WO2023197387A1 - 显示面板及其制作方法、移动终端 - Google Patents

显示面板及其制作方法、移动终端 Download PDF

Info

Publication number
WO2023197387A1
WO2023197387A1 PCT/CN2022/091846 CN2022091846W WO2023197387A1 WO 2023197387 A1 WO2023197387 A1 WO 2023197387A1 CN 2022091846 W CN2022091846 W CN 2022091846W WO 2023197387 A1 WO2023197387 A1 WO 2023197387A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
display panel
oxygen
electrode layer
Prior art date
Application number
PCT/CN2022/091846
Other languages
English (en)
French (fr)
Inventor
赵斌
王航
赵军
Original Assignee
广州华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华星光电半导体显示技术有限公司 filed Critical 广州华星光电半导体显示技术有限公司
Priority to US17/758,011 priority Critical patent/US20240178239A1/en
Publication of WO2023197387A1 publication Critical patent/WO2023197387A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a manufacturing method thereof, and a mobile terminal.
  • Oxide type thin film transistor (Thin Film Transistor (TFT for short) has the advantages of low process temperature, high mobility, transparency to visible light, the ability to produce large-area high-quality films at room temperature, compatibility with existing production line equipment, and the ability to be produced on flexible substrates. Considered to be one of the most promising next-generation thin film transistors.
  • a thin film transistor includes a gate electrode, an active layer, a source electrode, and a drain electrode.
  • the source electrode and the drain electrode are located at both ends of the active layer and are in contact with the active layer respectively.
  • the source electrode and the drain electrode pass through
  • the active layer is turned on, and carriers flow from source to drain or from drain to source.
  • the active layer is usually formed by wet etching, and the source and drain are also formed by wet etching. Therefore, when making the source and drain electrodes, the active layer is easily affected by the etchant and causes defects (increased oxygen vacancies). Under the influence of external thermal stimulation or light stimulation, the rate of carrier transmission is reduced, causing the The threshold voltage shifts positively or negatively, affecting the operating stability of the thin film transistor.
  • Embodiments of the present application provide a mobile terminal to alleviate deficiencies in related technologies.
  • An embodiment of the present application provides a display panel, including:
  • a thin film transistor layer provided on the substrate including a gate, a gate insulating layer, an active layer and a source and drain electrode layer provided on the substrate;
  • An oxygen supplementing functional layer is located on the side of the source and drain electrode layer away from the active layer;
  • An electrode layer is located on the side of the oxygen supplementing functional layer away from the thin film transistor layer, and the material of the electrode layer is a metal oxide material;
  • the oxygen content on the side of the oxygen supplementing functional layer close to the electrode layer is greater than the oxygen content on the side of the oxygen supplementing functional layer close to the active layer.
  • the display panel includes a first passivation layer located on a side of the thin film transistor layer away from the substrate, and the oxygen supplementing functional layer includes the first passivation layer.
  • the electrode layer is one of a pixel electrode, a common electrode or an anode.
  • the electrode layer is one of a pixel electrode or a common electrode
  • the display panel further includes a second electrode layer located on a side of the electrode layer away from the oxygen supplementing functional layer. passivation layer.
  • the electrode layer is an anode
  • the display panel further includes a pixel definition layer located on a side of the electrode layer away from the oxygen supplementing functional layer.
  • the material of the electrode layer is indium gallium zinc oxide.
  • the inert gas is one or a mixture of more than one gas selected from the group consisting of helium, neon, argon, krypton, xenon, and radon.
  • An embodiment of the present application provides a method for manufacturing a display panel.
  • the steps of the manufacturing method include:
  • a substrate Provide a substrate, and sequentially form a gate electrode, a gate insulation layer, an active layer, a source and drain electrode layer and a first passivation layer on the substrate;
  • the material of the active layer is a metal oxide semiconductor; the material of the electrode layer is indium gallium zinc oxide.
  • the step of forming a metal oxide layer on the first passivation layer in an environment where the pressure ratio of oxygen to inert gas is greater than 40% includes:
  • the metal oxide film is patterned to form a metal oxide layer.
  • the electrode layer is one of a pixel electrode or a common electrode, and the manufacturing method further includes the following steps:
  • a deposition process is used to form a second passivation layer on a side of the electrode layer away from the first passivation layer.
  • the metal oxide layer is etched, and the etched metal oxide layer is conductive to form an electrode layer, wherein the first passivation layer
  • the step of making the oxygen content on the side close to the electrode layer greater than the oxygen content on the side of the first passivation layer close to the active layer includes:
  • the electrode pattern is subjected to plasma treatment to conduct the electrode pattern to form the pixel electrode or the common electrode.
  • the electrode layer is an anode
  • the manufacturing method further includes the following steps:
  • a deposition process is used to form a pixel definition layer on the side of the electrode layer away from the oxygen supplementing functional layer.
  • the metal oxide layer is etched, and the etched metal oxide layer is conductive to form an electrode layer, wherein the first passivation layer
  • the step of making the oxygen content on the side close to the electrode layer greater than the oxygen content on the side of the first passivation layer close to the active layer includes:
  • the electrode pattern is subjected to plasma treatment to conduct the electrode pattern to form the anode.
  • the deposition process is a plasma-enhanced vapor deposition process
  • the plasma includes one or more mixed gases of helium, argon, hydrogen and oxygen.
  • An embodiment of the present application provides a mobile terminal, which includes a terminal body and a display panel.
  • the terminal body and the display panel are combined into one body.
  • the display panel includes:
  • a thin film transistor layer is provided on the substrate.
  • the thin film transistor layer includes a gate electrode, a gate insulating layer, an active layer and a source and drain electrode layer provided above the substrate.
  • the material of the active layer is metal. Oxide semiconductor;
  • An oxygen supplementing functional layer is located on the side of the source and drain electrode layer away from the active layer;
  • An electrode layer is located on the side of the oxygen supplementing functional layer away from the thin film transistor layer, and the material of the electrode layer is a metal oxide material;
  • the oxygen content on the side of the oxygen supplementing functional layer close to the electrode layer is greater than the oxygen content on the side of the oxygen supplementing functional layer close to the active layer.
  • the display panel includes a first passivation layer located on a side of the thin film transistor layer away from the substrate, and the oxygen supplementing functional layer includes the first passivation layer.
  • the electrode layer is one of a pixel electrode, a common electrode or an anode.
  • the electrode layer is one of a pixel electrode or a common electrode
  • the display panel further includes a second electrode layer located on a side of the electrode layer away from the oxygen supplementing functional layer. passivation layer.
  • the electrode layer is an anode
  • the display panel further includes a pixel definition layer located on a side of the electrode layer away from the oxygen supplementing functional layer.
  • the material of the electrode layer is indium gallium zinc oxide.
  • the inert gas is one or a mixture of more than one gas selected from the group consisting of helium, neon, argon, krypton, xenon, and radon.
  • the present application provides a display panel, a manufacturing method thereof, and a mobile terminal.
  • the display panel includes a thin film transistor layer, an oxygen supplementing functional layer, and an electrode layer that are stacked on a substrate.
  • the thin film transistor layer includes a thin film transistor layer that is stacked on a substrate.
  • the gate electrode, the gate insulating layer, the active layer and the source and drain electrode layers, the material of the active layer is a metal oxide semiconductor, the material of the electrode layer is a metal oxide material, wherein the oxygen supplement function
  • the oxygen content on the side of the layer close to the electrode layer is greater than the oxygen content on the side of the oxygen supplementing functional layer close to the active layer.
  • the oxygen supplementing functional layer is used to inject oxygen when making the electrode layer.
  • the threshold voltage is shifted positively or negatively, which affects the working stability of the display panel device.
  • Figure 1 is a first structural schematic diagram of a display panel provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a method for manufacturing a display panel provided by an embodiment of the present application
  • Figures 3A to 3D are structural process flow diagrams for manufacturing the display panel in Figure 1;
  • Figure 4 is a second structural schematic diagram of a display panel provided by an embodiment of the present application.
  • Figure 5 is a third structural schematic diagram of a display panel provided by an embodiment of the present application.
  • FIGS. 6A to 6C are structural process flow charts for manufacturing the display panel in FIG. 5 .
  • Embodiments of the present application provide a display panel, a manufacturing method thereof, and a mobile terminal.
  • the present application will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present application and are not used to limit the present application.
  • the display panel 1 includes:
  • the thin film transistor layer 20 is provided on the substrate 10.
  • the thin film transistor layer 20 includes a gate electrode 21, a gate insulating layer 22, an active layer 23 and a source and drain electrode layer 24 provided above the substrate 10.
  • the material of the active layer 23 is a metal oxide semiconductor;
  • the oxygen supplementing functional layer 30 is located on the side of the active layer 23 away from the substrate 10;
  • the electrode layer 40 is located on the side of the oxygen supplementing functional layer 30 away from the thin film transistor layer 20.
  • the material of the electrode layer 40 is a metal oxide material
  • the oxygen content on the side of the oxygen supplementing functional layer 30 close to the electrode layer 40 is greater than the oxygen content on the side of the oxygen supplementing functional layer 30 close to the active layer 23 .
  • oxide (Oxide) thin film transistors includes a gate, an active layer, a source and a drain.
  • the source and drain are located at both ends of the active layer and are in contact with the active layer respectively; in practical applications, the source and drain Through the active layer conduction, carriers flow from the source to the drain or from the drain to the source.
  • the active layer is usually formed by wet etching, and the source and drain are also formed by wet etching. , therefore, when making the source and drain electrodes, the active layer is easily affected by the etchant and causes defects (increased oxygen vacancies). Under the influence of external thermal stimulation or light stimulation, the rate of carrier transmission is reduced. This causes the threshold voltage to shift positively or negatively, affecting the operating stability of the thin film transistor.
  • an electrode layer 40 is provided on the side of the oxygen supplementing functional layer 30 away from the active layer 23 .
  • the electrode layer 40 is in contact with the oxygen supplementing functional layer 30 .
  • the material of the electrode layer 40 is metal oxide. material; wherein, the oxygen content on the side of the oxygen supplementing functional layer 30 close to the electrode layer 40 is greater than the oxygen content on the side of the oxygen supplementing functional layer 30 close to the active layer 23, and the oxygen supplementing functional layer 30 has an oxygen content close to the active layer 23.
  • the functional layer 30 is used to inject oxygen ions and release oxygen ions to fill the oxygen vacancies in the active layer 23 when making the electrode layer 40, thereby solving the problem in the prior art due to the increase in oxygen vacancies in the active layer 23. , under the influence of external thermal stimulation or light stimulation, the rate of carrier transmission is reduced, causing a positive or negative shift in the threshold voltage, affecting the working stability of the display panel 1 device.
  • Figure 1 is a first structural schematic diagram of a display panel provided by an embodiment of the present application
  • Figure 4 is a second structural diagram of a display panel provided by an embodiment of the present application. A schematic diagram of the structure.
  • the display panel 1 includes but is not limited to light-emitting diodes (Light-Emitting Diodes). Diode, referred to as LED) and an organic light emitting diode display panel 1 (Organic Light Emitting Diode, referred to as OLED). This embodiment does not specifically limit this; it should be noted that in this embodiment, the display panel is a light emitting diode. Examples are used to describe the technical solution of this application.
  • the display panel 1 includes a substrate 10, a thin film transistor layer 20 located on the substrate 10, an oxygen supplementing functional layer 30 and an electrode layer 40; wherein the substrate 10 may include a rigid substrate 10 or a flexible substrate 10.
  • the material may be metal or glass.
  • the material may include acrylic resin, methacrylic resin, polyisoprene, vinyl resin, or epoxy. At least one of resin, polyurethane-based resin, cellulose resin, silicone resin, polyimide-based resin, and polyamide-based resin. This embodiment does not limit the material of the substrate 10 .
  • the thin film transistor layer 20 includes a gate electrode 21, an active layer 23 and a source and drain electrode layer 24 that are stacked on the substrate 10.
  • the first metal layer includes a gate electrode 21 located on the substrate 10.
  • the active layer 23 includes an active segment 231 and a conductor segment connected to the active segment 231.
  • the conductor segment includes an overlapping portion (not labeled in the figure) connected to the source and drain electrode layer 24.
  • the source and drain electrode layer 24 includes a source electrode 24A and a drain electrode 24B arranged at intervals.
  • the source electrode 24A and the drain electrode 24B are connected to the overlapping portion; specifically, the overlapping portion includes a source electrode 24A and a drain electrode 24B.
  • the first overlap portion 232A in contact with the electrode 24A, and the second overlap portion 232B in contact with the drain electrode 24B, the active section 231 is located in the first overlap portion 232A and the second overlap portion 232B;
  • the thin film transistor layer 20 further includes a gate insulating layer 22 located between the gate electrode 21 and the active layer 23 , and the gate electrode 21 is provided corresponding to the active segment 231 .
  • the material of the active layer 23 includes a metal oxide semiconductor, and the metal oxide material includes but is not limited to indium gallium zinc oxide (Indium gallium zinc oxide).
  • Gallium Zinc Oxide (IGZO) the material of the first metal layer and the source and drain electrode layer 24 include but are not limited to molybdenum (Mo), aluminum (Al), platinum (Pt), palladium (Pd), Silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), calcium (Ca), titanium (Ti), tantalum (Ta) and At least one metal from tungsten (W).
  • the display panel 1 further includes a first passivation layer 31 located on the side of the thin film transistor layer 20 away from the substrate 10 .
  • the first passivation layer 31 and the active layer 23 are in contact with each other, and the orthographic projection of the active segment 231 on the substrate 10 is located within the orthographic projection of the first passivation layer 31 on the substrate 10; preferably, the first passivation layer 31 Materials include but are not limited to silicon oxide, silicon nitride, silicon oxynitride, etc. or stacks thereof; specifically, in this embodiment, the material of the first passivation layer 31 is silicon oxide (SIO); preferably,
  • the oxygen supplementing functional layer 30 includes the first passivation layer 31 .
  • the electrode layer 40 is in contact with the first passivation layer 31 .
  • the material of the electrode layer 40 includes a metal oxide material.
  • the metal oxide material includes but is not limited to indium gallium zinc oxide (Indium gallium zinc oxide).
  • Gallium Zinc Oxide (IGZO) it should be noted that the electrode layer 40 can be made by making a metal oxide layer in an environment where the pressure ratio of oxygen to inert gas is greater than 40%, etching the metal oxide layer, and etching The subsequent metal oxide layer is conductorized to form, wherein during the process of forming the metal oxide layer, part of the oxygen ions can be implanted into the first passivation layer 31; wherein, the electrode Layer 40 is one of a pixel electrode or a common electrode.
  • the electrode layer 40 includes a stacked first electrode layer 40A and a second electrode layer 40B, and the first electrode layer 40A is in contact with the first passivation layer 31, so
  • the second electrode layer 40B is located on the side of the first electrode layer 40A away from the first passivation layer 31, and the electrode layer 40 includes the first electrode layer 40A; preferably, the first electrode layer 40A is the common electrode, the second electrode layer 40B is the pixel electrode, and the second electrode layer 40B is in contact with the first drain electrode 24B.
  • the first electrode layer 40A may be a pixel electrode
  • the second electrode layer 40B may be a common electrode
  • the first electrode layer 40A and The first drain electrode 24B is in contact with each other. Therefore, this embodiment does not specifically limit the types of the first electrode layer 40A and the second electrode layer 40B.
  • the metal oxide layer is produced in an environment where the pressure ratio of oxygen to inert gas is greater than 40%, so that part of the oxygen ions are implanted into the oxygen supplement during the formation of the metal oxide layer.
  • the functional layer 30 Within the functional layer 30.
  • the display panel 1 further includes a second passivation layer 50 located between the first electrode layer 40A and the second electrode layer 40B.
  • the second passivation layer 50 It is produced by a deposition process, wherein the deposition process is performed in a high-temperature environment, so that the oxygen ions in the oxygen supplementing functional layer 30 are released to the active layer 23 to fill the oxygen in the active layer 23 Vacancy.
  • the electrode layer 40 is disposed on the side of the oxygen supplementing functional layer 30 away from the active layer 23 , and the electrode layer 40 is in contact with the oxygen supplementing functional layer 30 .
  • the material is a metal oxide material; wherein, the oxygen supplementing functional layer 30 is used to inject oxygen ions when making the electrode layer 40 and release oxygen ions to fill the oxygen vacancies in the active layer 23, thereby solving the problem
  • the rate of carrier transmission is reduced, causing a positive or negative shift in the threshold voltage, which affects the operation of the thin film transistor.
  • the first electrode layer 40A can be reused as the electrode layer 40, and the first passivation layer 31 can be reused as the oxygen supplementing functional layer 30, so There is no need to add an additional process step of preparing the oxygen supplementing functional layer 30 in the production of the display panel 1 , thereby effectively simplifying the production process of the display panel 1 .
  • the stacked arrangement of the gate electrode 21 , the gate insulating layer 22 and the active layer 23 is only for illustration. This embodiment does not apply to the thin film transistor layer 20
  • the film layer structure is not specifically limited.
  • Figure 1 is a first structural schematic diagram of a display panel provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a manufacturing method of a display panel provided by an embodiment of the present application.
  • Flow chart Figures 3A to 3D are structural process flow charts for manufacturing the display panel in Figure 1.
  • This embodiment provides a method for manufacturing a display panel 1.
  • the steps of the manufacturing method include:
  • Step S100 Provide a substrate 10, on which a gate electrode 21, a gate insulating layer 22, an active layer 23, a source and drain electrode layer 24 and a first passivation layer 31 are sequentially formed, as shown in FIG. 3A.
  • step S100 includes the following steps:
  • Step S101 Deposit a first metal layer on the substrate 10, pattern the first metal layer to form the gate 21; wherein the material of the first metal layer includes but is not limited to molybdenum (Mo ), aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr) ), calcium (Ca), titanium (Ti), tantalum (Ta) and tungsten (W).
  • Mo molybdenum
  • Al aluminum
  • platinum (Pt) palladium
  • silver Ag
  • gold Au
  • Ni nickel
  • Nd neodymium
  • Ir iridium
  • Cr chromium
  • W tungsten
  • Step S102 Form a gate insulating layer 22 on the side of the gate 21 away from the substrate 10.
  • the material of the gate insulating layer 22 includes but is not limited to silicon oxide, silicon nitride, silicon oxynitride, etc. or other materials thereof. cascade.
  • Step S103 Deposit a metal oxide film on the substrate 10.
  • the material of the metal oxide film includes but is not limited to indium gallium zinc oxide (Indium gallium zinc oxide). Gallium Zinc Oxide (IGZO), patterning the metal oxide film to form the active layer 23 .
  • IGZO Gallium Zinc Oxide
  • Step S104 Deposit a source and drain electrode layer 24 on the side of the active layer 23 away from the gate insulating layer 22, and pattern the first metal layer to form the source and drain electrode layer 24; wherein,
  • the materials of the source and drain electrode layer 24 include, but are not limited to, molybdenum (Mo), aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel ( At least one metal from Ni), neodymium (Nd), iridium (Ir), chromium (Cr), calcium (Ca), titanium (Ti), tantalum (Ta) and tungsten (W).
  • the active layer 23 includes an active segment 231 and a conductor segment connected to the active segment 231.
  • the conductor segment includes an overlapping portion connected to the source and drain electrode layer 24.
  • the source The drain electrode layer 24 includes a source electrode 24A and a drain electrode 24B that are spaced apart.
  • the overlap portion includes a first overlap portion 232A in contact with the source electrode 24A, and a second overlap portion in contact with the drain electrode 24B. part 232B, and the active section 231 is located between the first overlapping part 232A and the second overlapping part 232B.
  • Step S105 Form a first passivation layer 31 on the side of the source and drain electrode layer 24 away from the active layer 23, where the first passivation layer 31 is in contact with the active section 231, and
  • the orthographic projection of the active section 231 on the substrate 10 is located within the orthographic projection of the first passivation layer 31 on the substrate 10;
  • the material of the first passivation layer 31 includes but It is not limited to silicon oxide, silicon nitride, silicon oxynitride, etc. or their stack; specifically, in this embodiment, the material of the first passivation layer 31 is silicon oxide (SIO).
  • Step S200 Form a metal oxide layer 400 on the first passivation layer 31 in an environment where the gas pressure ratio between oxygen and inert gas is greater than 40%, as shown in FIG. 3B.
  • the metal oxide layer 400 is formed through a deposition process in a production chamber. Specifically, in the production chamber, the pressure ratio of oxygen to inert gas is greater than 40%, so that the metal oxide layer is produced in a high oxygen environment. material layer 400 , so that part of the oxygen ions are implanted into the first passivation layer 31 during the formation of the metal oxide layer 400 .
  • the inert gas includes but is not limited to one or more mixed gases among helium, neon, argon, krypton, xenon and radon.
  • the inert gas The gas is argon.
  • Step S300 Etch the metal oxide layer 400, and conduct the etched metal oxide layer 400 to form an electrode layer 40, wherein the first passivation layer 31 is close to the electrode layer 40.
  • the oxygen content on the side of the first passivation layer 31 is greater than the oxygen content on the side of the first passivation layer 31 close to the active layer 23 , as shown in FIG. 3C .
  • step 300 includes the following steps:
  • Step S301 Etch the metal oxide layer 400 to form an electrode pattern, where the etching method includes but is not limited to wet etching.
  • Step S302 Perform plasma treatment on the electrode pattern to make the electrode pattern conductive to form a first electrode layer 40A.
  • the first electrode layer 40A is one of the pixel electrode or the common electrode. , preferably, the first electrode 40A is the common electrode.
  • the plasma is one or more mixed gases among helium, argon, hydrogen and oxygen.
  • the plasma is Argon.
  • the electrode layer is subjected to plasma treatment to make the electrode layer conductive, thereby improving the conductivity of the electrode layer. conductive properties of the electrode layer.
  • the manufacturing method of the display panel further includes the following steps:
  • Step S400 Form a second passivation layer 50 on the side of the first electrode 40A away from the first passivation layer 31, where the second passivation layer 50 is made by a deposition process, where the deposition The process is performed in a high-temperature environment, thereby releasing oxygen ions in the first passivation layer 31 to the active layer 23 to fill oxygen vacancies in the active layer 23 , as shown in FIG. 3D .
  • the second passivation layer 50 is made by plasma enhanced vapor deposition (Plasma enhanced vapor deposition). Enhanced Chemical Vapor Deposition (PECVD) process.
  • the PECVD process is a high-temperature process. Therefore, during the process of forming the second passivation layer 50, the first passivation layer 31 can release oxygen ions, so there is no need to add an additional "high-temperature process" To make the first passivation layer 31 release oxygen ions, the preparation process can be simplified.
  • the manufacturing method of the display panel further includes step 500:
  • a second electrode layer 40B is formed on the side of the second passivation layer 50 away from the first electrode 40A.
  • the second electrode layer 40B is the pixel electrode.
  • the second electrode layer 40B is connected to the first electrode 40A.
  • a drain 24B is in contact.
  • the electrode layer 40 is formed on the side of the first passivation layer 31 away from the active layer 23 , and the electrode layer 40 is in contact with the oxygen supplementing functional layer 30 , so
  • the material of the electrode layer 40 is a metal oxide material, wherein the electrode layer 40 is made in an environment where the pressure ratio of oxygen to argon is greater than 40%, so that part of the oxygen ions are implanted during the formation of the electrode layer 40 into the first passivation layer 31; during the deposition process, oxygen ions in the first passivation layer 31 are released to the active layer 23 to fill the oxygen vacancies in the active layer 23, thereby
  • the rate of carrier transmission is reduced, causing a positive or negative shift in the threshold voltage, affecting the performance of the thin film transistor. Job stability deficits.
  • the first electrode layer 40A can be reused as the electrode layer 40, and the first passivation layer 31 can be reused as the oxygen supplementing functional layer 30, so there is no need to add additional components to the display panel.
  • An additional process step of preparing the oxygen supplementing functional layer 30 is added to the manufacturing work of 1, thereby effectively simplifying the manufacturing process of the display panel 1; and, the oxygen supplementing functional layer 30 is in contact with the active segment 231
  • the source electrode 24A and the drain electrode 24B are located between the oxygen supplementing functional layer 30 and the active layer 23 , thereby preventing the oxygen supplementing functional layer 30 from damaging the active layer 23 except the active section 231 Oxygen ions are added to other areas, causing electrical abnormalities in the display panel 1 device.
  • FIG. 5 is a third structural schematic diagram of a display panel provided by an embodiment of the present application.
  • the structure of the display panel is similar/identical to the first structure of the display panel provided in the above embodiment.
  • the description of the display panel in the above embodiment please refer to the description of the display panel in the above embodiment, which will not be described again here. The only difference is:
  • the display panel 1 includes but is not limited to light-emitting diodes (Light-Emitting Diodes). Diode, referred to as LED) and an organic light emitting diode display panel 1 (Organic Light Emitting Diode, referred to as OLED). This embodiment does not specifically limit this; it should be noted that in this embodiment, the display panel is an organic light emitting diode.
  • a display panel is taken as an example to describe the technical solution of this application.
  • the display panel 1 includes a substrate 10, a thin film transistor layer 20 located on the substrate 10, an oxygen supplementing functional layer 30 and an electrode layer 40; the thin film transistor layer 20 includes 10, the gate electrode 21, the gate insulation layer 22, the active layer 23, the source and drain electrode layer 24 and the first passivation layer 31.
  • the source and drain electrode layer 24 includes a source electrode 24A and a drain electrode 24B arranged at intervals,
  • the oxygen supplementing functional layer 30 includes the first passivation layer 31 .
  • the display panel 1 further includes an anode 40C located on a side of the first passivation layer 31 away from the active layer 23 , and the anode 40C is in contact with the first passivation layer 31 , wherein the electrode Layer 40 includes the anode 40C; specifically, the anode 40C is in contact with the first passivation layer 31.
  • the material of the anode 40C includes a metal oxide material, and the metal oxide material includes but is not limited to oxidation.
  • the inert gas includes but is not limited to one or more mixed gases among helium, neon, argon, krypton, xenon, and radon.
  • the inert gas is argon.
  • the display panel 1 further includes a pixel definition layer 60 , a light emitting layer 70 and a cathode 80 located on the anode 40C away from the first passivation layer 31 .
  • the production method adopts plasma enhanced vapor deposition (Plasma Enhanced Chemical Vapor Deposition (PECVD) process.
  • the PECVD process is a high-temperature process. In the environment of the high-temperature process, oxygen ions in the oxygen supplementing functional layer 30 are released to the active layer 23 to fill the active layer 23 oxygen vacancies in the
  • the stacked arrangement of the gate electrode 21 , the gate insulating layer 22 and the active layer 23 is only for illustration. This embodiment does not apply to the film of the thin film transistor layer 20 There are no specific restrictions on the layer structure.
  • FIG. 6A to FIG. 6C is a structural process flow chart for manufacturing the display panel in FIG. 5.
  • This embodiment provides a method for manufacturing a display panel 1, which includes the following steps:
  • Step S100 Provide a substrate 10, on which a gate electrode 21, a gate insulating layer 22, an active layer 23, a source and drain electrode layer 24 and a first passivation layer 31 are sequentially formed, as shown in FIG. 6A.
  • Step S200 Form a metal oxide layer 400 on the first passivation layer 31 in an environment where the gas pressure ratio between oxygen and inert gas is greater than 40%.
  • the step 200 includes the following steps:
  • Step S201 Form an opening on the first passivation layer 31, and the opening is located on the drain electrode 24B.
  • Step S202 Form a metal oxide layer 400 on the first passivation layer 31 in an environment where the gas pressure ratio between oxygen and inert gas is greater than 40%.
  • the material of the metal oxide layer 400 is a metal oxide material.
  • the metal oxide material includes but is not limited to indium gallium zinc oxide (Indium gallium zinc oxide).
  • Gallium Zinc Oxide, IGZO Gallium Zinc Oxide, as shown in Figure 6B
  • the metal oxide layer 400 is formed through a deposition process in a production chamber. Specifically, in the production chamber, the pressure ratio of oxygen to inert gas is greater than 40%, so that the metal oxide layer is produced in a high oxygen environment. material layer 400 , so that part of the oxygen ions are implanted into the first passivation layer 31 during the formation of the metal oxide layer 400 .
  • the inert gas includes but is not limited to one or more mixed gases among helium, neon, argon, krypton, xenon and radon.
  • the inert gas The gas is argon.
  • Step S300 Etch the metal oxide layer 400, and conduct the etched metal oxide layer 400 to form an electrode layer 40.
  • step 300 includes the following steps:
  • Step S301 Etch the metal oxide layer 400 to form an electrode pattern, where the etching method includes but is not limited to wet etching.
  • Step S302 Perform plasma treatment on the electrode pattern to make the electrode pattern conductive to form an anode 40C.
  • the anode 40C is connected to the drain electrode 24B through the opening, as shown in FIG. 6C.
  • the plasma is one or more mixed gases among helium, argon, hydrogen and oxygen.
  • the plasma is Argon.
  • Step S400 Form a pixel definition layer 60, a light-emitting layer and a cathode in sequence on the side of the anode 40C away from the first passivation layer 31, where the pixel definition layer 60 is made by a deposition process, where the deposition The process is performed in a high-temperature environment, so that oxygen ions in the oxygen supplementing functional layer 30 are released to the active layer 23 to fill the oxygen vacancies in the active layer 23 , as shown in FIG. 5 .
  • the pixel definition layer 60 is made by using a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • the PECVD process is a high-temperature process. Therefore, during the formation of the pixel definition layer 60, compensation can be achieved.
  • the oxygen functional layer 30 releases oxygen ions, so there is no need to add an additional "high temperature process" to make the oxygen supplementing functional layer 30 release oxygen ions, which can ensure the simplicity of the preparation process.
  • This embodiment provides a mobile terminal, which includes a terminal body and the display panel described in any of the above embodiments, and the terminal body and the display panel are combined into one body.
  • the mobile terminal can be a display screen of a smartphone, tablet computer, laptop, smart bracelet, smart watch, smart glasses, smart helmet, desktop computer, smart TV or digital camera, or even Applied to electronic devices with flexible displays.
  • the present application provides a display panel, a manufacturing method thereof, and a mobile terminal.
  • the display panel includes a thin film transistor layer, an oxygen supplementing functional layer, and an electrode layer that are stacked on a substrate.
  • the thin film transistor layer includes a thin film transistor layer that is stacked on a substrate.
  • the gate electrode, the gate insulating layer, the active layer and the source and drain electrode layers, the material of the active layer is a metal oxide semiconductor, the material of the electrode layer is a metal oxide material, wherein the oxygen supplement function
  • the oxygen content on the side of the layer close to the electrode layer is greater than the oxygen content on the side of the oxygen supplementing functional layer close to the active layer.
  • the oxygen supplementing functional layer is used to inject oxygen when making the electrode layer.
  • the threshold voltage is shifted positively or negatively, which affects the working stability of the display panel device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种显示面板及其制作方法、移动终端,该显示面板包括基底、薄膜晶体管层、补氧功能层以及电极层;薄膜晶体管层包括栅极、栅极绝缘层、有源层以及源漏电极层,有源层的材料为金属氧化物半导体,电极层的材料为金属氧化物材料,其中,补氧功能层靠近电极层一侧的含氧量大于补氧功能层靠近有源层一侧的含氧量。

Description

显示面板及其制作方法、移动终端 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制作方法、移动终端。
背景技术
氧化物(Oxide)型薄膜晶体管(Thin Film Transistor,简称TFT)凭借其低的工艺温度、高的迁移率、对可见光透明,可以在室温制作大面积优质薄膜并可与现有产线设备兼容、可以制作在柔性衬底上等优点,被认为是最有希望的下一代薄膜晶体管之一。
通常,薄膜晶体管包括栅极、有源层、源极和漏极,源极和漏极分设于有源层的两端且分别与有源层接触;在实际应用中,源极和漏极通过有源层导通,载流子从源极流向漏极或者从漏极流向源极,其中,有源层通常采用湿法刻蚀形成,而源极和漏极也是采用湿法刻蚀形成,因此,在制作源极和漏极时,有源层容易受到刻蚀剂的影响而产生缺陷(氧空位增加),在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响薄膜晶体管的工作稳定性。
技术问题
本申请实施例提供一种移动终端,用以缓解相关技术中的不足。
技术解决方案
为实现上述功能,本申请实施例提供的技术方案如下:
本申请实施例提供一种显示面板,包括:
基底;
薄膜晶体管层,设置于所述基底上,所述薄膜晶体管层包括设置于所述基底上的栅极、栅极绝缘层、有源层以及源漏电极层;
补氧功能层,位于所述源漏电极层远离所述有源层的一侧;
电极层,位于所述补氧功能层远离所述薄膜晶体管层的一侧,所述电极层的材料为金属氧化物材料;
其中,所述补氧功能层靠近所述电极层一侧的含氧量大于所述补氧功能层靠近所述有源层一侧的含氧量。
在本申请实施例所提供的显示面板中,所述显示面板包括位于所述薄膜晶体管层远离所述基底一侧的第一钝化层,所述补氧功能层包括所述第一钝化层;所述电极层为像素电极、公共电极或阳极中的一种。
在本申请实施例所提供的显示面板中,所述电极层为像素电极或公共电极中的一种,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的第二钝化层。
在本申请实施例所提供的显示面板中,所述电极层为阳极,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的像素定义层。
在本申请实施例所提供的显示面板中,所述电极层的材料为氧化铟镓锌。
在本申请实施例所提供的显示面板中,所述惰性气体为氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体。
本申请实施例提供一种显示面板的制作方法,所述制作方法的步骤包括:
提供一基底,在所述基底上依次形成栅极、栅极绝缘层、有源层、源漏电极层以及第一钝化层;
在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层上形成金属氧化物层;以及
蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成电极层,其中,所述第一钝化层靠近所述电极层一侧的含氧量大于所述第一钝化层靠近所述有源层一侧的含氧量。
在本申请实施例所提供的制作方法中,所述有源层的材料为金属氧化物半导体;所述电极层的材料为氧化铟镓锌。
在本申请实施例所提供的制作方法中,所述在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层上形成金属氧化物层的步骤包括:
在所述第一钝化层远离所述源漏电极层的一侧形成金属氧化物薄膜;
所述在氧气与惰性气体的气压比大于40%的环境下,对所述金属氧化物薄膜进行图案化处理,形成金属氧化物层。
在本申请实施例所提供的制作方法中,所述电极层为像素电极或公共电极中的一种,所述制作方法还包括以下步骤:
采用沉积工艺在所述电极层远离所述第一钝化层的一侧形成第二钝化层。
在本申请实施例所提供的制作方法中,所述蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成电极层,其中,所述第一钝化层靠近所述电极层一侧的含氧量大于所述第一钝化层靠近所述有源层一侧的含氧量的步骤包括:
对所述金属氧化物层进行蚀刻,形成电极图案;
对所述电极图案进行离子体处理,以使所述电极图案导体化,形成所述像素电极或所述公共电极。
在本申请实施例所提供的制作方法中,所述电极层为阳极,所述制作方法还包括以下步骤:
采用沉积工艺在所述电极层远离所述补氧功能层的一侧形成像素定义层。
在本申请实施例所提供的制作方法中,所述蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成电极层,其中,所述第一钝化层靠近所述电极层一侧的含氧量大于所述第一钝化层靠近所述有源层一侧的含氧量的步骤包括:
对所述金属氧化物层进行蚀刻,形成电极图案;
对所述电极图案进行离子体处理,以使所述电极图案导体化,形成所述阳极。
在本申请实施例所提供的制作方法中,所述沉积工艺为等离子体增强气相沉积工艺,所述等离子体包括氦气、氩气、氢气和氧气中的一种或一种以上的混合气体。
本申请实施例提供一种移动终端,包括终端主体和一显示面板,所述终端主体与所述显示面板组合为一体,所述显示面板包括:
基底;
薄膜晶体管层,设置于所述基底上,所述薄膜晶体管层包括设置于所述基底上方的栅极、栅极绝缘层、有源层以及源漏电极层,所述有源层的材料为金属氧化物半导体;
补氧功能层,位于所述源漏电极层远离所述有源层的一侧;
电极层,位于所述补氧功能层远离所述薄膜晶体管层的一侧,所述电极层的材料为金属氧化物材料;
其中,所述补氧功能层靠近所述电极层一侧的含氧量大于所述补氧功能层靠近所述有源层一侧的含氧量。
在本申请实施例所提供的移动终端中,所述显示面板包括位于所述薄膜晶体管层远离所述基底一侧的第一钝化层,所述补氧功能层包括所述第一钝化层;所述电极层为像素电极、公共电极或阳极中的一种。
在本申请实施例所提供的移动终端中,所述电极层为像素电极或公共电极中的一种,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的第二钝化层。
在本申请实施例所提供的移动终端中,所述电极层为阳极,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的像素定义层。
在本申请实施例所提供的移动终端中,所述电极层的材料为氧化铟镓锌。
在本申请实施例所提供的移动终端中,所述惰性气体为氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体。
有益效果
本申请提供一种显示面板及其制作方法、移动终端,所述显示面板包括层叠设置于基底上的薄膜晶体管层、补氧功能层以及电极层;所述薄膜晶体管层包括设置于所述基底上方的栅极、栅极绝缘层、有源层以及源漏电极层,所述有源层的材料为金属氧化物半导体,所述电极层的材料为金属氧化物材料,其中,所述补氧功能层靠近所述电极层一侧的含氧量大于所述补氧功能层靠近所述有源层一侧的含氧量,所述补氧功能层用于在制作所述电极层时被注入氧离子、及释放氧离子以填补有源层中的氧空位,从而解决现有技术中,因有源层氧空位增加,在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响所述显示面板器件的工作稳定性缺陷。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例所提供的显示面板的第一种结构示意图;
图2为本申请实施例所提供显示面板的制作方法的流程图;
图3A至图3D为图1中显示面板制作的结构工艺流程图;
图4为本申请实施例所提供的显示面板的第二种结构示意图;
图5为本申请实施例所提供的显示面板的第三种结构示意图;
图6A至图6C为图5中显示面板制作的结构工艺流程图。
本发明的实施方式
本申请实施例提供一种显示面板及其制作方法、移动终端,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参阅图1~图6C,本申请实施例提供一种显示面板及其制作方法、移动终端,所述显示面板1包括:
基底10;
薄膜晶体管层20,设置于所述基底10上,所述薄膜晶体管层20包括设置于所述基底10上方的栅极21、栅极绝缘层22、有源层23以及源漏电极层24,所述有源层23的材料为金属氧化物半导体;
补氧功能层30,位于所述有源层23远离所述基底10一的侧;
电极层40,位于所述补氧功能层30远离所述薄膜晶体管层20的一侧,所述电极层40的材料为金属氧化物材料;
其中,所述补氧功能层30靠近所述电极层40一侧的含氧量大于所述补氧功能层30靠近所述有源层23一侧的含氧量。
可以理解的是,在现有显示面板中,氧化物(Oxide)型薄膜晶体管(Thin Film Transistor,简称TFT)包括栅极、有源层、源极和漏极,源极和漏极分设于有源层的两端且分别与有源层接触;在实际应用中,源极和漏极通过有源层导通,载流子从源极流向漏极或者从漏极流向源极,其中,有源层通常采用湿法刻蚀形成,而源极和漏极也是采用湿法刻蚀形成,因此,在制作源极和漏极时,有源层容易受到刻蚀剂的影响而产生缺陷(氧空位增加),在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响薄膜晶体管的工作稳定性。
本申请实施例通过在补氧功能层30远离有源层23的一侧设置电极层40,所述电极层40与所述补氧功能层30相接触,所述电极层40的材料为金属氧化物材料;其中,所述补氧功能层30靠近所述电极层40一侧的含氧量大于所述补氧功能层30靠近所述有源层23一侧的含氧量,所述补氧功能层30用于在制作所述电极层40时被注入氧离子、及释放氧离子以填补所述有源层23中的氧空位,从而解决现有技术中,因有源层23氧空位增加,在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响所述显示面板1器件的工作稳定性缺陷。
在一实施例中,请参阅图1和图4;其中,图1为本申请实施例所提供的显示面板的第一种结构示意图,图4为本申请实施例所提供的显示面板的第二种结构示意图。
本实施例提供一种显示面板1,所述显示面板1包括但不限于发光二极管(Light-Emitting Diode,简称LED)和有机发光二极管显示面板1(OrganicLightEmittingDiode,简称OLED)中的一种,本实施例对此不做具体限制;需要说明的是,本实施例以所述显示面板为发光二极管为例对本申请的技术方案进行描述。
所述显示面板1包括基底10、位于所述基底10上的薄膜晶体管层20、补氧功能层30以及电极层40;其中,所述基底10可以包括刚性基底10或柔性基底10,当所述基底10为刚性基底10时,材料可以是金属或玻璃,当所述基底10为柔性基底10时,材料可以包括丙烯酸树脂、甲基丙烯酸树脂、聚异戊二烯、乙烯基树脂、环氧基树脂、聚氨酯基树脂、纤维素树脂、硅氧烷树脂、聚酰亚胺基树脂、聚酰胺基树脂中的至少一种。本实施例对所述基底10的材料不做限制。
所述薄膜晶体管层20包括层叠设置于所述基底10上的栅极21、有源层23和源漏电极层24,所述第一金属层包括位于所述基底10上的栅极21,所述有源层23包括有源段231和与所述有源段231相连接的导体段,所述导体段包括与所述源漏电极层24连接的搭接部(图中未标记),所述源漏电极层24包括间隔设置的源极24A和漏极24B,所述源极24A和所述漏极24B与所述搭接部连接;具体地,所述搭接部包括与所述源极24A接触的第一搭接部232A、及与所述漏极24B接触的第二搭接部232B,所述有源段231位于所述第一搭接部232A和所述第二搭接部232B之间;所述薄膜晶体管层20还包括位于所述栅极21和所述有源层23之间的栅极绝缘层22,所述栅极21对应所述有源段231设置。
进一步地,所述有源层23的材料包括金属氧化物半导体,所述金属氧化物材料包括但不限于氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO);所述第一金属层的材料和所述源漏电极层24的材料均包括但不限于钼(Mo)、铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、钙(Ca)、钛(Ti)、钽(Ta)和钨(W)中的至少一种金属。
在本实施例中,所述显示面板1还包括位于所述薄膜晶体管层20远离所述基底10一侧的第一钝化层31,所述第一钝化层31与所述有源层23相接触,且所述有源段231在所述基底10上的正投影位于所述第一钝化层31在所述基底10上的正投影内;优选地,所述第一钝化层31的材料包括但不限于氧化硅、氮化硅、氮氧化硅等或其层叠;具体地,在本实施例中,所述第一钝化层31的材料为氧化硅(SIO);优选地,所述补氧功能层30包括所述第一钝化层31。
所述电极层40与所述第一钝化层31相接触,所述电极层40的材料包括金属氧化物材料,所述金属氧化物材料包括但不限于氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO),需要说明的是,所述电极层40可以通过在氧气与惰性气体的气压比大于40%的环境下制作金属氧化物层,蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成,其中,在形成所述金属氧化物层的过程中,可以使部分氧离子注入到所述第一钝化层31内;其中,所述电极层40为像素电极或公共电极中的一种。
具体地,在本实施例中,所述电极层40包括层叠设置的第一电极层40A和第二电极层40B,所述第一电极层40A与所述第一钝化层31相接触,所述第二电极层40B位于所述第一电极层40A远离所述第一钝化层31的一侧,所述电极层40包括所述第一电极层40A;优选地,所述第一电极层40A为所述公共电极,所述第二电极层40B为所述像素电极,所述第二电极层40B与所述第一漏极24B相接触。
需要说明的是,如图4所示,在另一实施例中,所述第一电极层40A可为像素电极,所述第二电极层40B可为公共电极,所述第一电极层40A与所述第一漏极24B相接触,因此,本实施例对所述第一电极层40A和所述第二电极层40B的种类不做具体限制。
可以理解的是,本实施例通过在氧气与惰性气体的气压比大于40%的环境下制作所述金属氧化层,以使得形成所述金属氧化层的过程中部分氧离子注入到所述补氧功能层30内。
进一步地,在本实施例中,所述显示面板1还包括位于所述第一电极层40A和所述第二电极层40B之间的第二钝化层50,所述第二钝化层50通过沉积工艺制作,其中,所述沉积工艺在高温环境下进行,从而使所述补氧功能层30内的氧离子释放到所述有源层23,以填补所述有源层23中的氧空位。
可以理解的是,本实施例通过在补氧功能层30远离有源层23的一侧设置电极层40,所述电极层40与所述补氧功能层30相接触,所述电极层40的材料为金属氧化物材料;其中,所述补氧功能层30用于在制作所述电极层40时被注入氧离子、及释放氧离子以填补所述有源层23中的氧空位,从而解决现有技术中,因有源层23氧空位增加,在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响薄膜晶体管的工作稳定性缺陷;同时,在本实施例中,所述第一电极层40A可复用为所述电极层40,所述第一钝化层31可复用为所述补氧功能层30,因而无需在所述显示面板1的制作工作中额外增加一道制备补氧功能层30的工艺步骤,从而可有效简化所述显示面板1的制作工艺流程。
需要说明的是,在本实施例中,所述栅极21、所述栅极绝缘层22以及所述有源层23层叠设置仅用于举例说明,本实施例对所述薄膜晶体管层20的膜层结构不做具体限制。
请结合图1、图2、图3A至图3D;其中,图1为本申请实施例所提供的显示面板的第一种结构示意图;图2为本申请实施例所提供显示面板的制作方法的流程图;图3A至图3D为图1中显示面板制作的结构工艺流程图。
本实施例提供一种显示面板1的制作方法,所述制作方法的步骤包括:
步骤S100:提供一基底10,在所述基底上依次形成栅极21、栅极绝缘层22、有源层23、源漏电极层24以及第一钝化层31,如图3A所示。
具体地,所述步骤S100包括以下步骤:
步骤S101:在所述基底10上沉积第一金属层,对所述第一金属层图案化处理,形成所述栅极21;其中,所述第一金属层的材料包括但不限于钼(Mo)、铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、钙(Ca)、钛(Ti)、钽(Ta)和钨(W)中的至少一种金属。
步骤S102:在所述栅极21远离所述基底10的一侧形成栅极绝缘层22,所述栅极绝缘层22的材料包括但不限于氧化硅、氮化硅、氮氧化硅等或其层叠。
步骤S103:在所述基底10上沉积金属氧化物薄膜,所述金属氧化物薄膜的材料包括但不限于氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO),对所述金属氧化物薄膜图案化处理,形成所述有源层23。
步骤S104:在所述有源层23远离所述栅极绝缘层22的一侧沉积源漏电极层24,对所述第一金属层图案化处理,形成所述源漏电极层24;其中,所述源漏电极层24的材料包括但不限于钼(Mo)、铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、钙(Ca)、钛(Ti)、钽(Ta)和钨(W)中的至少一种金属。
具体地,所述有源层23包括有源段231和与所述有源段231相连接的导体段,所述导体段包括与所述源漏电极层24连接的搭接部,所述源漏电极层24包括间隔设置的源极24A和漏极24B,所述搭接部包括与所述源极24A接触的第一搭接部232A、及与所述漏极24B接触的第二搭接部232B,所述有源段231位于所述第一搭接部232A和所述第二搭接部232B之间。
步骤S105:在所述源漏电极层24远离所述有源层23的一侧形成第一钝化层31,其中,所述第一钝化层31与所述有源段231相接触,且所述有源段231在所述基底10上的正投影位于所述第一钝化层31在所述基底10上的正投影内;优选地,所述第一钝化层31的材料包括但不限于氧化硅、氮化硅、氮氧化硅等或其层叠;具体地,在本实施例中,所述第一钝化层31的材料为氧化硅(SIO)。
步骤S200:在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层31上形成金属氧化物层400,如图3B所示。
其中,所述金属氧化物层400在一制作腔室内通过沉积工艺形成,具体地,在制作腔室内,氧气与惰性气体的气压比大于40%,从而在高氧的环境下制作所述金属氧化物层400,以使得形成所述金属氧化物层400的过程中部分氧离子注入到所述第一钝化层31内。
其中,所述惰性气体包括但不限于氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体,优选地,在本实施例中,所述惰性气体为氩气。
步骤S300:蚀刻所述金属氧化物层400,并对蚀刻后的所述金属氧化物层400进行导体化以形成电极层40,其中,所述第一钝化层31靠近所述电极层40一侧的含氧量大于所述第一钝化层31靠近所述有源层23一侧的含氧量,如图3C所示。
进一步地,在本实施例中,所述步骤300包括以下步骤:
步骤S301:对所述金属氧化物层400进行蚀刻,形成电极图案,其中,所述蚀刻的方法包括但不限于湿法刻蚀。
步骤S302:对所述电极图案进行等离子体处理,以使所述电极图案导体化,形成第一电极层40A,所述第一电极层40A为所述像素电极或所述公共电极中的一种,优选地,所述第一电极40A为所述公共电极。
具体地,在所述步骤302中,所述等离子体为氦气、氩气、氢气和氧气中的一种或一种以上的混合气体,优选地,在本实施例中,所述等离子体为氩气。
可以理解的是,所述像素电极和所述公共电极对导电率的要求较高,因此本实施例通过对所述电极层进行等离子体处理,以使所述电极层导体化,从而提升所述电极层的导电性能。
具体地,在本实施例中,所述显示面板的制作方法还包括以下步骤:
步骤S400:在所述第一电极40A远离所述第一钝化层31的一侧形成第二钝化层50,其中,所述第二钝化层50通过沉积工艺制作,其中,所述沉积工艺在高温环境下进行,从而使所述第一钝化层31内的氧离子释放到所述有源层23,以填补所述有源层23中的氧空位,如图3D所示。
其中,所述第二钝化层50的制作方法采用等离子体增强气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)工艺,PECVD工艺为高温工艺,因此在形成第二钝化层50的过程中即可使得所述第一钝化层31释放氧离子,因而无需额外增设“高温工艺”来使得所述第一钝化层31释放氧离子,可保证制备工序简单化。
在本实施例中,所述显示面板的制作方法还包括步骤500:
在所述第二钝化层50远离所述第一电极40A的一侧形成第二电极层40B,所述第二电极层40B为所述像素电极,所述第二电极层40B与所述第一漏极24B相接触。
可以理解的是,本实施例通过在所述第一钝化层31远离所述有源层23的一侧形成电极层40,所述电极层40与所述补氧功能层30相接触,所述电极层40的材料为金属氧化物材料,其中,所述电极层40在氧气与氩气的气压比大于40%的环境下制作,以使得形成所述电极层40的过程中部分氧离子注入到所述第一钝化层31内;在沉积工艺中,将所述第一钝化层31内的氧离子释放到有源层23,以填补所述有源层23中的氧空位,从而解决现有技术中,因有源层23氧空位增加,在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响薄膜晶体管的工作稳定性缺陷。
同时,在本实施例中,所述第一电极层40A可复用为所述电极层40,所述第一钝化层31可复用为补氧功能层30,因而无需在所述显示面板1的制作工作中额外增加一道制备补氧功能层30的工艺步骤,从而可有效简化所述显示面板1的制作工艺流程;并且,所述补氧功能层30与所述有源段231相接触所述源极24A和所述漏极24B位于所述补氧功能层30与所述有源层23之间,从而防止所述补氧功能层30对所述有源层23除了有源段231以外的区域补充氧离子,而造成所述显示面板1器件发生电性异常。
请参阅图5,本申请实施例所提供的显示面板的第三种结构示意图。
在本实施例中,所述显示面板的结构与上述实施例所提供的显示面板的第一种结构相似/相同,具体请参照上述实施例中的显示面板的描述,此处不再赘述,两者的区别仅在于:
本实施例提供一种显示面板1,所述显示面板1包括但不限于发光二极管(Light-Emitting Diode,简称LED)和有机发光二极管显示面板1(OrganicLightEmittingDiode,简称OLED)中的一种,本实施例对此不做具体限制;需要说明的是,本实施例以所述显示面板为机发光二极管显示面板为例对本申请的技术方案进行描述。
在本实施例中,所述显示面板1包括基底10、位于所述基底10上的薄膜晶体管层20、补氧功能层30以及电极层40;所述薄膜晶体管层20包括层叠设置于所述基底10上的栅极21、栅极绝缘层22、有源层23、源漏电极层24以及第一钝化层31,所述源漏电极层24包括间隔设置的源极24A和漏极24B,所述补氧功能层30包括所述第一钝化层31。
所述显示面板1还包括位于所述第一钝化层31远离所述有源层23一侧的阳极40C,所述阳极40C与所述第一钝化层31相接触,其中,所述电极层40包括所述阳极40C;具体地,所述阳极40C与所述第一钝化层31相接触,所述阳极40C的材料包括金属氧化物材料,所述金属氧化物材料包括但不限于氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO),其中,所述阳极40C在氧气与惰性气体的气压比大于40%的环境下制作,以使得形成所述阳极40C的过程中部分氧离子注入到所述第一钝化层31内,其中,所述惰性气体包括但不限于氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体,优选地,在本实施例中,所述惰性气体为氩气。
进一步地,在本实施例中,所述显示面板1还包括位于所述阳极40C远离所述第一钝化层31的像素定义层60、发光层70以及阴极80,所述像素定义层60的制作方法采用等离子体增强气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)工艺,PECVD工艺为高温工艺,在高温工艺的环境下,所述补氧功能层30内的氧离子释放到所述有源层23,以填补所述有源层23中的氧空位。
需要说明的是在本实施例中,所述栅极21、所述栅极绝缘层22以及所述有源层23层叠设置仅用于举例说明,本实施例对所述薄膜晶体管层20的膜层结构不做具体限制。
请结合图5、图6A至图6C;其中,图6A至图6C为图5中显示面板制作的结构工艺流程图。
本实施例提供一种显示面板1的制作方法,包括以下步骤:
步骤S100:提供一基底10,在所述基底上依次形成栅极21、栅极绝缘层22、有源层23、源漏电极层24以及第一钝化层31,如图6A所示。
步骤S200:在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层31上形成金属氧化物层400。
进一步地,在本实施例中,所述步骤200包括以下步骤:
步骤S201:在所述第一钝化层31上形成开孔,所述开孔位于所述漏极24B上。
步骤S202:在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层31上形成金属氧化物层400。
所述金属氧化物层400的材料为金属氧化物材料,所述金属氧化物材料包括但不限于氧化铟镓锌(Indium Gallium Zinc Oxide,IGZO),如图6B所示
其中,所述金属氧化物层400在一制作腔室内通过沉积工艺形成,具体地,在制作腔室内,氧气与惰性气体的气压比大于40%,从而在高氧的环境下制作所述金属氧化物层400,以使得形成所述金属氧化物层400的过程中部分氧离子注入到所述第一钝化层31内。
其中,所述惰性气体包括但不限于氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体,优选地,在本实施例中,所述惰性气体为氩气。
步骤S300:蚀刻所述金属氧化物层400,并对蚀刻后的所述金属氧化物层400进行导体化以形成电极层40。
进一步地,在本实施例中,所述步骤300包括以下步骤:
步骤S301:对所述金属氧化物层400进行蚀刻,形成电极图案,其中,所述蚀刻的方法包括但不限于湿法刻蚀。
步骤S302:对所述电极图案进行等离子体处理,以使所述电极图案导体化,形成阳极40C,所述阳极40C通过所述开孔与所述漏极24B相连接,如图6C所示。
具体地,在所述步骤302中,所述等离子体为氦气、氩气、氢气和氧气中的一种或一种以上的混合气体,优选地,在本实施例中,所述等离子体为氩气。
步骤S400:在所述阳极40C远离所述第一钝化层31的一侧依次形成像素定义层60、发光层以及阴极,其中,所述像素定义层60通过沉积工艺制作,其中,所述沉积工艺在高温环境下进行,从而使所述补氧功能层30内的氧离子释放到所述有源层23,以填补所述有源层23中的氧空位,如图5所示。
其中,所述像素定义层60的制作方法采用等离子体增强气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)工艺,PECVD工艺为高温工艺,因此在形成所述像素定义层60的过程中即可使得补氧功能层30释放氧离子,因而无需额外增设“高温工艺”来使得补氧功能层30释放氧离子,可保证制备工序简单化。
本实施例提供一种移动终端,所述移动终端包括终端主体和上述任一实施例中所述的显示面板,所述终端主体与所述显示面板组合为一体。
可以理解的是,所述显示面板已经在上述实施例中进行了详细的说明,在此不在重复说明。
在具体应用时,所述移动终端可以为智能手机、平板电脑、笔记本电脑、智能手环、智能手表、智能眼镜、智能头盔、台式机电脑、智能电视或者数码相机等设备的显示屏,甚至可以应用在具有柔性显示屏的电子设备上。
本申请提供一种显示面板及其制作方法、移动终端,所述显示面板包括层叠设置于基底上的薄膜晶体管层、补氧功能层以及电极层;所述薄膜晶体管层包括设置于所述基底上方的栅极、栅极绝缘层、有源层以及源漏电极层,所述有源层的材料为金属氧化物半导体,所述电极层的材料为金属氧化物材料,其中,所述补氧功能层靠近所述电极层一侧的含氧量大于所述补氧功能层靠近所述有源层一侧的含氧量,所述补氧功能层用于在制作所述电极层时被注入氧离子、及释放氧离子以填补有源层中的氧空位,从而解决现有技术中,因有源层氧空位增加,在外界热刺激或者光刺激的影响下,降低载流子传输的速率,使阈值电压发生正偏移或负偏移,影响所述显示面板器件的工作稳定性缺陷。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其中,包括:
    基底;
    薄膜晶体管层,设置于所述基底上,所述薄膜晶体管层包括设置于所述基底上方的栅极、栅极绝缘层、有源层以及源漏电极层,所述有源层的材料为金属氧化物半导体;
    补氧功能层,位于所述源漏电极层远离所述有源层的一侧;
    电极层,位于所述补氧功能层远离所述薄膜晶体管层的一侧,所述电极层的材料为金属氧化物材料;
    其中,所述补氧功能层靠近所述电极层一侧的含氧量大于所述补氧功能层靠近所述有源层一侧的含氧量。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板包括位于所述薄膜晶体管层远离所述基底一侧的第一钝化层,所述补氧功能层包括所述第一钝化层;所述电极层为像素电极、公共电极或阳极中的一种。
  3. 根据权利要求2所述的显示面板,其中,所述电极层为像素电极或公共电极中的一种,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的第二钝化层。
  4. 根据权利要求2所述的显示面板,其中,所述电极层为阳极,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的像素定义层。
  5. 根据权利要求1所述的显示面板,其中,所述电极层的材料为氧化铟镓锌。
  6. 根据权利要求1所述的显示面板,其中,所述惰性气体为氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体。
  7. 一种显示面板的制作方法,其中,所述制作方法的步骤包括:
    提供一基底,在所述基底上依次形成栅极、栅极绝缘层、有源层、源漏电极层以及第一钝化层;
    在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层上形成金属氧化物层;以及
    蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成电极层,其中,所述第一钝化层靠近所述电极层一侧的含氧量大于所述第一钝化层靠近所述有源层一侧的含氧量。
  8. 根据权利要求7所述的制作方法,其中,所述有源层的材料为金属氧化物半导体;所述电极层的材料为氧化铟镓锌。
  9. 根据权利要求7所述的制作方法,其中,所述在氧气与惰性气体的气压比大于40%的环境下,在所述第一钝化层上形成金属氧化物层的步骤包括:
    在所述第一钝化层远离所述源漏电极层的一侧形成金属氧化物薄膜;
    所述在氧气与惰性气体的气压比大于40%的环境下,对所述金属氧化物薄膜进行图案化处理形成金属氧化物层。
  10. 根据权利要求7所述的显示面板的制作方法,其中,所述电极层为像素电极或公共电极中的一种,所述制作方法还包括以下步骤:
    采用沉积工艺在所述电极层远离所述第一钝化层的一侧形成第二钝化层。
  11. 根据权利要求10所述的显示面板的制作方法,其中,所述蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成电极层,其中,所述第一钝化层靠近所述电极层一侧的含氧量大于所述第一钝化层靠近所述有源层一侧的含氧量的步骤包括:
    对所述金属氧化物层进行蚀刻,形成电极图案;
    对所述电极图案进行离子体处理,以使所述电极图案导体化,形成所述像素电极或所述公共电极。
  12. 根据权利要求7所述的显示面板的制作方法,其中,所述电极层为阳极,所述制作方法还包括以下步骤:
    采用沉积工艺在所述电极层远离所述补氧功能层的一侧形成像素定义层。
  13. 根据权利要求12所述的显示面板的制作方法,其中,所述蚀刻所述金属氧化物层,并对蚀刻后的所述金属氧化物层进行导体化以形成电极层,其中,所述第一钝化层靠近所述电极层一侧的含氧量大于所述第一钝化层靠近所述有源层一侧的含氧量的步骤包括:
    对所述金属氧化物层进行蚀刻,形成电极图案;
    对所述电极图案进行离子体处理,以使所述电极图案导体化,形成所述阳极。
  14. 根据权利要求8所述的显示面板的制作方法,其中,所述沉积工艺为等离子体增强气相沉积工艺,所述等离子体包括氦气、氩气、氢气和氧气中的一种或一种以上的混合气体。
  15. 一种移动终端,其中,所述移动终端包括终端主体和一显示面板,所述终端主体与所述显示面板组合为一体,所述显示面板包括:
    基底;
    薄膜晶体管层,设置于所述基底上,所述薄膜晶体管层包括设置于所述基底上方的栅极、栅极绝缘层、有源层以及源漏电极层,所述有源层的材料为金属氧化物半导体;
    补氧功能层,位于所述源漏电极层远离所述有源层的一侧;
    电极层,位于所述补氧功能层远离所述薄膜晶体管层的一侧,所述电极层的材料为金属氧化物材料;
    其中,所述补氧功能层靠近所述电极层一侧的含氧量大于所述补氧功能层靠近所述有源层一侧的含氧量。
  16. 根据权利要求15所述的移动终端,其中,所述显示面板包括位于所述薄膜晶体管层远离所述基底一侧的第一钝化层,所述补氧功能层包括所述第一钝化层;所述电极层为像素电极、公共电极或阳极中的一种。
  17. 根据权利要求16所述的移动终端,其中,所述电极层为像素电极或公共电极中的一种,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的第二钝化层。
  18. 根据权利要求16所述的移动终端,其中,所述电极层为阳极,所述显示面板还包括位于所述电极层远离所述补氧功能层一侧的像素定义层。
  19. 根据权利要求15所述的移动终端,其中,所述电极层的材料为氧化铟镓锌。
  20. 根据权利要求15所述的显示面板,所述惰性气体为氦气、氖气、氩气、氪气、氙气、氡气中的一种或一种以上的混合气体。
PCT/CN2022/091846 2022-04-14 2022-05-10 显示面板及其制作方法、移动终端 WO2023197387A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/758,011 US20240178239A1 (en) 2022-04-14 2022-05-10 Display panel and manufacturing method thereof, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210393792.8 2022-04-14
CN202210393792.8A CN114823913A (zh) 2022-04-14 2022-04-14 显示面板及其制作方法、移动终端

Publications (1)

Publication Number Publication Date
WO2023197387A1 true WO2023197387A1 (zh) 2023-10-19

Family

ID=82535747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091846 WO2023197387A1 (zh) 2022-04-14 2022-05-10 显示面板及其制作方法、移动终端

Country Status (3)

Country Link
US (1) US20240178239A1 (zh)
CN (1) CN114823913A (zh)
WO (1) WO2023197387A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494231A (zh) * 2018-11-14 2019-03-19 昆山龙腾光电有限公司 薄膜晶体管阵列基板及其制作方法、以及液晶显示面板
CN111900195A (zh) * 2020-09-08 2020-11-06 京东方科技集团股份有限公司 显示基板及其制备方法和显示装置
CN112397573A (zh) * 2020-11-17 2021-02-23 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法、显示面板
CN113054036A (zh) * 2021-03-15 2021-06-29 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示面板、显示装置
US20210225886A1 (en) * 2020-01-21 2021-07-22 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Thin Film Transistor, Display Panel and Preparation Method Thereof, and Display Apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494231A (zh) * 2018-11-14 2019-03-19 昆山龙腾光电有限公司 薄膜晶体管阵列基板及其制作方法、以及液晶显示面板
US20210225886A1 (en) * 2020-01-21 2021-07-22 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Thin Film Transistor, Display Panel and Preparation Method Thereof, and Display Apparatus
CN111900195A (zh) * 2020-09-08 2020-11-06 京东方科技集团股份有限公司 显示基板及其制备方法和显示装置
CN112397573A (zh) * 2020-11-17 2021-02-23 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法、显示面板
CN113054036A (zh) * 2021-03-15 2021-06-29 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示面板、显示装置

Also Published As

Publication number Publication date
CN114823913A (zh) 2022-07-29
US20240178239A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JP6129312B2 (ja) アレイ基板の製造方法、アレイ基板及び表示装置
TWI277359B (en) Light emitting device and method of manufacturing the same
JP5642142B2 (ja) 薄膜トランジスタ、薄膜トランジスタアレイ基板及びそれらの製造方法
US9312279B2 (en) Thin film transistor array substrate, method of manufacturing the same, and display apparatus including the same
WO2016176886A1 (zh) 柔性oled及其制作方法
CN107611085B (zh) Oled背板的制作方法
WO2013013599A1 (zh) 阵列基板及其制作方法、液晶面板、显示装置
WO2020238384A1 (zh) 阵列基板的制作方法、阵列基板、显示面板及显示装置
US10615284B2 (en) Thin film transistor and method for fabricating the same, display substrate, display apparatus
JP2007221137A (ja) シリコン層の形成方法及びそれを用いた表示基板の製造方法
JP2014123723A (ja) 薄膜トランジスタ及びその製造方法、アレイ基板、ディスプレー装置
US20160254298A1 (en) Array Substrate, Manufacturing Method Thereof, and Display Device
KR102318054B1 (ko) Tft 기판 및 이의 제조 방법
WO2013139120A1 (zh) 氧化物薄膜晶体管及制作方法、阵列基板、显示装置
WO2015100894A1 (zh) 显示装置、阵列基板及其制造方法
US11925064B2 (en) Manufacturing method of display substrate and display device
WO2014117512A1 (zh) 一种薄膜晶体管、薄膜晶体管驱动背板的制备方法及薄膜晶体管驱动背板
WO2013113232A1 (zh) 阵列基板及其制造方法
WO2013185433A1 (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
WO2018196289A1 (zh) 薄膜晶体管及其制备方法
US11239263B2 (en) Thin film transistor, method for manufacturing thereof and display device
WO2023197387A1 (zh) 显示面板及其制作方法、移动终端
US10304966B2 (en) Metal oxide TFT device and manufacturing method thereof
WO2021237784A1 (zh) 薄膜晶体管及其制备方法、显示面板
WO2020113622A1 (zh) Tft基板的制作方法及tft基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17758011

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937029

Country of ref document: EP

Kind code of ref document: A1