WO2023197140A1 - 探针组件、静电吸盘装置、半导体设备及吸附工件的方法 - Google Patents

探针组件、静电吸盘装置、半导体设备及吸附工件的方法 Download PDF

Info

Publication number
WO2023197140A1
WO2023197140A1 PCT/CN2022/086297 CN2022086297W WO2023197140A1 WO 2023197140 A1 WO2023197140 A1 WO 2023197140A1 CN 2022086297 W CN2022086297 W CN 2022086297W WO 2023197140 A1 WO2023197140 A1 WO 2023197140A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
electrostatic chuck
workpiece
lifting part
opening
Prior art date
Application number
PCT/CN2022/086297
Other languages
English (en)
French (fr)
Inventor
赵一霖
劳大鹏
邵永胜
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/086297 priority Critical patent/WO2023197140A1/zh
Publication of WO2023197140A1 publication Critical patent/WO2023197140A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present application relates to the field of semiconductor manufacturing technology, and in particular, to a probe assembly, an electrostatic chuck device, a semiconductor equipment, and a method for adsorbing workpieces.
  • electrostatic chuck devices In the manufacturing of semiconductors, there are usually high requirements for the working environment of semiconductor equipment. Since the electrostatic chuck device has uniform adsorption force and no contact with the upper surface of the wafer during operation, it is particularly suitable for vacuum operating environments. Therefore, in recent years, electrostatic chuck devices have been widely used in various aspects of semiconductor manufacturing such as etching, deposition, and detection. , used to absorb the workpiece to be processed.
  • the existing electrostatic chuck device has many openings, it not only affects the surface flatness of the electrostatic chuck device, but also results in poor adsorption uniformity of the electrostatic chuck device. Secondly, the lifting pins and ground probes of the electrostatic chuck device also occupy a lot of space inside the semiconductor equipment.
  • This application provides a probe assembly, an electrostatic chuck device, a semiconductor device, and a method for adsorbing workpieces to reduce the openings of the electrostatic chuck, thereby improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck, and improving the shielding performance of semiconductor equipment. , and reduce the space occupied by semiconductor equipment.
  • the present application provides a probe assembly.
  • the probe assembly can be installed on an electrostatic chuck, which is used to adsorb workpieces.
  • the probe assembly may include a lifting part and a probe.
  • the lifting part and the probe move within the opening of the electrostatic chuck.
  • the lifting part can drive the workpiece closer to or away from the electrostatic chuck.
  • the probe includes a first end and a second end, wherein the first end can be electrically connected to the workpiece, and the second end can be electrically connected to the outside.
  • the probe is slidably installed on the lifting part. When the probe moves relative to the lift, the first end can extend out or retract the opening.
  • the lifting part can be used to lift the workpiece, and the probe can be used to electrically connect the workpiece.
  • the electrostatic chuck of the electrostatic chuck device is provided with an opening for the probe assembly to move.
  • the lifting portion of the probe assembly rises in the opening and extends out of the working surface of the electrostatic chuck to support the workpiece.
  • the first end of the probe extends out of the opening, that is, out of the working surface of the electrostatic chuck.
  • the workpiece also descends with the lifting part until the workpiece contacts the working surface of the electrostatic chuck and is adsorbed.
  • the probe is electrically connected to the workpiece, so that when the workpiece is processed, the probe can provide a bias voltage to the workpiece or ground the workpiece.
  • the lifting part rises again in the opening and extends out of the working surface of the electrostatic chuck, so that the processed workpiece also rises to separate from the electrostatic chuck.
  • the probe assembly of this embodiment can both lift and lower the workpiece and electrically connect the workpiece, thereby reducing the space occupied by the electrostatic chuck device. Moreover, the electrostatic chuck only needs to provide openings for the entire probe assembly, thereby reducing the number of openings and improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck.
  • the positional relationship between the above-mentioned probe and the lifting part is not specifically limited.
  • the probe may be located within the lift, or the probe may be positioned adjacent to the lift.
  • the above-mentioned probe assembly may further include a reset member.
  • the reset component is connected with the probe to drive the first end of the probe to extend out of the opening.
  • the specific position of the above-mentioned reset component is not limited.
  • the probe and the reset piece are arranged in the lifting part. One end of the reset piece is connected to the lifting part, and the other end is connected to the probe, so that the first end of the probe is driven to extend out of the opening under the support of the lifting part. .
  • This structural design can reduce the overall size of the probe assembly and further reduce the space it takes up in the electrostatic chuck device.
  • the above-mentioned probe assembly may further include a fixed base plate provided outside the lifting part.
  • the lifting part can move relative to the fixed base plate.
  • One end of the reset member can be connected to the fixed substrate, and the other end can be connected to the probe, so that the first end of the probe is driven to extend out of the opening under the support of the fixed substrate.
  • the probe does not need to move with the lifting part to reduce the movement of the probe, thereby maintaining a good electrical connection between the probe and the outside.
  • the above-mentioned lifting part may be non-conductive or conductive.
  • the probe assembly may further include an insulating part.
  • the insulating part can be disposed between the probe and the lifting part to insulate and isolate the probe and the lifting part to avoid electrical conduction between the probe and the lifting part.
  • the above-mentioned insulating part can move relative to at least one of the lifting part and the probe.
  • the insulating part can move relative to the lifting part and be fixedly connected to the probe; or the insulating part can move relative to the lifting part and can move relative to the probe; or the insulating part can be fixedly connected to the lifting part, and Can be moved relative to the probe.
  • the above-mentioned restoring component may be an elastic component.
  • the elastic member is prestressed, so that the elastic member can drive the first end of the probe to extend out of the opening without other external forces.
  • the present application provides an electrostatic chuck device, including an electrostatic chuck, a driving device, and the probe assembly of the first aspect.
  • the electrostatic chuck is provided with openings.
  • the driving device is connected with the lifting part to drive the lifting part to extend or retract into the opening.
  • the lifting part can be used to lift the workpiece, and the probe can be used to electrically connect the workpiece.
  • the lifting portion of the probe assembly rises in the opening and extends out of the working surface of the electrostatic chuck to support the workpiece.
  • the first end of the probe extends out of the opening, that is, out of the working surface of the electrostatic chuck.
  • the probe is electrically connected to the workpiece, so that when the workpiece is processed, the probe can provide a bias voltage to the workpiece or ground the workpiece.
  • the lifting part rises again in the opening and extends out of the working surface of the electrostatic chuck, so that the processed workpiece also rises to separate from the electrostatic chuck.
  • the probe assembly can both lift and lower the workpiece and electrically connect the workpiece, thereby reducing the space occupied by the electrostatic chuck device.
  • the electrostatic chuck only needs to provide openings for the entire probe assembly, thereby reducing the number of openings and improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck.
  • the electrostatic chuck device described above may include multiple probe assemblies.
  • the electrostatic chuck can be provided with an opening, and the plurality of probe assemblies share this opening.
  • the electrostatic chuck can be provided with multiple openings, the number of openings is equal to the number of probe assemblies, and the probe assemblies are arranged in one-to-one correspondence with the openings.
  • the present application provides a semiconductor device, including a workbench and the electrostatic chuck device of the second aspect.
  • the electrostatic chuck device is disposed on the workbench.
  • semiconductor equipment can be used to process workpieces.
  • the lifting portion of the probe assembly rises in the opening and extends out of the working surface of the electrostatic chuck to support the workpiece.
  • the first end of the probe extends out of the opening, that is, out of the working surface of the electrostatic chuck.
  • the lifting part descends and is retracted into the opening.
  • the workpiece also descends with the lifting part until the workpiece contacts the working surface of the electrostatic chuck and is adsorbed.
  • the probe is electrically connected to the workpiece, so that when the workpiece is processed, the probe can provide a bias voltage to the workpiece or ground the workpiece.
  • the lifting part rises again in the opening and extends out of the working surface of the electrostatic chuck, so that the processed workpiece also rises to separate from the electrostatic chuck.
  • the probe assembly can both lift and lower the workpiece and electrically connect the workpiece, thereby reducing the space occupied by the electrostatic chuck device.
  • the electrostatic chuck only needs to provide openings for the entire probe assembly, thereby reducing the number of openings and improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck.
  • the electrostatic chuck device and the workbench can be integrated.
  • the above-mentioned semiconductor device may further include an electromagnetic shielding layer.
  • the electromagnetic shielding layer is arranged in the workbench and covers the driving device of the electrostatic chuck device, thereby electromagnetically shielding the driving device and preventing the electromagnetic field generated by the driving device from affecting other components of the semiconductor equipment.
  • the electromagnetic shielding layer is provided with openings so that the driving device can be connected to the lifting part through the openings.
  • the electromagnetic shielding layer only needs to provide openings for the entire probe assembly, thereby reducing the number of openings and improving the electromagnetic shielding performance.
  • the present application provides a method for adsorbing a workpiece, which uses the electrostatic chuck device of the second aspect to adsorb the workpiece.
  • the method includes: controlling the lifting part to extend out of the opening; placing the workpiece on the lifting part; controlling the lifting part to retract the opening until the workpiece contacts the electrostatic chuck, and the workpiece contacts and squeezes the probe; energizing the electrostatic chuck, and electrostatically The suction cup absorbs the workpiece.
  • the above method also includes: powering off the electrostatic chuck; controlling the lifting part to extend out of the opening; and removing the workpiece from the lifting part.
  • Figure 1 is a schematic structural diagram of a semiconductor device
  • Figure 2 is a structural schematic diagram of an electrostatic chuck device in an embodiment of the present application
  • Figure 3 is a schematic structural diagram of the probe assembly in the embodiment of the present application.
  • Figure 4 is a cross-sectional view of the probe assembly of Figure 3 along the A-A direction;
  • Figure 5 is another structural schematic diagram of the probe assembly in the embodiment of the present application.
  • Figure 6 is another structural schematic diagram of the probe assembly in the embodiment of the present application.
  • Figure 7 is another structural schematic diagram of the probe assembly in the embodiment of the present application.
  • Figure 8 is a cross-sectional view of the probe assembly of Figure 7 along the B-B direction;
  • Figure 9 is a schematic diagram of the probe assembly of Figure 8 in another state
  • Figure 10 is a schematic structural diagram of an electrostatic chuck in an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a semiconductor device in an embodiment of the present application.
  • Figure 12 is another structural schematic diagram of a semiconductor device in an embodiment of the present application.
  • Figure 13 is another structural schematic diagram of a semiconductor device in an embodiment of the present application.
  • Figure 14 is a flow chart of a method for adsorbing workpieces in an embodiment of the present application.
  • Figure 15 is another flow chart of a method for adsorbing a workpiece in an embodiment of the present application.
  • Figure 1 is a schematic structural diagram of a semiconductor device.
  • the semiconductor equipment 10 can be used to process various workpieces such as wafers, integrated circuits, and chips.
  • the semiconductor equipment 10 may include a workbench 11 and an electrostatic chuck device.
  • the electrostatic chuck device is used to adsorb the workpiece 12 to be processed.
  • the electrostatic chuck device is assembled on the workbench 11 through screws 13 .
  • the electrostatic chuck device includes an electrostatic chuck 14 , a plurality of lifting pins 15 , a plurality of ground probes 16 and a driving motor 17 .
  • the electrostatic chuck 14 is provided with a plurality of first openings 18 and a plurality of second openings 19 .
  • the driving motor 17 can drive each lifting pin 15 to move within the corresponding first opening 18 to extend or retract the first opening 18 .
  • the driving motor 17 can also drive each ground probe 16 to move within the corresponding second opening 19 to extend or retract the second opening 19.
  • the semiconductor equipment 10 is used to process wafers.
  • the electrostatic chuck device may be used to absorb the wafers.
  • the lifting pin 15 is used to lift the wafer
  • the ground probe 16 is used to electrically connect the wafer.
  • the lifting pin 15 moves in the first opening 18 and extends out of the working surface of the electrostatic chuck 14
  • the ground probe 16 moves in the second opening 19 and extends out of the working surface of the electrostatic chuck 14 .
  • the external transport mechanism will place the wafer to be processed on the lift pin 15 .
  • the wafer descends until it contacts the working surface of the electrostatic chuck 14 .
  • the electrostatic chuck 14 is energized, and its working surface generates electrostatic adsorption force, causing the wafer to be adsorbed, thereby maintaining the wafer at the expected processing position.
  • the wafer will simultaneously squeeze the ground probe 16 to achieve electrical connection between the wafer and the ground probe 16 . Therefore, during the processing of the wafer, the wafer can be voltage biased or grounded through the ground probe 16 .
  • the electrostatic chuck 14 When the processing of the wafer is completed, the electrostatic chuck 14 is powered off, and the lifting pin 15 moves in the first opening 18 again and extends out of the working surface of the electrostatic chuck 14 , and at the same time, the wafer is separated from the electrostatic chuck 14 .
  • the external transport mechanism then removes the processed wafer from the semiconductor device 10 for later use.
  • the electrostatic chuck 14 needs to be provided with openings for the lifting pin 15 and the ground probe 16 to pass through.
  • the electrostatic chuck 14 also needs to be provided with assembly holes so that the electrostatic chuck device can be assembled on the workbench 11 through screws 13 .
  • the electrostatic chuck 14 adsorbs the wafer, the working surface of the electrostatic chuck 14 directly contacts the wafer. Therefore, having too many holes in the electrostatic chuck 14 will reduce the surface flatness and the uniformity of the adsorption force.
  • an electromagnetic shielding layer is provided in the workbench 11 to electromagnetically shield the drive motor 17 and electronic devices in the workbench 11 .
  • both the lifting pin 15 and the ground probe 16 are driven by the driving motor 17, it is necessary to provide openings in the electromagnetic shielding layer so that the driving motor 17 can be connected to the lifting pin 15 and the grounding probe 16, but the openings will As a result, the electromagnetic shielding performance of the electromagnetic shielding layer is reduced, thereby affecting the normal operation of the semiconductor device 10 .
  • the present application provides a probe assembly, an electrostatic chuck device and a semiconductor device to reduce the openings of the electrostatic chuck, thereby improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck, improving the shielding performance of the semiconductor device, and Reduce the space occupied by semiconductor equipment.
  • FIG. 2 is a schematic structural diagram of an electrostatic chuck device in an embodiment of the present application.
  • the electrostatic chuck device 20 includes an electrostatic chuck 21 , a driving device 22 and a probe assembly 23 .
  • the electrostatic chuck 21 is provided with an opening 24, and the driving device 22 can drive the probe assembly 23 to move within the opening 24.
  • the probe assembly 23 in FIG. 2 is only a schematic diagram and is not used to limit the number, structure, and positional relationship between the probe assembly 23 and other components.
  • the electrostatic chuck device 20 can be applied to various types of semiconductor equipment.
  • Semiconductor equipment may be semiconductor processing equipment, semiconductor testing equipment, semiconductor packaging equipment, etc., such as photolithography machines, etching machines, etc.
  • the electrostatic chuck device 20 can be used to adsorb the workpiece 30 , and the probe assembly 23 can be used to both lift and lower the workpiece 30 , and can also be used to electrically connect the workpiece 30 , thereby reducing the space occupied by the electrostatic chuck device 20 . .
  • the electrostatic chuck 21 only needs to be provided with openings 24 for the entire probe assembly 23, thereby reducing the number of openings 24 and improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck 21.
  • working surface of the electrostatic chuck refers to the surface of the electrostatic chuck 21 that is in contact with the workpiece 30 .
  • FIG. 3 is a schematic structural diagram of the probe assembly in an embodiment of the present application
  • FIG. 4 is a cross-sectional view of the probe assembly in FIG. 3 along the A-A direction.
  • the probe assembly 23 may include a lifting portion 231 and a probe 232 .
  • the lifting portion 231 can move within the opening 24 of the electrostatic chuck 21 to drive the workpiece 30 closer to or away from the electrostatic chuck 21 .
  • the probe 232 can move relative to the lifting part 231 .
  • the probe 232 includes a first end 232a and a second end 232b, wherein the first end 232a can be electrically connected to the workpiece 30 and the second end 232b can be electrically connected to the outside.
  • the first end 232a of the probe 232 can extend or retract the opening 24.
  • protruding can be understood as protruding. Therefore, as shown in FIG. 4 , “the first end of the probe protrudes out of the opening” means that the first end 232 a of the probe 232 protrudes from the working surface of the electrostatic chuck 21 , and does not limit whether the probe 232 is located on the lifting part. 231 interior. In addition, as shown in FIG. 3 , “the first end of the probe is retracted into the opening” means that the first end 232 a of the probe 232 does not protrude from the working surface of the electrostatic chuck 21 .
  • the function of lifting the workpiece 30 of the probe assembly 23 is performed by the lifting part 231. Specifically, during the process of the electrostatic chuck device 20 adsorbing the workpiece 30, the lifting part 231 of the probe assembly 23 rises in the opening 24 and extends out of the electrostatic chuck 21. working surface to support the workpiece 30. When the workpiece 30 is placed on the lifting part 231, the lifting part 231 descends and is retracted into the opening 24; at the same time, the workpiece 30 also descends with the lifting part 231 until the workpiece 30 contacts the working surface of the electrostatic chuck 21 and is adsorbed. After the workpiece 30 is processed, the lifting portion 231 rises again in the opening 24 and extends out of the working surface of the electrostatic chuck 21 , so that the processed workpiece 30 also rises to separate from the electrostatic chuck 21 .
  • lifting in this application means that the lifting portion 231 moves in the direction of extending out of the working surface of the electrostatic chuck 21, and “falling” means that the lifting portion 231 moves in the direction of retracting into the opening 24.
  • the function of electrically connecting the workpiece 30 of the probe assembly 23 is performed by the probe 232. Specifically, before the workpiece 30 is placed on the lifting part 231, the first end 232a of the probe 232 extends out of the lifting part 231. When the workpiece 30 is adsorbed to the working surface of the electrostatic chuck 21 , the probe 232 is electrically connected to the workpiece 30 , so that when the workpiece 30 is processed, the probe 232 can provide a bias voltage to the workpiece 30 or ground the workpiece 30 .
  • the specific position of the probe 232 is not limited.
  • the probe 232 may be disposed in the lifting part 231 .
  • the lifting part 231 may have a space for accommodating the probe 232, that is to say, the lifting part 231 is hollow.
  • the probe 232 is accommodated in the lifting part 231, which can reduce the overall volume of the probe assembly 23, thereby reducing the space occupied by the probe assembly 23 in the electrostatic chuck device 20.
  • FIG. 5 is another structural schematic diagram of the probe assembly in the embodiment of the present application, which shows a top view of the probe assembly viewed in a direction perpendicular to the working surface. As shown in FIG. 5 , the probe 232 may also be provided adjacent to the lifting part 231 .
  • the first end 232 a of the probe 232 is shaped like a needle to facilitate physical penetration into the surface of the workpiece 30 without damaging the overall performance of the workpiece 30 .
  • the first end 232a may also be in a frustum shape or a spherical shape, which is not specifically limited in this application.
  • the above-mentioned probe assembly 23 may also include a reset member 25 .
  • the reset member 25 is connected to the probe 232 and is used to drive the first end 232a of the probe 232 to extend out of the opening 24 .
  • the first end 232 a of the probe 232 maintains the state of extending out of the lifting part 231 under the action of the reset member 25 .
  • the lifting part 231 rises in the opening 24 and extends out of the working surface of the electrostatic chuck 21
  • the first end 232 a of the probe 232 also extends out of the working surface of the electrostatic chuck 21 .
  • the workpiece 30 When the workpiece 30 is placed on the lifting part 231, the workpiece 30 contacts the probe 232, and at the same time, the workpiece 30 squeezes the probe 232 to resist the restoring force of the reset member 25, thereby achieving a more reliable electrical connection between the workpiece 30 and the probe 232.
  • the specific type of the above-mentioned restoring member 25 is not limited, and may be an elastic member, such as a compression spring, a tension spring, a spring leaf, etc.
  • the reset member 25 can also be a lever or a reset motor, which is not specifically limited in this application.
  • the position of the reset member 25 is not specifically limited in this application.
  • the reset member 25 may be located in the lifting part 231 .
  • the reset member 25 can be disposed between the lifting part 231 and the probe 232 .
  • One end of the reset part 25 is connected to the bottom wall of the lifting part 231 , and the other end is connected to the third end of the probe 232 .
  • the two ends 232b are connected; in the embodiment shown in FIG. 6 , the reset member 25 can be arranged on the peripheral side of the probe 232.
  • the reset member 25 is also located between the lifting part 231 and the probe 232, where the reset member 25 One end is connected to the top wall of the lifting part 231, and the other end is connected to the second end 232b of the probe 232.
  • the reset member 25 can be fixedly connected to the lifting portion 231 , for example, by bonding, threaded connection, riveting or snapping.
  • the reset member 25 may also be in contact with the lifting part 231 .
  • the reset member 25 can also be disposed outside the lifting portion 231 .
  • the probe assembly 23 includes a lifting part 231 , a probe 232 and a reset member 25 disposed in the lifting part 231 .
  • the first end 232a of the probe 232 is in the shape of a needle tip.
  • the return member 25 is a compression spring and is arranged between the lifting part 231 and the probe 232 .
  • the compression spring drives the first end 232a of the probe 232 to extend out of the lifting portion 231.
  • the lifting part 231 rises, the probe 232 and the reset member 233 move together with the lifting part 231 .
  • the workpiece 30 presses the probe 232, causing the compression spring to be compressed.
  • the above-mentioned restoring member 233 may be provided with prestress.
  • the prestress of the reset member 233 is high, when the workpiece 30 contacts the first end 232a of the probe 232 and squeezes the probe 232, the first end 232a of the probe 232 can physically penetrate into the workpiece 30, thereby Electrically connect the workpiece 30.
  • the prestress of the reset part 233 is low, when the workpiece 30 contacts the first end 232a of the probe 232 and squeezes the probe 232, the first end 232a of the probe 232 retracts the lifting part 231. At this time, it can By applying high voltage to the probe 232, the portion of the workpiece 30 in contact with the electrostatic chuck 21 is electrically broken down to achieve electrical connection.
  • the positional nouns top and bottom will be introduced for convenience of description. These positional words are only used for a more concise description and to help readers locate the position of the described object in the figure, rather than for The position and direction of the pointed object are specifically limited.
  • the bottom wall of the lifting part 231 refers to the side away from the working surface in a direction perpendicular to the working surface of the electrostatic chuck 21 , that is, the bottom wall of the lifting part 231 shown in FIG. 4 .
  • the top wall of the lifting part 231 refers to the side close to the working surface in the direction perpendicular to the working surface of the electrostatic chuck 21 , that is, the uppermost wall of the lifting part 231 shown in FIG. 4 .
  • the second end 232b of the probe 232 is also provided with a wire 234.
  • the bottom wall of the lifting part 231 is provided with an opening.
  • the wire 234 passes through the opening and is electrically connected to the outside, which can reduce the bending of the wire 234 and thereby extend the service life of the probe assembly 23 .
  • the above-mentioned opening can also be provided on the side wall of the lifting part 231, and its specific location is not specifically limited in this application.
  • FIG. 7 is another structural schematic diagram of the probe assembly in the embodiment of the present application
  • FIG. 8 is a cross-sectional view of the probe assembly in FIG. 7 along the B-B direction.
  • the probe assembly 23 may further include a fixed base plate 235 disposed outside the lifting portion 231 .
  • the lifting part 231 is movable relative to the fixed base plate 235 .
  • the reset member 233 is disposed between the probe assembly 23 and the probe 232.
  • one end of the reset member 233 can be connected to the fixed base plate 235, and the other end can be connected to the probe 232.
  • the reset member 233 can drive the first end 232a of the probe 232 to extend out of the working surface of the electrostatic chuck 21 .
  • the probe 232 does not need to move with the lifting part 231 to reduce the movement of the probe 232 so that the probe 232 maintains a relatively good electrical connection with the outside.
  • the lifting part 231 descends and is retracted into the opening 24; at the same time, the workpiece 30 also descends with the lifting part 231 until the workpiece 30 contacts the working surface of the electrostatic chuck 21 and is adsorbed.
  • the workpiece 30 contacts and squeezes the first end 232 a of the probe 232 to achieve electrical connection between the workpiece 30 and the probe 232 .
  • connection method between the above-mentioned reset component 233 and the fixed base plate 235 is not limited.
  • the reset component 233 can be fixed to the fixed base plate 235 by bonding, threaded connection, riveting or snapping.
  • the reset component 233 can also be connected to the fixed base plate 235 . Abut.
  • the fixed base plate 235 may also be provided with an opening.
  • the wire 234 passes through the opening of the fixed substrate 235 and is electrically connected to the outside, which can reduce the bending of the wire 234 and thereby extend the service life of the probe assembly 23 .
  • the lifting part 231 may be conductive or non-conductive, such as ceramic, plastic or metal, which is not specifically limited in the present application.
  • the lifting part 231 is a metal lifting part.
  • the metal lifting part has high strength and long service life. In addition, it is easy to process and shape, and the manufacturing cost is low.
  • the probe assembly 23 may further include an insulating part 236 disposed between the probe 232 and the metal lifting part for insulating and isolating the probe 232 and the metal lifting part.
  • lubricant can also be added in the small gap to make the movement of the lifting part 231 smoother and avoid accidentally shaking the workpiece 30 and causing collision with the workpiece 30 or causing the workpiece 30 to deviate from the expected processing position.
  • the insulating part 236 is movable relative to at least one of the lifting part 231 and the probe 232 .
  • the insulating part 236 can move relative to the lifting part 231 and be fixedly connected to the probe 232; or the insulating part 236 can move relative to the lifting part 231 and move relative to the probe 232; or the insulating part 236 and the probe 232 can move.
  • the lifting part 231 is fixedly connected and can move relative to the probe 232 . Through the above methods, the probe 232 can be moved relative to the lifting part 231 .
  • the insulating part 236 can be fixedly connected to the lifting part 231 and can move relative to the probe 232 .
  • the inner surface of the insulating portion 236 can match the shape of the probe 232 so as to limit the distance by which the probe 232 protrudes from the working surface.
  • the insulating part 236 can move relative to the lifting part 231 and can move relative to the probe 232 .
  • the insulating part 236 does not rise and fall together with the lifting part 231 , thereby avoiding the disconnection of the electrical connection with the outside due to the movement of the probe 232 , thereby ensuring that the probe 232 can be electrically connected to the workpiece 30 during processing of the workpiece 30 .
  • the outer surface of the insulating part 236 matches the shape of the inner surface of the lifting part 231 to limit the lifting distance of the insulating part 236, thereby limiting the distance of the probe 232 extending out of the working surface.
  • the probe assembly 23 may also include a connecting rod 237 connected to the lifting part 231.
  • the connecting rod 237 is connected to the external driving device 22 and is used to be driven to drive the lifting.
  • the part 231 rises and falls, thereby realizing the lifting and lowering of the workpiece 30.
  • the electrostatic chuck device 20 may include multiple probe assemblies 23 .
  • the electrostatic chuck 21 may be provided with an opening 24, and the plurality of probe assemblies 23 share this opening 24.
  • the electrostatic chuck 21 may be provided with multiple openings 24 , the number of openings 24 is equal to the number of probe assemblies 23 , and the probe assemblies 23 and the openings 24 are arranged in one-to-one correspondence.
  • the specific number and arrangement of the openings 24 are not limited. As shown in FIG.
  • the electrostatic chuck device 20 includes a plurality of probe assemblies 23
  • the electrostatic chuck 21 includes a plurality of openings 24
  • the plurality of openings 24 correspond to the plurality of probe assemblies 23 one by one.
  • the plurality of openings 24 can also be evenly distributed along the periphery of the suction cup to further improve the uniformity of the adsorption force of the electrostatic chuck 21 .
  • this application also provides a semiconductor device 40, which includes a workbench 41 and the electrostatic chuck device 20 of any of the above embodiments.
  • the electrostatic chuck device 20 is disposed on the workbench 41.
  • Semiconductor device 40 may be used to process workpiece 30 .
  • the lifting portion 231 of the probe assembly 23 rises in the opening 24 and extends out of the working surface of the electrostatic chuck 21 to support the workpiece 30 .
  • the first end 232 a of the probe 232 extends out of the opening 24 , that is, out of the working surface of the electrostatic chuck 21 .
  • the lifting part 231 descends and retracts into the opening 24.
  • the workpiece 30 also descends with the lifting part 231 until the workpiece 30 contacts the working surface of the electrostatic chuck 21 and is adsorbed.
  • the probe 232 is electrically connected to the workpiece 30, so that when the workpiece 30 is processed, the probe 232 can provide a bias voltage to the workpiece 30 or ground the workpiece 30.
  • the lifting portion 231 rises again in the opening 24 and extends out of the working surface of the electrostatic chuck 21 , so that the processed workpiece 30 also rises to separate from the electrostatic chuck 21 .
  • the above-mentioned probe assembly 23 can both lift and lower the workpiece 30 and electrically connect the workpiece 30 , thereby reducing the space it occupies in the electrostatic chuck device 20 .
  • the electrostatic chuck 21 only needs to be provided with openings 24 for the entire probe assembly 23, thereby reducing the number of openings 24 and improving the uniformity of the adsorption force and surface flatness of the electrostatic chuck 21.
  • FIG. 12 and 13 are another schematic structural diagram of a semiconductor device in an embodiment of the present application.
  • the electrostatic chuck device 20 and the workbench 41 can be integrated. Specifically, the electrostatic chuck device 20 is located in the workbench 41 .
  • the area of the top outer surface of the workbench 41 corresponding to the electrostatic chuck 21 can be used as a working surface of the semiconductor equipment, and this area is also a working surface of the electrostatic chuck device 20 .
  • the semiconductor equipment further includes a sensor 42 arranged on the workbench 41.
  • the mounting surface of the sensor 42 is flush with the surface of the workpiece 30 adsorbed by the electrostatic chuck device 20.
  • the sensor 42 is used to detect the operation of the semiconductor equipment. Condition.
  • the top outer surface of the workbench 41 can simultaneously carry the sensor 42 and the workpiece 30, where the workpiece 30 is disposed where the electrostatic chuck device 20 is located. area, the sensor 42 is installed in the area where the workbench 41 is located. Therefore, the installation surface of the sensor 42 and the load-bearing surface of the workpiece 30 have an integrated structure, which allows the sensor 42 to be installed with high precision and position accurately, and to accurately monitor the processing status of the workpiece 30 .
  • the semiconductor device 40 further includes an electromagnetic shielding layer.
  • the electronic shielding layer is disposed in the workbench 41 and covers the driving device 22 of the electrostatic chuck device 20 to electromagnetically shield the driving device 22 and prevent the electromagnetic field generated by the driving device 22 from affecting other components of the semiconductor device 40 .
  • the electromagnetic shielding layer is provided with an opening so that the driving device 22 can be connected to the lifting part 231 through the opening, thereby not affecting the movement of the lifting part 231 within the opening 24 of the electrostatic chuck 21 .
  • the electromagnetic shielding layer only needs to provide openings for the entire probe assembly 23 , thereby reducing the number of openings and improving the electromagnetic shielding performance of the semiconductor device 40 .
  • the present application also provides a method for adsorbing a workpiece, which uses the electrostatic chuck device 20 in the above embodiment to adsorb the workpiece 30 .
  • the method includes the following steps:
  • Step S1401 control the lifting part 231 to extend out of the opening 24.
  • the lifting part 231 extends out of the working surface of the electrostatic chuck 21 .
  • Step S1402 place the workpiece 30 on the lifting part 231.
  • the workpiece 30 can be placed on the lifting portion 231 in a manner that is aligned with the set position on the work surface, and there is no need to adjust the position of the workpiece 30 again later.
  • Step S1403 control the lifting part 231 to retract the opening 24 until the workpiece 30 contacts the electrostatic chuck 21, and the workpiece 30 contacts and squeezes the probe 232.
  • the lifting part 231 supports the workpiece 30 , and the workpiece 30 approaches the electrostatic chuck 21 as the lifting part 231 moves, until it contacts the working surface of the electrostatic chuck 21 and is located at a set position on the working surface. During this process, the workpiece 30 contacts and presses the probe 232 , thereby achieving electrical connection with the probe 232 .
  • Step S1404 the electrostatic chuck 21 is energized, and the electrostatic chuck 21 adsorbs the workpiece 30.
  • the electrostatic chuck 21 adsorbs the workpiece 30 through the principle of electrostatic adsorption after being energized, and holds the workpiece 30 at a set position, which facilitates the processing of the workpiece 30 .
  • step 1404 the following steps may also be included:
  • Step S1405 power off the electrostatic chuck 21.
  • the electrostatic chuck 21 no longer adsorbs the workpiece 30 , which facilitates subsequent removal of the workpiece 30 .
  • Step S1406 control the lifting part 231 to extend out of the opening 24.
  • the workpiece 30 also moves away from the working surface of the electrostatic chuck 21, which facilitates subsequent removal of the workpiece 30.
  • Step S1407 remove the workpiece 30 from the lifting part 231.
  • the workpiece 30 By adsorbing the workpiece 30 using the above method, the workpiece 30 can be adsorbed at a set position more accurately, and because the electrostatic chuck device 20 with this structure is easy to operate, the operation of adsorbing the workpiece 30 can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种探针组件、静电吸盘装置、半导体设备及吸附工件的方法。探针组件,安装于静电吸盘,静电吸盘用于吸附工件。探针组件包括升降部和探针,其中:升降部和探针在静电吸盘的开孔内移动;升降部用于驱动工件靠近或者远离静电吸盘;探针包括第一端和第二端,第一端用于与工件电连接,第二端与外部电连接;当探针相对于升降部滑动时,第一端伸出或收回开孔。探针组件既可以升降工件,又可以电连接工件,从而减少其占用静电吸盘装置的空间。而且,静电吸盘只需针对整个探针组件设置开孔,从而减少开孔数量,以实现静电吸盘的吸附力均匀性和表面平整度的改善。

Description

探针组件、静电吸盘装置、半导体设备及吸附工件的方法 技术领域
本申请涉及半导体制造技术领域,尤其涉及一种探针组件、静电吸盘装置、半导体设备及吸附工件的方法。
背景技术
在半导体的制造中,通常对半导体设备的工作环境要求较高。由于静电吸盘装置在工作时吸附力均匀且与晶圆的上表面无接触,特别适合于真空操作环境,因此,近年来静电吸盘装置被广泛应用在半导体制造的刻蚀、沉积、检测等各个环节中,用于吸附待加工的工件。
然而,由于现有静电吸盘装置的开孔较多,不仅影响静电吸盘装置的静电吸盘的表面平整度,而且还导致静电吸盘装置的吸附均匀性较差。其次,静电吸盘装置的升降销和接地探针也占据了半导体设备内部较多的空间。
发明内容
本申请提供了一种探针组件、静电吸盘装置、半导体设备及吸附工件的方法,以减少静电吸盘的开孔,从而提高静电吸盘的吸附力均匀性和表面平整度,改善半导体设备的屏蔽性能,并且减少对半导体设备的空间占用。
第一方面,本申请提供了一种探针组件。探针组件可以安装于静电吸盘,静电吸盘用于吸附工件。具体的,探针组件可以包括升降部和探针。其中,升降部和探针在静电吸盘的开孔内移动。升降部可以驱动工件靠近或者远离静电吸盘。探针包括第一端和第二端,其中,第一端可以电连接工件,第二端可以与外部电连接。探针滑动设置于升降部。当探针相对于升降部移动时,第一端可以伸出或收回开孔。
具体的,当静电吸盘装置用于吸附工件时,升降部可以用于升降工件,探针可以用于电连接工件。静电吸盘装置的静电吸盘设置有供探针组件移动的开孔。在静电吸盘装置吸附工件的过程中,探针组件的升降部在开孔内上升并伸出静电吸盘的工作面,以支撑工件。探针的第一端伸出开孔,即伸出静电吸盘的工作面。当工件放置于升降部后,升降部下降并收回开孔内,同时工件也随升降部一起下降,直至工件与静电吸盘的工作面接触,并被吸附。此时,探针与工件电连接,使得对工件进行加工时,探针可以向工件提供偏置电压或者将工件接地。当完成对工件的加工后,升降部再次在开孔内上升并伸出静电吸盘的工作面,使加工后的工件也随之上升以脱离静电吸盘。
该实施例的探针组件既可以升降工件,又可以电连接工件,从而减少其占用静电吸盘装置的空间。而且,静电吸盘只需针对整个探针组件设置开孔,从而减少开孔数量,以实现静电吸盘的吸附力均匀性和表面平整度的改善。
上述探针和升降部的位置关系不作具体限制。例如,探针可以位于升降部内,或者探针可以与升降部相邻设置。
上述探针组件还可以包括复位件。复位件与探针连接,以驱动探针的第一端伸出开孔。当工件被吸附于静电吸盘时,工件可以接触并且挤压探针,实现工件和探针之间较为可靠的电连接。
上述复位件的具体位置可以不限。在一个实施例中,探针和复位件设置在升降部内,复位件的一端连接升降部,另一端连接探针,以在升降部的支撑作用下,驱动探针的第一端伸出开孔。这种结构设计可以减小探针组件的整体尺寸,进一步减少其占用静电吸盘装置的空间。
上述探针组件还可以包括设置在升降部外部的固定基板。升降部可以相对于固定基板移动。复位件的一端可以连接固定基板,另一端可以连接探针,以在固定基板的支撑作用下,驱动探针的第一端伸出开孔。在升降部移动时,探针可以不随升降部移动,以减少探针的移动,从而使探针与外部保持良好的电连接。
上述升降部可以是不导电的或导电的。当升降部为金属升降部时,探针组件还可以包括绝缘部。绝缘部可以设置在探针和升降部之间,绝缘隔离探针和升降部,以避免探针与升降部导电。
上述绝缘部可以相对于升降部和探针中的至少一者移动。具体的,绝缘部可以相对于升降部移动,并与探针固定连接;或者,绝缘部可以相对于升降部移动,并且可以相对于探针移动;或者,绝缘部可以与升降部固定连接,并且可以相对于探针移动。
上述复位件可以为弹性件。该弹性件被施加预应力,从而在没有其他外力的情况下,弹性件可以驱动探针的第一端伸出开孔。
第二方面,本申请提供了一种静电吸盘装置,包括静电吸盘、驱动装置、以及第一方面的探针组件。静电吸盘设置有开孔。驱动装置与升降部连接,以驱动升降部伸出或收回开孔内。
具体的,当静电吸盘装置用于吸附工件时,升降部可以用于升降工件,探针可以用于电连接工件。在静电吸盘装置吸附工件的过程中,探针组件的升降部在开孔内上升并伸出静电吸盘的工作面,以支撑工件。探针的第一端伸出开孔,即伸出静电吸盘的工作面。当工件放置于升降部后,升降部下降并收回开孔内,同时工件和探针也随升降部一起下降,直至工件与静电吸盘的工作面接触,并被吸附。此时,探针与工件电连接,使得对工件进行加工时,探针可以向工件提供偏置电压或者将工件接地。当完成对工件的加工后,升降部再次在开孔内上升并伸出静电吸盘的工作面,使加工后的工件也随之上升以脱离静电吸盘。
该实施例的静电吸盘装置,其探针组件既可以升降工件,又可以电连接工件,从而减少其占用静电吸盘装置的空间。而且,静电吸盘只需要针对整个探针组件设置开孔,从而减少开孔数量,以实现静电吸盘的吸附力均匀性和表面平整度的改善。
上述静电吸盘装置可以包括多个探针组件。具体的,静电吸盘可以设置一个开孔,该多个探针组件共用这一个开孔。或者,静电吸盘可以设置多个开孔,开孔的数量与探针组件的数量相等,并且探针组件与开孔一一对应设置。
第三方面,本申请提供了一种半导体设备,包括工作台和第二方面的静电吸盘装置,静电吸盘装置设置于工作台。
具体的,半导体设备可以用于加工工件。当静电吸盘装置用于吸附工件时,探针组件的升降部在开孔内上升并伸出静电吸盘的工作面,以支撑工件。探针的第一端伸出开孔, 即伸出静电吸盘的工作面。当工件放置于升降部后,升降部下降并收回开孔内,同时工件也随升降部一起下降,直至工件与静电吸盘的工作面接触,并被吸附。此时,探针与工件电连接,使得对工件进行加工时,探针可以向工件提供偏置电压或者将工件接地。当完成对工件的加工后,升降部再次在开孔内上升并伸出静电吸盘的工作面,使加工后的工件也随之上升以脱离静电吸盘。
在该实施例中,探针组件既可以升降工件,又可以电连接工件,从而减少其占用静电吸盘装置的空间。而且,静电吸盘只需要针对整个探针组件设置开孔,从而减少开孔数量,以实现静电吸盘的吸附力均匀性和表面平整度的改善。
为了减少安装误差,静电吸盘装置与工作台可以为一体结构。
上述半导体设备还可以包括电磁屏蔽层。电磁屏蔽层设置于工作台内,并包覆静电吸盘装置的驱动装置,从而可以电磁屏蔽驱动装置,避免驱动装置产生的电磁场影响半导体设备的其他器件。电磁屏蔽层设置有开孔,使得驱动装置可以通过开孔与升降部连接。电磁屏蔽层只需要针对整个探针组件设置开孔,从而减少开孔数量,以改善电磁屏蔽性能。
第四方面,本申请提供了一种吸附工件的方法,该方法利用第二方面的静电吸盘装置来吸附工件。其中,该方法包括:控制升降部伸出开孔;将工件放置于升降部;控制升降部收回开孔,直至工件与静电吸盘接触,且工件接触并挤压探针;对静电吸盘通电,静电吸盘吸附工件。
当完成工件加工后需要移除加工后的工件时,上述方法还包括:对静电吸盘断电;控制升降部伸出开孔;将工件从升降部移除。
采用这种方法吸附工件,可以较为精确地将工件吸附在设定位置,并且由于这种结构静电吸盘装置便于操作,可以简化吸附工件的步骤。
附图说明
图1为半导体设备的一种结构示意图;
图2为本申请实施例中静电吸盘装置的一种结构示意图;
图3为本申请实施例中探针组件的一种结构示意图;
图4为图3的探针组件沿A-A方向的截面图;
图5为本申请实施例中探针组件的另一种结构示意图;
图6为本申请实施例中探针组件的另一种结构示意图;
图7为本申请实施例中探针组件的另一种结构示意图;
图8为图7的探针组件沿B-B方向的截面图;
图9为图8的探针组件的另一状态示意图;
图10为本申请实施例中静电吸盘的一种结构示意图;
图11为本申请实施例中半导体设备的一种结构示意图;
图12为本申请实施例中半导体设备的另一种结构示意图;
图13为本申请实施例中半导体设备的另一种结构示意图;
图14为本申请实施例中吸附工件的方法的流程图;
图15为本申请实施例中吸附工件的方法的另一流程图。
附图标记:
10-半导体设备;            11-工作台;
12-工件;                  13-螺钉;
14-静电吸盘;              15-升降销;
16-接地探针;              17-驱动电机;
18-第一开孔;              19-第二开孔;
20-静电吸盘装置;          21-静电吸盘;
22-驱动装置;              23-探针组件;
24-开孔;                  30-工件;
40-半导体设备;            41-工作台;
42-传感器;                231-升降部;
232-探针;                 232a-第一端;
232b-第二端;              233-复位件;
234-导线;                 235-固定基板;
236-绝缘部;               237-连杆。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
在半导体的加工过程中,通常需要将待加工的工件保持在工作台的设定位置,以保证加工的精确度。图1为半导体设备的一种结构示意图。半导体设备10可以用于加工晶圆、集成电路、芯片等各种工件。
如图1所示,半导体设备10可以包括工作台11和静电吸盘装置,静电吸盘装置用于吸附待加工的工件12。具体的,静电吸盘装置通过螺钉13装配于工作台11。静电吸盘装置包括静电吸盘14、多个升降销15、多个接地探针16以及驱动电机17。静电吸盘14设置有多个第一开孔18和多个第二开孔19。驱动电机17可以驱动每个升降销15在相应的第一开孔18内移动,以伸出或收回该第一开孔18。驱动电机17还可以驱动每个接地探针16在相应的第二开孔19内移动,以伸出或收回该第二开孔19。
以半导体设备10用于加工晶圆为例。当半导体设备10用于加工晶圆时,静电吸盘装置可以用于吸附晶圆。其中,升降销15用于升降晶圆,接地探针16用于电连接晶圆。在静电吸盘装置吸附晶圆的过程中。升降销15在第一开孔18内移动并伸出静电吸盘14的工作面,接地探针16在第二开孔19内移动并伸出静电吸盘14的工作面。外部运输机构会将待加工的晶圆放置在升降销15上。然后,随着升降销15收回第一开孔18,晶圆随之下降,直到与静电吸盘14的工作面接触。此时,静电吸盘14通电,其工作面产生静电吸附力,使晶圆被吸附,从而将晶圆保持在预期的加工位置处。在晶圆下降的过程中,晶圆会同时挤压接地探针16,实现晶圆与接地探针16的电连接。因此,在晶圆的加工过程中,可以通过接地探针16对晶圆进行电压偏置或接地。当完成对晶圆的加工后,静电吸盘14断电,升降销15再次在第一开孔18内移动并伸出静电吸盘14的工作面,同时使晶圆脱离静电吸盘14。然后外部运输机构将加工后的晶圆从半导体设备10移除以备用。
因此,上述静电吸盘装置为了保证能够升降晶圆以及电连接晶圆,需要在静电吸盘14分别设置供升降销15和接地探针16穿过的开孔。此外,静电吸盘14还需要设置装配孔,以使静电吸盘装置通过螺钉13装配于工作台11。然而,由于静电吸盘14吸附晶圆时,静 电吸盘14的工作面直接接触晶圆,因此静电吸盘14设置过多的孔会导致表面平整度和吸附力均匀性降低。
另外,由于驱动电机17以及工作台11内部的一些电子器件会在工作时各自会产生电磁场,因此,为了避免所产生的电磁场影响半导体设备10的其他器件(例如一些具有精密电路的装置)正常工作,通常会在工作台11内设置电磁屏蔽层,以电磁屏蔽工作台11内的驱动电机17和电子器件。然而,由于升降销15和接地探针16均由驱动电机17驱动,因此,还需要在电磁屏蔽层设置开孔,以使驱动电机17与升降销15和接地探针16连接,但是开孔会导致电磁屏蔽层的电磁屏蔽性能降低,从而影响半导体设备10的正常运行。
为此,本申请提供了一种探针组件、静电吸盘装置以及半导体设备,以减少静电吸盘的开孔,从而提高静电吸盘的吸附力均匀性和表面平整度,改善半导体设备的屏蔽性能,并且减少对半导体设备的空间占用。
图2为本申请实施例中静电吸盘装置的一种结构示意图。如图2所示,静电吸盘装置20包括静电吸盘21、驱动装置22以及探针组件23。其中,静电吸盘21设置有开孔24,驱动装置22可以驱动探针组件23在开孔24内移动。图2中的探针组件23仅是示意图,并不用于限定探针组件23的数量、结构、以及与其他部件之间的位置关系。需要说明的是,静电吸盘装置20可以应用于各种类型的半导体设备中。半导体设备可以是半导体加工设备、半导体检测设备、半导体封装设备等,例如光刻机、刻蚀机等。
在静电吸盘装置20工作期间,静电吸盘装置20可以用于吸附工件30,探针组件23既可以用于升降工件30,又可以用于电连接工件30,从而减少其占用静电吸盘装置20的空间。而且,静电吸盘21只需针对整个探针组件23设置开孔24,从而减少开孔24数量,以实现静电吸盘21的吸附力均匀性和表面平整度的改善。
需要说明的是,“静电吸盘的工作面”是指静电吸盘21的与工件30接触的表面。
下面将详细描述探针组件23的结构以及工作原理。
图3为本申请实施例中探针组件的一种结构示意图,图4为图3的探针组件沿A-A方向的截面图。如图3和图4所示,探针组件23可以包括升降部231和探针232。其中,升降部231能够在静电吸盘21的开孔24内移动,以驱动工件30靠近或者远离静电吸盘21。探针232可以相对于升降部231移动。探针232包括第一端232a和第二端232b,其中,第一端232a可以电连接工件30,第二端232b可以与外部电连接。当探针232相对于升降部231移动时,探针232的第一端232a可以伸出或收回开孔24。需要说明的是,在本申请中,“伸出”可以理解为突出。因此,如图4所示,“探针的第一端伸出开孔”是指探针232的第一端232a突出于静电吸盘21的工作面,而并不限制探针232是否位于升降部231内部。另外,如图3所示,“探针的第一端收回开孔”是指探针232的第一端232a不突出于静电吸盘21的工作面。
探针组件23的升降工件30功能由升降部231进行,具体为:在静电吸盘装置20吸附工件30的过程中,探针组件23的升降部231在开孔24内上升并伸出静电吸盘21的工作面,以支撑工件30。当工件30放置于升降部231后,升降部231下降并收回开孔24内;同时工件30也随升降部231一起下降,直至工件30与静电吸盘21的工作面接触,并被吸附。当完成对工件30的加工后,升降部231再次在开孔24内上升并伸出静电吸盘21的工作面,使加工后的工件30也随之上升,以脱离静电吸盘21。
需要说明的是,本申请中的“上升”是指升降部231沿伸出静电吸盘21的工作面的方向 移动,“下降”是指升降部231沿收回开孔24内的方向移动。
探针组件23的电连接工件30功能由探针232进行,具体为:在工件30放置于升降部231前,探针232的第一端232a伸出升降部231。当工件30被吸附于静电吸盘21的工作面时,探针232与工件30电连接,使得对工件30进行加工时,探针232可以向工件30提供偏置电压或者将工件30接地。
上述探针232的具体位置不限。例如,如图4所示,探针232可以设置在升降部231内。其中,升降部231可以具有容纳探针232的空间,也就是说升降部231是空心的。探针232容纳在升降部231内,可以减小探针组件23的整体体积,从而可以减少探针组件23占用静电吸盘装置20的空间。图5为本申请实施例中探针组件的另一种结构示意图,其示出探针组件的沿垂直于工作面方向观看的俯视图。如图5所示,探针232也可以设置在升降部231的相邻处。
如图4所示,探针232的第一端232a的形状针尖形,以便于物理上刺入工件30的表面,而不损坏工件30的整体性能。此外,第一端232a也可以为平截头形或球形,在本申请中不作具体限制。
上述探针组件23还可以包括复位件25。该复位件25与探针232连接,用于驱动探针232的第一端232a伸出开孔24。具体的,在工件30放置于升降部231之前,探针232的第一端232a在复位件25的作用下保持伸出升降部231的状态。当升降部231在开孔24内上升并伸出静电吸盘21的工作面后,探针232的第一端232a也伸出静电吸盘21的工作面。当工件30放置于升降部231时,工件30接触探针232,同时工件30挤压探针232以抵抗复位件25的恢复力,从而实现工件30与探针232之间较为可靠的电连接。
上述复位件25的具体类型不限,可以为弹性件,例如压缩弹簧、拉伸弹簧、弹簧片等。或者,复位件25也可以为拨杆或复位电机等,在本申请中不作具体限制。
另外,复位件25的位置在本申请中也不作具体限制。例如,如图4和图6所示,在本申请的一些实施例中,复位件25可以位于升降部231内。其中,在图4所示的实施例中,复位件25可以设置在升降部231与探针232之间,复位件25的一端与升降部231的底壁连接,另一端与探针232的第二端232b连接;在图6所示的实施例中,复位件25可以设置在探针232周侧,此时复位件25也位于升降部231与探针232之间,其中,复位件25的一端与升降部231的顶壁连接,另一端与探针232的第二端232b连接。在图4和图6所示的实施例中,复位件25可以与升降部231固定连接,例如粘接、螺纹联接、铆接或卡接等。或者,在图4所示的实施例中,复位件25也可以与升降部231抵接。如图7所示,在另一些实施例中,复位件25也可以设置于升降部231外。
请继续参考图4,在一个具体的实施例中,探针组件23包括升降部231、以及设置于升降部231内的探针232和复位件25。其中,探针232的第一端232a为针尖形。复位件25为压缩弹簧,设置在升降部231和探针232之间。该压缩弹簧驱动探针232的第一端232a伸出升降部231。当升降部231上升时,探针232和复位件233随升降部231一起移动。当工件30放置在升降部231上时,工件30挤压探针232,使压缩弹簧被压缩。当将工件30从升降部231移除时,由于工件30施加至压缩弹簧的外力被移除,压缩弹簧再次使探针232复位至第一端232a伸出升降部231的位置。
上述复位件233可以被设置有预应力。在复位件233的预应力较高的情况下,当工件30与探针232的第一端232a接触并挤压探针232时,探针232的第一端232a可以物理刺 入工件30,从而电连接工件30。在复位件233的预应力较低的情况下,当工件30与探针232的第一端232a接触并挤压探针232时,探针232的第一端232a收回升降部231,此时可以通过对探针232施加高压来电击穿工件30与静电吸盘21接触的部分,以实现电连接。
需要说明的是,本申请实施例中,为了方便描述将引入方位名词顶和底,这些方位词仅仅用于更简洁的描述和帮助阅读者定位所描述的对象在图中的位置,而不是对所指对象的位置和方向进行具体限定。例如,升降部231的底壁是指沿垂直于静电吸盘21工作面的方向,且远离工作面的一侧,即图4所示升降部231的最下方的壁。升降部231的顶壁是指沿垂直于静电吸盘21工作面的方向,且靠近工作面的一侧,即图4所示升降部231的最上方的壁。
在上述实施例中,探针232的第二端232b还设置有导线234。升降部231的底壁设置有开口。导线234穿过开口与外部电连接,可以减少导线234的弯折,从而延长探针组件23的使用寿命。上述开口也可以设置在升降部231的侧壁,其具体位置在本申请中不作具体限制。
图7为本申请实施例中探针组件的另一种结构示意图,图8为图7的探针组件沿B-B方向的截面图。如图7和图8所示,探针组件23还可以包括固定基板235,固定基板235设置在升降部231外部。升降部231可以相对于固定基板235移动。复位件233设置在上述探针组件23和探针232之间,例如复位件233的一端可以连接固定基板235,另一端可以连接探针232。复位件233可以驱动探针232的第一端232a伸出静电吸盘21的工作面。在升降部231移动时,探针232可以不随升降部231移动,以减少探针232的移动,从而使探针232与外部保持较为良好的电连接。
在上述实施例中,如图8所示,在升降部231未伸出静电吸盘21的工作面且工件30未放置于静电吸盘21上时,探针232的第一端232a伸出静电吸盘21的工作面。如图9所示,当升降部231在开孔24内上升并伸出静电吸盘21的工作面时,探针232与绝缘层不移动。当工件30放置于升降部231后,升降部231下降并收回开孔24内;同时工件30也随升降部231一起下降,直至工件30与静电吸盘21的工作面接触,并被吸附。在工件30下降的过程中,工件30与探针232的第一端232a接触并将其挤压,以实现工件30与探针232之间的电连接。
上述复位件233与固定基板235的连接方式不限,例如,复位件233可以固定于固定基板235,例如粘接、螺纹联接、铆接或卡接等,或者,复位件233也可以与固定基板235抵接。
在上述实施例中,固定基板235也可以设置有开口。导线234穿过固定基板235的开口与外部电连接,可以减少导线234的弯折,从而延长探针组件23的使用寿命。
在本申请的实施例中,升降部231可以是导电的或不导电的,例如陶瓷、塑料或金属等,在本申请中不作具体限制。在一个具体实施例中,升降部231为金属升降部,金属升降部的强度较高,使用寿命较长,此外,还便于加工成形,制造成本较低。为了避免探针232与该金属升降部之间导电,探针组件23还可以包括设置在探针232和金属升降部之间的绝缘部236,用于绝缘隔离探针232和金属升降部。
绝缘部236与升降部231之间可以具有微小间隙,以使绝缘部236与升降部231之间的相对移动顺滑。另外,也可以在该微小间隙内添加润滑剂,以使升降部231的移动更顺滑,避免意外抖动工件30而碰撞工件30或使工件30偏离预期的加工位置。
上述绝缘部236可以相对于升降部231和探针232中的至少一者移动。具体的,绝缘部236可以相对于升降部231移动,并与探针232固定连接;或者,绝缘部236可以相对于升降部231移动,并可以相对于探针232移动;或者,绝缘部236与升降部231固定连接,并可以相对于探针232移动。通过上述几种方式,可以便于探针232能够相对于升降部231进行移动。
如图4和图6所示的实施例中,绝缘部236可以与升降部231固定连接,并可以相对于探针232移动。绝缘部236的内表面可以与探针232的形状相匹配,从而可以限定探针232伸出工作面的距离。如图8所示的实施例中,绝缘部236可以相对于升降部231移动,并可以相对于探针232移动。也就是说,绝缘部236不随着升降部231一起升降,从而可以避免因探针232移动而使其与外部的电连接断开,以保证加工工件30期间,探针232能够与工件30电连接。在该实施例中,绝缘部236的外表面与升降部231的内表面形状匹配,以限定绝缘部236升降的距离,进而限定探针232伸出工作面的距离。如图8和图9所示,在本申请实施例中,探针组件23还可以包括与升降部231连接的连杆237,连杆237与外部驱动装置22连接,用于被驱动以带动升降部231升降,从而实现工件30的升降。
在本申请的实施例中,静电吸盘装置20可以包括多个探针组件23。具体的,静电吸盘21可以设置一个开孔24,该多个探针组件23共用这一个开孔24。或者,静电吸盘21可以设置多个开孔24,开孔24的数量与探针组件23的数量相等,并且探针组件23与开孔24一一对应设置。当静电吸盘21设置多个开孔24时,开孔24的具体数量和排布不作限制。如图10所示,上述静电吸盘装置20包括多个探针组件23,静电吸盘21包括多个开孔24,该多个开孔24与前述多个探针组件23一一对应。该多个开孔24也可以沿吸盘的周边均匀分布,以进一步改善静电吸盘21的吸附力均匀性。
如图11所示,本申请还提供了一种半导体设备40,包括工作台41和上述任一实施例的静电吸盘装置20,静电吸盘装置20设置于工作台41。
半导体设备40可以用于加工工件30。当静电吸盘装置20用于吸附工件30时,探针组件23的升降部231在开孔24内上升并伸出静电吸盘21的工作面,以支撑工件30。此时,探针232的第一端232a伸出开孔24,即伸出静电吸盘21的工作面。当工件30放置于升降部231后,升降部231下降并收回开孔24内,同时工件30也随升降部231一起下降,直至工件30与静电吸盘21的工作面接触,并被吸附。此时,探针232与工件30电连接,使得对工件30进行加工时,探针232可以向工件30提供偏置电压或者将工件30接地。当完成对工件30的加工后,升降部231再次在开孔24内上升并伸出静电吸盘21的工作面,使加工后的工件30也随之上升以脱离静电吸盘21。
上述探针组件23既可以升降工件30,又可以电连接工件30,从而减少其占用静电吸盘装置20的空间。而且,静电吸盘21只需要针对整个探针组件23设置开孔24,从而减少开孔24数量,以实现静电吸盘21的吸附力均匀性和表面平整度的改善。
图12和图13为本申请实施例中半导体设备的另一种结构示意图。如图12所示,为了减少安装误差,静电吸盘装置20与工作台41可以为一体结构。具体的,静电吸盘装置20位于工作台41内。如图13所示,工作台41的顶部外表面对应静电吸盘21的区域(如图13中虚线所示)可以用作半导体设备的工作面,该区域也是静电吸盘装置20的工作面。
在本申请的一些实施例中,半导体设备还包括设置于工作台41的传感器42,传感器 42的安装面与静电吸盘装置20吸附的工件30表面齐平设置,传感器42用于检测半导体设备的工作情况。
如图13所示,在静电吸盘装置20与工作台41为一体结构的情况下,工作台41的顶部外表面可以同时承载传感器42和工件30,其中,工件30设置于静电吸盘装置20所在的区域,传感器42设置于工作台41所在的区域。因此,传感器42的安装面与工件30的承载面为一体结构,可以使传感器42的安装精度较高且定位准确,能够准确地监控工件30的加工情况。
在上述实施例中,半导体设备40还包括电磁屏蔽层。电子屏蔽层设置在工作台41内,并包覆静电吸盘装置20的驱动装置22,以电磁屏蔽驱动装置22,避免驱动装置22产生的电磁场影响半导体设备40的其他器件。电磁屏蔽层设置有开孔,使得驱动装置22可以通过该开孔与升降部231连接,从而不影响升降部231在静电吸盘21的开孔24内移动。采用上述静电吸盘装置20,电磁屏蔽层也只需要针对整个探针组件23设置开孔,从而减少开孔数量,以改善半导体设备40的电磁屏蔽性能。
如图14所示,本申请还提供了一种吸附工件的方法,该方法利用上述实施例中的静电吸盘装置20来吸附工件30。
在静电吸盘装置20的初始状态下,探针组件23的探针232的第一端232a伸出开孔24。当吸附工件30时,该方法包括以下步骤:
步骤S1401,控制升降部231伸出开孔24。
此时,升降部231伸出静电吸盘21的工作面。
步骤S1402,将工件30放置于升降部231。
在该过程中,可以将工件30以对准工作面的设定位置方式放置在升降部231上,后续也不需要再次调整工件30的位置。
步骤S1403,控制升降部231收回开孔24,直至工件30与静电吸盘21接触,且工件30接触并挤压探针232。
该方案中,升降部231支撑工件30,工件30随着升降部231移动而向静电吸盘21靠近,直至与静电吸盘21的工作面接触,并且位于工作面的设定位置。在该过程中,工件30接触并挤压探针232,从而实现与探针232的电连接。
步骤S1404,对静电吸盘21通电,静电吸盘21吸附工件30。
该方案中,静电吸盘21通电后通过静电吸附原理吸附工件30,将工件30保持在设定位置处,便于工件30的加工处理。
如图15所示,在当完成工件30加工后,还需要移除加工后的工件30。在步骤1404之后,还可以包括以下步骤:
步骤S1405,对静电吸盘21断电。
断电后,静电吸盘21不再吸附工件30,便于后续进行移除工件30操作。
步骤S1406,控制升降部231伸出开孔24。
该方案中,随着升降部231伸出开孔24,工件30也随之远离静电吸盘21的工作面,便于后续移除工件30。
步骤S1407,将工件30从升降部231移除。
采用上述方法吸附工件30,可以较为精确地将工件30吸附在设定位置,并且由于这种结构静电吸盘装置20便于操作,可以使吸附工件30的操作较为简便。
以上实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在另一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种探针组件,其特征在于,所述探针组件安装于静电吸盘,所述静电吸盘用于吸附工件,所述探针组件包括升降部和探针,其中:
    所述升降部和所述探针在所述静电吸盘的开孔内移动;
    所述升降部用于驱动所述工件靠近或者远离所述静电吸盘;
    所述探针包括第一端和第二端,所述第一端用于与所述工件电连接,所述第二端与外部电连接;当所述探针相对于所述升降部滑动时,所述第一端伸出或收回所述开孔。
  2. 如权利要求1所述的探针组件,其特征在于,所述探针设置于所述升降部内;或者,所述探针与所述升降部相邻设置。
  3. 如权利要求1或2所述的探针组件,其特征在于,还包括复位件,所述复位件与所述探针连接,用于驱动所述探针的第一端伸出所述开孔。
  4. 如权利要求3所述的探针组件,其特征在于,所述探针与所述复位件设置于所述升降部内,所述复位件的一端连接所述升降部,另一端连接所述探针。
  5. 如权利要求3所述的探针组件,其特征在于,还包括设置在所述升降部外部的固定基板,所述复位件的一端连接所述固定基板,另一端连接所述探针,所述升降部相对于所述固定基板移动。
  6. 如权利要求1至5中任一项所述的探针组件,其特征在于,所述升降部为金属升降部,所述探针组件还包括绝缘部,所述绝缘部设置于所述探针和所述升降部之间,绝缘隔离所述探针和所述升降部。
  7. 如权利要求6所述的探针组件,其特征在于,所述绝缘部相对于所述升降部移动,所述绝缘部与所述探针固定连接;或者
    所述绝缘部相对于所述升降部移动,所述绝缘部相对于所述探针移动;或者
    所述绝缘部与所述升降部固定连接,所述绝缘部相对于所述探针移动。
  8. 如权利要求3至7中任一项所述的探针组件,其特征在于,所述复位件为弹性件。
  9. 一种静电吸盘装置,其特征在于,包括静电吸盘、驱动装置、以及如权利要求1至8中任一项所述的探针组件,所述静电吸盘设置有开孔,所述驱动装置与所述升降部连接,用于驱动所述升降部伸出或收回所述开孔内。
  10. 如权利要求9所述的静电吸盘装置,其特征在于,所述静电吸盘装置包括多个所述探针组件。
  11. 一种半导体设备,其特征在于,包括工作台和如权利要求9或10所述的静电吸盘装置,所述静电吸盘装置设置于所述工作台。
  12. 如权利要求11所述的半导体设备,其特征在于,所述静电吸盘装置与所述工作台为一体结构。
  13. 如权利要求11或12所述的半导体设备,其特征在于,还包括设置于所述工作台内的电磁屏蔽层,所述电磁屏蔽层设置有开孔;
    所述电磁屏蔽层包覆所述静电吸盘装置的驱动装置,所述驱动装置与所述升降部通过所述开孔连接。
  14. 一种吸附工件的方法,其特征在于,所述方法利用如权利要求9或10所述的静电 吸盘装置吸附所述工件,所述方法包括:
    控制所述升降部伸出所述开孔;
    将所述工件放置于所述升降部;
    控制所述升降部收回所述开孔,直至所述工件与所述静电吸盘接触,且所述工件接触并挤压所述探针;
    对所述静电吸盘通电,所述静电吸盘吸附所述工件。
  15. 如权利要求14所述的方法,其特征在于,还包括:
    对所述静电吸盘断电;
    控制所述升降部伸出所述开孔;
    将所述工件从所述升降部移除。
PCT/CN2022/086297 2022-04-12 2022-04-12 探针组件、静电吸盘装置、半导体设备及吸附工件的方法 WO2023197140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086297 WO2023197140A1 (zh) 2022-04-12 2022-04-12 探针组件、静电吸盘装置、半导体设备及吸附工件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086297 WO2023197140A1 (zh) 2022-04-12 2022-04-12 探针组件、静电吸盘装置、半导体设备及吸附工件的方法

Publications (1)

Publication Number Publication Date
WO2023197140A1 true WO2023197140A1 (zh) 2023-10-19

Family

ID=88328693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086297 WO2023197140A1 (zh) 2022-04-12 2022-04-12 探针组件、静电吸盘装置、半导体设备及吸附工件的方法

Country Status (1)

Country Link
WO (1) WO2023197140A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077072A (ja) * 1993-06-17 1995-01-10 Anelva Corp 静電チャック装置における基板の脱着方法および脱着機構
JP2000021965A (ja) * 1998-06-27 2000-01-21 Yaskawa Electric Corp 静電吸着装置
US20020126437A1 (en) * 2001-03-12 2002-09-12 Winbond Electronics Corporation Electrostatic chuck system and method for maintaining the same
JP2009054746A (ja) * 2007-08-27 2009-03-12 Nikon Corp 静電チャック及び静電チャック方法
CN101685791A (zh) * 2008-09-25 2010-03-31 北京北方微电子基地设备工艺研究中心有限责任公司 基片支承装置及其静电释放方法
CN206271678U (zh) * 2016-12-26 2017-06-20 武汉新芯集成电路制造有限公司 一种晶圆状态检测装置和工艺机台
CN209766393U (zh) * 2019-05-07 2019-12-10 德淮半导体有限公司 一种顶针装置及晶圆升降系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077072A (ja) * 1993-06-17 1995-01-10 Anelva Corp 静電チャック装置における基板の脱着方法および脱着機構
JP2000021965A (ja) * 1998-06-27 2000-01-21 Yaskawa Electric Corp 静電吸着装置
US20020126437A1 (en) * 2001-03-12 2002-09-12 Winbond Electronics Corporation Electrostatic chuck system and method for maintaining the same
JP2009054746A (ja) * 2007-08-27 2009-03-12 Nikon Corp 静電チャック及び静電チャック方法
CN101685791A (zh) * 2008-09-25 2010-03-31 北京北方微电子基地设备工艺研究中心有限责任公司 基片支承装置及其静电释放方法
CN206271678U (zh) * 2016-12-26 2017-06-20 武汉新芯集成电路制造有限公司 一种晶圆状态检测装置和工艺机台
CN209766393U (zh) * 2019-05-07 2019-12-10 德淮半导体有限公司 一种顶针装置及晶圆升降系统

Similar Documents

Publication Publication Date Title
CN110383445B (zh) 检查装置和接触方法
KR20070072571A (ko) 정전 척 장치
JP6440587B2 (ja) 吸着プレート、半導体装置の試験装置および半導体装置の試験方法
CN110581099B (zh) 静电卡盘和工艺腔室
KR102007802B1 (ko) 마이크로 led용 전사장치
WO2008013273A1 (fr) Support pour inspection
US8317450B2 (en) Tactile wafer lifter and methods for operating the same
CN111446199B (zh) 半导体设备的反应腔室及半导体设备
TW200826213A (en) Discharging apparatus, discharging method, and program recording medium
JP5356769B2 (ja) 載置台
WO2023197140A1 (zh) 探针组件、静电吸盘装置、半导体设备及吸附工件的方法
JP4940269B2 (ja) 半導体ウェハのテスト装置、半導体ウェハのテスト方法及び半導体ウェハ用プローブカード
JP4789734B2 (ja) ウエハ載置台
KR101027739B1 (ko) 전자부품의 실장 장치
JP2006220627A (ja) プローブピン、プローブピンユニット及びこれを用いた被検査物の検査方法
TW202123287A (zh) 晶圓接地之方法、設備及系統
KR100787087B1 (ko) 최종시험공정에서의 반도체 특성 시험용 소켓 핀
KR102281719B1 (ko) 적재대 기구, 처리 장치 및 적재대 기구의 동작 방법
JP2961997B2 (ja) 静電吸着装置
KR101231428B1 (ko) 배치 기구, 다이싱 프레임을 갖는 웨이퍼의 반송 방법 및 이 반송 방법에 이용되는 웨이퍼 반송용 프로그램을 기록한 컴퓨터 판독가능한 기록 매체
CN112151436B (zh) 压环组件及半导体工艺腔室
JP5428008B2 (ja) ウェハレベルチップサイズパッケージの製造装置
JPH0843487A (ja) 搬送装置
CN114620637B (zh) 升降装置以及具有升降装置的升降机总成
US11424151B2 (en) Lifting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936796

Country of ref document: EP

Kind code of ref document: A1