WO2023197631A1 - 基于薄膜光子晶体的结构色隐形眼镜及其制备方法 - Google Patents

基于薄膜光子晶体的结构色隐形眼镜及其制备方法 Download PDF

Info

Publication number
WO2023197631A1
WO2023197631A1 PCT/CN2022/137078 CN2022137078W WO2023197631A1 WO 2023197631 A1 WO2023197631 A1 WO 2023197631A1 CN 2022137078 W CN2022137078 W CN 2022137078W WO 2023197631 A1 WO2023197631 A1 WO 2023197631A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact lens
methacrylate
film
structural color
thin film
Prior art date
Application number
PCT/CN2022/137078
Other languages
English (en)
French (fr)
Inventor
杜学敏
黄超
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023197631A1 publication Critical patent/WO2023197631A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • B29D11/00903Applying coatings; tinting; colouring colouring or tinting on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00923Applying coatings; tinting; colouring on lens surfaces for colouring or tinting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection

Definitions

  • the invention belongs to the technical field of contact lenses, and in particular relates to a structural color contact lens based on thin film photonic crystals and a preparation method thereof.
  • cosmetic contact lenses have two problems: First, the added pigments or pigments can easily cause discomfort to the human cornea (such as foreign body sensation, congestion, fatigue, secretions, etc.), and in severe cases may even cause allergies in patients. reaction, and then cause infection; secondly, the color of the contact lenses currently on the market is relatively single, which cannot meet people's demand for multi-color contact lenses. Recently, Shen et al. reported a novel method for preparing structural color contact lenses: polymer colloid particles with a core-shell structure are introduced into the contact lenses to form an opal photonic crystal structure. The prepared contact lenses can show bright colors.
  • the use of chemically synthesized polymer microspheres has the following two problems: First, the colloidal particles are prone to defects during the self-assembly process, which affects the quality of the structural color, making it difficult to prepare in large quantities and reduce costs, and the resulting structural color contact lenses Reliability and safety cannot be guaranteed; secondly, there is a difference in the refractive index between the colloidal particles and the contact lens base material, which affects the light transmittance of the contact lens, especially in low-light scenes, which reduces the practicality. Therefore, it is particularly urgent to develop new structural color contact lens materials.
  • the object of the present invention is to provide a structural color contact lens based on thin film photonic crystals and a preparation method thereof.
  • a single-layer or multi-layer film is constructed on the contact lens substrate, and the optical path difference is caused by the difference in refractive index, thereby generating a photonic crystal structure on the surface of the contact lens to form a structural color.
  • the present invention provides a structural color contact lens based on thin film photonic crystals, the iris area and/or pupil area of the contact lens contains a photonic crystal structure, and the photonic crystal structure forms a structural color in the contact lens;
  • the contact lens includes a contact lens base material and a film formed in the iris area and/or pupil area of the contact lens base material, the film is formed on the convex surface and/or concave surface of the contact lens base material; the photonic crystal structure Made of the film.
  • the film is selected from any one of polymer films, metal oxide films, polyelectrolyte films, ceramic films, metal films and alloy films;
  • the polymer is selected from polymethyl methacrylate, polyhydroxyethyl methacrylate, poly-2-hydroxypropyl methacrylate, polyethoxyethyl methacrylate, polyhydroxypropyl Methylcellulose, polyhydroxymethylcellulose, polydimethylaminoethyl methacrylate, polyethylene glycol dimethacrylate, polyisobornyl methacrylate, polycellulose acetate butyrate, polysiloxane Alkyl methacrylate, polyfluorosilicone methacrylate, polyperfluoroether, polyN-vinylpyrrolidone, polyvinyl alcohol, polyglycidyl methacrylate, silicone, polyoxyethylene, polydimethylsiloxane Alkane, polyparaxylene, polylactic acid, polyethylene glycol, polypropylene oxide, polycaprolactone-polyacrylic acid, polylactide, poly(lactide-glycolide), polyacrylamide, polyN- Iso
  • polyamino acids include poly-L-lysine, poly-L-glutamic acid, etc.;
  • the metal oxide is selected from at least one oxide of iron, cobalt, nickel, titanium, magnesium, chromium, strontium, manganese, neodymium, cerium, lanthanum and praseodymium;
  • the polyelectrolyte is selected from the group consisting of polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl phosphoric acid, polyethylene imine, polyvinyl amine, polyvinyl pyridine, polyphosphate and polyethylene phosphate. at least one type of silicate;
  • the ceramic is selected from at least one of silicon nitride, aluminum oxide, silicon carbide, boron nitride and zirconium oxide ceramics;
  • the metal is selected from at least one of iron, gold, copper, silver, titanium, magnesium, zinc, calcium, yttrium, neodymium, zirconium, scandium, gadolinium, erbium, tantalum, niobium, molybdenum, cobalt, chromium and tin.
  • the alloy is selected from any of iron, gold, copper, silver, titanium, magnesium, zinc, calcium, yttrium, neodymium, zirconium, scandium, gadolinium, erbium, tantalum, niobium, molybdenum, cobalt, chromium and tin Alloys of several compositions.
  • the total thickness of the film is 1 nm-100 ⁇ m.
  • the thickness of the film is 1 nm, 100 nm, 1 ⁇ m, 10 ⁇ m, 100 ⁇ m, or any thickness in between.
  • the number of layers of the film is 1-100 layers.
  • the number of layers of the film is 1 layer, 10 layers, 20 layers, 30 layers, 40 layers, 50 layers, 60 layers, 70 layers, 80 layers, 90 layers, 100 layers or they any number of layers in between.
  • the present invention provides a method for preparing the above-mentioned structural color contact lenses based on thin film photonic crystals, which includes the following steps:
  • step (3) Soak the contact lens containing the thin film obtained in step (2) in salt water until the expansion rate is stable to obtain a structural color contact lens based on thin film photonic crystals.
  • the material of the contact lens mold is selected from any one of glass, quartz, polypropylene, polystyrene, polyethylene terephthalate and polycarbonate.
  • the contact lens precursor solution is selected from (a) a solution containing a polymer; or (b) a polymerization solution containing a polymer monomer, an initiator and a cross-linking agent;
  • the polymer is selected from polymethyl methacrylate, polyhydroxyethyl methacrylate, poly-2-hydroxypropyl methacrylate, polyethoxyethyl methacrylate, polyhydroxypropyl Methylcellulose, polyhydroxymethylcellulose, polydimethylaminoethyl methacrylate, polyethylene glycol dimethacrylate, polyisobornyl methacrylate, polycellulose acetate butyrate, polysiloxane Alkyl methacrylate, polyfluorosilicone methacrylate, polyperfluoroether, polyN-vinylpyrrolidone, polyvinyl alcohol, polyglycidyl methacrylate, silicone, polyoxyethylene, polydimethylsiloxane Alkane, polyparaxylene, polylactic acid, polyethylene glycol, polypropylene oxide, polycaprolactone-polyacrylic acid, polylactide, poly(lactide-glycolide), polyacrylamide, polyN- Iso
  • polyamino acids include poly-L-lysine, poly-L-glutamic acid, and the like.
  • the initiator is selected from any one of inorganic peroxide initiators, azo initiators, peroxide initiators, and photoinitiators.
  • Physical initiators include but are not limited to ammonium persulfate, sodium persulfate, and potassium persulfate;
  • the azo initiators include but are not limited to azobisisobutyronitrile and azobisisoheptanitrile;
  • the peroxide Initiators include, but are not limited to, benzoyl peroxide and cyclohexanone peroxide;
  • photoinitiators include, but are not limited to, diethoxyacetophenone, 2-hydroxy-4-(2-hydroxyethoxy) -2-Methylpropiophenone, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide.
  • the cross-linking agent is selected from at least one of methylene bisacrylamide, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, divinylbenzene and derivatives thereof.
  • the adhesion promoter is selected from titanate coupling agent, silane coupling agent, zirconium aluminate coupling agent, isocyanate coupling agent, amide coupling agent and epoxy. Any kind of base coupling agent.
  • the post-processing method is selected from one or more of ion sputtering deposition, vapor deposition, vacuum sputtering coating, spin coating film formation, tape casting film formation, and ion beam evaporation deposition. .
  • the film formed by the post-processing can be any one of a polymer film, a metal oxide film, a polyelectrolyte film, a ceramic film and a metal film.
  • the brine is selected from the group consisting of sodium chloride aqueous solution with a mass fraction of 0.1-10.0%, sodium dihydrogen phosphate aqueous solution with a mass fraction of 0.1-10.0%, and phosphoric acid with a mass fraction of 0.1-10.0%. Any one of disodium hydrogen aqueous solutions.
  • the initial contact lens containing a single-layer or multi-layer film is soaked in salt water with a pH of 5.0-9.0 for 2-24 hours.
  • the total thickness of the film is 1 nm-100 ⁇ m.
  • the thickness of the film is 1 nm, 100 nm, 1 ⁇ m, 10 ⁇ m, 100 ⁇ m, or any thickness in between.
  • the number of layers of the film is 1-100 layers.
  • the number of layers of the film is 1 layer, 10 layers, 20 layers, 30 layers, 40 layers, 50 layers, 60 layers, 70 layers, 80 layers, 90 layers, 100 layers or they any number of layers in between.
  • the present invention by performing post-processing on the contact lens primary lens obtained after polymerization and curing, metals, metal oxides and other raw materials that can be used as contact lenses are compounded into a single layer or multiple layers on the surface of the contact lens primary lens.
  • the optical path difference is generated by matching the visible light wavelength to form a photonic crystal structure, thereby preparing a contact lens with structural color.
  • the present invention can also coat the surface of the primary contact lens lens. After applying the adhesion promoter, post-processing is performed. The adhesion promoter can improve the bonding strength between the films and prevent the films from falling off between each other and from the substrate.
  • the structural color contact lenses based on thin film photonic crystals provided by the present invention cover the surface of the contact lens with a single or multi-layer periodic dielectric film to generate an optical path difference and form a stable structural color, which is safe and reliable for the human body;
  • the contact lenses provided by the present invention, there are single or multiple layers of thin films with different refractive index from the base material of the contact lens, resulting in structural color, which can beautify the pupil while correcting vision, and at the same time, the thin film structure can block parts that are harmful to human eyes.
  • the light in this band ensures the long-term health of the cornea;
  • the contact lens provided by the present invention introduces a single-layer multi-layer film as a photonic crystal structure, the thickness of the film will change accordingly during changes in the intraocular environment, thereby causing a change in structural color, and has the characteristic of variable structural color.
  • the method for preparing structural color contact lenses based on thin film photonic crystals provided by the present invention generates optical path differences by forming multiple layers of thin films on the surface of the lens to form a photonic crystal structure with structural color. Compared with existing technical solutions, it has the following advantages: :
  • the present invention uses commonly used contact lens preparation materials as raw materials.
  • the prepared contact lenses have high transparency, form structural colors while ensuring light transmittance, and can still be used normally under insufficient light conditions.
  • the present invention forms photonic crystal microstructures through film-forming technology, which is safer, more controllable, and has a high yield than existing self-assembly methods and thin film processing methods, and the photonic crystal structure obtained by this method has fewer defects. .
  • the single-layer or multi-layer film provided by the present invention is manufactured by one-way additive manufacturing. Compared with the colloidal multi-layer self-assembly method, it is easier to control, has a simple process, does not require additional chemical solvents, and is suitable for wear.
  • Figure 1 is a schematic structural diagram of the contact lens in Example 1.
  • Figure 2 is a schematic structural diagram of the contact lens in Example 3.
  • a polycarbonate contact lens mold which includes an upper mold and a lower mold that can be separated.
  • the upper mold has a convex spherical surface and the lower mold has a concave spherical surface.
  • the structure of the contact lens in this embodiment is shown in Figure 1: I is the pupil area, II is the iris area, the contact lens contains a photonic crystal structure, and the photonic crystal structure is a uniformly arranged film.
  • the thickness of the film is 30 ⁇ m.
  • the crystal structure color is distributed as a color element on the outer convex surface and/or the inner concave surface of the contact lens.
  • the film can be compounded to the pupil area I and/or the iris area II of the contact lens by selecting different molds.
  • a polypropylene contact lens mold which includes an upper mold and a lower mold that can be separated.
  • the upper mold has a convex spherical surface and the lower mold has a concave spherical surface.
  • Add the contact lens prepolymer solution to the mold. Methyl methacrylate, using 2-hydroxy-2-methyl-1-phenyl-1-propanone (Photoinitiator 1173, mass 0.2% of methyl methacrylate) as initiator, added to the contact lens mold In the process, the primary contact lens is obtained by curing with 254nm UV light for 30 minutes;
  • the contact lens obtained in this embodiment contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with a periodic arrangement and a thickness of 50 ⁇ m.
  • the photonic crystal structure color is distributed as a color element in the contact lens.
  • a contact lens mold made of polymethyl methacrylate.
  • the mold includes an upper mold and a lower mold that can be separated.
  • the upper mold has a convex spherical surface and the lower mold has a concave spherical surface.
  • Prepolymer solution Polydimethylsiloxane (PDMS) and silicone rubber (Sylgard 184B, used as a curing agent) are mixed in a mass ratio of 10:1, then the above mixture is mixed with n-hexane in a volume ratio of 1:1.
  • the contact lens prepolymer is ready for use. Take 150 microliters of the prepolymer solution, add it to the contact lens mold, and heat-cure at 50°C for 120 minutes to obtain the primary contact lens;
  • the contact lens obtained in this example contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with periodic arrangement.
  • the structural color can be observed when the number of film layers ranges from 1 to 100.
  • the corresponding film thickness range is 300 nm- 30 ⁇ m, the photonic crystal structural color is distributed as a color element on the outer convex surface and inner concave surface of the contact lens.
  • the structure of the contact lens in this embodiment is shown in Figure 2. By selecting different molds, the film can be compounded to the pupil area I and/or the iris area II of the contact lens.
  • the contact lens obtained in this embodiment contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with periodic arrangement and a thickness of 20 ⁇ m. It is distributed as color elements in the contact lens.
  • the contact lens obtained in this embodiment contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with periodic arrangement.
  • the thickness of the film is 10 ⁇ m – 200 ⁇ m.
  • the photonic crystal structure color is distributed as a color element in the contact lens.
  • a polystyrene contact lens mold which includes an upper mold and a lower mold that can be separated.
  • the upper mold has a convex spherical surface and the lower mold has a concave spherical surface.
  • contact lens prepolymer to the mold.
  • the contact lens obtained in this example contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with periodic arrangement and a thickness of 40 ⁇ m. It is distributed as color elements in the contact lens.
  • a polystyrene contact lens mold which includes an upper mold and a lower mold that can be separated.
  • the upper mold has a convex spherical surface and the lower mold has a concave spherical surface.
  • the agent is added to the contact lens mold and cured by 365nm ultraviolet light for 30 minutes to obtain the primary contact lens;
  • the contact lens obtained in this embodiment contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with periodic arrangement and a thickness of 100 ⁇ m. It is distributed as color elements in the contact lens.
  • a polystyrene contact lens mold which includes an upper mold and a lower mold that can be separated.
  • the upper mold has a convex spherical surface and the lower mold has a concave spherical surface.
  • the contact lens obtained in this embodiment contains a photonic crystal structure inside.
  • the photonic crystal structure is a uniform thin film with periodic arrangement and a thickness of 1 nm. It is distributed as color elements in the contact lens.
  • the contact lenses with photonic crystal structure colors obtained in Examples 1 to 5 of the present invention were subjected to a light transmittance test, and the results showed that the transmittance of white light reached more than 90%.
  • the contact lenses with photonic crystal structure colors obtained in Examples 1 to 5 of the present invention were tested for water content, and the results showed that the water content was higher than 60%.
  • the contact lenses with photonic crystal structure colors obtained in Examples 1 to 5 of the present invention were tested for oxygen permeability, and the results showed that the oxygen permeability was as high as 150 Dk/t.
  • Cytotoxicity testing can be prepared to objectively reflect the potential toxicity of the test sample. This method is tested according to the IS09363-1 method to examine the cytotoxicity of contact lenses. In this method, the cytotoxicity reaction is divided into levels of 0-4, with higher levels. The lower the value, the higher the safety of the material being tested.
  • the cytotoxicity of the contact lenses with photonic crystal structural colors obtained in Examples 1 to 5 of the present invention was compared with the commercially available Haichang ultra-thin contact lenses. The results showed that the cytotoxicity of the structural color contact lenses of the present invention was as good as that of the commercially available Haichang ultra-thin contact lenses. Ultra-thin contact lenses are all grade 0, indicating that the safety of the contact lenses of the present invention meets human body standards.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种基于薄膜光子晶体的结构色隐形眼镜及其制备方法,其中,隐形眼镜的虹膜区和/或瞳孔区含有光子晶体结构,光子晶体结构在隐形眼镜中形成结构色;隐形眼镜包括隐形眼镜基材和形成于隐形眼镜基材的虹膜区和/或瞳孔区的薄膜,薄膜形成于隐形眼镜基材的凸面和/或凹面;光子晶体结构由薄膜构成。通过在聚合固化的隐形眼镜表面复合单层或多层薄膜,形成光子晶体结构,利用薄膜与隐形眼镜基材间的光程差产生物理结构色,实现彩色隐形眼镜镜片的成色。提供的制备方法无额外添加化学助剂,制备过程简洁高效,可控性强、成品率高,制备的隐形眼镜安全性高、透光率好适于人体佩戴。

Description

基于薄膜光子晶体的结构色隐形眼镜及其制备方法 技术领域
本发明属于隐形眼镜技术领域,尤其涉及一种基于薄膜光子晶体的结构色隐形眼镜及其制备方法。
背景技术
随着生活水平的快速提高,人们对于眼镜不再单纯地追求实用性,而更加追求美观性和安全性,其中隐形眼镜在过去的几十年内快速发展,市场份额增长至超过1.4亿人,成为人们在追求能看清世界之外,同时兼具美感、便利的象征。最初由强生公司推出、为亚洲市场设计的美容镜片(又称“美瞳”)通过在隐形眼镜中添加色素或颜料,使得眼睛看上去角膜颜色发生了改变从而更加迷人,逐渐受到爱美人士的欢迎。
现有技术中,美瞳产品存在两个问题:一是添加的色素或颜料易造成人体角膜的不适(如异物感、充血、疲劳感、产生分泌物等症状),严重的甚至引起患者的过敏反应,继而引发感染;二是目前市面上美瞳的颜色较为单一,无法满足人们对多色美瞳的需求。最近,Shen et al.报道了一种新颖制备结构色隐形眼镜的制备方法:将核壳结构的聚合物胶体粒子引入到隐形眼镜中形成蛋白石光子晶体结构,制备得到的隐形眼镜能够呈现出艳丽的结构色(Shen, X., Du, J., Sun, J., Guo, J., Hu, X., & Wang, C. (2020). Transparent and UV Blocking Structural Colored Hydrogel for Contact Lenses. ACS Applied Materials & Interfaces, 12(35), 39639-39648)。然而,采用化学合成的聚合物微球存在以下两个问题:其一是胶体粒子在自组装过程中容易形成缺陷,影响结构色质量,难以大批量制备、降低成本,且得到的结构色隐形眼镜可靠性、安全性无法得到保障;其二是胶体粒子与隐形眼镜基材折射率存在差异,从而影响到隐形眼镜的透光率,尤其在光线不足的场景中降低了实用性。因此,研发新型的结构色隐形眼镜材料尤为迫切。
技术问题
鉴于此,本发明的目的在于提供一种基于薄膜光子晶体的结构色隐形眼镜及其制备方法。本发明通过在隐形眼镜基材上构建单层或多层薄膜,通过折射率差异导致光程差,进而在隐形眼镜表面产生光子晶体结构形成结构色。
技术解决方案
为了达到上述目的,本发明的技术方案为:
一方面,本发明提供一种基于薄膜光子晶体的结构色隐形眼镜,所述隐形眼镜的虹膜区和/或瞳孔区含有光子晶体结构,所述光子晶体结构在所述隐形眼镜中形成结构色;
所述隐形眼镜包括隐形眼镜基材和形成于隐形眼镜基材的虹膜区和/或瞳孔区的薄膜,所述薄膜形成于所述隐形眼镜基材的凸面和/或凹面;所述光子晶体结构由所述薄膜构成。
优选地,所述薄膜选自聚合物薄膜、金属氧化物薄膜、聚电解质薄膜、陶瓷薄膜、金属薄膜和合金薄膜中的任一种;
优选地,所述聚合物选自聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚甲基丙烯酸-2-羟基丙酯、聚乙氧基乙基甲基丙烯酸酯、聚羟丙基甲基纤维素、聚羟甲基纤维素、聚甲基丙烯酸二甲氨基乙酯、聚二甲基丙烯酸乙二醇酯、聚甲基丙烯酸异冰片酯、聚醋酸丁酸纤维素、聚硅氧烷甲基丙烯酸酯、聚氟硅甲基丙烯酸酯、聚全氟醚、聚N-乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸缩水甘油酯、硅胶、聚氧乙烯、聚二甲基硅氧烷、聚对二甲苯、聚乳酸、聚乙二醇、聚环氧丙烷、聚己内酯-聚丙烯酸、聚丙交酯、聚(丙交酯-乙交酯)、聚丙烯酰胺、聚N-异丙基丙烯酰胺、胆碱、透明质酸、胶原、明胶、瓜胶、聚磷腈、海藻酸钠、壳聚糖、透明质酸、海藻酸、纤维素、琼脂糖、聚葡萄糖、聚氨基酸、和纤维蛋白中的任一种或任意几种的共聚物;
其中,聚氨基酸可列举出聚L-赖氨酸、聚L-谷氨酸等;
优选地,所述金属氧化物选自铁、钴、镍、钛、镁、铬、锶、锰、钕、铈、镧和镨的氧化物中的至少一种;
优选地,所述聚电解质选自聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、聚乙烯磺酸、聚乙烯磷酸、聚乙烯亚胺、聚乙烯胺、聚乙烯吡啶、聚磷酸盐和聚硅酸盐中的至少一种;
优选地,所述陶瓷选自氮化硅、氧化铝、碳化硅、氮化硼和氧化锆陶瓷中的至少一种;
优选地,所述金属选自铁、金、铜、银、钛、镁、锌、钙、钇、钕、锆、钪、钆、铒、钽、铌、钼、钴、铬和锡中的至少一种;
优选地,所述合金选自铁、金、铜、银、钛、镁、锌、钙、钇、钕、锆、钪、钆、铒、钽、铌、钼、钴、铬和锡中的任意几种组成的合金。
优选地,所述薄膜的总厚度为1 nm-100 μm。在某些具体的实施例中,所述薄膜的厚度为1 nm、100 nm、1 μm、10 μm、100 μm或它们之间的任意厚度。
优选地,所述薄膜的层数为1-100层。
在某些具体的实施例中,所述薄膜的层数为1层、10层、20层、30层、40层、50层、60层、70层、80层、90层、100层或它们之间的任意层数。
另一方面,本发明提供上述基于薄膜光子晶体的结构色隐形眼镜的制备方法,包括如下步骤:
(1)将隐形眼镜前驱体溶液加入到隐形眼镜模具中,聚合固化,获得隐形眼镜初片;
(2)在步骤(1)得到的隐形眼镜初片的凸面和/或凹面旋涂附着力促进剂然后进行后处理,形成薄膜,产生结构色;或,在步骤(1)得到的隐形眼镜初片的凸面和/或凹面进行后处理,形成薄膜,产生结构色;
(3)将步骤(2)得到的含有薄膜的隐形眼镜初片置于盐水中浸泡至膨胀率稳定不变,即可得到基于薄膜光子晶体的结构色隐形眼镜。
优选地,所述隐形眼镜模具的材质选自玻璃、石英、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯和聚碳酸酯中的任一种。
优选地,步骤(1)中,所述隐形眼镜前驱体溶液选自(a)包含聚合物的溶液;或,(b)包含聚合物单体、引发剂和交联剂的聚合溶液;
优选地,所述聚合物选自聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚甲基丙烯酸-2-羟基丙酯、聚乙氧基乙基甲基丙烯酸酯、聚羟丙基甲基纤维素、聚羟甲基纤维素、聚甲基丙烯酸二甲氨基乙酯、聚二甲基丙烯酸乙二醇酯、聚甲基丙烯酸异冰片酯、聚醋酸丁酸纤维素、聚硅氧烷甲基丙烯酸酯、聚氟硅甲基丙烯酸酯、聚全氟醚、聚N-乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸缩水甘油酯、硅胶、聚氧乙烯、聚二甲基硅氧烷、聚对二甲苯、聚乳酸、聚乙二醇、聚环氧丙烷、聚己内酯-聚丙烯酸、聚丙交酯、聚(丙交酯-乙交酯)、聚丙烯酰胺、聚N-异丙基丙烯酰胺、胆碱、透明质酸、胶原、明胶、瓜胶、聚磷腈、海藻酸钠、壳聚糖、透明质酸、海藻酸、纤维素、琼脂糖、聚葡萄糖聚氨基酸和纤维蛋白中的任一种或任意几种的共聚物;
其中,聚氨基酸可列举出聚L-赖氨酸、聚L-谷氨酸等。
在某些具体的实施方式中,所述引发剂选自无机过氧化物类引发剂、偶氮类引发剂、过氧化物类引发剂、光引发剂中的任意一种,所述无机过氧化物类引发剂包括但不限于过硫酸铵、过硫酸钠、过硫酸钾;所述偶氮类引发剂包括但不限于偶氮二异丁腈、偶氮二异庚腈;所述过氧化物类引发剂包括但不限于过氧化苯甲酰、过氧化环己酮;所述光引发剂包括但不限于二乙氧基苯乙酮、2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦。
优选地,所述交联剂选自甲叉双丙烯酰胺、乙二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯、二乙烯基苯及其衍生物中的至少一种。
优选地,步骤(2)中,所述附着力促进剂选自钛酸酯偶联剂、硅烷偶联剂、铝酸锆偶联剂、异氰酸酯类偶联剂、酰胺类偶联剂和环氧基偶联剂的任意一种。
优选地,步骤(2)中,所述后处理方法选自离子溅射沉积、气相沉积、真空溅射镀膜、旋涂成膜、流延成膜、离子束蒸发沉积中的一种或几种。
在本发明的技术方案中,所述后处理形成的薄膜可以为聚合物薄膜、金属氧化物薄膜、聚电解质薄膜、陶瓷薄膜和金属薄膜中的任一种。
优选地,步骤(3)中,所述盐水选自质量分数为0.1-10.0%的氯化钠水溶液、质量分数为0.1-10.0%的磷酸二氢钠水溶液和质量分数为0.1-10.0%的磷酸氢二钠水溶液中的任意一种。
具体地,将含有单层或多层薄膜的隐形眼镜初片置于pH为5.0-9.0的盐水中浸泡2-24小时。
优选地,步骤(2)中,所述薄膜的总厚度为1nm-100µm。
在某些具体的实施例中,所述薄膜的厚度为1 nm、100 nm、1 μm、10 μm、100 μm或它们之间的任意厚度。
优选地,步骤(2)中,所述薄膜的层数为1-100层。
在某些具体的实施例中,所述薄膜的层数为1层、10层、20层、30层、40层、50层、60层、70层、80层、90层、100层或它们之间的任意层数。
在本发明的技术方案中,通过在聚合固化后得到的隐形眼镜初片上进行后处理,将金属、金属氧化物以及其它可作为隐形眼镜的原材料在隐形眼镜初片的表面上复合单层或多层薄膜,通过薄膜与隐形眼镜初片之间折射率不同,与可见光波长匹配产生光程差,形成光子晶体结构,从而制备具有结构色的隐形眼镜,本发明还可在隐形眼镜初片表面涂覆附着力促进剂后再进行后处理,附着力促进剂可提高薄膜之间的粘结强度,防止薄膜之间以及与基底脱落。
有益效果
本发明提供的基于薄膜光子晶体的结构色隐形眼镜,具有如下优势:
1. 本发明提供的基于薄膜光子晶体的结构色隐形眼镜通过在隐形眼镜表面覆着单层或多层周期性介质薄膜,产生光程差,形成稳定的结构色,对人体安全可靠;
2. 本发明提供的隐形眼镜中由于存在单层或多层与隐形眼镜基材折射率不同的薄膜,产生结构色,在矫正视力的同时能够美化瞳孔,同时薄膜结构可以阻挡部分对人眼有害波段的光,保障角膜长期健康;
3. 本发明提供的隐形眼镜由于引入单层多层薄膜作为光子晶体结构,在眼内环境变化过程中薄膜厚度会随之变化,进而引起结构色改变,具有结构色可变的特性。
本发明提供的基于薄膜光子晶体的结构色隐形眼镜的制备方法,通过在镜片表面形成多层薄膜产生光程差,形成具有结构色的光子晶体结构,与现有技术方案相比,具有如下优势:
1.本发明均采用隐形眼镜常用的制备材料作为原材料,制备出的隐形眼镜具有高透明度,形成结构色的同时保证了透光率,在光线不足的情境下依然能正常使用。
2. 本发明通过成膜技术形成光子晶体微结构,比现有的自组装方法、薄膜加工方法安全性更好,可控性更强,成品率高,而且该方法得到的光子晶体结构缺陷少。
3. 本发明提供的单层或多层薄膜是单向增材制造的,相较于胶体多层自组装方法更易控制,且工艺简单,不需要额外化学溶剂,适合佩戴。
附图说明
图1是实施例1中的隐形眼镜结构示意图。
图2是实施例3中的隐形眼镜结构示意图。
本发明的实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例1
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚碳酸酯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:甲基丙烯酸羟乙酯与甲叉双丙烯酰胺(质量比50:1)中,以2,2-二乙氧基苯乙酮(质量为甲叉双丙烯酰胺的0.5%)为引发剂,加入到隐形眼镜模具中,通过365nm紫外光固化30 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片表面涂覆厚度为1μm的铝酸锆偶联剂并放入真空镀膜机中,在凸球面侧将单层金薄膜蒸镀在隐形眼镜初片上,获得复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片置于pH 为7.3,质量分数为0.89%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例中的隐形眼镜结构如图1所示:I为瞳孔区,II为虹膜区,隐形眼镜内部含有光子晶体结构,光子晶体结构为均匀排布的薄膜,薄膜的厚度为30 μm,光子晶体结构色作为色彩元素分布在隐形眼镜外凸面和/或内凹面。本实施例中可以通过选用不同的模具,使薄膜复合到隐形眼镜的瞳孔区I和/或虹膜区II。
实施例2
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚丙烯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:甲基丙烯酸甲酯,以以2-羟基-2-甲基-1-苯基-1-丙酮(Photoinitiator 1173,质量为甲基丙烯酸甲酯的0.2%)为引发剂,加入到隐形眼镜模具中,通过254nm紫外光固化30 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片表面涂覆厚度为3μm的硅烷偶联剂并进行化学气相沉积,在外凸面和内凹面侧将氮化硅薄膜沉积在隐形眼镜初片上,获得复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片置于pH 为7.3,质量分数为0.89%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得的隐形眼镜其内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,厚度为50 μm,光子晶体结构色作为色彩元素分布在隐形眼镜内。
实施例3
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚甲基丙烯酸甲酯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:聚二甲基硅氧烷(PDMS)及硅橡胶(Sylgard 184B,作为固化剂)照质量10:1比例混合后,取上述混合液与正己烷按体积比1:1混合作为隐形眼镜预聚体待用,取预聚体溶液150微升,加入到隐形眼镜模具中,通过50℃热固化120 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片表面涂覆厚度为10μm的异氰酸酯偶联剂并将所得隐形眼镜初片进行旋涂,在外凸面和内凹面侧将聚苯乙烯-聚乙烯基吡啶(PS-b-P4VP)薄膜旋涂在隐形眼镜初片上,获得300 nm厚的复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片进一步旋涂,步骤与(2)相同,可复合多层嵌段共聚物薄膜,光子晶体隐形眼镜结构色更加明显,本实施例涂覆100层后仍然具有结构色效果。
(4)将复合多层嵌段共聚物薄膜的隐形眼镜初片置于pH 为7.3,质量分数为0.1%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得隐形眼镜内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,薄膜层数范围为1-100时均可观察到结构色,相对应的薄膜厚度范围为300 nm-30 μm,光子晶体结构色作为色彩元素分布在隐形眼镜外凸面和内凹面。本实施例中隐形眼镜结构如图2所示,可以通过选用不同的模具,使薄膜复合到隐形眼镜的瞳孔区I和/或虹膜区II。
实施例4
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚苯乙烯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:聚乙烯醇和聚乙二醇二丙烯酸酯(质量比为40:1),以2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮(Irgacure 2959) (质量为聚乙烯醇的0.2% )为引发剂,加入到隐形眼镜模具中,通过365nm紫外光固化30 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片表面旋涂厚度为20μm的酰胺类偶联剂并将所得隐形眼镜初片进行真空溅射沉积,在外凸面和内凹面侧将二氧化钛薄膜离子束真空沉积在隐形眼镜初片上,获得复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片进行二次沉积,步骤与(2)相同,可复合多层二氧化钛薄膜,光子晶体隐形眼镜结构色更明显。
(4)将复合多层二氧化钛薄膜的隐形眼镜初片置于pH 为5.0,质量分数为10.0%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得隐形眼镜其内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,厚度为20 μm,作为色彩元素分布在隐形眼镜内。
实施例5
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚苯乙烯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:甲基丙烯酸缩水甘油酯和乙二醇二甲基丙烯酸酯(质量比为20:1),以苯基双(2,4,6-三甲基苯甲酰基)氧化膦(Photoinitiator 819 ,质量为甲基丙烯酸缩水甘油酯的0.2% )为引发剂,加入到隐形眼镜模具中,通过365 nm紫外光固化30 min得到隐形眼镜初片;
(2)将隐形眼镜初片固定,在外凸面和内凹面侧将聚碳酸酯预聚体在隐形眼镜初片上进行流延成膜,获得复合薄膜的隐形眼镜初片,厚度为10 μm。
(3)将复合薄膜的隐形眼镜初片进行二次沉积,步骤与(2)相同,可复合多层聚合物薄膜,光子晶体隐形眼镜结构色更明显,本实施例复合20层聚合物薄膜后仍具有结构色。
(4)将复合多层聚碳酸酯薄膜的隐形眼镜初片置于pH 为9.0,质量分数为0.89%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得的隐形眼镜其内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,薄膜厚度为10 μm – 200 μm,光子晶体结构色作为色彩元素分布在隐形眼镜内。
实施例6
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚苯乙烯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:醋酸丁酸纤维素为单体,以2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮(Irgacure 2959) (质量为单体的1.0 % )为引发剂,加入到隐形眼镜模具中,通过365nm紫外光固化40 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片进行旋涂聚苯乙烯磺酸,在外凸面和内凹面侧将聚电解质薄膜沉积在隐形眼镜初片上,获得复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片进行二次沉积,步骤与(2)相同,可复合多层聚苯乙烯磺酸薄膜,光子晶体隐形眼镜结构色更明显。
(4)将复合多层聚苯乙烯磺酸薄膜的隐形眼镜初片置于pH 为6.0,质量分数为10.0%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得隐形眼镜其内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,厚度为40 μm,作为色彩元素分布在隐形眼镜内。
实施例7
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚苯乙烯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:甲基丙烯酸羟乙酯单体,以2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮(Irgacure 2959) (质量为嵌段聚合物的2.0% )为引发剂,加入到隐形眼镜模具中,通过365nm紫外光固化30 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片表面涂覆厚度为10 μm的酰胺类偶联剂并将所得隐形眼镜初片进行真空溅射沉积,在外凸面和内凹面侧将聚甲基丙烯酸甲酯- b-聚甲基丙烯酸2-(二甲基溴乙基)氨基乙酯(PMMA- b-PDM)薄膜离子束真空沉积在隐形眼镜初片上,获得复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片进行二次沉积,步骤与(2)相同,可复合多层二氧化钛薄膜,光子晶体隐形眼镜结构色更明显。
(4)将复合多层二氧化钛薄膜的隐形眼镜初片置于pH 为5.0,质量分数为10.0%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得隐形眼镜其内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,厚度为100 μm,作为色彩元素分布在隐形眼镜内。
实施例8
本实施例中的基于薄膜光子晶体的结构色隐形眼镜的制备过程,包括以下步骤:
(1)取一聚苯乙烯材质隐形眼镜模具,该模具包括能够分离的上模具和下模具,其中,上模具具有一凸球面,下模具具有一凹球面,在模具中加入隐形眼镜预聚体溶液:聚乙烯醇和聚乙二醇二丙烯酸酯(质量比为40:1),以2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮(Irgacure 2959) (质量为聚乙烯醇的1.0% )为引发剂,加入到隐形眼镜模具中,通过365nm紫外光固化30 min得到隐形眼镜初片;
(2)将所得隐形眼镜初片表面涂覆厚度为20μm的酰胺类偶联剂并将所得隐形眼镜初片在外凸面和内凹面侧旋涂苯乙烯-马来酸酐共聚物前驱液,获得复合薄膜的隐形眼镜初片。
(3)将复合薄膜的隐形眼镜初片进行二次沉积,步骤与(2)相同,可复合多层苯乙烯-马来酸酐薄膜,光子晶体隐形眼镜结构色更明显。
(4)将复合多层二氧化钛薄膜的隐形眼镜初片置于pH 为5.0,质量分数为10.0%的氯化钠水溶液中浸泡至膨胀率稳定不变。
本实施例所得隐形眼镜其内部含有光子晶体结构,光子晶体结构为具有周期排布的均匀薄膜,厚度为1 nm,作为色彩元素分布在隐形眼镜内。
效果实施例
为对本发明实施例技术方案带来的有益效果进行有力支持,特提供以下性能测试:
A.透光性测试
将本发明实施例1至5所得具有光子晶体结构色的隐形眼镜进行透光性测试,结果显示白光的透过率达到90 %以上。
B.含水量测试
将本发明实施例1至5所得具有光子晶体结构色的隐形眼镜进行含水量测试,结果显示其含水量高于60%。
C.透氧率测试
将本发明实施例1至5所得具有光子晶体结构色的隐形眼镜进行进行透氧率测试,结果显示其透氧率高达150 Dk/t。
D.细胞毒性测试
细胞毒性测试能准备客观地反应测试样品的潜在毒性,本方法依据IS09363-1方法测试,考察隐形眼镜的细胞毒性,在该方法中,将细胞毒性反应分成0-4级的等级,级数越低,被测试材料的安全性越高。将本发明实施例一至五所得具有光子晶体结构色的隐形眼镜与市售的海昌超薄隐形眼镜做细胞毒性的对比测试,结果显示本发明结构色隐形眼镜的细胞毒性和市售的海昌超薄隐形眼镜一样,均为0级,说明本发明隐形眼镜的安全性符合人体使用标准。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 基于薄膜光子晶体的结构色隐形眼镜,其特征在于,所述隐形眼镜的虹膜区和/或瞳孔区含有光子晶体结构,所述光子晶体结构在所述隐形眼镜中形成结构色;
    所述隐形眼镜包括隐形眼镜基材和形成于隐形眼镜基材的虹膜区和/或瞳孔区的薄膜,所述薄膜形成于所述隐形眼镜基材的凸面和/或凹面;所述光子晶体结构由所述薄膜构成。
  2. 根据权利要求1所述的结构色隐形眼镜,其特征在于,所述薄膜选自聚合物薄膜、金属氧化物薄膜、聚电解质薄膜、陶瓷薄膜、金属薄膜和合金薄膜中的任一种;
    优选地,所述聚合物选自聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚甲基丙烯酸-2-羟基丙酯、聚乙氧基乙基甲基丙烯酸酯、聚羟丙基甲基纤维素、聚羟甲基纤维素、聚甲基丙烯酸二甲氨基乙酯、聚二甲基丙烯酸乙二醇酯、聚甲基丙烯酸异冰片酯、聚醋酸丁酸纤维素、聚硅氧烷甲基丙烯酸酯、聚氟硅甲基丙烯酸酯、聚全氟醚、聚N-乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸缩水甘油酯、硅胶、聚氧乙烯、聚二甲基硅氧烷、聚对二甲苯、聚乳酸、聚乙二醇、聚环氧丙烷、聚己内酯-聚丙烯酸、聚丙交酯、聚(丙交酯-乙交酯)、聚丙烯酰胺、聚N-异丙基丙烯酰胺、胆碱、胶原、明胶、瓜胶、聚磷腈、海藻酸钠、壳聚糖、透明质酸、海藻酸、纤维素、琼脂糖、聚葡萄糖、聚氨基酸和纤维蛋白中的任一种或任意几种的共聚物;
    优选地,所述金属氧化物选自铁、钴、镍、钛、镁、铬、锶、锰、钕、铈、镧和镨的氧化物中的至少一种;
    优选地,所述聚电解质选自聚丙烯酸、聚甲基丙烯酸、聚苯乙烯磺酸、聚乙烯磺酸、聚乙烯磷酸、聚乙烯亚胺、聚乙烯胺、聚乙烯吡啶、聚磷酸盐和聚硅酸盐的至少一种;
    优选地,所述陶瓷选自氮化硅、氧化铝、碳化硅、氮化硼和氧化锆陶瓷中的至少一种;
    优选地,所述金属选自铁、金、铜、银、钛、镁、锌、钙、钇、钕、锆、钪、钆、铒、钽、铌、钼、钴、铬和锡中的至少一种;
    优选地,所述合金选自铁、金、铜、银、钛、镁、锌、钙、钇、钕、锆、钪、钆、铒、钽、铌、钼、钴、铬和锡中的任意几种组成的合金。
  3. 根据权利要求1所述的结构色隐形眼镜,其特征在于,所述薄膜的总厚度为1 nm-100 μm。
  4. 根据权利要求1所述的结构色隐形眼镜,其特征在于,所述薄膜的层数为1-100层。
  5. 权利要求1-4任一所述的结构色隐形眼镜的制备方法,其特征在于,包括以下步骤:
    (1)将隐形眼镜前驱体溶液加入到隐形眼镜模具中,聚合固化,获得隐形眼镜初片;
    (2)在步骤(1)得到的隐形眼镜初片的凸面和/或凹面旋涂附着力促进剂然后进行后处理,形成薄膜,产生结构色;或在步骤(1)得到的隐形眼镜初片的凸面和/或凹面进行后处理,形成薄膜,产生结构色;
    (3)将步骤(2)得到的含有薄膜的薄膜的隐形眼镜初片置于盐水中浸泡至膨胀率稳定不变,即可得到基于薄膜光子晶体的结构色隐形眼镜。
  6. 根据权利要求5所述的制备方法,其特征在于,所述隐形眼镜模具的材质选自玻璃、石英、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯和聚碳酸酯中的任一种。
  7. 根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述隐形眼镜前驱体溶液选自(a)包含聚合物的溶液;或,(b)包含聚合物单体、引发剂和交联剂的聚合溶液;
    优选地,所述聚合物选自聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚甲基丙烯酸-2-羟基丙酯、聚乙氧基乙基甲基丙烯酸酯、聚羟丙基甲基纤维素、聚羟甲基纤维素、聚甲基丙烯酸二甲氨基乙酯、聚二甲基丙烯酸乙二醇酯、聚甲基丙烯酸异冰片酯、聚醋酸丁酸纤维素、聚硅氧烷甲基丙烯酸酯、聚氟硅甲基丙烯酸酯、聚全氟醚、聚N-乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸缩水甘油酯、硅胶、聚氧乙烯、聚二甲基硅氧烷、聚对二甲苯、聚乳酸、聚乙二醇、聚环氧丙烷、聚己内酯-聚丙烯酸、聚丙交酯、聚(丙交酯-乙交酯)、聚丙烯酰胺、聚N-异丙基丙烯酰胺、胆碱、透明质酸、胶原、明胶、瓜胶、聚磷腈、海藻酸钠、壳聚糖、透明质酸、海藻酸、纤维素、琼脂糖、聚葡萄糖、聚氨基酸和纤维蛋白中的任一种或任意几种的共聚物。
  8. 根据权利要求7所述的制备方法,其特征在于,所述引发剂选自无机过氧化物类引发剂、偶氮类引发剂、过氧化物类引发剂和光引发剂中的任意一种。
  9. 根据权利要求7所述的制备方法,其特征在于,所述交联剂选自甲叉双丙烯酰胺、乙二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯、二乙烯基苯及其衍生物中的至少一种。
  10. 根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述附着力促进剂选自钛酸酯偶联剂、硅烷偶联剂、铝酸锆偶联剂、异氰酸酯类偶联剂、酰胺类偶联剂和环氧基类偶联剂的任一种。
  11. 根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述后处理选自离子溅射沉积、气相沉积、真空溅射镀膜、旋涂成膜、流延成膜、离子束蒸发沉积中的一种或几种。
  12. 根据权利要求5所述的制备方法,其特征在于,步骤(3)中,所述盐水选自质量分数为0.1%-10.0 %的氯化钠水溶液、质量分数为0.1%-10.0%的磷酸二氢钠水溶液和质量分数为0.1%-10.0%的磷酸氢二钠水溶液中的任意一种。
  13. 根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述薄膜的厚度为1 nm-100 µm。
  14. 根据权利要求5所述的制备方法,其特征在于,步骤(2)中,所述薄膜的层数为1-100层。
PCT/CN2022/137078 2022-04-11 2022-12-06 基于薄膜光子晶体的结构色隐形眼镜及其制备方法 WO2023197631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210375348.3 2022-04-11
CN202210375348.3A CN114839798A (zh) 2022-04-11 2022-04-11 基于薄膜光子晶体的结构色隐形眼镜及其制备方法

Publications (1)

Publication Number Publication Date
WO2023197631A1 true WO2023197631A1 (zh) 2023-10-19

Family

ID=82564434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137078 WO2023197631A1 (zh) 2022-04-11 2022-12-06 基于薄膜光子晶体的结构色隐形眼镜及其制备方法

Country Status (2)

Country Link
CN (1) CN114839798A (zh)
WO (1) WO2023197631A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839798A (zh) * 2022-04-11 2022-08-02 深圳先进技术研究院 基于薄膜光子晶体的结构色隐形眼镜及其制备方法
CN116039138B (zh) * 2022-12-12 2024-07-12 海昌隐形眼镜有限公司 一种结构色隐形眼镜的制备方法及其产品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599876A (zh) * 2001-12-05 2005-03-23 眼科科学公司 着色的隐形眼镜
JP2013210450A (ja) * 2012-03-30 2013-10-10 Naoki Imura コンタクトレンズ
CN103760686A (zh) * 2014-01-15 2014-04-30 林国义 一种覆膜在外侧的隐形眼镜及其制造方法
CN107463001A (zh) * 2017-08-18 2017-12-12 深圳先进技术研究院 一种结构色太阳隐形眼镜及其制备方法
US20180239070A1 (en) * 2015-09-04 2018-08-23 President And Fellows Of Harvard College Modifying optical properties of thin film structures using an absorbing element
CN110082931A (zh) * 2018-10-29 2019-08-02 优你康光学股份有限公司 具有聚合物多层膜的隐形眼镜的制备方法
CN110396211A (zh) * 2018-04-25 2019-11-01 亨泰光学股份有限公司 应用电浆诱导聚合接枝制备具薄膜的隐形眼镜加工方法
CN110879481A (zh) * 2018-09-06 2020-03-13 凯乐康药业(重庆)股份有限公司 一种防眩光隐形眼镜
CN114839798A (zh) * 2022-04-11 2022-08-02 深圳先进技术研究院 基于薄膜光子晶体的结构色隐形眼镜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200650B (zh) * 2011-05-19 2013-04-03 东南大学 复合结构色隐形眼镜
EP2602654B1 (en) * 2011-12-08 2023-04-19 Essilor International Ophthalmic filter
CN203037946U (zh) * 2013-01-14 2013-07-03 河南科技大学 光子晶体紫外线防护眼镜
CN103605215B (zh) * 2013-10-22 2015-01-28 东南大学 基于一维光子晶体的彩色隐形眼镜及其制备方法
WO2017131588A1 (en) * 2016-01-27 2017-08-03 Agency For Science, Technology And Research Textured surface ophthalmic device
CN106751604B (zh) * 2016-11-18 2018-12-21 深圳先进技术研究院 一种形状记忆光子晶体材料及其制备方法
US11042044B2 (en) * 2017-03-17 2021-06-22 Imam Abdulrahman Bin Faisal University Contact lens containing a photonic crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599876A (zh) * 2001-12-05 2005-03-23 眼科科学公司 着色的隐形眼镜
JP2013210450A (ja) * 2012-03-30 2013-10-10 Naoki Imura コンタクトレンズ
CN103760686A (zh) * 2014-01-15 2014-04-30 林国义 一种覆膜在外侧的隐形眼镜及其制造方法
US20180239070A1 (en) * 2015-09-04 2018-08-23 President And Fellows Of Harvard College Modifying optical properties of thin film structures using an absorbing element
CN107463001A (zh) * 2017-08-18 2017-12-12 深圳先进技术研究院 一种结构色太阳隐形眼镜及其制备方法
CN110396211A (zh) * 2018-04-25 2019-11-01 亨泰光学股份有限公司 应用电浆诱导聚合接枝制备具薄膜的隐形眼镜加工方法
CN110879481A (zh) * 2018-09-06 2020-03-13 凯乐康药业(重庆)股份有限公司 一种防眩光隐形眼镜
CN110082931A (zh) * 2018-10-29 2019-08-02 优你康光学股份有限公司 具有聚合物多层膜的隐形眼镜的制备方法
CN114839798A (zh) * 2022-04-11 2022-08-02 深圳先进技术研究院 基于薄膜光子晶体的结构色隐形眼镜及其制备方法

Also Published As

Publication number Publication date
CN114839798A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023197631A1 (zh) 基于薄膜光子晶体的结构色隐形眼镜及其制备方法
CA2248467C (en) Molded polymer article having a hydrophilic surface and process for producing the same
CN103959140B (zh) 具有可湿性表面的有机硅水凝胶软性隐形眼镜
JPH10512308A (ja) シロキサン含有架橋体
FI93906C (fi) Hydrofiiliset värilliset piilolasit
US6890075B2 (en) Contact lens with PVA cover layer
KR20120041736A (ko) 콘택트 렌즈
TW200935117A (en) Method for making contact lenses
DE60007544T2 (de) Verfahren zur herstellung eines beschichteten optischen elementes und auf diese weise hergestelltes produkt
CN107463001A (zh) 一种结构色太阳隐形眼镜及其制备方法
CN102323679B (zh) 基于咖啡环效应的结构色隐形眼镜及其制备方法
CN106459309A (zh) 有机硅丙烯酰胺共聚物
JPH11172149A (ja) 親水性表面を有するポリマー成形品およびその製造方法
JP2020056994A (ja) 着色シリコーンヒドロゲルコンタクトレンズ用の着色剤組成物、同組成物を含む着色シリコーンヒドロゲルコンタクトレンズ、及び着色シリコーンヒドロゲルコンタクトレンズ用の着色剤を修飾する方法
JP2000327925A (ja) 光学性含水ゲル及びそれからなる眼科用材料
JP2012523974A (ja) 調光光学素子を製造するための方法、および調光光学素子
WO2023197630A1 (zh) 具有可变结构色的隐形眼镜及其制备方法
JP2020056993A (ja) 着色コンタクトレンズ用の着色剤組成物、同組成物を含む着色コンタクトレンズ、及び着色コンタクトレンズ用の着色剤を修飾する方法
TWI698453B (zh) 濾藍光材料及其製備方法
JPS60214302A (ja) 高屈折率プラスチツクレンズ
CN113214586A (zh) 用于抗蓝光的眼镜镜片材料、眼镜镜片及其制备方法
CN104924508B (zh) 用于接触透镜的模具、整理方法及接触透镜的制作方法
BR112017008308B1 (pt) Lente oftálmica com deformação reduzida, seu processo de fabricação, utilização de uma composição de resina na fabricação de lente oftálmica funcional e método para minimizar a deformação de uma lente funcional
Wei et al. Applications of inverse opal photonic crystal hydrogels in the preparation of acid–base color-changing materials
JP3795701B2 (ja) 着色コンタクトレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937263

Country of ref document: EP

Kind code of ref document: A1