸引されたことを検知する(ステップS204)。
 エアロゾルが吸引されたことに伴う温度変化部920の温度低下の態様は、加熱部910がエアロゾル源の加熱を開始してからの経過時間に応じて変化し得る。この点、本実施形態によれば、加熱部910がエアロゾル源の加熱を開始してからの経過時間に応じて検知基準が変化する。従って、制御部930は、エアロゾルが吸引されたことに伴う温度変化部920の温度低下の態様の変化に応じて、エアロゾルが吸引されたことを検知することができる。即ち、本実施形態によれば、エアロゾルが吸引されたことを検知する精度を向上させることが可能となる。
 従って、本実施形態においても、上述した第1の実施形態と同様な効果も奏することができる。
 <<3.まとめ>>
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、検知基準が、基準とする温度と温度変化部の温度との乖離幅が第1のパフ検知閾値以上である例を説明したが、本発明はかかる例に限定されない。例えば、検知基準は、温度変化部の温度が所定の閾値(以下、第2のパフ検知閾値とも称する)以下になることであってもよい。例えば、第2のパフ検知閾値は、温度変化部の想定温度から所定値を差し引いた値として設定されてもよい。ただし、制御部116は、上記実施形態と同様に、経過時間に応じて第2のパフ検知閾値を変化させる。かかる構成によれば、上記実施形態と同様の効果を奏することが可能となる。
 一例として、図2に示した例では、制御部116は、時間Tが経過するまでの間は、温度変化部の想定温度から閾値THを差し引いた値を、第2のパフ検知閾値として用いてもよい。同様に、制御部116は、時間Tが経過した後は、温度変化部の想定温度から閾値THを差し引いた値を、第2のパフ検知閾値として用いてもよい。
 他の一例として、図3に示した例では、制御部116は、時間Tが経過するまでの間は、温度変化部の想定温度から閾値THを差し引いた値を、第2のパフ検知閾値として用いてもよい。同様に、制御部116は、時間Tが経過した後であって時間Tが経過するまでの間は、温度変化部の想定温度から閾値THを差し引いた値を、第2のパフ検知閾値として用いてもよい。そして、制御部116は、時間Tが経過した後は、温度変化部の想定温度から閾値THを差し引いた値を、第2のパフ検知閾値として用いてもよい。
 なお、時間Tが経過するまでの間、温度変化部の想定温度は上昇するので、それに伴い第2のパフ検知閾値も上昇することとなる。これに代えて、時間Tが経過するまでの間、第2のパフ検知閾値として固定値が使用されてもよい。かかる構成によれば、第2のパフ検知閾値を制御するための処理負荷を軽減することができる。また、温度変化部の想定温度に基づいて、第2のパフ検知閾値が予め設定されていてもよい。
 他にも例えば、上記実施形態では、検知基準が加熱開始からの経過時間に応じて変化されるものと説明したが、本発明はかかる例に限定されない。例えば、制御部116は、加熱開始からの経過時間と共に、又は代えて、加熱開始からの経過時間における温度変化部の想定温度に基づいて、検知基準を変化させてもよい。一例として、温度変化部の想定温度は、第2の目標温度に達した後に、さらに上昇又は低下してもよい。その場合、制御部116は、かかる想定温度の変化に応じて検知基準を変化させる。例えば、制御部116は、温度変化部の想定温度が低下するほど、第1のパフ検知閾値を小さくしてもよい。温度変化部の想定温度が低下するほど、温度変化部と外気との間に想定される温度差が小さくなり、パフに伴う温度変化部の温度低下幅は小さくなることが想定されるためである。他方、制御部116は、温度変化部の想定温度が上昇するほど、第1のパフ検知閾値を大きくしてもよい。温度変化部の想定温度が上昇するほど、温度変化部と外気との間に想定される温度差が大きくなり、パフに伴う温度変化部の温度低下幅は大きくなることが想定されるためである。かかる構成によれば、温度変化部の想定温度に応じて変化する温度変化部と外気との間に想定される温度差に応じた適切な検知基準を使用することができるので、パフの検知精度を向上させることが可能である。
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、コンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
 100  吸引装置
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 121  加熱部
 140  保持部
 141  内部空間
 142  開口
 143  底部
 144  断熱部
 150  スティック型基材
 151  基材部
 152  吸口部

Claims (19)

  1.  エアロゾル源を加熱する加熱部と、
     前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、
     前記温度変化部の温度低下の態様が検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知する制御部と、
    を備え、
     前記制御部は、前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて前記検知基準を変化させる、
    吸引装置。
  2.  前記制御部は、予め定められた加熱プロファイルに沿って加熱するよう前記加熱部を制御し、且つ前記加熱部が前記加熱プロファイルに沿った加熱を開始してからの経過時間に基づいて前記検知基準を変化させる、
     請求項1に記載の吸引装置。
  3.  前記検知基準は、基準とする温度と前記温度変化部の温度との乖離幅が所定の閾値以上であることである、
     請求項1又は2に記載の吸引装置。
  4.  前記制御部は、前記所定の閾値として、前記経過時間が第1の時間未満である場合に第1の閾値を用い、前記経過時間が前記第1の時間以上である場合に第2の閾値を用いる、
     請求項3に記載の吸引装置。
  5.  前記第1の閾値は、前記第2の閾値よりも小さい、
     請求項4に記載の吸引装置。
  6.  前記制御部は、前記所定の閾値として、前記経過時間が前記第1の時間以上であって第2の時間未満である場合に前記第2の閾値を用い、前記経過時間が前記第2の時間以上である場合に第3の閾値を用いる、
     請求項4又は5に記載の吸引装置。
  7.  前記第3の閾値は、前記第2の閾値よりも小さい、
     請求項6に記載の吸引装置。
  8.  前記第3の閾値は、前記第1の閾値よりも大きい、
     請求項6又は7に記載の吸引装置。
  9.  前記制御部は、前記加熱部による加熱を開始するよう指示する入力を検知した際の前記温度変化部の温度が所定値以上である場合、前記加熱部による前記加熱を実行させない、
     請求項1~8のいずれか一項に記載の吸引装置。
  10.  前記制御部は、前記加熱部による加熱を開始するよう指示する入力を検知した際の前記温度変化部の温度が所定値以上であるか否かに応じて、前記検知基準を変更する、
     請求項1~8のいずれか一項に記載の吸引装置。
  11.  前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して前記第2の閾値に近い値を、前記第1の閾値として用いる、
     請求項4~8のいずれか一項を引用する請求項10に記載の吸引装置。
  12.  前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して前記第3の閾値に近い値を、前記第2の閾値として用いる、
     請求項6~8のいずれか一項を引用する請求項10に記載の吸引装置。
  13.  前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して早い時間を、前記第1の時間として用いる、
     請求項4~8のいずれか一項を引用する請求項10に記載の吸引装置。
  14.  前記制御部は、前記温度変化部の温度が前記所定値以上である場合、前記温度変化部の温度が前記所定値未満である場合と比較して早い時間を、前記第2の時間として用いる、
     請求項6~8のいずれか一項を引用する請求項10に記載の吸引装置。
  15.  前記検知基準は、前記温度変化部の温度が所定の閾値以下になることである、
     請求項1又は2に記載の吸引装置。
  16.  前記制御部は、前記経過時間が所定の時間以上になってから、前記エアロゾルが吸引されたことの検知を開始する、
     請求項1~15のいずれか一項に記載の吸引装置。
  17.  前記制御部は、前記経過時間における前記温度変化部の温度として想定される温度にさらに基づいて、前記検知基準を変化させる、請求項1~16のいずれか一項に記載の吸引装置。
  18.  エアロゾル源を加熱する加熱部と、前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、を有する吸引装置を制御する制御方法であって、
     前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて検知基準を変化させることと、
     前記温度変化部の温度低下の態様が前記検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知することと、
    を含む制御方法。
  19.  エアロゾル源を加熱する加熱部と、前記加熱部による加熱に起因する熱によって昇温され、前記加熱部により加熱された前記エアロゾル源から発生したエアロゾルが吸引されることによって降温される温度変化部と、を有する吸引装置を制御するコンピュータに、
     前記加熱部が前記エアロゾル源の加熱を開始してからの経過時間に基づいて検知基準を変化させる処理と、
     前記温度変化部の温度低下の態様が前記検知基準を満たす場合に、前記エアロゾルが吸引されたことを検知する処理と、
    を実行させるためのプログラム。
     
PCT/JP2020/018065 2020-04-28 2020-04-28 吸引装置、制御方法、及びプログラム WO2021220384A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/018065 WO2021220384A1 (ja) 2020-04-28 2020-04-28 吸引装置、制御方法、及びプログラム
JP2022518472A JP7284347B2 (ja) 2020-04-28 2020-04-28 吸引装置、制御方法、及びプログラム
EP20933376.4A EP4074200A4 (en) 2020-04-28 2020-04-28 INHALATION DEVICE, CONTROL METHOD AND PROGRAM
TW109130427A TW202139866A (zh) 2020-04-28 2020-09-04 吸嚐裝置、控制方法及程式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018065 WO2021220384A1 (ja) 2020-04-28 2020-04-28 吸引装置、制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2021220384A1 true WO2021220384A1 (ja) 2021-11-04

Family

ID=78373440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018065 WO2021220384A1 (ja) 2020-04-28 2020-04-28 吸引装置、制御方法、及びプログラム

Country Status (4)

Country Link
EP (1) EP4074200A4 (ja)
JP (1) JP7284347B2 (ja)
TW (1) TW202139866A (ja)
WO (1) WO2021220384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193647A1 (zh) * 2022-04-07 2023-10-12 深圳市合元科技有限公司 气溶胶产生装置及统计用户的抽吸口数的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507477A (ja) * 2011-12-30 2015-03-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消費量を監視及びフィードバックするエアロゾル発生システム
WO2018190586A2 (ko) * 2017-04-11 2018-10-18 주식회사 케이티앤지 퍼프 인식을 통한 적응적인 피드백을 제공하는 에어로졸 생성 디바이스 및 방법
WO2019208536A1 (ja) * 2018-04-26 2019-10-31 日本たばこ産業株式会社 ヒータアッセンブリ及び容器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109789285B (zh) * 2016-08-05 2023-01-20 尤尔实验室有限公司 蒸发器的风速辅助控制

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507477A (ja) * 2011-12-30 2015-03-12 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消費量を監視及びフィードバックするエアロゾル発生システム
JP6143784B2 (ja) 2011-12-30 2017-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 消費量を監視及びフィードバックするエアロゾル発生システム
WO2018190586A2 (ko) * 2017-04-11 2018-10-18 주식회사 케이티앤지 퍼프 인식을 통한 적응적인 피드백을 제공하는 에어로졸 생성 디바이스 및 방법
WO2019208536A1 (ja) * 2018-04-26 2019-10-31 日本たばこ産業株式会社 ヒータアッセンブリ及び容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193647A1 (zh) * 2022-04-07 2023-10-12 深圳市合元科技有限公司 气溶胶产生装置及统计用户的抽吸口数的方法

Also Published As

Publication number Publication date
JPWO2021220384A1 (ja) 2021-11-04
EP4074200A4 (en) 2023-09-13
TW202139866A (zh) 2021-11-01
EP4074200A1 (en) 2022-10-19
JP7284347B2 (ja) 2023-05-30

Similar Documents

Publication Publication Date Title
KR102542903B1 (ko) 전자담배 제어 방법, 전자 흡연 도구 및 컴퓨터 저장 매체
WO2021260894A1 (ja) 吸引装置、制御方法、及びプログラム
WO2021220384A1 (ja) 吸引装置、制御方法、及びプログラム
WO2021186603A1 (ja) 制御装置、制御方法、及びプログラム
WO2021260897A1 (ja) 吸引装置、制御方法、及びプログラム
TW202236986A (zh) 吸嚐裝置、控制方法及程式
WO2024095476A1 (ja) エアロゾル生成システム、制御方法及びプログラム
WO2022219673A1 (ja) 制御装置、制御方法、及びプログラム
WO2023223378A1 (ja) エアロゾル生成システム、及び制御方法
WO2023181280A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2023181180A1 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2023181179A1 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2022130599A1 (ja) 吸引装置、端末装置、及びプログラム
WO2022130602A1 (ja) 吸引装置、端末装置、及びプログラム
WO2022130600A1 (ja) 吸引装置、端末装置、及びプログラム
WO2022130601A1 (ja) 吸引装置、端末装置、及びプログラム
WO2022130598A1 (ja) 吸引装置、端末装置、及びプログラム
WO2024127487A1 (ja) 端末装置及び制御方法
RU2782818C1 (ru) Устройство управления, способ управления и программа
WO2023073932A1 (ja) 吸引装置、基材、及び制御方法
WO2024127488A1 (ja) 端末装置及び制御方法
WO2024024004A1 (ja) エアロゾル生成システム、制御方法、及びプログラム
WO2022130493A1 (ja) 吸引装置、制御方法、及びプログラム
WO2024038528A1 (ja) 吸引装置、制御方法、及びプログラム
WO2024089799A1 (ja) エアロゾル生成システム、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518472

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020933376

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE