WO2023190934A1 - ジエン系ゴム組成物およびその製造方法 - Google Patents

ジエン系ゴム組成物およびその製造方法 Download PDF

Info

Publication number
WO2023190934A1
WO2023190934A1 PCT/JP2023/013302 JP2023013302W WO2023190934A1 WO 2023190934 A1 WO2023190934 A1 WO 2023190934A1 JP 2023013302 W JP2023013302 W JP 2023013302W WO 2023190934 A1 WO2023190934 A1 WO 2023190934A1
Authority
WO
WIPO (PCT)
Prior art keywords
diene rubber
formula
compound
rubber component
group
Prior art date
Application number
PCT/JP2023/013302
Other languages
English (en)
French (fr)
Inventor
服部岩和
小野壽男
水谷資和
Original Assignee
有限会社Etic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Etic filed Critical 有限会社Etic
Publication of WO2023190934A1 publication Critical patent/WO2023190934A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a diene rubber composition, a method for producing the same, and a tire produced using the diene rubber composition.
  • Patent Document 1 and Patent Document 2 disclose compositions of high molecular weight conjugated diene rubber and low molecular weight conjugated diene rubber. These rubber compositions are primarily molecular designs for automobile racing tires.
  • Patent Document 3 discloses that after polymerizing styrene and butadiene using alkyl lithium as a polymerization initiator, a high molecular weight component and a low molecular weight component are separately produced by reacting with a silane compound having an R-Si-S-R'-bond. , a rubber composition in which these are mixed is disclosed.
  • Patent Document 4 discloses that after polymerizing styrene and butadiene using alkyl lithium as a polymerization initiator, a high molecular weight component is produced by coupling with a polyfunctional silane compound, and a modifier is added per remaining unreacted molecule.
  • a method for producing a composition comprising a high molecular weight component and a low molecular weight component is disclosed.
  • Patent Documents 5 to 7 disclose that styrene and butadiene are polymerized using alkyl lithium as a polymerization initiator, and then modified with a siloxane compound.
  • a rubber composition comprising a low molecular weight component of less than 10,000 yen, a composition containing silica, and a composition containing a mixture of silica and carbon black are disclosed.
  • the technologies described in the above documents satisfy the physical properties according to the purpose of each document, but they also have various physical properties such as rebound resilience, abrasion resistance, processability during rubber kneading, and wet grip performance. At the same time, it cannot be said that it is satisfying.
  • the problem to be solved by the present invention is to provide a conjugated diene rubber composition that has excellent impact resilience and abrasion resistance, good processability during rubber kneading, and excellent wet grip performance, and a method for producing the same.
  • Our goal is to provide the following.
  • the present inventors have conducted intensive research to solve this problem, and found that by combining a predetermined high molecular weight diene rubber component with a predetermined low molecular weight diene rubber component, the processability is good.
  • the inventors have discovered that it is possible to provide a diene rubber composition with excellent rebound resilience, abrasion resistance, and wet grip, and a method for producing the same, and as a result of further research, they have completed the present invention.
  • the present invention relates to the following.
  • Diene rubber component 1 obtained by terminally modifying conjugated diene polymer 1 with at least one type of silicone compound represented by formula (1) and/or formula (2), and conjugated diene polymer 2 having the formula (1) and/or a diene-based rubber component 2 terminally modified with at least one type of silicone compound represented by formula (2), is subjected to a hydrolysis step, and then dried.
  • a rubber composition based on The conjugated diene polymer 1 is formed by polymerizing a conjugated diene compound and an aromatic vinyl compound, and has a peak molecular weight in terms of polystyrene of 400 k to 2,000 kg/mol
  • the conjugated diene polymer 2 is formed by polymerizing a conjugated diene compound and an aromatic vinyl compound, and has a peak molecular weight of 15 to 60 kg/mol in terms of polystyrene
  • R 1 and R 2 are each independently an alkyl group, an aromatic group, or an allyl group having 1 to 12 carbon atoms, or an alkyl group containing an oxygen atom and/or a nitrogen atom in these groups.
  • R 3 to R 8 are each independently an alkyl group, an aromatic group, or an allyl group having 1 to 12 carbon atoms, or an alkyl group containing an oxygen atom and/or a nitrogen atom in these groups.
  • group, aromatic group, or allyl group and may also be a cyclic structure in which R 7 and R 8 are absent, and p is a number between 1.5 and 1,000 in 0.5 increments.
  • the 1,2-structure or 3,4-structure of the diene moiety in the diene rubber component 1 is 20 to 70%, and the weight percentage of the aromatic vinyl compound component in the diene rubber component 1 is 10 to 70%. 50%, The 1,2-structure or 3,4-structure of the diene moiety in the diene rubber component 2 is 40 to 80%, and the weight percentage of the aromatic vinyl compound component in the diene rubber component 2 is 5 to 35%.
  • a method for producing a diene rubber composition comprising: i) Initiating polymerization of a conjugated diene compound and an aromatic vinyl compound in a hydrocarbon in the coexistence of an organolithium compound; ii) The conjugated diene polymer 1 polymerized in i) having a polystyrene equivalent peak molecular weight of 400 k to 2,000 kg/mol is combined with at least one type of silicone represented by formula (1) and/or formula (2).
  • the conjugated diene polymer 2 polymerized in i) and having a polystyrene equivalent peak molecular weight of 15 to 60 kg/mol is treated with at least one silicon compound represented by formula (1) and/or formula (2).
  • R 1 and R 2 are each an alkyl group, aromatic group, or allyl group having 1 to 12 carbon atoms, or an alkyl group or aromatic group containing an oxygen atom and/or a nitrogen atom in these groups.
  • R 3 to R 8 are each independently an alkyl group, an aromatic group, or an allyl group having 1 to 12 carbon atoms, or an alkyl group containing an oxygen atom and/or a nitrogen atom in these groups.
  • group, aromatic group, or allyl group and may also be a cyclic structure in which R 7 and R 8 are absent, and p is a number between 1.5 and 1,000 in 0.5 increments. Said method.
  • step iii) and before step iv) add a silicon halide compound represented by formula (3) or an alkali metal compound represented by formula (4) in an amount that satisfies the condition of formula (5).
  • M 1 is a silicon atom
  • R 9 is an alkyl group, aromatic group, or allyl group having 1 to 12 carbon atoms
  • X 2 is a halogen atom of iodine, bromine, or chlorine.
  • M 2 is an alkali metal atom, preferably a lithium atom, a sodium atom, or a potassium atom
  • R 10 is an alkyl group having 1 to 12 carbon atoms, an aromatic group, an allyl group, or an acyl group
  • L is the number of moles of the organolithium compound added at the initiation of polymerization
  • M2 is the number of moles of the alkali metal compound represented by formula (4)
  • X1 is the number of moles of the alkali metal compound represented by formula (4).
  • the present invention provides a modified diene rubber composition for compounding silica which, when used as tire rubber, has excellent fuel efficiency and wear resistance, good processability during rubber compounding, and good wet grip performance, and a method for producing the same. It is related to.
  • Examples of the conjugated diene compound used in the present invention include 1,3-butadiene, isoprene, 1,3-pentadiene (piperine), 2,3-dimethyl-1,3-butadiene, and 1,3-hexadiene. I can do it. Among these, 1,3-butadiene and isoprene are preferred from the viewpoint of easy availability and physical properties of the resulting diene rubber. Particularly preferred is 1,3-butadiene.
  • the amount of the conjugated diene compound used in diene rubber component 1, which is a high molecular weight component of the present invention is 50 to 90% by weight, preferably 60 to 85% by weight.
  • the amount of the conjugated diene compound used in diene rubber component 2, which is a low molecular weight component of the present invention is 65 to 95% by weight, preferably 70 to 95% by weight.
  • aromatic vinyl compound used in the present invention examples include styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, and divinylnaphthalene.
  • styrene is preferred from the viewpoint of easy availability and physical properties of the resulting diene rubber.
  • the amount of aromatic vinyl compound used in diene rubber component 1, which is a high molecular weight component of the present invention is 10 to 50% by weight, preferably 15 to 40% by weight.
  • the amount of aromatic vinyl compound used in the diene rubber component 2, which is a low molecular weight component of the present invention is 5 to 35% by weight, preferably 5 to 30% by weight.
  • the organic lithium compound used in the present invention is a lithium compound having 2 to 20 carbon atoms.
  • ethyllithium, n-propyllithium, iso-propyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, tert-octyllithium, n-decyllithium, phenyllithium, 2-naphthyllithium, 2- include butyl-phenyllithium, 4-phenyl-butyllithium, cyclohexyllithium, 4-cyclopentyllithium, 1,4-dilithio-butene-2, and the like.
  • Preferred are n-butyllithium, sec-butyllithium and tert-butyllithium from the viewpoint of industrial availability and stability, with n-butyllithium and sec-butyllithium being particularly preferred.
  • the secondary amine compound used in the present invention is a compound represented by formula (6) or formula (7).
  • R 11 and R 12 are an alkyl group, a cycloalkyl group, or an aralkyl group having 1 to 20 carbon atoms, R 11 and R 12 may be the same or different, and R 13 is Divalent alkylene, bicycloalkane, oxy- or amino-alkylene groups having 3 to 12 methylene groups.
  • R 11 and R 12 in formula (6) include methyl, ethyl, butyl, hexyl, octyl, cyclohexyl, 3-phenyl-1-propyl, and isobutyl. Specific examples include methylethylamine, diethylamine, dibutylamine, ethylbutylamine, dihexylamine, dioctylamine, butyloctylamine, octylcyclohexylamine, diisobutylamine, butyl(3-phenyl-1-propyl)amine, and the like. Preferred are dioctylamine and dihexylamine, which are industrially available and have good solubility in hydrocarbon solvents.
  • the R 13 group in formula (7) includes, for example, trimethylene, tetramethylene, hexamethylene, oxydiethylene, N-alkylazadiethylene, and the like.
  • Specific examples include pyrrolidine, piperidine, hexamethyleneimine or heptamethyleneimine. It may also be a bicyclic compound such as decahydroisoquinoline or perhydroindole. Particularly suitable are pyrrolidine, piperidine, hexamethyleneimine or heptamethyleneimine.
  • Compounds that are prepolymerized in the coexistence of an organolithium compound and a secondary amine compound include compounds that have a faster vulcanization rate than butadiene, specifically isoprene, 1,3-pentadiene (piperine), 2,3- Dimethyl-1,3-butadiene. Isoprene is preferred from the viewpoint of industrial availability and vulcanization speed.
  • silicon compound represented by formula (1) include the following compounds.
  • ketooxime silanes trimethoxylanes, triethoxysilanes, and tripropoxysilanes that are relatively easy to hydrolyze, or those that increase the storage stability of diene rubber while combining with silica.
  • aminoethoxysilanes that are presumed to promote reactivity.
  • aminoalkoxysilane compound represented by formula (1) Specific examples of the aminoalkoxysilane compound represented by formula (1) are shown below. Dimethylaminomethyltrimethoxysilane, 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 4-dimethylaminobutyltrimethoxysilane, dimethylaminomethyldimethoxymethylsilane, 2-dimethylaminoethyldimethoxymethylsilane, 3-dimethylaminopropyldimethoxymethylsilane, 4-dimethylaminobutyldimethoxymethylsilane, dimethylaminomethyltriethoxysilane, 2-dimethylaminoethyltriethoxysilane, 3-dimethylaminopropyltriethoxysilane, 3-diethylaminopropyltrimethoxysilane , 4-dimethylaminobutyl
  • halogenated silicon compound represented by formula (1) include the following compounds.
  • a generally well-known silicone compound is a compound called silicone oil. It is sufficient if the viscosity (mm 2 /s) measured at 25° C. is 0.3 to 1000, more preferably 0.6 to 200. Dimethyl silicone oil and methylphenyl silicone oil belong to this category. Also suitable are modified silicone oils containing polyether groups, epoxy groups and dialkylamino groups.
  • the low molecular weight silicon compound represented by formula (2) include, but are not limited to, the following. 1,1,1,3,3,5,5-heptamethyl-5-methoxytrisiloxane, 1,1,1,3,3,5,5-heptamethyl-5-ethoxytrisiloxane, 1,1,1, 3,3,5,5-heptamethyl-5phenoxytrisiloxane, 1,1,1,3,3,5-hexamethyl-5,5-dimethoxytrisiloxane, 1,1,1,3,3,5-hexamethyl -5,5-diethoxytrisiloxane, 1,1,1,3,3,5-hexamethyl-5,5-diphenoxytrisiloxane, 1,1,1,3,3-pentamethyl-5,5,5 -trimethoxytrisiloxane, 1,1,1,3,3-pentamethyl-5,5,5-triethoxytrisiloxane, 1,1,1,3,3-pentamethyl-5,5,5-triphenoxytrisiloxane Siloxane,
  • siloxane compounds represented by formula (2) those without R 7 and R 8 are cyclic siloxane compounds.
  • Specific examples of the cyclic siloxane compound include hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and tetradecamethyl.
  • cycloheptasiloxane D7
  • hexadecamethylcyclooctasiloxane D8
  • octadecamethylcyclonanosiloxane D9
  • eicosamethylcyclodecasiloxane D10
  • they are D3, D4, and D5.
  • alkoxysilane compounds having a protecting group that becomes a primary amino group after hydrolysis include N,N-bis(trimethylsilyl)-3-aminopropyltrimethoxysilane, N,N-bis(trimethylsilyl)-3-aminopropyl Triethoxysilane, N,N-bis(trimethylsilyl)-3-aminopropyltripropoxysilane, N,N-bis(trimethylsilyl)-2-aminoethyltrimethoxysilane, N,N-bis(trimethylsilyl)-2-amino Ethylmethyldimethoxysilane, N,N-bis(trimethylsilyl)aminoethylmethyldiethoxysilane, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, N,N-diethyl-3-aminopropyl Examples include trimethoxysilane, N,N-diethyl
  • ketimines examples include easily hydrolyzed 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine and 3-trimethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine. , 3-tripropoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, and the like.
  • the diene rubber component of the present invention is produced by a solution polymerization reaction, and the usage conditions such as the amount of raw materials used and reaction temperature and reaction time for producing the solution polymerized diene rubber are as follows.
  • a commonly used method is used, in which a conjugated diene compound or an aromatic vinyl compound is reacted with a conjugated diene compound or an aromatic vinyl compound in the presence of an organic lithium compound and a polar compound such as an ether compound or an amine compound.
  • Polymerization is carried out at a temperature of 10°C for several tens of minutes to several hours.
  • the amount of the organolithium compound to be used is usually in the range of 0.01 to 10 mmol per 100 g of diene rubber. If it is less than 0.01 mmol, the molecular weight becomes too high, resulting in an increase in solution viscosity and MV viscosity, which causes problems in processes such as rubber production and tire manufacturing. Moreover, if it exceeds 10 mmol, the molecular weight of the diene rubber becomes too low.
  • amine compounds triethylamine, pyridine, N,N,N',N'-tetramethylethylenediamine, dipiperidinoethane, methyl ether of N,N-diethylethanolamine, ethyl ether of N,N-diethylethanolamine, A tertiary amine compound such as the butyl ether of N,N-diethylethanolamine is used.
  • Preferred compounds include tetrahydrofuran (THF) and 2,2-di(2-tetrahydrofuryl)propane (DTHFP) in consideration of polymerization rate and modification efficiency.
  • the amount of these compounds added is usually 0.01 to 10 mol, preferably 0.2 to 5 mol, per 1 mol of the organic lithium compound when the compound contains a plurality of nitrogen atoms, oxygen atoms, etc.
  • a compound having one oxygen atom in the molecule, such as tetrahydrofuran, is preferably added in an amount of 0.05 to 10% based on the solvent.
  • hydrocarbon solvent selected from aliphatic, aromatic, and cycloaliphatic hydrocarbons, in particular propane, n-butane, iso-butane, n-pentane, having 3 to 12 carbon atoms; iso-pentane, cyclopentane, n-hexane, cyclohexane, methylcyclohexane, n-heptane, cycloheptane, propene, 1-butene, iso-butene, trans-2-butene, cis-2-butene, 1-pentene, 2 -Pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, etc.
  • n-pentane iso-pentane, cyclopentane, n-hexane, cyclohexane, and n-heptane. Further, two or more of these solvents can be used in combination.
  • a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound are mainly anionically polymerized, and the active diene rubber is reacted with a silicon compound.
  • These modification reactions are conducted at 0 to 120°C, preferably 20 to 100°C, and reaction time is 1 to 60 minutes, preferably 5 to 40 minutes, in the case of batch polymerization in an adiabatic manner.
  • the temperature is 30 to 100°C, preferably 50 to 80°C
  • the reaction time is 1 to 250 minutes, preferably 30 to 200 minutes.
  • the temperature is 30 to 100°C, preferably 50 to 80°C.
  • the polymerization method used in the present invention may be either a batch polymerization method or a continuous polymerization method.
  • a batch polymerization method is suitable, especially in order to obtain characteristics in rebound resilience, and in particular, in order to obtain characteristics in abrasion resistance and processability, continuous polymerization methods are suitable for diene rubbers.
  • the diene rubber component 1, which is a high molecular weight component of the present invention can be polymerized either batchwise or continuously, but continuous polymerization is preferred.
  • the diene rubber component 2, which is a low molecular weight component of the present invention can be polymerized in batches or continuously, but batch polymerization is suitable.
  • diene rubber component 1 and diene rubber component 2 of the present invention it is convenient to polymerize diene rubber component 1 and diene rubber component 2 of the present invention in separate heavy containers, but after producing diene rubber component 1, predetermined polar compounds, conjugated diene compounds, aromatic It is also possible to add a vinyl compound and an initiator to produce both components in one polymerization vessel.
  • a silicon compound represented by formula (1) is added to produce the diene rubber so that the bibranched structure is 40% or less.
  • the amount of the silane compound added is preferably 0.7 to 2 times the number of molecules per active diene rubber molecule in steps ii) and iii), more preferably 0.9 ⁇ 1.5 times. When it is less than 0.7, the number of alkoxysilyl groups introduced into the active diene rubber decreases, resulting in low reactivity with silica. If it is more than twice as large, storage stability will deteriorate.
  • the siloxane compound represented by formula (2) in the step iii) is preferably added in such a way that the number of Si--O bonds is equal to or more than 1 to 100 per molecule of the remaining active diene rubber.
  • the amount is twice the same, more preferably 1 to 5 times the same amount.
  • the branched structure after steam coagulation and drying is the following two-branched structure -A or two-branched structure -A', which is a structure that is stable during rubber storage and highly reactive with silica when compounded with silica. It is estimated that this is the case.
  • the reaction mechanism is assumed to be that the two-branched structure -A is produced by the condensation of (Rubber)-Si-OR, which is modified with a silicon compound represented by formula (1), and (Rubber)-Si-OH, which is hydrolyzed. are doing.
  • Bi-branched structure-A structure of the present invention: (Rubber)-Si-O-Si-(Rubber) Bi-branched structure-A' (structure of the present invention): (Rubber)-Si-O-(Si-O) n -Si-(Rubber) Bi-branched structure-B (conventional structure): (Rubber)-Si-(Rubber)
  • the proportion of these branched structures is determined by GPC in the manufacturing process.
  • At least one silicon compound represented by formula (1) and/or formula (2) and an activated diene rubber are used.
  • the reaction is carried out under conditions that minimize the formation of bifurcated structure -B.
  • a halogenated silicon compound represented by formula (3) or an alkali metal compound represented by formula (4) may be added. This halogenated silicon compound or alkali metal compound is added under conditions that satisfy formula (5), and is deactivated by impurities contained in the solvent or monomer, or is a lithium compound that is produced as a by-product from the reaction between the active diene rubber and the silicon compound.
  • the compounds represented by formula (1) and formula (2) may produce acidic compounds or alkaline compounds as by-products depending on the compound used in the modification reaction, so it is necessary to change the neutralization method. There is.
  • the adjustment at that time is preferably within the range of 1.5 ⁇ [nX 1 +(4-q)X 2 ]/(L+M 2 ) ⁇ 0.9 as shown by equation (5). If it is less than 0.9, the alkalinity becomes high and the condensation reaction becomes difficult. Preferably it is 0.95 or more. If it is 1.5 or more, the acidity becomes strong and metal corrosion of manufacturing equipment becomes a problem. Preferably 1.2 or less
  • the Mooney viscosity (abbreviated as MV, expressed as ML 1+4/100°C when measuring conditions) of the diene rubber obtained in the present invention is preferably in the range of 20 to 150, and if it is less than 20, it will not be strong or durable. Abrasion resistance and impact resilience deteriorate, and on the other hand, when it exceeds 150, workability etc. deteriorate.
  • the content of 1,2-structure or 3,4-structure in the diene moiety of the diene rubber in the present invention generally varies within the range of 20 to 80%. If wear resistance is important, the vinyl content should be low, and if braking performance on wet roads is important, the vinyl content should be high.
  • the 1,2-structure or 3,4-structure of the diene moiety in the conjugated diene polymer of the diene rubber component 1, which is a high molecular weight component, is 20 to 70%, preferably 25 to 60%, and the low molecular weight component
  • the 1,2-structure or 3,4-structure of the diene moiety in the conjugated diene polymer of the diene rubber component 2 is 40 to 80%, preferably 45 to 75%.
  • the ratio of diene rubber component 1 to diene rubber component 2 is 10 to 90 phr, preferably 15 to 80 phr, relative to 100 phr of diene rubber component 1. If it is less than 10 phr, the blending MV will be high and the processability will be poor. Moreover, if it exceeds 90 phr, the tackiness of the rubber composition will increase, making it difficult to handle.
  • An extender oil can also be added to the polymerization reaction solution containing the diene rubber of the present invention.
  • the extender oil those commonly used in the rubber industry can be used, including paraffinic extender oils, aromatic extender oils, naphthenic extender oils, and the like.
  • the pour point of the extender oil is preferably -20 to 50°C, more preferably -10 to 30°C. Within this range, a rubber composition that is easily extensible and has an excellent balance between tensile properties and low heat build-up can be obtained.
  • the preferred aroma carbon content (CA%, Kurtz analysis method) of the extender oil is preferably 20% or more, more preferably 25% or more, and the preferred paraffin carbon content (CP%) of the extender oil is , preferably 55% or less, more preferably 45%. If CA% is too small or CP% is too large, the tensile properties will be insufficient.
  • the content of polycyclic aromatic compounds in the extender oil is preferably less than 3%. This content is measured by the IP346 method (testing method of The Institute Petroleum, UK).
  • the content of the extender oil is preferably 0 to 40 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the rubber composition. When the content of the extender oil is within this range, the viscosity of the rubber composition containing silica will be appropriate, and the rubber composition will have an excellent balance between tensile properties and low heat build-up.
  • the diene rubber of the present invention When used as a tire rubber composition, it may be blended with natural rubber, isoprene rubber, butadiene rubber, emulsion polymerized styrene-butadiene rubber, etc. to the extent that the effects of the present invention are not essentially impaired. After kneading reinforcing agents such as silica and/or carbon black and various compounding agents in a roll mill or Banbury mixer, sulfur, vulcanization accelerators, etc. are added to form tire rubber for treads, sidewalls, carcass, etc. can do. These compositions can also be used for belts, anti-vibration rubber and other industrial products.
  • kneading reinforcing agents such as silica and/or carbon black and various compounding agents in a roll mill or Banbury mixer
  • sulfur, vulcanization accelerators, etc. are added to form tire rubber for treads, sidewalls, carcass, etc. can do.
  • These compositions can also be used for belt
  • fillers having hydroxyl groups on the surface are optimal as the reinforcing material.
  • carbon black can also be used in combination.
  • the filling amount of the filler is preferably 20 to 150 phr, more preferably 30 to 100 phr, based on 100 phr of the total rubber component.
  • silica examples include dry silica, wet silica, colloidal silica, and precipitated silica.
  • wet silica containing hydrous silicic acid as a main component is particularly preferred.
  • These silicas can be used alone or in combination of two or more.
  • the particle size of the silica primary particles is not particularly limited, but is 1 to 200 nm, more preferably 3 to 100 nm, particularly preferably 5 to 60 nm. When the particle size of the silica primary particles is within this range, an excellent balance between tensile properties and low heat build-up is achieved. Note that the particle size of the primary particles can be measured using an electron microscope, specific surface area, or the like.
  • a silane coupling agent is preferably added to the rubber composition of the present invention at the time of rubber compounding for the purpose of further improving tensile properties and low heat generation properties.
  • the silane coupling agent include ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, bis(3-triethoxysilylpropyl) Tetrasulfide, bis(3-tri-iso-propoxysilylpropyl)tetrasulfide, bis(3-tributoxysilylpropyl)tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyltetrasulfide, ⁇ -trimethoxysilylpropylbenzo Tetrasulfides such as thiadyl tetrasulfide, bis(3-trie
  • the silane coupling agent preferably contains 4 or less sulfur per molecule. More preferably, those containing 2 or less sulfur atoms are preferred. These silane coupling agents can be used alone or in combination of two or more.
  • the blending amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 20 parts by weight, particularly preferably 2 to 10 parts by weight, based on 100 parts by weight of silica.
  • carbon black examples include grades such as N110, N220, N330, N440, and N550. These carbon blacks can be used alone or in combination of two or more.
  • the specific surface area of carbon black is not particularly limited, but the nitrogen adsorption specific surface area (N 2 SA) is preferably 5 to 200 m 2 /g, more preferably 50 to 150 m 2 /g, particularly preferably 80 to 130 m 2 /g. When the nitrogen adsorption specific surface area is within this range, the tensile properties are more excellent.
  • the amount of DBP adsorbed by carbon black is also not particularly limited, but is preferably 5 to 300 ml/100 g, more preferably 50 to 200 ml/100 g, particularly preferably 80 to 160 ml/100 g.
  • the DBP adsorption amount is within this range, a rubber compound composition with even better tensile properties can be obtained.
  • cetyltrimethylammonium bromide which is disclosed in JP-A-5-230290, has an adsorption (CTAB) specific surface area of 110 to 170 m 2 /g, and is compressed repeatedly at a pressure of 24,000 psi four times.
  • Abrasion resistance can be improved by using high structure carbon black whose DBP (24M4DBP) oil absorption after addition is 110 to 130 ml/100 g.
  • the amount of carbon black to be blended is 1 to 50 parts by weight, preferably 2 to 30 parts by weight, particularly preferably 3 to 20 parts by weight, based on 100 parts by weight of the rubber component.
  • a vulcanizing agent in the rubber compound composition of the present invention, can be used in an amount of preferably 0.5 to 10 phr, more preferably 1 to 6 phr, based on 100 phr of the total rubber component.
  • sulfur is typically used, and other examples include sulfur-containing compounds, peroxides, and the like.
  • a vulcanization accelerator such as a sulfenamide type, guanidine type, or thiuram type may be used in combination with the vulcanizing agent in an amount as required.
  • zinc white, a vulcanization aid, an anti-aging agent, a processing aid, etc. may be used in amounts as required.
  • various compounding agents of the rubber compounded composition obtained using the diene rubber of the present invention may be used, but are not particularly limited, to improve processability during kneading, or to balance wet skid characteristics, impact resilience, and abrasion resistance.
  • Various other fillers such as vulcanizing agents, vulcanization accelerators, zinc whites, anti-aging agents, anti-scorch agents, tackifiers, and other fillers are added to other extender oils and ordinary rubber compositions for the purpose of further improving the rubber composition.
  • compatibilizers such as organic compounds selected from epoxy group-containing compounds, carboxylic acid compounds, carboxylic acid ester compounds, ketone compounds, ether compounds, aldehyde compounds, hydroxyl group-containing compounds, and amino group-containing compounds.
  • a silicon compound selected from alkoxysilane compounds, siloxane compounds and aminosilane compounds can be added during kneading.
  • the peak molecular weight (Mp) and peak area were calculated as follows.
  • the molecular weight at the highest point of the peak in the GPC analysis immediately after polymerization of the conjugated diene polymer 1 is defined as the peak molecular weight, and is defined as Mp1.
  • Mp1 molecular weight at the highest point of the peak in the GPC analysis immediately after polymerization of the conjugated diene polymer 1
  • Mp1 molecular weight
  • the molecular weight at the highest point of the peak in the GPC analysis immediately after polymerization of the conjugated diene polymer 2 is defined as the peak molecular weight, and is defined as Mp2.
  • Mp2 The molecular weight at the highest point of the peak in the GPC analysis immediately after polymerization of the conjugated diene polymer 2.
  • the styrene unit content in the polymer was calculated from the integral ratio of the 1 H-NMR spectrum.
  • the glass transition point (T g ) of the polymer was measured using a differential scanning calorimeter (DSC) model 7 manufactured by PerkinElmer under conditions of cooling to -100°C and then increasing the temperature at 10°C/min.
  • the kneading characteristics and physical properties of the vulcanized rubber were measured by the following methods, and the Mooney viscosity of the rubber compound composition was measured as follows.
  • the kneading of the rubber compound composition to prepare the vulcanizate was carried out in accordance with JIS K 6299:2001 "Rubber - Method for preparing test samples.”
  • the kneading conditions (kneading A) for the rubber composition that does not contain a vulcanizing agent are as follows: A Laboplast Mill Banbury type mixer manufactured by Toyo Seiki Seisakusho Co., Ltd. is used, and the filling rate is approximately 65% (volume ratio) and the rotor rotation speed is 50 rpm.
  • the kneading was carried out at a starting temperature of 90°C.
  • the kneading conditions for blending the vulcanizing agent into the rubber composition after kneading A were as follows: The vulcanizing agent was blended at room temperature using an 8-inch roll manufactured by Daihan Co., Ltd.
  • the temperature dispersion of the viscoelasticity test was performed using the "TA INSTRUMENTS viscoelasticity measuring device RSA3" in accordance with JIS K 7244-7:2007 "Plastics - Test methods for dynamic mechanical properties - Part 7: Torsional vibration - Non-resonant method” Accordingly, the measurement frequency was 10 Hz, the measurement temperature was -50 to 80 °C, the dynamic strain was 0.1%, the temperature increase rate was 4 °C/min, and the test piece shape was 5 mm width x 40 mm length x 1 mm thickness. ” samples were measured. The smaller the tan ⁇ (60° C.), the greater the impact resilience and the lower the heat build-up. The larger the tan ⁇ (0° C.), the better the wet grip properties.
  • Abrasion resistance of the vulcanized rubber compound composition was measured using the Akron abrasion test and method B in accordance with JISK6264-2:2005 "Vulcanized rubber and thermoplastic rubber - How to determine abrasion resistance - Part 2: Test method" The amount was measured. The abrasion resistance of the control sample was set as 100, and the abrasion resistance index was expressed as an index. The larger the index, the better.
  • Mooney viscosity [ML 1+4/100°C ] was measured at 100°C in accordance with JIS K6300-2001.
  • [Diene rubber component 2-3] Same as [diene rubber component 2-1] except that the amount of 2,2-di(2-tetrahydrofuryl)propane (DTHFP) used in [diene rubber component 2-1] was increased to 10.5 g (118 mmol).
  • [Diene-based rubber component 2-3] was produced according to the procedure. The styrene content in the diene rubber was 20%. , the vinyl content was 73%. Mp by GPC analysis was 38 kg/mol.
  • [Diene rubber component 1-1], [Diene rubber component 2-1], [Diene rubber component 2-2], [Diene rubber component 2-3] and emulsion polymerized ESBR (commercially available (JSR #1723 used as is) were mixed in the proportions shown in Table 2, coagulated with steam, dried with a hot roll, and then blended according to the vulcanization physical properties formulation recipe in Table 1, and the vulcanized physical properties were evaluated. The evaluation results are also listed in Table 2.
  • Table 2 shows the formulation MV, tensile strength, elongation at break, modulus ratio of M 300 /M 100 , Akron abrasion resistance, and dynamic viscoelasticity test results.
  • Example 1 The physical property values expressed as an index are based on Comparative Example 2 as 100, and in each item, the larger the numerical value, the better the physical properties.
  • Comparative Example 2 which is emulsion polymerized SBR that is often used in tire applications
  • Example 1, Example 2, and Comparative Example 1 all showed better dynamic viscoelasticity tests corresponding to wet grip performance than Comparative Example 2.
  • the tan ⁇ (0°C) and the tan ⁇ (60°C) corresponding to low fuel consumption performance are excellent.
  • the blend MV is a little high, the higher the reinforcement with silica, the larger the modulus ratio, which has a high correlation with Akron abrasion resistance.
  • diene rubber component 2 is good for improving processability when Mp2 is less than 10 kg/mol, but the effect of improving vulcanizate properties is small. From these physical property evaluation results, etc., it is a rubber composition and a rubber compounded composition with an excellent balance of fuel efficiency, abrasion resistance, wet grip performance, and processability.
  • [Diene rubber component 2-5] Following the same procedure as [Diene rubber component 2-4] except that 3-diethylaminopropyltriethoxysilane used in [Diene rubber component 2-4] was replaced with silicon tetrachloride, 2.43 g (14.3 mmol). [Diene rubber component 2-5] was produced. The styrene content in the diene rubber was 20%. Vinyl content was 68%. Mp by GPC analysis was 40.0 kg/mol.
  • [Diene rubber component 2-6] [Diene rubber component 2-4] except that 3-diethylaminopropyltriethoxysilane used in [Diene rubber component 2-4] was replaced with 4.25 g (14.4 mmol) of octamethylcyclotetrasiloxane (D4) [Diene rubber component 2-6] was produced in the same manner as above.
  • the styrene content in the diene rubber was 20%. Vinyl content was 70%.
  • Mp by GPC analysis was 47 kg/mol.
  • diene rubber components 1-2 and diene rubber components 2-4 to 2-6 were mixed at 40 phr each, then desolubilized by a steam coagulation method, and dried with a roll at 110°C. Separate the high molecular weight component and low molecular weight component using a simple method of drawing perpendicular lines to the valleys of the peaks from the GPC analysis chart, and calculate the ratio of diene rubber component 1 and diene rubber component 2 from the area. It is shown in Table 4.
  • Vulcanized physical properties were blended according to the vulcanized physical property formulation recipe shown in Table 3, and the vulcanized physical properties were evaluated. The evaluation results are also listed in Table 4.
  • Table 4 shows the blend MV, tensile strength, elongation at break, M300/M100 modulus ratio, Akron abrasion resistance, and dynamic viscoelasticity test results.
  • the physical property values expressed as an index are based on Comparative Example 4 as 100, and in each item, the larger the numerical value, the better the physical properties.
  • Comparative Example 4 which is emulsion polymerized SBR commonly used in tire applications
  • Examples 3 to 8 have higher tensile strength and equivalent or higher elongation at break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本願発明の課題は、反発弾性と耐摩耗性に優れ、ゴム混練時の加工性が良好で、ウエットグリップ性能にも優れた共役ジエン系ゴム組成物、およびその製造方法を提供することにある。 共役ジエン重合体1を式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で末端変性してなるジエン系ゴム成分1と、共役ジエン重合体2を式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で末端変性してなるジエン系ゴム成分2との混合物を、加水分解工程に供与し、次いで乾燥することによって得られる、ジエン系ゴム組成物。

Description

ジエン系ゴム組成物およびその製造方法
 本発明は、ジエン系ゴム組成物、およびその製造方法、ならびに該ジエン系ゴム組成物を用いて製造されたタイヤに関する。
 低燃費用タイヤに用いられるジエン系ゴム組成物において、反発弾性、耐摩耗性、加工性、およびウエットグリップ性などを向上することが検討されてきた。
 特許文献1および特許文献2には、高分子量共役ジエン系ゴムと低分子量共役ジエン系ゴムの組成物が開示されている。これらのゴム組成物は主として自動車レース用タイヤの分子設計である。
 特許文献3には、アルキルリチウムを重合開始剤としてスチレンとブタジエンを重合後、R-Si-S-R’-結合を有するシラン化合物等を反応させた高分子量成分と低分子量成分を別途製造し、それらを混合したゴム組成物が開示されている。
 特許文献4には、アルキルリチウムを重合開始剤としてスチレンとブタジエンを重合後、多官能のシラン化合物でカップリングすることにより高分子量成分を生成し、残りの未反応の分子当たりに添加する変性剤を多くして、高分子量成分と低分子量成分とからなる組成物の製造方法が開示されている。
 特許文献5~7には、アルキルリチウムを重合開始剤としてスチレンとブタジエンを重合後、シロキサン化合物で変性し、分子量(Mw)が35万g/mol以上の高分子量成分と分子量(Mw)が1万未満の低分子量成分からなるゴム組成物、そのシリカ配合組成物やそのシリカとカーボンブラック混合配合組成物が開示されている。
 以上の文献に記載の技術は、それぞれの文献での目的に合わせた物性を満足するものではあるが、反発弾性と耐摩耗性、ゴム混練時の加工性、ウエットグリップ性能など、さまざまな物性を同時に満足するものとはいえない。
特公平5-74614号公報 特許第3290469号公報 特表2018-507303号公報 WO2018―56025号公報 特許第6864078号公報 特許第6823708号公報 特許第6799666号公報
 かかる状況において、本発明が解決しようとする課題は反発弾性と耐摩耗性に優れ、ゴム混練時の加工性が良好で、ウエットグリップ性能にも優れた共役ジエン系ゴム組成物、およびその製造方法を提供することにある。
 本発明者らは、かかる課題を解決するために鋭意研究する中で、所定の高分子量のジエン系ゴム成分に、所定の低分子量のジエン系ゴム成分を組み合わせることで、加工性が良好で、反発弾性、耐摩耗性、およびウエットグリップ性に優れたジエン系ゴム組成物およびその製造方法を提供できることを見出し、さらに研究を進めた結果、本発明を完成するに至った。
 すなわち、本発明は、以下に関する。
[1] 共役ジエン重合体1を式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で末端変性してなるジエン系ゴム成分1と、共役ジエン重合体2を式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で末端変性してなるジエン系ゴム成分2とを、加水分解工程に供与し、次いで乾燥することによって得られる、ジエン系ゴム組成物であって、
 共役ジエン重合体1は、共役ジエン化合物と芳香族ビニル化合物とが重合してなるものであり、ポリスチレン換算のピーク分子量が400k~2,000kg/molであり、
 共役ジエン重合体2は、共役ジエン化合物と芳香族ビニル化合物とが重合してなるものであり、ポリスチレン換算のピーク分子量が15k~60kg/molであり、
 式中、RおよびRは、それぞれ、独立して、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、X1は、ヨウ素、臭素、または塩素であり、nおよびmは、それぞれ、0、1、2、3または4であり、
 式中、R3~Rは、それぞれ、独立して、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、またRとRが無い環状構造でもよく、pは、1.5および1,000の間の0.5刻みの数である、
前記ジエン系ゴム組成物。
[2] ジエン系ゴム成分1中のジエン部の1,2-構造または3,4-構造が20~70%であり、ジエン系ゴム成分1中の芳香族ビニル化合物成分の重量割合が10~50%であり、
 ジエン系ゴム成分2中のジエン部の1,2-構造または3,4-構造が40~80%であり、ジエン系ゴム成分2中の芳香族ビニル化合物成分の重量割合が5~35%である、前記[1]に記載のジエン系ゴム組成物。
[3] ジエン系ゴム成分1とジエン系ゴム成分2との比率が、ジエン系ゴム成分1の100phrに対して、ジエン系ゴム成分2が10~90phrである、前記[1]または[2]に記載のジエン系ゴム組成物。
[4] 前記[2]または[3]に記載のジエン系ゴム組成物を少なくとも20phr以上含む全ゴム成分100phrに対して、少なくとも20~150phrのシリカを含む、ゴム配合組成物。
[5] 前記[2]または[3]に記載のジエン系ゴム組成物を少なくとも20phr以上含む全ゴム成分100phrに対して、少なくとも20~150phrのシリカと5~30phrのカーボンブラックを含む、ゴム配合組成物。
[6] ジエン系ゴム組成物を製造する方法であって、
 i) 共役ジエン化合物と芳香族ビニル化合物とを炭化水素中、有機リチウム化合物の共存下で重合を開始する;
 ii) i)で重合されたポリスチレン換算のピーク分子量が400k~2,000kg/molである共役ジエン重合体1を、式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で重合直後に末端変性し、ジエン系ゴム成分1を製造する;
 iii) i)で重合されたポリスチレン換算のピーク分子量が15k~60kg/molである共役ジエン重合体2を、式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で重合直後に末端変性し、ジエン系ゴム成分2を製造する;
 iv) 得られたジエン系ゴム成分1とジエン系ゴム成分2とを、加水分解工程、好ましくはスチーム凝固に供与し、次いで乾燥する;
 式中、RおよびRは、それぞれ、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、Xは、ヨウ素、臭素、または塩素のハロゲン原子であり、nとmは、それぞれ、0、1、2、3、または4であり、
 式中、R3~Rは、それぞれ、独立して、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、またRとRが無い環状構造でもよく、pは、1.5および1,000の間の0.5刻みの数である、
前記方法。
[7] ジエン系ゴム成分1単独、またはジエン系ゴム成分1およびジエン系ゴム成分2の両者を、有機リチウム化合物と二級アミン化合物の共存下で重合を開始する、前記[6]に記載の方法。
[8] ジエン系ゴム成分1を重合時に、有機リチウム化合物でイソプレンを予備重合後、イソプレン以外の共役ジエン化合物と芳香族ビニル化合物とを重合する、前記[6]または[7]に記載の方法。
[9] ジエン系ゴム成分1を重合後、引続いて、共役ジエン化合物、芳香族ビニル化合物、任意にジエン部の1,2-構造または3,4-構造調整剤を追加し、有機リチウム化合物の共存下で重合を再開する、前記[6]~[8]のいずれか一に記載の方法。
[10] iii)工程後、iv)工程の前に、式(5)の条件を満たす量の式(3)で表されるハロゲン化シリコン化合物または式(4)で表されるアルカリ金属化合物を添加してから、iv)工程のスチーム凝固・乾燥を行う、前記[6]~[9]のいずれか一に記載の方法であって、
 式中、M1は、ケイ素原子であり、Rは、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基であり、X2は、ヨウ素、臭素、または塩素のハロゲン原子であり、qは、0または1であり、
 式中、Mは、アルカリ金属原子であり、好ましくは、リチウム原子、ナトリウム原子、またはカリウム原子であり、R10は、1~12の炭素数を有するアルキル基、芳香族基、アリル基、またはアシル基であり、
 式中、Lは、重合開始に添加した有機リチウム化合物のモル数であり、Mは、式(4)で表されるアルカリ金属化合物のモル数であり、Xは、式(1)で表されるシリコン化合物のモル数であり、Xは、式(3)で表されるハロゲン化シリコン化合物のモル数であり、nは、式(1)で表されるシリコン化合物中のnと同じであり、qは、式(3)で表されるハロゲン化シリコン化合物中のqと同じである、
前記方法。
[11] ジエン系ゴム成分1とジエン系ゴム成分2との比率が、ジエン系ゴム成分1の100phrに対して、ジエン系ゴム成分2が10~90phrである、前記[6]~[10]のいずれか一に記載の方法。
 本発明はタイヤ用ゴムとして使用した場合、低燃費性と耐摩耗性に優れ、ゴム配合時の加工性が良好で、ウエットグリップ性能も良好なシリカ配合用変性ジエン系ゴム組成物およびその製造方法に関するものである。
 本発明で用いられる共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン(ピペリン)、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエン等を例示することができる。これらの中でも、入手容易性や、得られるジエン系ゴムの物性の観点から、1,3-ブタジエン、イソプレンが好ましい。特に1,3-ブタジエンが好ましい。
 本発明の高分子量成分であるジエン系ゴム成分1の共役ジエン化合物の使用量は50~90重量%であり、好ましくは60~85重量%である。
 本発明の低分子量成分であるジエン系ゴム成分2の共役ジエン化合物の使用量は65~95重量%であり、好ましくは70~95重量%である。
 本発明で用いられる芳香族ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、およびジビニルナフタレン等を例示することができる。中でも、入手容易性や、得られるジエン系ゴムの物性の観点から、スチレンが好ましい。
 本発明の高分子量成分であるジエン系ゴム成分1の芳香族ビニル化合物の使用量は10~50重量%であり、好ましくは15~40重量%である。
 本発明の低分子量成分であるジエン系ゴム成分2の芳香族ビニル化合物の使用量は5~35重量%であり、好ましくは5~30重量%である。
 本発明で用いられる有機リチウム化合物としては2~20個の炭素数を有するリチウム化合物である。例えば、エチルリチウム、n-プロピルリチウム、iso-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチル-フェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、4-シクロペンチルリチウム、1,4-ジリチオ-ブテン-2等である。好ましくは工業的な入手性や安定性からn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウムが好ましく、特にn-ブチルリチウム、sec-ブチルリチウムが好ましい。
 本発明で用いられる二級アミン化合物としては、式(6)または式(7)で表される化合物である。
 式中、R11、R12は、1~20の炭素数を有するアルキル基、シクロアルキル基またはアラルキル基であり、R11とR12は、同一もしくは異なっていてもよく、そしてR13は、3~12のメチレン基数を有する二価のアルキレン、ビシクロアルカン、オキシ-またはアミノ-アルキレン基である。
 式(6)のR11、R12には、例えば、メチル、エチル、ブチル、ヘキシル、オクチル、シクロヘキシル、3-フェニル-1-プロピル、イソブチル等があげられる。具体的には、メチルエチルアミン、ジエチルアミン、ジブチルアミン、エチルブチルアミン、ジヘキシルアミン、ジオクチルアミン、ブチルオクチルアミン、オクチルシクロヘキシルアミン、ジイソブチルアミン、ブチル(3-フェニル-1-プロピル)アミン等がある。好ましくは工業的入手性や炭化水素溶剤への溶解性が良いジオクチルアミン、ジヘキシルアミンである。
 式(7)のR13基には、例えば、トリメチレン、テトラメチレン、ヘキサメチレン、オキシジエチレン、N-アルキルアザジエチレンなどが含まれる。具体例として、ピロリジン、ピペリジン、ヘキサメチレンイミンまたはヘプタメチレンイミンなどがあげられる。また、デカヒドロイソキノリン、パーヒドロインドールなどの如き2環状体であってもよい。特に、ピロリジン、ピペリジン、ヘキサメチレンイミンまたはヘプタメチレンイミンが好適である。
 有機リチウム化合物と二級アミン化合物の共存下で予備重合する化合物としては、ブタジエンより加硫速度が速い化合物があげられ、具体的にはイソプレン、1,3-ペンタジエン(ピペリン)、2,3-ジメチル-1,3-ブタジエンである。工業的入手性や加硫速度からイソプレンが好ましい。
 式(1)で表されるシリコン化合物として、具体的には次のような化合物があげられる。
 例えばテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラトルイロキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、エチルトリフェノキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシラン、ジメチルジフェノキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジブトキシシラン、ジエチルジフェノキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン、ビニルトリフェノキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリ(メチルエチルケトオキシム)シラン、メチルトリ(メチルエチルケトオキシム)シラン、メチルトリス(ジエチルケトオキシム)シラン、エチルトリ(メチルエチルケトオキシム)シラン、エチルトリス(ジメチルケトオキシム)シラン、アリルトリフェノキシシラン、オクテニルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン、フェニルトリフェノキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリ(メトキシプロポキシ)シラン、メチルトリス[2-(ジメチルアミノ)エトキシ]シラン、メチルトリス[2-(ジエチルアミノ)エトキシ]シラン、メチルトリス[2-(ジブチルアミノ)エトキシ]シラン、エチルトリス[2-(ジメチルアミノ)エトキシ]シラン、エチルトリス[2-(ジエチルアミノ)エトキシ]シラン、エチルトリス[2-(ジブチルアミノ)エトキシ]シラン、テトラキス[2-(ジメチルアミノ)エトキシ]シラン、テトラキス[2-(ジエチルアミノ)エトキシ]シラン、テトラキス[2-(ジブチルアミノ)エトキシ]シランをあげることができる。これらの中で、好ましいものはケトオキシムシラン類や加水分解が比較的容易なトリメトキシラン類、トリエトキシシラン類、トリプロポキシシラン類、もしくはジエン系ゴムの保存安定性が増加しながらシリカとの反応性を促進すると推定されるアミノエトキシシラン類である。
 式(1)で表されるアミノアルコキシシラン化合物の具体例を以下に示す。ジメチルアミノメチルトリメトキシシラン、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、4-ジメチルアミノブチルトリメトキシシラン、ジメチルアミノメチルジメトキシメチルシラン、2-ジメチルアミノエチルジメトキシメチルシラン、3-ジメチルアミノプロピルジメトキシメチルシラン、4-ジメチルアミノブチルジメトキシメチルシラン、ジメチルアミノメチルトリエトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、4-ジメチルアミノブチルトリエトキシシラン、ジメチルアミノメチルジエトキシメチルシラン、2-ジメチルアミノエチルジエトキシメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、4-ジメチルアミノブチルジエトキシメチルシラン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-アリル-アザ-2,2-ジメトキシシラ-シクロペンタン等があげられるが、特に好ましいのは3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリメトキシシランである。
 式(1)で表されるハロゲン化シリコン化合物として、具体的には次のような化合物があげられる。
 例えば、四塩化ケイ素、メチル三塩化ケイ素、エチル三塩化ケイ素、プロピル三塩化ケイ素、ブチル三塩化ケイ素、オクチル三塩化ケイ素、シクロヘキシル三塩化ケイ素、四臭化ケイ素、メチル三臭化ケイ素、エチル三臭化ケイ素、プロピル三臭化ケイ素、ブチル三臭化ケイ素、オクチル三臭化ケイ素、シクロヘキシル三臭化ケイ素、四ヨウ化ケイ素、エチル三ヨウ化ケイ素、プロピル三ヨウ化ケイ素、ブチル三ヨウ化ケイ素、オクチル三ヨウ化ケイ素、シクロヘキシル三ヨウ化ケイ素をあげることができる。
 これらの中で、好ましいものは四塩化ケイ素、メチル三塩化ケイ素、エチル三塩化ケイ素である。特に好ましいのは四塩化ケイ素、メチル三塩化ケイ素である。
 一般によく知られているシリコン化合物はシリコーンオイルといわれる化合物である。25℃で測定した粘度(mm/s)が0.3~1000のものであれば良く、さらに好ましくは0.6~200のものである。ジメチルシリコーンオイルやメチルフェニルシリコーンオイルといわれているものがこれに属する。ポリエーテル基、エポキシ基およびジアルキルアミノ基を含む変性シリコーンオイルも適している。
 低分子化合物での式(2)で表されるシリコン化合物としては具体的に次のものがあげられるが限定されるものではない。1,1,1,3,3,5,5-ヘプタメチル-5-メトキシトリシロキサン、1,1,1,3,3,5,5-ヘプタメチル-5-エトキシトリシロキサン、1,1,1,3,3,5,5-ヘプタメチル-5フェノキシトリシロキサン、1,1,1,3,3,5-ヘキサメチル-5,5-ジメトキシトリシロキサン、1,1,1,3,3,5-ヘキサメチル-5,5-ジエトキシトリシロキサン、1,1,1,3,3,5-ヘキサメチル-5,5-ジフェノキシトリシロキサン、1,1,1,3,3-ペンタメチル-5,5,5-トリメトキシトリシロキサン、1,1,1,3,3-ペンタメチル-5,5,5-トリエトキシトリシロキサン、1,1,1,3,3-ペンタメチル-5,5,5-トリフェノキシトリシロキサン、1,1,3,3-テトラメチル-1,5,5,5-テトラメトキシトリシロキサン、1,1,3,3-テトラメチル-1,5,5,5-テトラエトキシトリシロキサン、1,1,3,3-テトラメチル-1,5,5,5-テトラフェノキシトリシロキサン、1,3,3-トリメチル-1,1,5,5,5-ペンタメトキシトリシロキサン、1,3,3-トリメチル-1,1,5,5,5-ペンタエトキシトリシロキサン、1,3,3-トリメチル-1,1,5,5,5-ペンタフェノキシトリシロキサン、3,3-ジメチル-1,1,1,5,5,5-ヘキサメトキシトリシロキサン、3,3-ジメチル-1,1,1,5,5,5-ヘキサエトキシトリシロキサン、3,3-ジメチル-1,1,1,5,5,5-ヘキサフェノキシトリシロキサン、1-(3-グリシドキシプロピル)-1,1,3,3-テトラメチル-5,5,5-トリメトキシトリシロキサン、1-(3-グリシドキシプロピル)-1,1,3,3-テトラメチル-5,5,5-トリエトキシトリシロキサン、1-(3-グリシドキシプロピル)-1,1,3,3-テトラメチル-5,5,5-トリフェノキシトリシロキサンなどがあげられる。
 式(2)で表されるシロキサン化合物のうち、RとRが無いものは、環状シロキサン化合物である。環状シロキサン化合物としては、具体的には、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、テトラデカメチルシクロヘプタシロキサン(D7)、ヘキサデカメチルシクロオクタシロキサン(D8)、オクタデカメチルシクロナノシロキサン(D9)、エイコサメチルシクロデカシロキサン(D10)などである。好ましくはD3、D4、D5である。
 式(2)の化合物を使用する場合は単独でも可能であるが、式(1)の化合物を併用すると分岐構造を生成するので好ましい。
 加水分解後に一級アミノ基になる保護基をもつアルコキシシラン系化合物として、例えば、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリプロポキシシラン、N,N-ビス(トリメチルシリル)-2-アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)-2-アミノエチルメチルジメトキシシラン、N,N-ビス( トリメチルシリル)アミノエチルメチルジエトキシシラン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N,N-ジエチル-3-アミノプロピルトリメトキシシラン、N,N-ジエチル-3- アミノプロピルトリエトキシシラン、2-(トリエトキシシリルエチル)ピリジン、γ-イソシアネートプロピルトリエトキシシラン、などをあげることができる。ケチミン類では、例えば容易に加水分解される3-トリエトキシシリル-N-(1,3-ジメチル‐ブチリデン)プロピルアミン、3-トリメトキシシリル-N-(1,3-ジメチル‐ブチリデン)プロピルアミン、3-トリプロポキシシリル-N-(1,3-ジメチル‐ブチリデン)プロピルアミンなどがあげられる。
 本発明のジエン系ゴム成分は溶液重合反応によって製造され、溶液重合ジエン系ゴムを製造する原料の使用量や反応温度や反応時間等の使用条件は次のようである。
 ジエン系ゴムの溶液重合反応は通常実施されている方法が用いられ、共役ジエン化合物もしくは芳香族ビニル化合物を、有機リチウム化合物と、エーテル化合物またはアミン化合物等の極性化合物との存在下に10~120℃の温度で数十分から数時間の条件で重合される。
 有機リチウム化合物の使用量はジエン系ゴム100g当たり通常、0.01~10ミリモルの範囲が良い。0.01ミリモル未満では分子量が高くなりすぎ溶液粘度の上昇やMV粘度が高くなり、ゴムの生産工程やタイヤ製造等の工程で問題が生じる。また、10ミリモルを超えるとジエン系ゴムの分子量が低くなりすぎる。
 重合には、ジエン系ゴムのジエンモノマー部分のミクロ構造、特にビニル含量(ジエン部の1,2-構造または3,4-構造)を調整するためのエーテル化合物として、ジエチルエーテル、ジ-n-ブチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、テトラヒドロフラン(THF)、2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)、ビステトラヒドロフルフリルホルマール、テトラヒドロフルフリルアルコールのメチルエーテル、テトラヒドロフルフリルアルコールのエチルエーテル、テトラヒドロフルフリルアルコールのブチルエーテル、α-メトキシテトラヒドロフラン、ジメトキシベンゼン、ジメトキシエタンなどが使用される。
 アミン化合物として、トリエチルアミン、ピリジン、N,N,N’,N’-テトラメチルエチレンジアミン、ジピペリジノエタン、N,N-ジエチルエタノールアミンのメチルエーテル、N,N-ジエチルエタノールアミンのエチルエーテル、N,N-ジエチルエタノールアミンのブチルエーテルなどの3級アミン化合物が使用される。
 好ましい化合物としては、重合速度や変性効率を考慮するとテトラヒドロフラン(THF)、2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)があげられる。
 これらの化合物の添加量は、複数の窒素原子や酸素原子等を含む場合有機リチウム化合物1モルに対して通常0.01~10モル、好ましくは0.2~5モルである。テトラヒドロフランのような分子内に一つの酸素原子をもつ化合物は溶剤に対して、0.05~10%添加するのが好ましい。
 重合反応は炭化水素溶剤中で行われる。適した炭化水素溶剤としては、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素から選ばれ、特に3~12の炭素数を有するプロパン、n-ブタン、iso-ブタン、n-ペンタン、iso-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、n-ヘプタン、シクロヘプタン、プロペン、1-ブテン、iso-ブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどである。好ましくは、n-ペンタン、iso-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタンである。またこれらの溶剤は2種以上を混合して使用することができる。
 本発明では、主として共役ジエン化合物あるいは共役ジエン化合物と芳香族ビニル化合物とをアニオン重合させ、その活性ジエン系ゴムにシリコン化合物を反応させる。これらの変性反応は、バッチ重合で断熱方式の場合、0~120℃、好ましくは20~100℃、反応時間は1~60分、好ましくは5~40分である。等温方式の場合、30~100℃、好ましくは50~80℃、反応時間は1~250分、好ましくは30~200分である。
 連続重合の場合、30~100℃、好ましくは50~80℃である。
 本発明で用いる重合様式としてはバッチ重合法でも、連続重合法でも可能である。特に反発弾性に特徴をだすには、ジエン系ゴムはバッチ重合法が適しており、特に耐摩耗性や加工性に特徴をだすには、ジエン系ゴムは連続重合法が適している。
 本発明の高分子量成分であるジエン系ゴム成分1はバッチ重合でも連続重合でも可能であるが、連続重合が好ましい。
 本発明の低分子量成分であるジエン系ゴム成分2はバッチ重合でも連続重合でも可能であるが、バッチ重合が適している。
 本発明のジエン系ゴム成分1とジエン系ゴム成分2とは別々の重容器で重合することが簡便であるが、ジエン系ゴム成分1を製造後、所定の極性化合物や共役ジエン化合物、芳香族ビニル化合物、開始剤を追加して、1基の重合器で両成分を製造することも可能である。
 ii)工程とiii)工程で、式(1)で表されるシリコン化合物を添加して、ジエン系ゴムの2分岐構造が40%以下になるよう製造する。シラン化合物の添加量は、ii)工程とiii)工程においては活性ジエン系ゴム1分子当たり、0.7~2倍の分子数に相当する量を添加するのが好ましく、さらに好ましくは0.9~1.5倍である。0.7より少ない場合、活性ジエン系ゴムに導入されるアルコキシシリル基の数が少なくなりシリカとの反応性が低くなる。2倍以上では保存安定性が悪くなる。
 iii)工程において式(2)で表されるシロキサン化合物を使用する場合、残った活性ジエン系ゴム1分子当たり、Si-O結合が等量以上になるように添加するのが好ましく、1~100倍等量であり、さらに好ましくは1~5倍等量である。
 また、この場合、式(1)で表される3官能基以上のシリコン化合物を併用することも好ましい。
 本発明によれば、スチーム凝固・乾燥後の分岐構造は次のような2分岐構造-Aあるいは2分岐構造-A’であり、ゴム保管時には安定で、シリカ配合時にはシリカと反応性が高い構造となっていると推定している。この反応機構は2分岐構造-Aは式(1)で表されるシリコン化合物で変性された(Rubber)-Si-ORが加水分解された(Rubber)-Si-OHが縮合して生成すると推定している。さらに式(2)で表されるシリコン化合物で変性された(Rubber)-Si-(O-Si)n-OLiも中和されると(Rubber)-Si-(O-Si)n-OHとなると推定される。そのため、2分岐構造-A類似の2分岐構造-A’となる。
 従来の2分岐構造-Bではシリカとの反応性が低くなる。
 2分岐構造-A(本発明の構造):(Rubber)-Si-O-Si-(Rubber)
 2分岐構造-A’(本発明の構造):(Rubber)-Si-O-(Si-O)n-Si-(Rubber)
 2分岐構造-B(従来の構造):(Rubber)-Si-(Rubber)
 これらの分岐構造の割合等は製造工程のGPCで求められる。
 本発明では乾燥工程と保存安定性のさらなる向上のため、ii)工程とiii)工程において、式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物と活性ジエン系ゴムとの反応で、2分岐構造-Bの生成ができるだけ少ない条件で反応させる。さらに、v)工程のスチーム凝固・乾燥の前に、式(3)で表されるハロゲン化シリコン化合物、あるいは式(4)で表されるアルカリ金属化合物を添加しても良い。このハロゲン化シリコン化合物もしくはアルカリ金属化合物は式(5)を満たす条件で添加され、溶剤やモノマーに含まれる不純物で失活したり、活性ジエン系ゴムとシリコン化合物との反応で副生するリチウム化合物等や、未反応のSi-Cl結合や副生するHClを中和するためである。
 (Rubber)-Si-OLiは縮合しにくいが、中和すると(Rubber)-Si-OHとなる。これは(Rubber)-Si-O-Si-(Rubber)への縮合反応が容易になり、保存安定性が向上する。
 式(1)と式(2)で表される化合物は、変性反応に使用する化合物によって、酸性の化合物を副生する場合とアルカリ性の化合物を副生する場合があり、中和方法を変える必要がある。その際の調整は式(5)で示される1.5≧[nX1+(4-q)X2]/(L+M2)≧0.9の範囲が好ましい。0.9以下ではアルカリ性が高くなり、縮合反応が難しくなる。好ましくは0.95以上である。
 1.5以上では酸性が強くなり、製造設備の金属腐食が問題となる。好ましくは1.2以下である
 本発明で得られるジエン系ゴムのムーニー粘度(MVと略し、測定条件を表記する場合はML1+4/100℃とする。)は20~150の範囲であることが好ましく、20未満では強力、耐摩耗性、反発弾性が悪化し、一方、150を超えると加工性等が低下する。
 本発明でのジエン系ゴムのジエン部分の1,2-構造もしくは3,4-構造の含量は一般的に20~80%の範囲で変えられる。耐摩耗性を重視する場合のビニル含量は低めにし、濡れた路面でのブレーキ性能を重視する場合のビニル含量は高めにする。
 高分子量成分であるジエン系ゴム成分1の共役ジエン重合体中のジエン部の1,2-構造もしくは3,4-構造が20~70%で、好ましくは25~60%であり、低分子量成分であるジエン系ゴム成分2の共役ジエン重合体中のジエン部の1,2-構造もしくは3,4-構造が40~80%で、好ましくは45~75%である。
 ジエン系ゴム成分1とジエン系ゴム成分2との比率は、ジエン系ゴム成分1の100phrに対して、ジエン系ゴム成分2が10~90phrであり、好ましくは15phr~80phrである。10phr以下では配合MVが高くなり、加工性が悪くなる。また、90phr以上ではゴム組成物の粘着性が大きくなり、取扱いが困難となる。
 本発明のジエン系ゴムを含有した重合反応溶液に伸展油を添加することもできる。伸展油としてはゴム工業において通常使用されるものが使用でき、パラフィン系伸展油、芳香族系伸展油、ナフテン系伸展油などがあげられる。
 伸展油の流動点は、好ましくは-20~50℃、より好ましくは-10~30℃である。この範囲であれば、伸展しやすく、引張特性と低発熱性のバランスに優れたゴム組成物が得られる。伸展油の好適なアロマ炭素含有量(CA%、クルツ分析法)は、好ましくは20%以上、より好ましくは25%以上であり、また、伸展油の好適なパラフィン炭素含有量(CP%)は、好ましくは55%以下、より好ましくは45%である。CA%が小さすぎたり、CP%が大きすぎたりすると、引張特性が不十分となる。伸展油の中の多環芳香族系化合物の含有量は、好ましくは3%未満である。この含有量は、IP346法(英国のThe Institute Petroleumの検査方法)により測定される。
 伸展油の含有量は、ゴム組成物100重量部に対して、好ましくは0~40重量部、より好ましくは5~30重量部である。伸展油の含有量がこの範囲にあると、シリカを配合したゴム組成物の粘度が適度となり、かつ引張特性および低発熱性のバランスに優れる。
 本発明のジエン系ゴムをタイヤ用ゴム組成物として使用する場合は、本発明の効果を本質的に損なわない範囲で、天然ゴム、イソプレンゴム、ブタジエンゴム、乳化重合スチレンブタジエンゴムなどとブレンドし、シリカおよび/もしくはカーボンブラックなどの補強剤および各種配合剤と、ロールミル、バンバリーミキサーによって混練りしたのち、硫黄、加硫促進剤などを添加して、トレッド、サイドウォール、カーカスなどのタイヤ用ゴムとすることができる。またこれらの組成物はベルト、防振ゴムその他の工業用品にも使用することができる。
 本発明のジエン系ゴムを、タイヤ、特にタイヤトレッドに使用する場合に充てんされる補強材としては、シリカ等、表面に水酸基をもつフィラーが最適である。さらに、カーボンブラックを併用して用いることもできる。フィラーの充てん量は、全ゴム成分100phrに対し、好ましくは20~150phr、より好ましくは30~100phrである。
 シリカとしては、例えば、乾式シリカ、湿式シリカ、コロイダルシリカ、沈降シリカなどがあげられる。これらの中でも、含水ケイ酸を主成分とする湿式シリカが特に好ましい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 シリカの一次粒子の粒径は、特に制限されないが、1~200nmであり、より好ましくは3~100nmで、特に好ましくは5~60nmである。シリカの一次粒子の粒径がこの範囲であると、引張特性および低発熱性のバランスに優れる。なお、一次粒子の粒径は、電子顕微鏡や比表面積等で測定できる。
 本発明のゴム組成物に、引張特性および低発熱性をさらに改善する目的でゴム配合時に、シランカップリング剤を配合することが好ましい。シランカップリング剤としては、例えば、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリ-iso-プロポキシシリルプロピル)テトラスルフィド、ビス(3-トリブトキシシリルプロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどのテトラスルフィド類、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリ-iso-プロポキシシリルプロピル)ジスルフィド、ビス(3-トリブトキシシリルプロピル)ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルジスルフィド、γ-トリメトキシシリルプロピルベンゾチアジルジスルフィドなどをあげることができる。
 混練時のスコーチを避けられるので、シランカップリング剤は、一分子中に含有される硫黄が4個以下のものが好ましい。さらに好ましくは硫黄が2個以下のものが好ましい。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~20重量部、特に好ましくは2~10重量部である。
 カーボンブラックとしては、N110、N220、N330、N440、N550などのグレードのものがあげられる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 カーボンブラックの比表面積は、特に制限はないが、窒素吸着比表面積(N2 SA)で、好ましくは5~200m2/g、より好ましくは50~150m2/g、特に好ましくは80~130m2/gである。窒素吸着比表面積がこの範囲であると、より引張特性に優れる。また、カーボンブラックのDBP吸着量も、特に制限はないが、好ましくは5~300ml/100g、より好ましくは50~200ml/100g、特に好ましくは80~160ml/100gである。DBP吸着量がこの範囲であると、より引張特性に優れたゴム配合組成物が得られる。さらに、カーボンブラックとして、特開平5-230290号公報に開示されているセチルトリメチルアンモニウムブロマイドの吸着(CTAB)比表面積が110~170m2/gであり、24,000psiの圧力で4回繰り返し圧縮を加えた後のDBP(24M4DBP)吸油量が110~130ml/100gであるハイストラクチャーカーボンブラックを用いることにより、耐摩耗性を改善できる。
 カーボンブラックの配合量は、ゴム成分100重量部に対して、1~50重量部、好ましくは2~30重量部、特に好ましくは3~20重量部である。
 なお、本発明のゴム配合組成物には、加硫剤を、全ゴム成分100phrに対して、好ましくは0.5~10phr、さらに好ましくは1~6phrの範囲で用いることができる。
 加硫剤としては、代表的には硫黄を、また、その他に硫黄含有化合物、過酸化物などをあげることができる。
 また、加硫剤と併用してスルフェンアミド系、グアニジン系、チウラム系などの加硫促進剤を必要に応じた量用いてもよい。さらに、亜鉛華、加硫助剤、老化防止剤、加工助剤などを必要に応じた量用いてもよい。
 さらに、本発明のジエン系ゴムを使用して得られるゴム配合組成物の各種配合剤は、特に限定されないが、混練り時の加工性改良、あるいはウエットスキッド特性、反発弾性、耐摩耗性のバランスを更に向上させる目的で、他の伸展油や通常のゴム組成物に配合される加硫剤、加硫促進剤、亜鉛華、老化防止剤、スコーチ防止剤、タッキファイァー、他の充てん剤などの各種の配合剤のほか、相溶化剤、例えばエポキシ基含有化合物、カルボン酸化合物、カルボン酸エステル化合物、ケトン化合物、エーテル化合物、アルデヒド化合物、水酸基含有化合物およびアミノ基含有化合物から選択される有機化合物であるか、またはアルコキシシラン化合物、シロキサン化合物およびアミノシラン化合物から選択されるシリコン化合物を混練り時に添加することもできる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。なお、重合体の物性は、下記の方法に従って測定した。
 ピーク分子量(Mp)とピークの面積は次のように計算した。共役ジエン重合体1の重合直後のGPC分析のピークの一番高い点の分子量をピーク分子量として、Mp1とする。シリコン化合物を添加後、2分岐構造、3分岐構造、および4分岐構造等に相当するピークが現れる。変性後のMp1に相当するピークの面積をCMp1とし、2分岐以上のピーク面積をCMp1,2<として計算する。
 スチーム凝固・乾燥後のGPCチャートからも同様に計算すると、末端にシリコン化合物が付加しているゴム分子や、2分岐構造でシリコン化合物付加しているゴム分子は縮合し、CMp1,DはCMp1より小さくなり、CMp1,2<,DはCMp1,2<より大きくなる。CMp1,2<,DがCMp1,2<より大きくなるほど、保存安定性とシリカとの反応性は増加する。
 本発明では、Mp1は400kg/mol以上となる。
 共役ジエン重合体2の重合直後のGPC分析のピークの一番高い点の分子量をピーク分子量として、Mp2とする。シリコン化合物を添加後、2分岐構造、3分岐構造、および4分岐構造等に相当するピークが現れる。変性後のMp2に相当するピークの面積をCMp2とし、2分岐以上のピーク面積をCMp2,2<として計算する。
 スチーム凝固・乾燥後のGPCチャートからも同様に計算すると、末端にシリコン化合物が付加しているゴム分子や、2分岐構造でシリコン化合物付加しているゴム分子は縮合し、CMp1,Dの面積は小さくなり、CMp2,2<,Dの面積は大きくなる。CMp1,2<,DがCMp1,2<より大きくなるほど保存安定性とシリカとの反応性は増加する。
 本発明では、Mp2は60kg/mol未満となる。
 重合体中のスチレン単位含有量は1H‐NMRスペクトルの積分比より算出した。重合体のガラス転移点(T)はパーキンエルマー社製の示差走査熱分析機(DSC)7型装置を用い、-100℃まで冷却した後に10℃/minで昇温する条件で測定した。
 混練り特性、加硫ゴムの物性を下記の方法で測定すると共に、ゴム配合組成物のムーニー粘度を下記のようにして測定した。
 ゴム配合組成物の加硫物作成のための混練りは、JIS K 6299:2001「ゴム-試験用試料の作製方法」に従った。
 加硫剤を含まないゴム組成物の混練条件(A練り)は東洋精機製作所(株)製のラボプラストミルバンバリー形ミキサーを用い、充てん率が約65%(体積比)、ローター回転数が50rpm、混練り開始温度を90℃で実施した。
 A練り後のゴム配合組成物に加硫剤を配合する混練条件(B練り)は(株)ダイハンDaihan Co., Ltd.製8インチロールを用いて、室温で加硫剤を配合した。
 粘弾性試験の温度分散は「TA INSTRUMENTS 製粘弾性測定装置RSA3」を用いて、JIS K 7244-7:2007「プラスチック-動的機械特性の試験方法-第7部:ねじり振動―非共振法」に従って、測定周波数が10Hz、測定温度が-50~80℃、動的ひずみが0.1%、昇温速度が4℃/minで、試験片形状が「幅5mm×長さ40mm×厚さ1mm」のサンプルで測定した。
 tan δ(60℃)が小さい程、反発弾性は大きくなり、低発熱性である。tan δ(0℃)が大きい程、ウエットグリップ性は向上し、良好である。
 (2)引張特性は切断時の強力(T)、モジュラス、破断時延び等をJISK6251:2004に従って測定した。
 耐摩耗性はJISK6264-2:2005「加硫ゴム及び熱可塑性ゴム-耐摩耗性の求め方-第2部:試験方法」に従って、アクロン摩耗試験、B法で、加硫ゴム配合組成物の摩耗量を測定した。コントロールサンプルの耐摩耗性を100として、耐摩耗指数として指数表示した。指数が大きい方が良好である。
 ムーニー粘度はJIS K6300-2001に準じ、100℃にてムーニー粘度[ML1+4/100℃]を測定した。
[ジエン系ゴム成分1-1]
 内容積が10Lのオートクレーブを乾燥窒素で十分に置換し、5500gのシクロヘキサンを入れ、215mg(1.17mmol)の2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)、210g(2.02mol)のスチレン、460g(8.50mol)の1,3-ブタジエンをオートクレーブに入れた。オートクレーブ内の温度を25℃に調整後、重合に有効な74.7mg(1.17mmol)のn-ブチルリチウムをオートクレーブに添加して重合を開始した。重合は断熱的に昇温し、最高温度が78℃に達した。この時点で、30gの1,3-ブタジエンを追加し、さらに5分間重合を行った。ここで、オートクレーブから20mLの重合溶液を十分に窒素置換した容器に分析用として抜き出し、後ほど希釈してGPC分析を行った。引続いて0.324g(1.17mmol)の3-ジエチルアミノプロピルトリエトキシシランをオートクレーブに加え、15分間反応した。このゴムを(ジエン系ゴム成分1-1)とした。ジエン系ゴム中のスチレン含量は30%であり、ビニル含量は44%であった。GPC分析によるMpは560kg/molであった。
 この溶液は後ほど、ジエン系ゴム成分2と混合後、スチーム凝固法で脱溶し、110℃のロールで乾燥した。
[ジエン系ゴム成分2-1]
 内容積が10Lのオートクレーブを乾燥窒素で十分に置換し、5500gのシクロヘキサンを入れ、5.27g(114mmol)の2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)、200g(1.92mol)のスチレン、770g(14.24mol)の1,3-ブタジエンをオートクレーブに入れた。オートクレーブ内の温度を25℃に調整後、1.83g(29mmol)のn-ブチルリチウムをオートクレーブに添加して重合を開始した。重合は断熱的に昇温し、最高温度が88℃に達した。この時点で、30gの1,3-ブタジエンを追加し、さらに5分間重合を行った。ここで、オートクレーブから20mLの重合溶液を十分に窒素置換した容器に分析用として抜き出し、後ほど希釈してGPC分析を行なった。引続いて7.93g(28.6mmol)の3-ジエチルアミノプロピルトリエトキシシランをオートクレーブに加え、15分間反応した。残りの溶液はスチーム凝固法で脱溶し、110℃のロールで乾燥した。このゴムを[ジエン系ゴム成分2-1]とした。ジエン系ゴム中のスチレン含量は21%であった。、ビニル含量は59%であった。GPC分析によるMpは34kg/molであった。
[ジエン系ゴム成分2-2]
 [ジエン系ゴム成分2-1]で使用した2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)を25.6g(553mmol)、n-ブチルリチウムを8.89g(141mmol)、3-ジエチルアミノプロピルトリエトキシシランを38.5g(139mmol)に増量した以外は[ジエン系ゴム成分2-1]と同じ手順で[ジエン系ゴム成分2-2]を製造した。ジエン系ゴム中のスチレン含量は21%であった。、ビニル含量は58%であった。GPC分析によるMpは7kg/molであった。
[ジエン系ゴム成分2-3]
 [ジエン系ゴム成分2-1]で使用した2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)を10.5g(118mmol)に増量した以外は[ジエン系ゴム成分2-1]と同じ手順で[ジエン系ゴム成分2-3]を製造した。ジエン系ゴム中のスチレン含量は20%であった。、ビニル含量は73%であった。GPC分析によるMpは38kg/molであった。
 実施例で試作した[ジエン系ゴム成分1-1]、[ジエン系ゴム成分2-1]、[ジエン系ゴム成分2-2]、[ジエン系ゴム成分2-3]および乳化重合ESBR(市販のJSR#1723をそのまま使用)を、第2表の割合で混合し、スチーム凝固、熱ロールで乾燥後、第1表の加硫物性配合処方に従って配合し、加硫物性を評価した。評価結果は第2表に併記した。
 第2表には配合MVと引張強さ、切断時延び、M300/M100のモジュラス比、アクロン耐摩耗性、動的粘弾性試験結果を示した。指数表示の物性値は比較例2を100として、いずれの項目も数値が大きいほど良好な物性を示す。タイヤ用途でよく使用されている乳化重合SBRである比較例2と比較して、実施例1、実施例2、比較例1とも比較例2に比べるとウエットグリップ性能に対応する動的粘弾性試験のtan δ(0℃)や低燃費性能に対応するtanδ(60℃)は優れている。配合MVは少し高めであるが、モジュラス比はシリカとの補強性が高いほど、大きな値となり、アクロン耐摩耗性と相関関係が高い。
 比較例1と比べると、ジエン系ゴム成分2はMp2が10kg/mol未満では加工性の改良には良いが、加硫物性の改良効果は小さい。
 これらの物性評価結果等から、低燃費性、耐摩耗性、ウエットグリップ性能、および加工性のバランスが優れたゴム組成物であり、ゴム配合組成物である。
[ジエン系ゴム成分1-2]
 内容積が5Lのオートクレーブを乾燥窒素で十分に置換し、2890gのシクロヘキサンを入れ、100mg(0.544mmol)の2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)、110gのスチレン、243gの1,3-ブタジエンをオートクレーブに入れた。オートクレーブ内の温度を40℃に調整後、重合に有効な87.1mg(1.36mmol)のn-ブチルリチウムをオートクレーブに添加して重合を開始した。重合は断熱的に昇温し、最高温度が78℃に達した。この時点で、16gの1,3-ブタジエンを追加し、さらに5分間重合を行った。引続いて377mg(1.36mmol)の3-ジエチルアミノプロピルトリエトキシシランをオートクレーブに加え、15分間反応した。この重合を6回繰り返し、全量を一つのタンクに入れ、均一に撹拌した。このゴムを[ジエン系ゴム成分1-2]とした。ジエン系ゴム中のスチレン含量は30%であり、ビニル含量は47%であった。GPC分析によるMpは568kg/molであった。
 この溶液は後ほど、ジエン系ゴム成分2と混合後、スチーム凝固法で脱溶し、110℃のロールで乾燥した。
[ジエン系ゴム成分2-4]
 内容積が10Lのオートクレーブを乾燥窒素で十分に置換し、5500gのシクロヘキサンを入れ、5.27g(114mmol)の2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)、200g(1.92mol)のスチレン、770g(14.24mol)の1,3-ブタジエンをオートクレーブに入れた。オートクレーブ内の温度を25℃に調整後、1.83g(29mmol)のn-ブチルリチウムをオートクレーブに添加して重合を開始した。重合は断熱的に昇温し、最高温度が83℃に達した。この時点で、30gの1,3-ブタジエンを追加し、さらに5分間重合を行った。引続いて7.93g(28.6mmol)の3-ジエチルアミノプロピルトリエトキシシランをオートクレーブに加え、15分間反応した。この溶液は溶液のまま保管した。このゴムを[ジエン系ゴム成分2-4]とした。ジエン系ゴム中のスチレン含量は21%であった。ビニル含量は69%であった。GPC分析によるMpは38kg/molであった。
[ジエン系ゴム成分2-5]
 [ジエン系ゴム成分2-4]で使用した3-ジエチルアミノプロピルトリエトキシシランを四塩化ケイ素、2.43g(14.3mmol)に替えた以外は[ジエン系ゴム成分2-4]と同じ手順で[ジエン系ゴム成分2-5]を製造した。ジエン系ゴム中のスチレン含量は20%であった。ビニル含量は68%であった。GPC分析によるMpは40.0kg/molであった。
[ジエン系ゴム成分2-6]
 [ジエン系ゴム成分2-4]で使用した3-ジエチルアミノプロピルトリエトキシシランをオクタメチルシクロテトラシロキサン(D4)4.25g(14.4mmol)に替えた以外は[ジエン系ゴム成分2-4]と同じ手順で[ジエン系ゴム成分2-6]を製造した。ジエン系ゴム中のスチレン含量は20%であった。ビニル含量は70%であった。GPC分析によるMpは47kg/molであった。
 実施例で試作した[ジエン系ゴム成分1-2]、[ジエン系ゴム成分2-4]、[ジエン系ゴム成分2-5]、[ジエン系ゴム成分2-6]およびTDAE(芳香族オイル)、乳化重合ESBR(市販のJSR#1723をそのまま使用)を、実施例3~5はジエン系ゴム成分1-2、100phrに対してジエン系ゴム成分2-4~2-6をそれぞれ20phr混合後、スチーム凝固法で脱溶し、110℃のロールで乾燥した。実施例6~8はジエン系ゴム成分1-2に対して、ジエン系ゴム成分2-4~2-6をそれぞれ40phr混合後、スチーム凝固法で脱溶し、110℃のロールで乾燥した。
 GPC分析のチャートからピークの谷に垂線を引き分割した簡易的な方法で、高分子量成分と低分子量成分を分割し、その面積からジエン系ゴム成分1とジエン系ゴム成分2の割合を求め、第4表に示した。
 第3表の加硫物性配合処方に従って配合し、加硫物性を評価した。評価結果は第4表に併記した。
 第4表には配合MVと引張強さ、切断時延び、M300/M100のモジュラス比、アクロン耐摩耗性、動的粘弾性試験結果を示した。指数表示の物性値は比較例4を100として、いずれの項目も数値が大きいほど良好な物性を示す。
 タイヤ用途でよく使用されている乳化重合SBRである比較例4と比較して、実施例3~8で、引張強さは大きくなり、切断時伸びは同等以上である。
 比較例4に対して、実施例3~8のシリカとの反応性を反映すると言われるモジュラス比が大きく、アクロン摩耗、動的粘弾試験はいずれも大きく改良されている。
 ジエン系ゴム成分2の末端変性剤の種類の影響は、ジエン系ゴム成分1、100phrに対して20phrの実施例3~5と、40phrの実施例6~8を比較してもそれぞれの中で特に大きな差はない。
 これらの物性評価結果等から、低燃費性、耐摩耗性、ウエットグリップ性能、および加工性のバランスが優れたゴム組成物であり、ゴム配合組成物である。

Claims (11)

  1.  共役ジエン重合体1を式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で末端変性してなるジエン系ゴム成分1と、共役ジエン重合体2を式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で末端変性してなるジエン系ゴム成分2とを、加水分解工程に供与し、次いで乾燥することによって得られる、ジエン系ゴム組成物であって、
     共役ジエン重合体1は、共役ジエン化合物と芳香族ビニル化合物とが重合してなるものであり、ポリスチレン換算のピーク分子量が400k~2,000kg/molであり、
     共役ジエン重合体2は、共役ジエン化合物と芳香族ビニル化合物とが重合してなるものであり、ポリスチレン換算のピーク分子量が15k~60kg/molであり、
     式中、RおよびRは、それぞれ、独立して、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、X1は、ヨウ素、臭素、または塩素であり、nおよびmは、それぞれ、0、1、2、3または4であり、
     式中、R3~Rは、それぞれ、独立して、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、またRとRが無い環状構造でもよく、pは、1.5および1,000の間の0.5刻みの数である、
    前記ジエン系ゴム組成物。
  2.  ジエン系ゴム成分1中のジエン部の1,2-構造または3,4-構造が20~70%であり、ジエン系ゴム成分1中の芳香族ビニル化合物成分の重量割合が10~50%であり、
     ジエン系ゴム成分2中のジエン部の1,2-構造または3,4-構造が40~80%であり、ジエン系ゴム成分2中の芳香族ビニル化合物成分の重量割合が5~35%である、請求項1に記載のジエン系ゴム組成物。
  3.  ジエン系ゴム成分1とジエン系ゴム成分2との比率が、ジエン系ゴム成分1の100phrに対して、ジエン系ゴム成分2が10~90phrである、請求項1または2に記載のジエン系ゴム組成物。
  4.  請求項2または3に記載のジエン系ゴム組成物を少なくとも20phr以上含む全ゴム成分100phrに対して、少なくとも20~150phrのシリカを含む、ゴム配合組成物。
  5.  請求項2または3に記載のジエン系ゴム組成物を少なくとも20phr以上含む全ゴム成分100phrに対して、少なくとも20~150phrのシリカと5~30phrのカーボンブラックを含む、ゴム配合組成物。
  6.  ジエン系ゴム組成物を製造する方法であって、
     i) 共役ジエン化合物と芳香族ビニル化合物とを炭化水素中、有機リチウム化合物の共存下で重合を開始する;
     ii) i)で重合されたポリスチレン換算のピーク分子量が400k~2,000kg/molである共役ジエン重合体1を、式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で重合直後に末端変性し、ジエン系ゴム成分1を製造する;
     iii) i)で重合されたポリスチレン換算のピーク分子量が15k~60kg/molである共役ジエン重合体2を、式(1)および/または式(2)で表される少なくとも1種類のシリコン化合物で重合直後に末端変性し、ジエン系ゴム成分2を製造する;
     iv) 得られたジエン系ゴム成分1とジエン系ゴム成分2とを、加水分解工程、好ましくはスチーム凝固に供与し、次いで乾燥する;
     式中、RおよびRは、それぞれ、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、Xは、ヨウ素、臭素、または塩素のハロゲン原子であり、nとmは、それぞれ、0、1、2、3、または4であり、
     式中、R3~Rは、それぞれ、独立して、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基、もしくはこれらの基に酸素原子および/または窒素原子を含むアルキル基、芳香族基、またはアリル基であり、またRとRが無い環状構造でもよく、pは、1.5および1,000の間の0.5刻みの数である、
    前記方法。
  7.  ジエン系ゴム成分1単独、またはジエン系ゴム成分1およびジエン系ゴム成分2の両者を、有機リチウム化合物と二級アミン化合物の共存下で重合を開始する、請求項6に記載の方法。
  8.  ジエン系ゴム成分1を重合時に、有機リチウム化合物でイソプレンを予備重合後、イソプレン以外の共役ジエン化合物と芳香族ビニル化合物とを重合する、請求項6または7に記載の方法。
  9.  ジエン系ゴム成分1を重合後、引続いて、共役ジエン化合物、芳香族ビニル化合物、任意にジエン部の1,2-構造または3,4-構造調整剤を追加し、有機リチウム化合物の共存下で重合を再開する、請求項6~8のいずれか一項に記載の方法。
  10.  iii)工程後、iv)工程の前に、式(5)の条件を満たす量の式(3)で表されるハロゲン化シリコン化合物または式(4)で表されるアルカリ金属化合物を添加してから、iv)工程のスチーム凝固・乾燥を行う、請求項6~請求項9のいずれか一項に記載の方法であって、
     式中、M1は、ケイ素原子であり、Rは、1~12の炭素数を有するアルキル基、芳香族基、またはアリル基であり、X2は、ヨウ素、臭素、または塩素のハロゲン原子であり、qは、0または1であり、
     式中、Mは、アルカリ金属原子であり、好ましくは、リチウム原子、ナトリウム原子、またはカリウム原子であり、R10は、1~12の炭素数を有するアルキル基、芳香族基、アリル基、またはアシル基であり、
     式中、Lは、重合開始に添加した有機リチウム化合物のモル数であり、Mは、式(4)で表されるアルカリ金属化合物のモル数であり、Xは、式(1)で表されるシリコン化合物のモル数であり、Xは、式(3)で表されるハロゲン化シリコン化合物のモル数であり、nは、式(1)で表されるシリコン化合物中のnと同じであり、qは、式(3)で表されるハロゲン化シリコン化合物中のqと同じである、
    前記方法。
  11.  ジエン系ゴム成分1とジエン系ゴム成分2との比率が、ジエン系ゴム成分1の100phrに対して、ジエン系ゴム成分2が10~90phrである、請求項6~10のいずれか一項に記載の方法。
PCT/JP2023/013302 2022-03-31 2023-03-30 ジエン系ゴム組成物およびその製造方法 WO2023190934A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061322 2022-03-31
JP2022061322 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190934A1 true WO2023190934A1 (ja) 2023-10-05

Family

ID=88202260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013302 WO2023190934A1 (ja) 2022-03-31 2023-03-30 ジエン系ゴム組成物およびその製造方法

Country Status (2)

Country Link
TW (1) TW202402923A (ja)
WO (1) WO2023190934A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046963A1 (ja) * 2015-09-18 2017-03-23 有限会社Etic シリカ配合用変性溶液重合ジエン系ゴムの製造法およびそのゴム組成物
WO2020085416A1 (ja) * 2018-10-25 2020-04-30 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046963A1 (ja) * 2015-09-18 2017-03-23 有限会社Etic シリカ配合用変性溶液重合ジエン系ゴムの製造法およびそのゴム組成物
WO2020085416A1 (ja) * 2018-10-25 2020-04-30 Jsr株式会社 重合体組成物、架橋重合体、及びタイヤ

Also Published As

Publication number Publication date
TW202402923A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP4159993B2 (ja) 変性重合体の製造方法、その方法で得られた変性重合体及びゴム組成物
JP3895446B2 (ja) 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
KR101417165B1 (ko) 변성 공액 디엔계 중합체의 제조 방법, 그 방법에 의해 얻어진 변성 공액 디엔계 중합체, 고무 조성물 및 타이어
KR101497718B1 (ko) 변성 중합체의 제조 방법, 그 방법에 의해 얻어진 변성 중합체와 그의 고무 조성물
JP3592457B2 (ja) タイアトレッドとして有用なエラストマー状組成物
JP5656366B2 (ja) 変性重合体を含有するゴム組成物を使用したタイヤ
EP2123687B1 (en) Conjugated diolefin copolymer rubber, method for producing the same, rubber composition and tire
WO2009113499A1 (ja) タイヤベースゴム用ゴム組成物、及び該ゴム組成物を用いてなる空気入りタイヤ
WO2009133888A1 (ja) 変性共役ジエン系共重合体の製造方法、その方法により得られた変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2005087814A1 (ja) 共役ジオレフィン(共)重合ゴムおよびその製造方法
KR20140107198A (ko) 변성 공액 디엔계 중합체 및 그의 제조 방법
WO2007081026A1 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP5424540B2 (ja) ゴム組成物及びタイヤ
JP4801827B2 (ja) 重合体、その製造方法、及びそれを用いたゴム組成物
JP5086883B2 (ja) 変性重合体の製造方法、変性重合体及びその変性重合体を用いたゴム組成物
CN108026205B (zh) 二氧化硅混合用改性溶液聚合二烯类橡胶的制造方法及其橡胶组合物
JP2009126360A (ja) 重荷重用タイヤ
WO2023190934A1 (ja) ジエン系ゴム組成物およびその製造方法
JP7422674B2 (ja) ゴム組成物、トレッドゴムおよびタイヤ
JP6342752B2 (ja) シリカ配合用変性溶液重合ジエン系ゴムの製造法およびそのゴム組成物
WO2021124637A1 (ja) タイヤ
JP5171017B2 (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP2009280808A (ja) タイヤ用ゴム組成物及びタイヤ
TWI663177B (zh) 二氧化矽調配用改質溶液聚合二烯系橡膠的製造方法及其橡膠組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780942

Country of ref document: EP

Kind code of ref document: A1