WO2023190764A1 - 混練状態の評価方法、混練機、および混練調整方法 - Google Patents

混練状態の評価方法、混練機、および混練調整方法 Download PDF

Info

Publication number
WO2023190764A1
WO2023190764A1 PCT/JP2023/012990 JP2023012990W WO2023190764A1 WO 2023190764 A1 WO2023190764 A1 WO 2023190764A1 JP 2023012990 W JP2023012990 W JP 2023012990W WO 2023190764 A1 WO2023190764 A1 WO 2023190764A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
teeth
electric motor
rotor
pair
Prior art date
Application number
PCT/JP2023/012990
Other languages
English (en)
French (fr)
Inventor
龍生 矢田
Original Assignee
鈴鹿エンヂニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022057747A external-priority patent/JP7154664B1/ja
Priority claimed from JP2022188782A external-priority patent/JP7299655B1/ja
Application filed by 鈴鹿エンヂニヤリング株式会社 filed Critical 鈴鹿エンヂニヤリング株式会社
Priority to EP23780772.2A priority Critical patent/EP4338913A1/en
Priority to CN202380012389.9A priority patent/CN117529362A/zh
Publication of WO2023190764A1 publication Critical patent/WO2023190764A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • B01F27/721Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle
    • B01F27/722Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle the helices closely surrounded by a casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2115Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/212Measuring of the driving system data, e.g. torque, speed or power data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/20Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control

Definitions

  • the present invention relates to a method for evaluating the state of kneading when kneading materials such as rubber, plastics, and ceramics using a kneader, a kneader, and a method for adjusting kneading.
  • a closed kneader is known as a device for kneading various kneaded materials (see, for example, Patent Document 1).
  • this closed type kneader after the kneaded material is put into the kneading tank, the two kneading rotors rotate to knead the kneaded material.
  • kneading rotors for closed-type kneading machines there are known two types of rotors: an intermeshing rotor in which two kneading rotors rotate in mesh with each other, and a tangential (non-intermeshing) rotor.
  • FIG. 19 is a schematic plan view of the kneader.
  • the closed kneading machine 31 is capable of rotating a kneading tank 32, two kneading rotors 33A and 33B arranged in parallel in the kneading tank 32, and rotor shafts 35A and 35B of the kneading rotors 33A and 33B. It has bearings 36A, 36B supported by the bearings 36A, 36B, and a pair of gears 37A, 37B. Spiral blades 34a and 34b are formed on the outer peripheries of the kneading rotors 33A and 33B, respectively.
  • one rotor shaft for example, 35A
  • a driving means such as a motor
  • the other rotor shaft for example, 35B
  • They are connected via a pair of gears 37A and 37B.
  • the kneading rotors 33A and 33B are rotated by rotationally driving the rotor shaft 35A by the driving means, and the kneading material is kneaded.
  • the kneading rotor 33A connected to the driving means corresponds to the driving rotor
  • the kneading rotor 33B corresponds to the driven rotor.
  • a speed difference of about 15% to 25% is generally created between the driving rotor and the driven rotor by making the gear ratios of a pair of gears different.
  • gear ratios of a pair of gears There are many cases. It is said that by rotating these kneading rotors at different speeds, the phases of the drive rotor and driven rotor change, and kneading is performed evenly.
  • the gear ratio of the pair of gears is set to 1:1 due to the characteristics of the kneading rotor.
  • the phase between the kneading rotors is strictly controlled in order to avoid contact between the pair of kneading rotors and to keep the processing speed (shearing speed) acting on the kneaded material constant.
  • the completion of kneading is carried out using (1) kneading time, (2) temperature of kneaded materials, (3) power consumption, and combinations thereof as indicators. .
  • the temperature of the kneaded material increases as kneading progresses.
  • the temperature of the kneaded material is used as an index, for example, it is determined that the kneading is finished when the temperature reaches a predetermined temperature.
  • the above-mentioned indexes conventionally used mainly indicate the amount of energy input during kneading, and it is difficult to grasp changes in the physical properties of the kneaded material during kneading.
  • a system comprising: an acquisition unit that acquires waveform data indicating the waveform data; and a determination unit that determines the state of the object to be stirred based on a change caused by a component in a specific direction of the force applied to the drive device, which is obtained from the waveform data. has been proposed (see Patent Document 2).
  • the current supplied to the drive device is an alternating current having a reference frequency
  • the technique uses waveform data of the alternating current, that is, an instantaneous value of the alternating current.
  • the instantaneous value waveform of the alternating current which is a sine wave
  • the state of the object to be stirred is determined by focusing on the output reference frequency component and other components.
  • a pair of kneading rotors are generally rotated at different speeds in order to uniformly knead by changing the phase.
  • the present invention has been made in view of the above circumstances, and provides a method for evaluating a kneading state in a closed kneading machine with a tangential rotor, by which changes in the physical properties of a kneaded material can be ascertained, and a kneading machine.
  • Another object of the present invention is to provide a kneading adjustment method that can obtain desired kneading characteristics.
  • the method for evaluating the kneading state of the present invention is a method for evaluating the kneading state in a kneading machine including a pair of tangential rotors connected by a pair of gears and rotated at different speeds by the drive of an electric motor.
  • the kneading machine has different integer numbers of teeth that are not prime, and the above evaluation method performs spectrum analysis based on kneading parameters detected during kneading by a sensor installed in the kneading machine, and evaluates changes in predetermined frequency components.
  • the kneading parameters include the temperature of the material to be kneaded, the effective value of the alternating current supplied to the electric motor, the direct current value supplied to the electric motor, the electric power consumed by the electric motor, and the load factor of the electric motor. , the output torque of the electric motor, the sound generated from the kneading machine, and the vibration generated from the kneading machine.
  • the above evaluation method includes not only a mode in which the accumulated kneading parameters are analyzed and evaluated later, but also a mode in which the kneading parameters are monitored in real time.
  • the number of teeth of the pair of gears is m and n (m ⁇ n), the greatest common divisor k larger than 1 exists between m and n, and the rotor is connected to a gear with the number of teeth m.
  • the rotation speed is r (unit: min -1 )
  • the above-mentioned evaluation method is a method of processing the above-mentioned kneading parameters and performing spectral analysis, and this method is characterized by performing spectral analysis of the deviation between the moving average value and the current value of the above-mentioned kneading parameters.
  • the kneading machine is characterized in that it is a kneading machine that kneads a non-Newtonian fluid.
  • non-Newtonian fluids include rubbers, plastics, ceramics, silicones, chewing gum compositions, and the like.
  • the kneading machine of the present invention is a kneading machine equipped with a pair of tangential rotors connected by a pair of gears and rotated at different speeds by driving an electric motor, and the gears have different integer numbers of teeth that are not mutually prime.
  • the kneading machine has an analysis section that performs spectrum analysis based on kneading parameters detected during kneading by a sensor provided in the kneading machine, and the kneading machine the effective value of the alternating current supplied to the motor, the value of the direct current supplied to the motor, the value of the power consumed by the motor, the load factor of the motor, the output torque of the motor, the sound generated from the kneading machine, and the It is characterized by at least one selected from vibrations generated from a kneader.
  • the kneading machine is characterized in that it has a determination unit that determines the timing at which kneading by the kneading machine ends based on a change in a predetermined frequency component obtained by the analysis unit.
  • the kneading adjustment method of the present invention is a kneading adjustment method in a kneading machine equipped with a pair of tangential rotors connected by a pair of gears and rotating at different speeds, the kneading adjustment method comprising: adjusting the number of teeth of the gear; Set the number of teeth to a combination of different integer numbers that are not mutually prime from among a plurality of combinations of the number of teeth, and then select a specific meshing pattern from among the plurality of meshing patterns of the gear, and This is a method of setting the initial phase of the tangential rotor by meshing the gears in a meshing pattern, and the specific meshing pattern is derived from the state in which the gears are meshed in the plurality of meshing patterns. It is characterized in that the selection is made based on the rotational phase pattern of the tangential rotor.
  • each rotor is provided with a plurality of blades.
  • the specific meshing pattern is selected based on the closest distance between the blades of the tangential rotor determined from the rotational phase pattern.
  • the above gear is characterized in that the number of teeth of the gear with more teeth is 10% to 50% greater than the number of teeth of the other gear.
  • the kneading state evaluation method of the present invention is an evaluation method for a kneader equipped with a pair of gears having different integer numbers of teeth that are not mutually prime.
  • the frequency at which the pair of rotors are in the same phase increases, and in this configuration, the number of teeth of the pair of gears (for example, the temperature of the kneaded material, the number of teeth supplied to the electric motor) increases.
  • Spectral analysis allows a characteristic spectrum of a predetermined frequency component to be detected well, and by evaluating changes in the spectrum, it is possible to understand changes in physical properties of the kneaded material.
  • the kneading adjustment method of the present invention sets the number of teeth of the gear to a combination of different integer numbers that are not mutually prime among a plurality of combinations of the number of teeth, and then There is a method of setting the initial phase of a tangential rotor by selecting a specific meshing pattern from among them and meshing the gears with the specific meshing pattern. (step) and (2) selecting a specific meshing pattern based on the rotational phase pattern of the tangential rotor from among the multiple options of meshing patterns generated thereby (step). It is characterized by Thereby, the shape of the kneading space in the kneader can be changed without changing the shape of the tangential rotor.
  • kneading can be performed taking into consideration a specific phase during rotation (for example, the phase in which the blades of a tangential rotor are closest to each other), and desired kneading characteristics can be obtained.
  • a specific meshing pattern is selected based on the closest distance between the blades of the tangential rotor, which is determined from the rotational phase pattern. This can be avoided and the desired kneading characteristics can be easily obtained.
  • FIG. 1 is an explanatory diagram showing the overall schematic configuration of a kneading machine according to the present invention.
  • FIG. 2 is a diagram for explaining driving of a kneading rotor of the kneading machine of FIG. 1.
  • FIG. It is a figure showing an example of the number of teeth of a pair of gears. It is a graph showing the temporal variation of each parameter in a test example.
  • FIG. 5 is a diagram showing a result of performing FFT on the power values in FIG. 4.
  • FIG. FIG. 5 is a diagram showing a result of FFT performed after processing the power values in FIG. 4; 5 is a diagram showing the results of FFT of the temperature in FIG. 4.
  • FIG. 5 is a diagram showing the results of FFT after processing the temperature in FIG. 4.
  • FIG. 3 is a flowchart for explaining processing executed by a control unit.
  • 1 is a schematic cross-sectional view of a kneading tank of an example of a kneader used in the kneading adjustment method of the present invention.
  • 11 is a diagram for explaining driving of the kneading rotor of the kneading machine of FIG. 10.
  • FIG. It is a figure showing an example of the gear in a kneading machine. It is a schematic diagram showing the dimensional relationship of a pair of gears.
  • FIG. 1 is a schematic cross-sectional view of a kneading tank of an example of a kneader used in the kneading adjustment method of the present invention.
  • 11 is a diagram for explaining driving of the kneading rotor of the
  • FIG. 3 is a schematic diagram showing the meshing state of a pair of gears in a matrix form. It is a process schematic diagram showing an example of the kneading adjustment method of the present invention. It is a figure which shows the rotational phase pattern in arbitrary meshing patterns. It is a figure which shows the rotational phase pattern in arbitrary meshing patterns. FIG. 3 is a diagram showing the initial phase of the kneading rotor corresponding to the meshing pattern. It is a figure for explaining the drive of the kneading rotor of the conventional kneading machine.
  • the kneader used in the kneading state evaluation method of the present invention is a closed kneader for kneading non-Newtonian fluids including rubber, plastic, etc.
  • FIG. 1 is an explanatory diagram showing the overall schematic configuration of a kneading machine according to the present invention, mainly showing a cross-sectional schematic diagram of a kneading tank located at the lower end of the kneading machine.
  • the closed kneading machine 1 mainly includes a kneading mechanism including a kneading tank 2 and an electric motor 8 (see FIG. 2), and a pressurizing lid 9a that pressurizes the kneaded material put into the kneading tank. and a control unit 12 that controls kneading of kneaded materials.
  • the evaluation method and kneading machine of the present invention are particularly characterized in that predetermined kneading parameters are subjected to spectrum analysis.
  • periodicity is discovered by spectral analysis of predetermined kneading parameters that do not appear to be periodic at first glance, and by observing predetermined frequency components (for example, frequency components of the rotor's mechanical rotation period or synchronous period). It is used to understand changes in physical properties of kneaded materials.
  • the kneading tank 2 has an inner peripheral surface shape in which two approximately C-shaped partial circumferential surfaces are arranged facing each other, and there are two rotor chambers 2A and 2B that are adjacent to each other and communicate with each other. be.
  • a ridged wall portion 2C that rises in a mountain shape is formed.
  • Both ends of each of the rotor chambers 2A, 2B in the axial direction are closed by tank end walls (not shown). Note that the cross-sectional shapes of the rotor chambers 2A and 2B are constant in the axial direction.
  • the closed kneader 1 has a temperature sensor 10 that detects the temperature inside the kneading tank during kneading.
  • the temperature sensor 10 is arranged so that a detection end 10a protrudes from the upper surface of the ridge wall 2C, and is capable of detecting the temperature of the kneaded material that comes into contact with the detection end 10a.
  • a well-known temperature sensor is used as the temperature sensor 10, such as a thermocouple temperature detector that measures temperature by accommodating a thermocouple element in a protection tube.
  • thermocouple temperature detector for example, there is a grounded type in which the tip of the thermocouple element is welded to the tip of the protection tube and the temperature of the kneaded material is sensed on the outer surface of the protection tube, and a thermocouple element is connected to the protection tube.
  • a non-grounded type can be used that senses the temperature of the protective tube by contacting the inner wall of the tip.
  • the temperature sensor provided in the closed kneader 1 may be any sensor that detects the temperature of the kneaded material during kneading, and is not limited to the sensor configuration and arrangement shown in FIG. 1. The temperature change of the kneaded material detected by the temperature sensor will be described later.
  • kneading rotors 3A and 3B for kneading the kneading material are rotatably arranged with a space between them and the inner peripheral surfaces of the rotor chambers 2A and 2B, respectively. It is set up.
  • the kneading rotors 3A and 3B each include two blades 4a and 4b.
  • the blades 4a and 4b have a cross-sectional shape that is chevron-shaped from the starting end side toward the terminal end side, and has a land portion at the top thereof. This land portion rotates while maintaining a predetermined distance from the inner circumferential surface.
  • the kneading rotors 3A, 3B rotate, the shape of the kneading space in the rotor chambers 2A, 2B changes.
  • the kneading rotors 3A, 3B have mutually different rotational directions, and are configured such that the blades rotate downward on the side where both the rotor chambers 2A, 2B communicate with each other.
  • an opening is provided above the kneading tank 2 for introducing the kneading material.
  • the pressure lid 9a can be moved up and down by a cylinder device or the like, and the kneaded material is introduced from the opening with the pressure lid 9a raised. Thereafter, the pressure lid 9a is lowered by the rod 9b, and the two kneading rotors 3A and 3B are rotated while pressurizing the kneaded material.
  • the material to be kneaded is kneaded by the spiral blades 4a and 4b by flowing in complicated directions including not only the rotational direction of the rotor but also the axial direction.
  • the kneading machine according to the present invention is not limited to the configuration shown in FIG.
  • the closed kneading machine 1 shown in FIG. 1 is of a type in which the kneading tank 2 is inverted after kneading and the kneaded material is taken out from the opening. It may be a format.
  • FIG. 2 shows a schematic plan view of the closed kneader.
  • the closed kneader 1 includes the above-mentioned kneading tank 2, kneading rotors 3A and 3B, bearings 6A and 6B that rotatably support rotor shafts 5A and 5B, a pair of gears 7A, 7B.
  • Spiral blades 4a and 4b are formed on the outer periphery of the kneading rotors 3A and 3B.
  • the blades 4a and 4b have respective starting ends at positions on both axial end sides of the kneading rotor 3A where the phases in the circumferential direction differ from each other by 180°, and from this starting end, the blades 4a and 4b are connected to the kneading rotor 3A.
  • the outer peripheral surface extends in a spiral direction.
  • the configuration of the blades in the kneading rotor is not limited to this. In FIG. 2, the lengths of the blades 4a and 4b in the helical direction are different from each other, with the blade 4a being a long blade and the blade 4b being a short blade.
  • the number of blades is not limited to two, and a configuration with a plurality of blades, such as three, four, six, etc., can be adopted. In that case, for example, the position (circumferential phase) of the starting ends between the blades is appropriately set according to the number of blades.
  • the rotor shafts 5A and 5B of the two kneading rotors 3A and 3B are arranged in parallel.
  • the rotor shaft 5A is connected to an output shaft 5A' of the electric motor 8 via a coupling 16.
  • the coupling 16 may be omitted and the rotor shafts 5A and 5A' may be constructed as one piece.
  • the rotor shaft 5B is connected to the rotor shaft 5A via a pair of gears 7A and 7B.
  • the electric motor 8 has a circuit section 8a and a motor section 8b.
  • the circuit section 8a generates electric power based on the control signal, and supplies the generated electric power to the motor section 8b.
  • the electric motor 8 has a power sensor 11 that detects the power supplied to the motor section 8b.
  • the electric motor may be an AC motor driven by an AC power supply or a DC motor driven by a DC power supply.
  • the electric motor 8 may be equipped with a speed reducer, and may be configured to reduce the speed of the rotational force generated from the drive source and output it.
  • the pair of gears 7A and 7B are not limited to gears provided outside the electric motor 8 as shown in FIG. 2, but may be gears built into the electric motor 8 or the speed reducer.
  • the structure of the gear is not limited to a spur gear, but may be a helical gear or the like.
  • each kneading rotor may be connected to each gear via a coupling.
  • the rotor shafts 5A and 5B rotate, thereby rotating the kneading rotors 3A and 3B, and kneading is performed.
  • the pair of gears 7A and 7B have a combination of different integer numbers of teeth that are not mutually prime, and the pair of kneading rotors 3A and 3B are configured to rotate at different speeds. ing.
  • the kneading rotor 3A corresponds to a driving rotor
  • the kneading rotor 3B corresponds to a driven rotor.
  • the number of teeth of a pair of gears is not particularly limited as long as it is a different integer that is not mutually prime, but the number of teeth of the gear with more teeth is 10% of the number of teeth of the other gear. It is preferable to increase the amount by ⁇ 50%. Additionally, the number of teeth of the pair of gears should be such that the high-speed rotor and low-speed rotor (driven rotor) return to the same phase within 10 rotations of the high-speed rotor (drive rotor). preferable.
  • FIG. 3 shows a pair of gears in which the driving gear has 25 teeth and the driven gear has 30 teeth.
  • the drive rotor connected to the drive gear rotates six times, so that the drive rotor and the driven rotor return to the same phase.
  • FIG. 3 shows a pair of rotor shafts viewed from the gear side, and shows a state in which the pair of gears are engaged.
  • the positions of the troughs of the driven gear with which the teeth of the driving gear mesh are indicated by circled numbers.
  • control unit 12 is mainly composed of a microcomputer consisting of a well-known CPU, ROM, RAM, etc.
  • Each sensor 10 and 11 provided in the closed kneading machine 1 and detecting kneading parameters is connected to a control section 12.
  • kneading kneading parameters are input to the control unit 12 at predetermined intervals (for example, every 0.1 to 1.0 seconds), and are continuously detected and stored.
  • the control unit 12 also has various calculation functions.
  • the kneading parameter indicates the kneading state of the kneaded material during kneading, and is a parameter that does not appear to be periodic at first glance. Specifically, the temperature of the kneaded materials, the effective value of the alternating current supplied to the motor, the value of direct current supplied to the motor, the value of power consumed by the motor, the load factor of the motor, the output torque of the motor, and the value from the kneading machine. At least one of the sound generated and the vibration generated from the kneader can be used.
  • the temperature of the kneaded material is detected by a temperature sensor 10 as shown in FIG. 1, and the detection signal is input to the control unit 12.
  • the effective value of the AC current supplied to the electric motor is calculated based on the detection signal of the current sensor.
  • the effective value of the alternating current can be calculated by dividing the maximum instantaneous value by ⁇ 2.
  • the electric motor is a DC motor
  • the value of DC current supplied to the electric motor is detected based on a detection signal of a current sensor.
  • the power value consumed by the electric motor is detected by a power sensor 11 provided in the electric motor 8 as shown in FIG. 2, for example, and the detection signal is input to the control section.
  • the electric power consumed by the electric motor is active power P, which is expressed by the following equation (1).
  • Effective power P V ⁇ I ⁇ cos ⁇ ...(1)
  • the effective value of the voltage applied to the motor is V
  • the effective value of the alternating current supplied to the motor is I
  • the phase difference between the voltage and current is ⁇
  • the power factor is cos ⁇ .
  • the power value consumed by the electric motor is represented by the product of the voltage V applied to the electric motor and the DC current value I supplied to the electric motor.
  • the load factor of the electric motor is expressed, for example, by the following equation (2) based on the power value consumed by the electric motor described above and the rated value of the electric motor.
  • Load factor (%) [Electric power consumed by the motor (W) / Rated value of the motor (W)] x 100
  • the output torque of the electric motor is detected, for example, by a torque sensor provided in the electric motor.
  • the output torque is calculated based on, for example, the electric power consumed by the electric motor and the rotational speed or angular velocity of the electric motor.
  • Sound generated from the kneading machine is detected by an acoustic sensor provided in the kneading machine (for example, near the kneading tank).
  • Vibrations generated from the kneading machine are detected by a vibration sensor provided in the kneading machine (for example, near the kneading tank).
  • Well-known sensors can be used as each sensor for acquiring the kneading parameters described above.
  • FIG. 1 shows a configuration in which the temperature of the kneaded material and the power value consumed by the electric motor are acquired as kneading parameters, the present invention is not limited to this.
  • control unit 12 includes an analysis unit 13 that performs spectrum analysis based on input kneading parameters, and is configured to be able to evaluate changes in predetermined frequency components based on the analysis results. .
  • the control unit 12 also includes a determination unit 14 that determines the end timing of kneading in the kneader based on the analysis result of the analysis unit 13, and a determination unit 14 that determines the end timing of kneading when the determination unit 14 determines that it is the end timing of kneading. It has a notification section 15 that notifies the user.
  • the analysis unit 13 may perform spectral analysis of the kneading parameters directly, or may perform spectral analysis of calculated values calculated by processing the kneading parameters (for example, the deviation between the moving average value and the current value of the kneading parameters). good. Processing in each part of the control section 12 is executed during kneading. The processing in the analysis unit 13 will be explained below using graphs.
  • a tangential closed-type kneader (see Fig. 3) having a pair of gears in which the number of teeth m of the driving gear is 25 and the number n of teeth of the driven gear is 30 is used. It shows the temporal fluctuations of various parameters when kneading materials.
  • the temperature in the figure indicates the temperature of the kneaded material detected by the temperature sensor
  • the power in the figure indicates the power value consumed by the motor detected by the power sensor (specifically, the active power of the AC motor).
  • the rotational speed in the figure indicates the rotational speed of the drive rotor
  • the pressure in the figure indicates the pressure load due to the weight pressure of the pressurizing lid that suppresses the lifting of the kneaded material from above the kneading tank.
  • various parameters are detected every 0.5 seconds by various sensors.
  • kneading was controlled by a conventional method, and the kneading end temperature was set at 120°C.
  • driving power is supplied to the motor section of the electric motor, and the driving rotor rotates.
  • the temperature of the kneaded material reached 120°C after the kneading time was about 260 seconds, and it was determined that it was time to end the kneading, and the electric motor was stopped (that is, the supply of driving power was stopped). ing.
  • a detected value (temperature, etc.) detected by a sensor is used as an indicator of the end timing of kneading.
  • these indicators appear to be continuous, and it is difficult to understand changes in the physical properties of the kneaded material during kneading.
  • periodicity is found by spectrum analysis of kneading parameters, and changes in physical properties of the kneaded material during kneading are understood, for example, by evaluating changes in predetermined frequency components.
  • 5 to 8 which will be described later, show the results of spectrum analysis in the analysis section 13 using the kneading parameters (power value, temperature) shown in FIG.
  • FIG. 5 shows the results of direct Fast Fourier Transform (FFT) of the power consumed by the motor as spectrum analysis.
  • FIG. 5(a) is a diagram in which only the power values are extracted from the graph of FIG. 4. Note that the same figure also shows a moving average (MA) of the power values for 8.18 seconds. This moving average line is determined based on the rotation speed r of the drive rotor.
  • FIGS. 5(b) to 5(d) The results of fast Fourier transformation of the power values in arbitrary time periods in FIG. 5(a) are shown in FIGS. 5(b) to 5(d).
  • spectrum B was also detected around 0.244 Hz, which is twice 0.122 Hz.
  • FIG. 6 shows the results of fast Fourier transformation after processing the electric power consumed by the motor as spectrum analysis.
  • FIGS. 6(b) to 6(d) The results are shown in FIGS. 6(b) to 6(d). Note that FIG. 6(a) is the same diagram as FIG. 5(a).
  • FIG. 7 shows the results of direct fast Fourier transformation of the temperature of the kneaded materials as spectrum analysis.
  • FIG. 7(a) is a diagram in which only temperature is extracted from the graph of FIG. Note that the same figure also shows a moving average (MA) of temperature over a period of 8.18 seconds. This moving average line is determined based on the rotation speed r of the drive rotor.
  • FIGS. 7(b) to 7(d) The results of fast Fourier transform of the temperature in an arbitrary time period in FIG. 7(a) are shown in FIGS. 7(b) to 7(d).
  • the temperature and power values which are kneading parameters, change in a trend with a much larger time span and amount of change than the fluctuations, with small up and down fluctuations, and it is difficult to find periodicity. is difficult.
  • periodicity can be found by spectral analysis of temperature and power values directly or by processing them.
  • the evaluation method and kneading machine of the present invention make it possible to accurately determine the end timing of kneading depending on the kneading state. As a result, it is thought that, compared to conventional methods, excessive kneading can be prevented, energy saving is excellent, and variations in kneading characteristics from batch to batch can be reduced.
  • Figures 5 to 8 show the results of spectral analysis of the electric power consumed by the motor and the temperature of the kneaded material as kneading parameters, it is also possible to understand changes in the physical properties of the kneaded material using other kneading parameters as well. I can do it.
  • the effective value of the AC current supplied to the motor, the DC current value supplied to the motor, the load factor of the motor, and the output torque of the motor are parameters closely related to the power consumed by the motor, and the spectrum The analysis yields similar results.
  • a predetermined frequency component for example, spectrum A in FIGS.
  • a threshold value for the rate of change in intensity is set, and when the rate of change in intensity of the spectrum falls below the threshold (that is, when the change in intensity of the spectrum slows down), it is determined that it is time to end kneading. Good too.
  • the notification unit 15 has a function of notifying the end of kneading.
  • the notification means is not particularly limited, and one or a combination of the following methods may be employed, such as displaying the end on a monitor to the worker, notifying the worker with sound or voice, notifying the outside via communication, and notifying the outside with a lamp display. can.
  • FIG. 9 is a flowchart showing the processing procedure during kneading performed by the control unit. The process from the start to the end in FIG. 9 is repeatedly executed at predetermined time intervals.
  • the control unit inputs kneading parameters acquired by various sensors (step S11).
  • the kneading parameters include the electric power consumed by the electric motor as described above, the temperature of the kneaded material, and the like.
  • the analysis section performs spectrum analysis based on the kneading parameters.
  • the kneading parameters may be processed to calculate a calculated value, and the calculated value may be used for spectrum analysis.
  • the method of spectrum analysis is not particularly limited, for example, fast Fourier transform can be used.
  • step S13 the determination unit determines the end timing of kneading.
  • the end timing is determined using, for example, a predetermined threshold and a spectrum of a predetermined frequency component detected by spectrum analysis.
  • step S13 if it is determined that it is not the end timing (step S13: No), the process ends directly. On the other hand, if it is determined that it is the end timing (step S13: Yes), the supply of drive power to the motor section is stopped, and the notification section notifies the operator of the end of kneading (step S14).
  • the evaluation method of the present invention and the specific configuration of the kneading machine are not limited to the configuration shown in the above-mentioned drawings, and can be modified as appropriate.
  • spectrum analysis may be performed after complementing the input signal.
  • a/r ((unit: s), a is a constant (unit: s/min), r is the rotation speed (unit: min - 1 )
  • the above processing can be performed using data obtained by linearly interpolating and resampling the original sampling data at intervals of (1)). Note that the data interpolation method is not limited to linear interpolation.
  • the evaluation method and kneading machine of the present invention combine a structure in which the mechanical rotation period of the rotor is expressed in a closed kneading machine with a tangential rotor, and spectral analysis of predetermined kneading parameters.
  • periodicity is found from continuously changing kneading parameters (values) that are not recognized as periodicity, and changes in the physical properties of the kneaded material are understood by focusing on changes in predetermined frequency components.
  • FIG. 10 shows a schematic cross-sectional view of a kneading tank located at the lower end of the kneading machine used in the kneading adjustment method of the present invention
  • FIG. 11 shows a schematic plan view of the kneading machine.
  • the same components as those of the kneading machine described using FIGS. 1 and 2 are given the same reference numerals, and detailed explanations will be omitted as appropriate.
  • the kneading machine 21 includes a pair of kneading rotors 3A, 3B connected by a pair of gears 7A, 7B (see FIG. 11) and rotating at different speeds.
  • the electric motor 8 which is a driving means
  • the rotor shafts 5A and 5B rotate, thereby rotating the kneading rotors 3A and 3B, and kneading is performed.
  • the pair of gears 7A, 7B have different numbers of teeth, and the pair of kneading rotors 3A, 3B are configured to rotate at different speeds.
  • FIG. 12 shows a schematic plan view of an example of a gear.
  • the gear 7 has a plurality of teeth t arranged along the circumferential direction of the gear body. These teeth t are provided at equal intervals in the circumferential direction. Further, a mounting hole 7a for the rotor shaft 5 is formed in the center of the gear 7, and a key groove 7b is formed in a part of the circumferential direction.
  • FIG. 13 schematically shows the dimensional relationship between a pair of gears. An example of setting the number of teeth of a pair of gears will be described below using FIG. 13.
  • center distance L (d A + d B )/2...(2)
  • the following equation (3) is derived as an equation representing the sum of the numbers of teeth of the pair of gears 7A and 7B.
  • Z A + Z B (2 x L)/m... (3)
  • the sum of the number of teeth of the pair of gears 7A and 7B is a value obtained by dividing twice the center distance L by the module m. In this way, by setting the center distance L and the module m, the sum of the numbers of teeth of a pair of gears is calculated, and by distributing the numbers of teeth from the sum, it is possible to set each number of teeth.
  • the number of teeth of each pair of gears has been set so that a speed difference of 15% to 25% occurs between the pair of gears.
  • Z A +Z B 55 from the above (3).
  • settings 1 to 3 settings 1 and 3 can be said to be a combination of different numbers of teeth that are mutually prime, and setting 2 can be said to be a combination of different numbers of teeth that are not mutually prime.
  • FIG. 14A shows a case where the number of teeth of the driving gear is 5 and the number of teeth of the driven gear is 6, as a combination of different numbers of teeth that are mutually prime.
  • the teeth of the driving gear and the driven gear are each numbered.
  • the numbers in each block indicate the state in which the teeth of each number on the drive gear and the teeth of each number on the driven gear mesh.
  • FIG. 14(a) the state in which the No. 2 tooth of the driving gear and the No. 1 tooth of the driven gear mesh is represented by a block "2-1.”
  • the circled numbers indicate that they are connected to blocks with the same circled number.
  • the initial state is a state in which the No. 1 tooth of the drive gear and the No. 1 tooth of the driven gear are engaged (block “1-1"), and the drive gear is rotated from there.
  • the meshing states of the driving gear and driven gear are "2-2", “3-3", “4-4", “5-5", “1-6", and “2-1” in order.
  • the combination pattern of meshing (meshing pattern) is the same regardless of the initial meshing state of the pair of gears.
  • the number of diagonally lined loci (for example, the locus from circled number 1 to circled number 1) corresponds to the number of meshing patterns, and is 1 in FIG. 14(a).
  • FIG. 14(b) shows a case where the number of teeth of the driving gear is 4 and the number of teeth of the driven gear is 6, as a combination of different numbers of teeth that are not mutually prime.
  • the initial state is the state in which the No. 1 tooth of the drive gear and the No. 1 tooth of the driven gear are meshed (block "1-1"), and the drive gear is rotated from there, the drive gear and the driven gear
  • the meshing states of the gears are, in order, "2-2", “3-3", “4-4", “1-5", “2-6", “3-1", “4-2", It changes as “1-3", “2-4", “3-5", “4-6", and “1-1".
  • the initial state is the state in which the No.
  • each gear The meshing states of the two do not intersect with each other. That is, as shown in FIG. 14(b), the trajectories of the diagonal lines are different from each other. In this way, when a pair of gears have different numbers of teeth that are not mutually prime, a meshing pattern can be selected depending on the initial meshing state of the pair of gears. Note that the meshing pattern (the number of diagonally lined loci) in FIG. 14(b) is two.
  • the present inventor set the number of teeth of a pair of gears to a different integer number that is not mutually prime from a combination of multiple numbers of teeth, and then It has been discovered that the rotational phase of the kneading rotor can be adjusted by selecting a specific meshing pattern from among the meshing patterns, leading to the present invention.
  • the rotational phase of the kneading rotor in this manner, the shape of the kneading space can be changed without changing the shape of the tangential rotor, and desired kneading characteristics can be obtained.
  • the number of teeth of the pair of gears is not particularly limited as long as it is a different integer that is not prime to each other, but the number of teeth of the gear with more teeth is equal to the number of teeth of the other gear. It is preferable to increase the amount by 10% to 50%.
  • FIG. 3 described above shows, as an example, a pair of gears in which the driving gear has 25 teeth and the driven gear has 30 teeth.
  • FIG. 15 shows an example of the procedure of the kneading adjustment method of the present invention. Each step will be explained below.
  • the number of teeth of the pair of gears is set to different integers that are not mutually prime.
  • the number of teeth is set based on the center distance between a pair of gears and the module, as described above.
  • initial state “1” ⁇ 1 rotation “6” ⁇ 2 rotations “11” ⁇ 3 rotations “16” ⁇ 4 rotations “21” ⁇ 5 rotations “26” ⁇ 6 rotations It becomes “1” at the time, and returns to the initial meshing state after 6 rotations. That is, when looking at the tooth "A” of the drive gear, the combination of "1", “6", “11”, “16”, “21”, and “26” constitutes one meshing pattern.
  • the initial meshing state is the state where the tooth "A" of the driving gear meshes with the valley “2" of the driven gear
  • the position of the valley of the driven gear where the tooth "A” meshes is determined by the rotation of the drive gear.
  • the initial state is "2" ⁇ “7” for 1 rotation ⁇ "12” for 2 rotations ⁇ “17” for 3 rotations ⁇ “22” for 4 rotations ⁇ "27” for 5 rotations ⁇ "27” for 6 rotations It becomes “2". That is, a combination of "2", “7”, “12”, “17”, “22”, and "27” constitutes another meshing pattern.
  • the teeth of the drive gear (25 teeth) and the driven gear (30 teeth) may be numbered to indicate the meshing state in a matrix. From the figure, it can be seen that in the configuration of a driving gear with 25 teeth and a driven gear with 30 teeth, there are five meshing patterns, which are the greatest common divisor of the number of teeth. In step S2, such a meshing pattern is grasped.
  • (S3 process) In this step, a simulation is performed when rotating with each meshing pattern.
  • the simulation may be performed using a computer equipped with predetermined software, or may be performed using an actual machine.
  • FIGS. 16 and 17 show changes in the phase of the rotor when the gears are rotated with one arbitrary meshing pattern.
  • FIGS. 16 and 17 show side views of a pair of rotor shafts, and show kneading when the reference position of the drive gear (for example, tooth "A" in FIG. 3) is rotated by 90 degrees from the initial meshing state. Shows the phase of the rotor.
  • the outer edge of the blade on the front side of the figure of the kneading rotor is shown by a white dotted line.
  • Fig. 16 shows the phase of the kneading rotor when the drive gear rotates from 0° to 990°
  • Fig. 17 shows the phase of the kneading rotor when the drive gear rotates from 1080° to 2070°. .
  • the initial phase indicates the phase of the pair of kneading rotors corresponding to the initial meshing state of the pair of gears.
  • the land portion of each blade of the drive rotor and the driven rotor faces substantially upward.
  • the drive rotor and the driven rotor rotate so that the land portions of each blade face each other (90° view), and further rotate so that they face downward (180° view).
  • the driving rotor returns to the initial phase state, while the driven rotor shifts by a predetermined angle (60° upstream in the rotational direction) from the initial phase state. . Note that this one rotation corresponds to, for example in FIG.
  • phase pattern a combination of phases that can occur in one cycle of a pair of kneading rotors.
  • FIGS. 16 and 17 show rotational phase patterns corresponding to any one meshing pattern
  • a rotational phase pattern exists for each meshing pattern. That is, when there are five meshing patterns, there are also five rotational phase patterns.
  • this step S3 a rotational phase pattern for each meshing pattern is simulated. Note that the same phase does not exist between rotational phase patterns.
  • a specific meshing pattern is selected based on the simulation result of the S3 step. For example, the selection is made based on the phase parameter determined for each rotational phase pattern. Examples of the phase parameter include the closest distance between the blades of a pair of kneading rotors.
  • the distance of closest approach is the distance at which the blades of a pair of kneading rotors come closest to each other. Specifically, for two blades in a close relationship, the distance between the circumferential center position of the land portion of one blade and the other blade is the closest distance. This is the distance between the circumferential center position of the land portion of the blade. For example, among the 90° phases of the rotational phase patterns shown in FIGS. 16 and 17, the 90° phase (see FIG. 16) corresponds to the phase where the blades come closest to each other. The distance can be used as the closest distance.
  • step S4 the distances of closest approach described above are determined for each rotational phase pattern, a desired rotational phase pattern is selected based on these distances of closest approach, and a specific meshing pattern is selected.
  • the distance between the blades of the high-speed rotor and the low-speed rotor when they are closest to each other can be adjusted, and the kneading performance can be changed.
  • the determination using the closest distance may also include the positional relationship between both blades and the ridge wall (such as the distance between each blade and the ridge wall).
  • the average torque, maximum torque, etc. of the rotational phase pattern can also be used as the phase parameter. These can be estimated based on, for example, computer flow analysis simulation.
  • step S5 process the initial phase of the kneading rotor is set by meshing the gears in the specific meshing pattern selected in step S4.
  • FIG. 18 shows the initial phase for each meshing pattern.
  • FIG. 18(a) shows the initial phase of meshing pattern 1 in FIG. 3.
  • the initial phase of meshing pattern 2 is such that the driven rotor is shifted 12 degrees downstream in the rotational direction with respect to meshing pattern 1.
  • the initial phases of meshing patterns 3 to 5 are further shifted by 12 degrees.
  • the initial phase of the kneading rotor is set as shown in FIG. 18(a).
  • each meshing pattern has 150 meshing states, and accordingly, there are 150 initial phases for each rotational phase pattern of the kneading rotor.
  • the initial phases of are the same when viewed from the rotational phase pattern, and any initial phase may be set from among these.
  • the number of teeth of a pair of gears was set to different numbers so that the speed difference was simply about 20%, but in the present invention, the number of teeth of a pair of gears is
  • the shape of the kneading space can be changed by setting the initial phase of the kneading rotor by selecting a specific meshing pattern from among the different meshing patterns that result from different meshing patterns that are not mutually prime. As a result, kneading properties can be affected.
  • the kneading state evaluation method and kneading machine of the present invention are capable of grasping physical property changes of kneaded materials using various kneading parameters in a closed kneading machine with a tangential rotor, and the kneading adjustment method of the present invention Since it is possible to obtain desired kneading characteristics, it can be widely used in kneading rubber, plastics, ceramics, etc.
  • the characteristics of the kneader can be changed and performance such as productivity and dispersibility can be adjusted depending on the material being kneaded. You can also.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

接線式ロータの密閉型混練機において、混練材料の物性変化を把握することができる混練状態の評価方法、および混練機の提供、また所望の混練特性を得ることができる混練調整方法を提供する。混練状態の評価方法は、一対のギアで連結され、電動機の駆動によって異なる速度で回転する一対の接線式ロータを備える密閉型混練機1における評価方法であって、ギアは、互いに素ではない異なる整数の歯数を有しており、密閉型混練機1に備えられるセンサ10、11によって混練時において検出される混練パラメータに基づいてスペクトル分析し、所定の周波数成分の変化を評価する。

Description

混練状態の評価方法、混練機、および混練調整方法
 本発明は、ゴム、プラスチック、セラミックスなどの混練材料を、混練機によって混練する際の混練状態の評価方法、混練機、混練調整方法に関する。
 従来、各種混練材料を混練するための装置として密閉型混練機が知られている(例えば、特許文献1参照)。この密閉型混練機では、混練槽内に混練材料が投入された後、2本の混練ロータが回転することによって混練材料が混練される。一般に、密閉型混練機の混練ロータとしては、2本の混練ロータが噛み合うように回転する噛み合い式ロータと、接線式(非噛み合い式)ロータとが知られている。
 ここで、接線式ロータを備える密閉型混練機の一例を図19に示す。図19は、当該混練機の平面概略図である。図19において、密閉型混練機31は、混練槽32と、該混練槽32内に並設された2本の混練ロータ33A、33Bと、混練ロータ33A、33Bのロータ軸35A、35Bを回転可能に支持する軸受36A、36Bと、一対のギア37A、37Bとを有している。混練ロータ33Aおよび33Bの外周には、螺旋状に形成されたブレード34a、34bがそれぞれ形成されている。
 図19において、ロータ軸35Aおよび35Bのうち、一方のロータ軸(例えば35A)は、モータなどの駆動手段に連結されており、他方のロータ軸(例えば35B)は、一方のロータ軸に対して一対のギア37A、37Bを介して連結されている。そして、駆動手段でロータ軸35Aを回転駆動することにより、混練ロータ33Aおよび33Bが回転し、混練材料の混練が行われる。この場合、駆動手段に連結された混練ロータ33Aが駆動ロータに相当し、混練ロータ33Bが従動ロータに相当する。
 図19に示すような接線式ロータの密閉型混練機では、一般に、一対のギアのギア比を異ならせることで、駆動ロータと従動ロータとの間に15%~25%程度の速度差を設ける場合が多い。これらの混練ロータを異なる速度で回転させることで、駆動ロータと従動ロータの位相が変化して、まんべんなく混練が行われるとされている。
 一方、噛み合い式ロータの密閉型混練機では、その混練ロータの特性から、一対のギアのギア比は1:1に設定される。この場合、一対の混練ロータ間の接触を回避して、混練材料に作用する加工速度(せん断速度)を一定にするため、混練ロータ間の位相は、厳密に管理されている。
特開平9-313916号公報 国際公開第2021/033390号
 従来、接線式ロータの密閉型混練機において、混練の終了は、(1)混練時間、(2)混練材料の温度、(3)消費電力量、およびこれらの組み合わせ、を指標として行われている。例えば、混練材料の温度は、混練の進行に伴って上昇していく。この混練材料の温度を指標とする場合には、例えば、当該温度が所定の温度に到達したことをもって混練の終了タイミングと判断されている。しかしながら、従来用いられている上記指標は、主に混練時のエネルギー投入量を示すものであり、混練時の混練材料の物性変化を把握することは困難である。
 ところで、近年、撹拌対象物の状態を判定する判定システムとして、撹拌対象物を撹拌する機構部と、上記機構部を駆動する駆動装置とを有する撹拌器の上記駆動装置に供給される電流に関する波形を示す波形データを取得する取得部と、上記波形データから得られる、上記駆動装置にかかる力の特定方向の成分に起因する変化に基づいて上記撹拌対象物の状態を判定する判定部を備えるシステムが提案されている(特許文献2参照)。特許文献2において、駆動装置に供給される電流は基準周波数を有する交流電流であり、当該技術では、交流電流の波形データ、すなわち交流電流の瞬時値が用いられている。具体的には、正弦波である交流電流の瞬時値波形を入力し、出力された基準周波数の成分とそれ以外の成分に着目して撹拌対象物の状態を判定している。このように、混練時の混練材料の物性変化を把握する新たな手法が求められている。
 一方で、上述のように、接線式ロータの密閉型混練機では、一般に、位相を変化させて、まんべんなく混練を行うため、一対の混練ロータを異なる速度で回転させている。この場合、まんべんなく混練を行うために一対の混練ロータ間において位相が随時変化することは重要である。しかし、これまでに、回転時の位相(特に、特定の位相)に着目して一対の混練ロータを回転させるようにした先行技術は知られておらず、当該特定の位相などに起因して、混練特性(混練材料の粘度、混練時のトルクなど)を調整することは知られていない。
 本発明は、このような事情に鑑みてなされたものであり、接線式ロータの密閉型混練機において、混練材料の物性変化を把握することができる混練状態の評価方法、および混練機の提供、また、所望の混練特性を得ることができる混練調整方法の提供を目的とする。
 本発明の混練状態の評価方法は、一対のギアで連結され、電動機の駆動によって異なる速度で回転する一対の接線式ロータを備える混練機における混練状態の評価方法であって、上記ギアは、互いに素ではない異なる整数の歯数を有しており、上記評価方法は、上記混練機に備えられるセンサによって混練時において検出される混練パラメータに基づいてスペクトル分析し、所定の周波数成分の変化を評価する方法であり、上記混練パラメータが、混練材料の温度、上記電動機に供給される交流電流の実効値、上記電動機に供給される直流電流値、上記電動機が消費する電力値、上記電動機の負荷率、上記電動機の出力トルク、上記混練機から発生する音響、および上記混練機から発生する振動から選択される少なくともいずれかであることを特徴とする。上記評価方法には、蓄積された混練パラメータを後から分析して評価する態様の他、混練パラメータをリアルタイムで監視する態様も含まれる。
 上記一対のギアの歯数がmおよびn(m<n)であって、該mおよびnの間に1より大きい最大公約数kが存在し、かつ、歯数mのギアに接続されたロータの回転数がr(単位:min-1)の場合に、上記混練パラメータに基づいてスペクトル分析し、f=(r・k)/60n(単位:Hz)とその整数倍または整数分の1の周波数成分の変化を評価することを特徴とする。
 上記評価方法は、上記混練パラメータを処理してスペクトル分析する方法であり、該方法は、上記混練パラメータの移動平均値と現在値との偏差をスペクトル分析することを特徴とする。
 上記混練機は、非ニュートン流体を混練する混練機であることを特徴とする。非ニュートン流体として、具体的には、ゴム、プラスチック、セラミックス、シリコーン、チューインガム組成物などが挙げられる。
 本発明の混練機は、一対のギアで連結され、電動機の駆動によって異なる速度で回転する一対の接線式ロータを備える混練機であって、上記ギアは、互いに素ではない異なる整数の歯数を有しており、上記混練機は、該混練機に備えられるセンサによって混練時において検出される混練パラメータに基づいてスペクトル分析する分析部を有し、上記混練パラメータが、混練材料の温度、上記電動機に供給される交流電流の実効値、上記電動機に供給される直流電流値、上記電動機が消費する電力値、上記電動機の負荷率、上記電動機の出力トルク、上記混練機から発生する音響、および上記混練機から発生する振動から選択される少なくともいずれかであることを特徴とする。
 上記混練機は、上記分析部により得られる所定の周波数成分の変化に基づいて、上記混練機の混練の終了タイミングを判定する判定部を有することを特徴とする。
 本発明の混練調整方法は、一対のギアで連結されて異なる速度で回転する一対の接線式ロータを備える混練機における混練調整方法であって、上記混練調整方法は、上記ギアの歯数を、複数の歯数の組合せの中から、互いに素ではない異なる整数の歯数の組合せに設定し、その上で、上記ギアの複数の噛み合いパターンの中から特定の噛み合いパターンを選択して、上記特定の噛み合いパターンで上記ギアを噛み合わせることにより、上記接線式ロータの初期位相を設定する方法であり、上記特定の噛み合いパターンは、上記複数の噛み合いパターンで上記ギアを噛み合わせた状態からそれぞれ導かれる上記接線式ロータの回転位相パターンに基づいて選択することを特徴とする。
 上記接線式ロータは、それぞれ複数のブレードを備えていることを特徴とする。
 上記回転位相パターンから求められる上記接線式ロータのブレード間の最接近距離に基づいて、上記特定の噛み合いパターンを選択することを特徴とする。
 上記ギアにおいて、歯数が多い方のギアの歯数は、他方のギアの歯数に対して10%~50%多いことを特徴とする。
 本発明の混練状態の評価方法は、互いに素ではない異なる整数の歯数の一対のギアを備える混練機における評価方法である。一対のギアの歯数を、互いに素ではない異なる整数とすることで、一対のロータが同じ位相となる頻度が増加し、当該構成において、混練パラメータ(例えば、混練材料の温度、電動機に供給される交流電流の実効値、電動機に供給される直流電流値、電動機が消費する電力値、電動機の負荷率、電動機の出力トルク、混練機から発生する音響、および混練機から発生する振動など)をスペクトル分析することで所定の周波数成分に特徴的なスペクトルを良好に検出でき、当該スペクトルの変化を評価することで、混練材料の物性変化を把握することができる。
 また、上記評価方法は、f=(r・k)/60n(単位:Hz)とその整数倍または整数分の1の周波数成分の変化を評価するので、混練材料の物性変化をより把握しやすくなる。
 本発明の混練調整方法は、ギアの歯数を、複数の歯数の組合せの中から、互いに素ではない異なる整数の歯数の組合せに設定し、その上で、ギアの複数の噛み合いパターンの中から特定の噛み合いパターンを選択して、特定の噛み合いパターンでギアを噛み合わせることにより、接線式ロータの初期位相を設定する方法とあるように、特に(1)一対のギアの歯数を所定の関係に設定すること(ステップ)と、(2)それによって生じる噛み合いパターンの複数の選択肢の中から接線式ロータの回転位相パターンに基づいて特定の噛み合いパターンを選択すること(ステップ)を組み合わせたことを特徴としている。これにより、接線式ロータの形状を変更することなく、混練機における混練空間の形状を変化させることができる。その結果、回転時の特定の位相(例えば、接線式ロータのブレード同士が最接近する位相)などを考慮して混練を行うことができ、所望の混練特性を得ることができる。
 また、回転位相パターンから求められる接線式ロータのブレード間の最接近距離に基づいて、特定の噛み合いパターンを選択するので、例えば、接線式ロータの回転トルクが過剰に発生するような回転位相パターンを回避でき、所望の混練特性を得られやすい。
本発明に係る混練機の全体の概略構成を示す説明図である。 図1の混練機の混練ロータの駆動を説明するための図である。 一対のギアの歯数の一例を示す図である。 試験例における各パラメータの時間的変動を示すグラフである。 図4における電力値をFFTした結果を示す図である。 図4における電力値を処理した後FFTした結果を示す図である。 図4における温度をFFTした結果を示す図である。 図4における温度を処理した後FFTした結果を示す図である。 制御部が実行する処理を説明するためのフローチャートである。 本発明の混練調整方法に用いる混練機の一例の混練槽の断面概略図である。 図10の混練機の混練ロータの駆動を説明するための図である。 混練機におけるギアの一例を示す図である。 一対のギアの寸法関係を示す概略図である。 一対のギアの噛み合い状態をマトリックス状に示す概略図である。 本発明の混練調整方法の一例を示す工程概略図である。 任意の噛み合いパターンにおける回転位相パターンを示す図である。 任意の噛み合いパターンにおける回転位相パターンを示す図である。 噛み合いパターンに対応する混練ロータの初期位相を示す図である。 従来の混練機の混練ロータの駆動を説明するための図である。
 まず、本発明の混練状態の評価方法および混練機について、以下に説明する。
 本発明の混練状態の評価方法に用いられる混練機は、ゴム、プラスチックなどを含む非ニュートン流体を混練するための密閉型混練機である。図1は、本発明に係る混練機の全体の概略構成を示す説明図であり、主に、混練機の下端部に位置する混練槽の断面概略図を示している。
 図1に示すように、密閉型混練機1は、主に、混練槽2や電動機8(図2参照)を含む混練機構と、混練槽内に投入された混練材料を加圧する加圧蓋9aを含む加圧機構と、混練材料の混練を制御する制御部12とを備える。本発明の評価方法および混練機では、特に、所定の混練パラメータをスペクトル分析することを特徴としている。すなわち、一見すると周期的とは見られない所定の混練パラメータをスペクトル分析することで周期性を見い出し、所定の周波数成分(例えばロータの機械的な回転周期や同期周期の周波数成分)を観察して、混練材料の物性変化の把握に利用している。
 混練槽2は、略C字形の部分円周面を2つ向かい合わせに連ねたような内周面形状を有しており、その内部に互いに隣接しかつ連通する2つのロータ室2A、2Bがある。混練槽2の内底部における両ロータ室2A、2Bの内周面の境界部分には、山形に立ち上がった陵壁部2Cが形成されている。各ロータ室2A、2Bの軸線方向の両端はそれぞれ槽端壁(図示省略)によって閉じられている。なお、ロータ室2A、2Bの断面形状はその軸線方向において一定である。
 密閉型混練機1は、混練時において混練槽内の温度を検出する温度センサ10を有する。温度センサ10は、陵壁部2Cの上面に検出端10aを突出させるように配置され、検出端10aに接触する混練材料の温度を検出可能になっている。温度センサ10には、周知の温度センサが用いられ、例えば、保護管に熱電対エレメントを収容して温度計測する熱電対温度検出器などが用いられる。この熱電対温度検出器としては、例えば、保護管の先端に熱電対エレメント先端を溶着して、混練材料の温度を保護管の外側面で感知する接地型のタイプや、熱電対エレメントを保護管の先端内壁に接触させて保護管の温度を感知する非接地型のタイプを用いることができる。
 なお、密閉型混練機1に備えられる温度センサは、混練時において混練材料の温度を検出するものであればよく、図1に示すセンサ構成や配置などに限定されるものではない。温度センサによって検出される混練材料の温度変化については後述する。
 図1に示すように、ロータ室2A、2B内には、混練材料を混練する混練ロータ3A、3Bが、それぞれロータ室2A、2Bの内周面との間に間隔をおいて回転可能に配設されている。混練ロータ3A、3Bは、それぞれ2枚のブレード4a、4bを備えている。ブレード4a、4bは、その起端部側から終端部側に向けて山形となる断面形状を有し、その頂部にランド部を有している。このランド部が、内周面との間で所定の間隔を保った状態で回転するようになっている。混練ロータ3A、3Bが回転することで、ロータ室2A、2Bにおける混練空間の形状が変化する。混練ロータ3A、3Bは、回転方向が互いに異なっており、両ロータ室2A、2Bが連通する側においてブレードが下向きに回転するように構成されている。
 また、混練槽2の上方には、混練材料を投入するための開口部が設けられている。加圧蓋9aは、シリンダ装置などによって上下動可能になっており、加圧蓋9aを上昇させた状態で開口部から混練材料が投入される。その後、ロッド9bにより加圧蓋9aを下降させ、混練材料を加圧しながら2本の混練ロータ3A、3Bを回転させる。この場合、螺旋状のブレード4a、4bによって混練材料がロータの回転方向だけでなく、軸方向も含む複雑な方向の流動により混練される。
 本発明に係る混練機は、図1の構成に限らない。図1の密閉型混練機1は、混練後、混練槽2を反転させて開口部から混練材料を取り出す形式であるが、例えば、混練機は、混練後、混練槽の下部から混練材料を取り出す形式であってもよい。
 図2には、密閉型混練機の平面概略図を示す。図2に示すように、密閉型混練機1は、上述の混練槽2と、混練ロータ3A、3Bと、ロータ軸5A、5Bを回転可能に支持する軸受6A、6Bと、一対のギア7A、7Bとを有している。混練ロータ3A、3Bの外周には、螺旋状に形成されたブレード4a、4bが形成されている。例えば、混練ロータ3Aにおいて、ブレード4a、4bは、混練ロータ3Aの軸方向両端側における円周方向の位相が互いに180°異なる位置をそれぞれの起端部とし、この起端部から混練ロータ3Aの外周面を螺旋方向に延伸している。混練ロータにおけるブレードの構成はこれに限定されるものではない。図2において、ブレード4a、4bの螺旋方向の長さは互いに異なっており、ブレード4aは長尺ブレード、ブレード4bは短尺ブレードとなっている。なお、ブレードの枚数は2枚に限定されず、3枚、4枚、6枚などの複数枚の構成を採用できる。その場合、例えばブレード間の起端部の位置(円周方向の位相)は、ブレードの枚数に応じて適宜設定される。
 密閉型混練機1において、2本の混練ロータ3A、3Bのロータ軸5A、5Bは、平行に配設されている。ロータ軸5Aは、カップリング16を介して電動機8の出力軸5A’に連結されている。なお、カップリング16を省略して、ロータ軸5Aと5A’を一体で構成してもよい。一方、ロータ軸5Bは、ロータ軸5Aに対して一対のギア7A、7Bを介して連結されている。電動機8は、回路部8aとモータ部8bとを有する。回路部8aは、制御信号に基づいて電力を生成し、生成した電力をモータ部8bに供給する。電動機8は、モータ部8bに供給される電力を検出する電力センサ11を有している。本発明において電動機は、交流電源で駆動する交流電動機でもよく、直流電源で駆動する直流電動機でもよい。
 なお、電動機8は減速機を備えていてもよく、駆動源から発生する回転力を減速して出力するようにしてもよい。また、一対のギア7A、7Bは、図2に示すような、電動機8の外部に設けられたギアに限らず、電動機8や減速機に内蔵されたギアであってもよい。ギアの構成は、平歯車に限らず、ヘリカルギアなどであってもよい。また、混練機において、各混練ロータは、カップリングを介して各ギアに連結されていてもよい。
 図2の構成において、電動機8を駆動することにより、ロータ軸5Aおよび5Bが回転することで、混練ロータ3Aおよび3Bが回転し、混練が行われる。本発明に係る密閉型混練機1では、一対のギア7A、7Bが互いに素ではない異なる整数の歯数の組合せになっており、一対の混練ロータ3A、3Bは異なる速度で回転する構成となっている。なお、図2において、混練ロータ3Aが駆動ロータに相当し、混練ロータ3Bが従動ロータに相当する。本発明では、このような歯数の組合せによって生じる特徴的な現象を利用することで、混練材料の物性変化を把握することができ、ひいては終了タイミングを正確に判断することができる。
 本発明において、一対のギアの歯数は、互いに素ではない異なる整数であればよく特に限定されないが、歯数が多い方のギアの歯数が、他方のギアの歯数に対して10%~50%多いことが好ましい。また、一対のギアの歯数は、高速側のロータ(駆動ロータ)が10回転以内に、高速側のロータと低速側のロータ(従動ロータ)が同じ位相に復帰するような関係であることが好ましい。
 図3には、一例として、駆動ギアの歯数が25であり、従動ギアの歯数が30である一対のギアを示す。この場合、駆動ギアに連結される駆動ロータが6回転することで、駆動ロータと従動ロータは同じ位相に復帰する。図3は、一対のロータ軸をギア側から見た図を示し、一対のギアが噛み合った状態を示している。なお、図3では、便宜上、駆動ギアの歯が噛み合う従動ギアの谷部の位置を丸数字で示している。
 図1に戻り、制御部12は、周知のCPU、ROM、RAMなどからなるマイクロコンピュータを主体として構成されている。密閉型混練機1に備えられ、混練パラメータを検出する各センサ10、11は制御部12に接続されている。混練時において混練パラメータは、所定周期毎(例えば0.1~1.0秒毎)に制御部12に入力され、連続で検出、記憶される構成となっている。また、制御部12は、各種演算機能も有している。
 本発明において、混練パラメータは、混練時における混練材料の混練状態を示すものであり、一見すると周期的とは見られないパラメータである。具体的には、混練材料の温度、電動機に供給される交流電流の実効値、電動機に供給される直流電流値、電動機が消費する電力値、電動機の負荷率、電動機の出力トルク、混練機から発生する音響、および混練機から発生する振動の少なくともいずれかを用いることができる。
 例えば、混練材料の温度は、図1に示すような温度センサ10によって検出され、その検出信号が制御部12に入力される。
 電動機が交流電動機の場合、電動機に供給される交流電流の実効値は、電流センサの検出信号に基づいて算出される。例えば、交流電流の実効値は、瞬時値の最大値に対して√2で除することで算出できる。また、電動機が直流電動機の場合、電動機に供給される直流電流値は、電流センサの検出信号に基づいて検出される。
 電動機が消費する電力値は、例えば図2に示すような電動機8に備えられる電力センサ11によって検出され、その検出信号が制御部に入力される。例えば、電動機が交流電動機の場合、電動機が消費する電力値は有効電力Pであり、下記の式(1)で表される。
有効電力P=V・I・cosθ・・・(1)
 上記式(1)中、電動機にかかる電圧の実効値がV、電動機に供給される交流電流の実効値がI、電圧と電流の位相差がθ、力率がcosθである。
 また、電動機が直流電動機の場合、電動機が消費する電力値は、電動機にかかる電圧Vと電動機に供給される直流電流値Iとの積で表される。
 また、電動機の負荷率は、例えば、上述した電動機が消費する電力値と、電動機の定格値とに基づいて下記の式(2)で表される。
負荷率(%)=[電動機が消費する電力値(W)/電動機の定格値(W)]×100
 電動機の出力トルクは、例えば電動機に備えられるトルクセンサによって検出される。なお、出力トルクは、例えば電動機が消費する電力値と電動機の回転数または角速度に基づいて算出される。混練機から発生する音響は、混練機(例えば混練槽の近傍)に備えられる音響センサによって検出される。混練機から発生する振動は、混練機(例えば混練槽の近傍)に備えられる振動センサによって検出される。上述した混練パラメータを取得するための各センサには周知のセンサを用いることができる。図1では、混練パラメータとして、混練材料の温度や電動機が消費する電力値を取得する構成を示しているが、これに限定されるものではない。
 図1に示すように、制御部12は、入力された混練パラメータに基づいてスペクトル分析する分析部13を有しており、分析結果に基づき所定の周波数成分の変化を評価できる構成となっている。また、制御部12は、分析部13の分析結果に基づいて、混練機の混練の終了タイミングを判定する判定部14と、判定部14によって混練の終了タイミングであると判定された場合に、その旨を報知する報知部15とを有する。分析部13は、混練パラメータを直接スペクトル分析してもよく、混練パラメータを処理して算出された算出値(例えば、混練パラメータの移動平均値と現在値との偏差など)をスペクトル分析してもよい。制御部12の各部における処理は、混練時において実行される。以下に、グラフを用いて、分析部13における処理について説明する。
 図4には、駆動ギアの歯数mが25、従動ギアの歯数nが30である一対のギアを有する接線式の密閉型混練機(図3参照)を用いて、混練材料としてゴム組成物を混練した際の各種パラメータの時間的変動を示す。ここで、図中の温度は、温度センサによって検出される混練材料の温度を示し、図中の電力は、電力センサによって検出される電動機が消費する電力値(具体的には交流電動機の有効電力)を示し、図中の回転数は、駆動ロータの回転数を示し、図中の圧力は、混練槽の上方からの混練材料の浮き上がりを抑える加圧蓋のウエイト圧による圧力負荷を示している。この試験例では、各種パラメータは、各種センサによって0.5秒毎に検出されている。
 図4の試験例では、従来の方法によって混練が制御されており、混練の終了温度が120℃に設定されている。混練開始に伴って電動機のモータ部に駆動電力が供給され、駆動ロータが回転する。図4では、駆動ロータの回転数が44rpm(=0.73Hz)で混練が行われている。なお、従動ロータの回転数は36.7rpm(=0.61Hz)である。この試験例では、混練時間が約260秒で混練材料の温度が120℃に到達しており、これにより混練の終了タイミングであると判定され、電動機が停止(つまり駆動電力の供給が停止)されている。このように従来の方法では、センサによって検出される検出値(温度など)を混練の終了タイミングの指標としている。しかし、これらの指標は、一見すると連続的なものであり、混練時における混練材料の物性変化を把握することは困難である。
 これに対して、本発明では、混練パラメータをスペクトル分析することで周期性を見い出し、例えば、所定の周波数成分の変化を評価することで混練時の混練材料の物性変化を把握している。後述する図5~図8は、図4に示す混練パラメータ(電力値、温度)を用いて、分析部13においてスペクトル分析した結果を示している。
 図5には、スペクトル分析として、電動機が消費する電力値を直接、高速フーリエ変換(FFT)した結果を示す。図5(a)は、図4のグラフから電力値のみを抜き出した図である。なお、同図には電力値の8.18秒間の移動平均線(MA)も示す。この移動平均線は、駆動ロータの回転数rに基づいて決定している。図5(a)において任意の時間帯の電力値を高速フーリエ変換した結果を図5(b)~(d)に示す。
 この試験例では、一対のギアの歯数が25(=m)と30(=n)であり、25および30の間に1より大きい最大公約数5(=k)が存在している。そして、歯数25のギアに接続された駆動ロータの回転数が44(=r)である。図5(b)~(d)に示すように、電力値を直接スペクトル分析した結果、f=(r・k)/60n=0.122(単位:Hz)周辺にスペクトルAを検出した。また、0.122Hzの2倍である0.244Hz周辺にもスペクトルBを検出した。混練時の初期段階ではスペクトルBが最も強く検出され(図5(b)参照)、時間経過とともに、最も強いスペクトルがスペクトルAにシフトし(図5(c)参照)、更にその強度が減衰するという変化を示した(図5(d)参照)。
 上記のf=(r・k)/60nとその整数倍(1倍を含む)または整数分の1の周波数に検出されるスペクトルは、一対のギアが互いに素ではない異なる整数の歯数の組合せによって生じるものである。このスペクトルは、一対のロータが回転することで随時変化する回転位相パターンにおいて所定の位相が繰り返し出現することに基づいており、当該スペクトルの強度変化は、当該所定の位相における混練材料の物性変化を表しているといえる。
 なお、検出値(生データ)には低周波成分が多いため、図5(b)~(d)では、低周波成分を評価範囲から除外している。後述する図7(b)~(d)も同様である。このような観点から、混練パラメータを直接スペクトル分析する場合には、評価するスペクトルは、f=(r・k)/60nとその整数倍(より好ましくは1倍~3倍)であることが好ましい。
 次に、図6には、スペクトル分析として、電動機が消費する電力値を処理した後、高速フーリエ変換した結果を示す。図6では、上記処理として、電力値の偏差(=電力値(現在値)-移動平均値)を求め、得られた電力値の偏差を高速フーリエ変換した。結果を図6(b)~(d)に示す。なお、図6(a)は図5(a)と同じ図である。
 図6(b)~(d)に示すように、主なスペクトルとして、0.122Hz周辺にスペクトルAが検出され、0.244Hz周辺にスペクトルBが検出された。また、これらスペクトルの時間的変化は、図5(b)~(d)と同様の挙動を示した。
 続いて、図7には、スペクトル分析として、混練材料の温度を直接、高速フーリエ変換した結果を示す。図7(a)は、図4のグラフから温度のみを抜き出した図である。なお、同図には温度の8.18秒間の移動平均線(MA)も示す。この移動平均線は、駆動ロータの回転数rに基づいて決定している。図7(a)において任意の時間帯の温度を高速フーリエ変換した結果を図7(b)~(d)に示す。
 図7(b)~(d)に示すように、0.122Hz周辺にスペクトルAが検出されたものの、スペクトルの形状がやや不明瞭であった。一方で、図8(b)~(d)に示すように、温度の偏差(=温度(現在値)-移動平均値)を高速フーリエ変換した場合には、0.122Hz周辺のスペクトルAが明瞭となり、かつ、スペクトルAの減衰も良好に確認できた。
 上記図4に示すように、混練パラメータである温度や電力値は細かな上下動を伴いながらその変動よりもはるかに大きな時間スパンと変化量を伴うトレンドで変化しており、周期性を見い出すことは難しい。一方で、図5~図8に示すように、温度や電力値を直接または処理してスペクトル分析することで、周期性を見い出すことができる。さらに、所定の周波数成分のスペクトルの変化を評価することで、混練時の混練材料の物性変化を把握することができる。これにより、本発明の評価方法および混練機によって、混練状態に応じた混練の終了タイミングを正確に把握できる。その結果、従来の方法に比べて、過剰な混練などを防止でき、省エネルギー性に優れるとともに、バッチ毎の混練特性のバラツキを小さくすることができると考えられる。
 なお、図5~図8では、混練パラメータとして電動機が消費する電力値、混練材料の温度をそれぞれスペクトル分析した結果を示したが、その他の混練パラメータでも同様に混練材料の物性変化を把握することができる。例えば、電動機に供給される交流電流の実効値や、電動機に供給される直流電流値、電動機の負荷率、電動機の出力トルクは、電動機が消費する電力値に密接に関連したパラメータであり、スペクトル分析によって同様の結果が得られる。
 図1において、判定部14は、例えばf=(r・k)/60n(単位:Hz)とその整数倍または整数分の1の周波数成分の変化に基づいて、混練の終了タイミングを判定する。例えば、m=25、n=30、k=5、r=45(min-1)の場合、f=0.125(Hz)となり、整数倍の0.125、0.25、0.375、0.5Hzのスペクトルや、整数分の1の0.0625、0.03166Hzなどのスペクトルを評価する。判定部14は、例えば、所定の周波数成分のスペクトル(例えば、図5~図8におけるスペクトルA)に対して、強度の閾値を設定しておき、当該スペクトルの強度が閾値を下回ったら、混練の終了タイミングであると判定することができる。また、その他として、強度の変化率の閾値を設定しておき、当該スペクトルの強度の変化率が閾値を下回ったら(つまりスペクトルの強度変化が鈍化したら)、混練の終了タイミングであると判定してもよい。
 報知部15は、混練の終了を報知する機能を有する。報知手段としては、特に限定されず、作業者に対して終了をモニタ表示する、音や音声で知らせる、外部に対して通信で知らせる、ランプ表示で知らせるなど、の手段を1種または組み合わせて採用できる。
 図9は、制御部が実行する混練時の処理手順を示すフローチャートである。図9のスタートからエンドに至るまでの処理は、所定時間毎に繰り返し実施される。
 まず、制御部は各種センサが取得した混練パラメータを入力する(ステップS11)。混練パラメータには、上述したような電動機が消費する電力値や、混練材料の温度などが挙げられる。続くステップS12では、分析部において混練パラメータに基づいてスペクトル分析する。なお、ステップS12において、混練パラメータを処理して算出値を算出し、その算出値を用いてスペクトル分析してもよい。スペクトル分析の手法は特に限定されないが、例えば、高速フーリエ変換を用いることができる。
 ステップS13では、判定部において混練の終了タイミングを判定する。終了タイミングの判定は、例えば、所定の閾値とスペクトル分析によって検出された所定の周波数成分のスペクトルを用いて行われる。
 ステップS13において、終了タイミングでないと判定された場合(ステップS13:No)は、そのまま終了する。一方、終了タイミングであると判定された場合(ステップS13:Yes)は、モータ部への駆動電力の供給が停止され、報知部によって混練の終了が作業者に報知される(ステップS14)。
 本発明の評価方法および混練機の具体的な構成は、上述の図の構成に限らず、適宜変更することができる。上記図4~図8で示した例では、駆動ロータの回転数が一定の場合を示したが、回転数(=r)が変動する場合でも、本発明は適用できる。例えば、駆動ロータの回転数rが変化した場合に、入力信号を補完後にスペクトル分析を行うようにしてもよい。具体的には、等間隔にサンプリングされたデータを元に、「a/r」((単位:s)、なお、aは定数(単位:s/min)、rは回転数(単位:min-1))の間隔で元のサンプリングデータの間を線形補間し再サンプリングしたデータを使用して、上記の処理を行うことができる。なお、データの補完方法は、線形補間に限定されるものではない。
 以上のように、本発明の評価方法および混練機は、接線式ロータの密閉型混練機において、ロータの機械的な回転周期が発現するという構成と、所定の混練パラメータのスペクトル分析とを組み合わせることで、一般には周期性が認識されない持続的に変化する混練パラメータ(値)から周期性を見い出し、所定の周波数成分の変化に着目して混練材料の物性変化を把握するというものである。
 次に、本発明の混練調整方法について、以下に説明する。
 図10は、本発明の混練調整方法に用いる混練機の下端部に位置する混練槽の断面概略図を示し、図11は、混練機の平面概略図を示す。なお、図10および図11では、上記図1および図2を用いて説明した混練機と同一の構成には同一の符号を付し、詳細な説明を適宜省略する。
 図10および図11に示すように、混練機21は、一対のギア7A、7B(図11参照)で連結されて異なる速度で回転する一対の混練ロータ3A、3Bを備える。図11の構成において、駆動手段である電動機8を駆動することにより、ロータ軸5Aおよび5Bが回転することで、混練ロータ3Aおよび3Bが回転し、混練が行われる。本発明の混練調整方法に用いる密閉型混練機21では、一対のギア7A、7Bの歯数が異なっており、一対の混練ロータ3A、3Bは異なる速度で回転する構成となっている。
 次に、図12および図13では、ギアについて説明する。図12には、ギアの一例の概略平面図を示す。図12に示すように、ギア7には、ギア本体の周方向に沿って複数の歯tが配置されている。これらの歯tは、周方向に等間隔に設けられている。また、ギア7の中央には、ロータ軸5の取付孔7aが形成されており、周方向の一部にキー溝7bが形成されている。
 図13は、一対のギアの寸法関係を模式的に示している。図13を用いて、一対のギアの歯数の設定の一例を以下に説明する。
 一対のギアにおいて、ギアを適切に機能させるためには、互いに歯の大きさを同じにする必要がある。歯の大きさを表す場合、モジュールmという値が使用される。モジュールm(mm)は、ピッチ円直径d(mm)を歯数Zで除した値として定義され、図13に示す一対のギア7A、7Bの場合、下記式(1)で表される。なお、モジュールmは整数でなくてもよい。
モジュールm=d/Z=d/Z・・・(1)
 また、一対のギア7A、7B間の中心距離は、一対のギアの軸の最短距離であり、下記式(2)で表される。
中心距離L=(d+d)/2・・・(2)
 そして、上記式(1)および(2)から、一対のギア7A、7Bの歯数の和を表す式として、下記式(3)が導かれる。
+Z=(2×L)/m・・・(3)
 上記式(3)より、一対のギア7A、7Bの歯数の和は、中心距離Lの2倍をモジュールmで除した値となる。このように、中心距離Lおよびモジュールmを設定することで、一対のギアの歯数の和が算出され、その和から歯数を配分することで、各歯数を設定することができる。
 一対のギアの各歯数の設定について、従来では、一対のギア間で15%~25%の速度差が出るように設定されていた。例えば、中心距離385mm、モジュール14の場合、上記(3)より、Z+Z=55となる。この値を用いると、各歯数の設定としては、設定1(Z=24、Z=31)、設定2(Z=25、Z=30)、設定3(Z=26、Z=29)などが考えられる。これら設定1~3のうち、設定1および設定3は、互いに素である異なる歯数の組合せといえ、設定2は、互いに素ではない異なる歯数の組合せといえる。
 ここで、図14を用いて、互いに異なる歯数を有する駆動ギアと従動ギアの噛み合い状態について説明する。まず、図14(a)は、互いに素である異なる歯数の組合せとして、駆動ギアの歯数5、従動ギアの歯数6の場合を示す。この図では、駆動ギアと従動ギアの歯にそれぞれ番号を付している。各ブロック内の数字は、駆動ギアの各番号の歯と従動ギアの各番号の歯とが噛み合う状態を示している。例えば、図14(a)において、駆動ギアの2番の歯と従動ギアの1番の歯が噛み合う状態を「2-1」のブロックで表現している。なお、丸数字は、同じ丸数字のブロックに繋がることを示している。
 図14(a)において、例えば、駆動ギアの1番の歯と従動ギアの1番の歯を噛み合わせた状態(「1-1」のブロック)を初期の状態として、そこから駆動ギアを回転させると、駆動ギアと従動ギアの噛み合い状態は、順に、「2-2」、「3-3」、「4-4」、「5-5」、「1-6」、「2-1」、「3-2」、「4-3」、「5-4」、「1-5」・・・「4-5」、「5-6」、「1-1」と変化する。この場合、5×6=30通りの歯の噛み合い状態を経て、初期の噛み合い状態((「1-1」のブロック))に戻る。このように、一対のギアが互いに素である異なる歯数の場合、一対のギアの初期の噛み合い状態にかかわらず、噛み合いの組合せパターン(噛み合いパターン)は同じとなる。この場合、斜線の軌跡(例えば、丸数字1から丸数字1までの軌跡)の数が噛み合いパターンの数に相当し、図14(a)では1となる。
 一方で、図14(b)では、互いに素ではない異なる歯数の組合せとして、駆動ギアの歯数4、従動ギアの歯数6の場合を示す。例えば、駆動ギアの1番の歯と従動ギアの1番の歯を噛み合わせた状態(「1-1」のブロック)を初期の状態として、そこから駆動ギアを回転させると、駆動ギアと従動ギアの噛み合い状態は、順に、「2-2」、「3-3」、「4-4」、「1-5」、「2-6」、「3-1」、「4-2」、「1-3」、「2-4」、「3-5」、「4-6」、「1-1」と変化する。また、駆動ギアの1番の歯と従動ギアの2番の歯を噛み合わせた状態(「1-2」のブロック)を初期の状態として、そこから駆動ギアを回転させると、駆動ギアと従動ギアの噛み合い状態は、順に、「2-3」、「3-4」、「4-5」、「1-6」、「2-1」、「3-2」、「4-3」、「1-4」、「2-5」、「3-6」、「4-1」、「1-2」と変化する。この場合、駆動ギアと従動ギアの歯数は、最大公約数2を持っており、4×6÷2=12通りの歯の噛み合い状態を経て、初期の噛み合い状態に戻る。そして、初期の噛み合い状態を、駆動ギアの1番の歯と従動ギアの1番の歯にした場合と、駆動ギアの1番の歯と従動ギアの2番の歯にした場合は、各ギアの噛み合い状態が互いに交差しない。つまり、図14(b)に示すように、斜線の軌跡が互いに異なっている。このように、一対のギアが互いに素ではない異なる歯数の場合、一対のギアの初期の噛み合い状態によって、噛み合いパターンを選択することができる。なお、図14(b)の噛み合いパターン(斜線の軌跡の数)は2となる。
 本発明者は、このような事象に着目して、一対のギアの歯数を、複数の歯数の組合せの中から、互いに素ではない異なる整数の歯数とし、その上で、ギアの複数の噛み合いパターンの中から特定の噛み合いパターンを選択することで、混練ロータの回転位相を調整できることを見い出し、本発明に至った。このようにして、混練ロータの回転位相を調整することで、接線式ロータの形状を変更することなく、混練空間の形状を変化させることができ、所望の混練特性を得ることができる。
 一般化すると、互いに素ではない異なる歯数mとnを有する一対のギアの場合、最大公約数をkとすると、m=k×m0、n=k×n0と表せる。この場合、ギアの噛み合いパターンはk通り存在し、それぞれの噛み合いパターンにおいて、(k×m0×n0)通りの噛み合い状態を経て初期の噛み合い状態に戻る。例えば、m=25、n=30の場合、mとnの最小公約数である5通りの噛み合いパターンが存在し、それぞれの噛み合いパターンにおいて150通りの噛み合い状態を経て初期の噛み合い状態に戻る。
 本発明の混練調整方法において、一対のギアの歯数は、互いに素ではない異なる整数であればよく特に限定されないが、歯数が多い方のギアの歯数が、他方のギアの歯数に対して10%~50%多いことが好ましい。上述した図3には、一例として、駆動ギアの歯数が25であり、従動ギアの歯数が30である一対のギアを示す。
 図15には、本発明の混練調整方法の手順の一例を示す。以下に、各工程について、説明する。
(S1工程)
 この工程では、一対のギアの歯数を互いに素ではない異なる整数に設定する。例えば、歯数は、上述したように、一対のギア間の中心距離およびモジュールに基づいて設定される。
(S2工程)
 この工程では、歯数が設定された一対のギアの噛み合いパターンを把握する。この噛み合いパターンについては、図3を用いて説明する。図3の構成では、一対のギアの歯数は、駆動ギア:従動ギア=25:30の関係である。そのため、駆動ギアが6回転する間に、従動ギアは5回転する。例えば、図3の状態を初期の噛み合い状態とし、駆動ギアのキー溝に対応する歯「A」を基準位置とすると、その歯「A」が噛み合う従動ギアの谷部の位置は、駆動ギアの回転数に応じて、初期状態の「1」→1回転時「6」→2回転時「11」→3回転時「16」→4回転時「21」→5回転時「26」→6回転時「1」となり、6回転で初期の噛み合い状態に戻る。すなわち、駆動ギアの歯「A」について見れば、「1」、「6」、「11」、「16」、「21」、および「26」の組み合わせが1つの噛み合いパターンを構成する。
 同様に、駆動ギアの歯「A」が従動ギアの谷部「2」に噛み合う状態を初期の噛み合い状態とすると、その歯「A」が噛み合う従動ギアの谷部の位置は、駆動ギアの回転数に応じて、初期状態の「2」→1回転時「7」→2回転時「12」→3回転時「17」→4回転時「22」→5回転時「27」→6回転時「2」となる。すなわち、「2」、「7」、「12」、「17」、「22」、および「27」の組み合わせで、また別の噛み合いパターンを構成する。
 このようにすると、図3に示す構成では、噛み合いパターンは以下の5パターン存在する。つまり、駆動ギアの歯数と従動ギアの歯数の最大公約数の数の通り噛み合いパターンが存在する。
噛み合いパターン1:谷部1、6、11、16、21、26
噛み合いパターン2:谷部2、7、12、17、22、27
噛み合いパターン3:谷部3、8、13、18、23、28
噛み合いパターン4:谷部4、9、14、19、24、29
噛み合いパターン5:谷部5、10、15、20、25、30
 なお、図14で示したように、駆動ギア(歯数25)と従動ギア(歯数30)の歯に番号を付して、マトリックス状に噛み合い状態を示すこともできる。その図からも、歯数25の駆動ギアと歯数30の従動ギアの構成では、歯数の最大公約数である5通りの噛み合いパターンが存在することが分かる。
 S2工程では、このような噛み合いパターンを把握する。
(S3工程)
 この工程では、各噛み合いパターンで回転させた場合のシミュレーションを行う。シミュレーションは、所定のソフトウェアが搭載されたコンピュータを用いて行ってもよく、実機を用いて行ってもよい。
 図16および図17には、任意の1つの噛み合いパターンでギアを回転させた場合のロータの位相の変化を示す。図16および図17は、一対のロータ軸を側面から見た図を示し、駆動ギアの基準位置(例えば図3の歯「A」など)が初期の噛み合い状態から90°ずつ回転した場合の混練ロータの位相を示している。なお、図16および図17では、混練ロータの図手前側のブレードの外縁を白点線で示している。図16には、駆動ギアが0°~990°まで回転した場合の混練ロータの位相を示し、図17には駆動ギアが1080°~2070°まで回転した場合の混練ロータの位相を示している。
 ここで、初期位相は、一対のギアの初期の噛み合い状態に対応した一対の混練ロータの位相を示している。図16では、初期位相において、駆動ロータおよび従動ロータは、各ブレードのランド部が略上方を向いている。そして、駆動ロータおよび従動ロータは、各ブレードのランド部が対向する向きになるように回転し(90°の図)、更に下向きになるように回転する(180°の図)。1回転時(360°の図)には、駆動ロータは初期位相の状態に戻るのに対して、従動ロータは初期位相の状態から所定角度(回転方向上流側に60°)ずれた状態になる。なお、この1回転時は、例えば図3で言えば、歯「A」と谷部「6」が噛み合った状態に相当する。その後も、駆動ロータが2回転、3回転と回転を重ねるたびに、従動ロータの初期位相とのずれは大きくなり、最終的に6回転時に初期位相の状態に戻る。
 図16および図17に示すように、一対の混練ロータの位相は、任意の位相から次回その位相に戻るまでの1サイクルにおいて、同じ位相は存在せず、位相が随時変化していることが分かる。なお、本発明では、一対の混練ロータの1サイクルにおいて取り得る位相の組み合わせを回転位相パターンという。
 なお、図16および図17では、任意の1つの噛み合いパターンに対応する回転位相パターンを示したが、噛み合いパターン毎に回転位相パターンが存在する。すなわち、噛み合いパターンが5パターンの場合は、回転位相パターンも5パターン存在する。例えば、このS3工程では、噛み合いパターン毎の回転位相パターンのシミュレーションを行う。なお、回転位相パターン間においても同じ位相は存在しない。
(S4工程)
 この工程では、S3工程のシミュレーションの結果に基づいて、特定の噛み合いパターンを選択する。例えば、回転位相パターン毎に求められる位相パラメータに基づいて選択する。位相パラメータとして、例えば、一対の混練ロータのブレード間の最接近距離などが挙げられる。
 最接近距離とは、一対の混練ロータのブレード同士が最も接近する距離のことであり、具体的には、近接関係にある2つのブレードにおいて、一方のブレードのランド部の周方向中央位置と他方のブレードのランド部の周方向中央位置との間の距離である。例えば、図16および図17に示した回転位相パターンの90°毎の位相の中では、90°の位相(図16参照)がブレード同士が最接近する位相に相当し、この位相におけるブレード間の距離を最接近距離として用いることができる。
 例えばS4工程では、回転位相パターン毎に上記の最接近距離を求めて、これらの最接近距離に基づいて所望の回転位相パターンを選択し、特定の噛み合いパターンを選択する。これにより、高速ロータと低速ロータのブレードが最接近した時の距離を調整でき、混練性に変化を及ぼすことができる。なお、最接近距離を用いた判断には、両ブレードと陵壁部との位置関係(各ブレードと陵壁部との距離など)も含めてもよい。
 最接近距離の値が小さいほど、混練時における駆動トルクは大きくなると考えられる。そのため、最接近距離が最も大きい回転位相パターンを選択することで、混練時において混練機に過度な負荷が掛かることなどを防止できる。一方で、混練材料の種類や初期粘度、粘度特性などによっては、大きなせん断力が必要となる場合も考えられ、その際には最接近距離が小さい回転位相パターンを選択することも考えられる。そのため、混練材料の粘度特性などによって、選択基準(最接近距離の程度など)を変更してもよい。
 なお、位相パラメータには、回転位相パターンの平均トルクや最大トルクなども用いることができる。これらは、例えばコンピュータの流動解析シミュレーションに基づいて推定することができる。
(S5工程)
 この工程では、S4工程で選択した特定の噛み合いパターンでギアを噛み合わせることにより、混練ロータの初期位相を設定する。図18には、噛み合いパターン毎の初期位相を示している。
 例えば、図18(a)は、図3における噛み合いパターン1の初期位相を示している。このパターン1の初期位相を基準にすると、噛み合いパターン2の初期位相は、噛み合いパターン1に対して従動ロータを回転方向下流側に12°ずらした状態となる。また、噛み合いパターン3~5の初期位相は、さらに12°ずつずらした状態となる。例えば、S4工程で噛み合いパターン1を選択した場合は、混練ロータの初期位相は図18(a)に設定される。
 なお、図3のギア構成の場合、厳密には、各噛み合いパターンでそれぞれ150通りの噛み合い状態があり、それに伴って、混練ロータの回転位相パターン毎に150通りの初期位相が存在するが、これらの初期位相は回転位相パターンで見れば同じであり、これらの中から任意の初期位相を設定すればよい。
 以上のように、従来では、一対のギアの歯数を、単に2割程度の速度差となるように異なる数に設定していたのに対して、本発明では、一対のギアの歯数を互いに素ではない異なる数とした上で、それによって生じる異なる噛み合いパターンの中から特定の噛み合いパターンを選択し混練ロータの初期位相を設定することで、混練空間の形状を変化させることができる。その結果、混練性に影響を及ぼすことができる。
 本発明の混練状態の評価方法および混練機は、接線式ロータの密閉型混練機において、様々な混練パラメータを用いて混練材料の物性変化を把握することができ、また、本発明の混練調整方法は、所望の混練特性を得ることができるので、ゴム、プラスチック、セラミックスなどの混練において、広く利用することができる。また、上記混練調整方法によって、2本の混練ロータを特定の位相になるように調整することにより、混練機の特性を変化させて、混練材料に応じて生産性や分散性などの性能を調整することもできる。
 1  密閉型混練機
 2  混練槽
 2A、2B  ロータ室
 2C 陵壁部
 3A、3B  混練ロータ
 4a、4b  ブレード
 5A、5B  ロータ軸
 6A、6B  軸受
 7A、7B  ギア
 7a 取り付孔
 7b キー溝
 8  電動機(駆動手段)
 8a 回路部
 8b モータ部
 9a 加圧蓋
 9b ロッド
 10 温度センサ
 10a 検出端
 11 電力センサ
 12 制御部
 13 分析部
 14 判定部
 15 報知部
 16 カップリング
 21 密閉型混練機

Claims (10)

  1.  一対のギアで連結され、電動機の駆動によって異なる速度で回転する一対の接線式ロータを備える混練機における混練状態の評価方法であって、
     前記ギアは、互いに素ではない異なる整数の歯数を有しており、
     前記評価方法は、前記混練機に備えられるセンサによって混練時において検出される混練パラメータに基づいてスペクトル分析し、所定の周波数成分の変化を評価する方法であり、
     前記混練パラメータが、混練材料の温度、前記電動機に供給される交流電流の実効値、前記電動機に供給される直流電流値、前記電動機が消費する電力値、前記電動機の負荷率、前記電動機の出力トルク、前記混練機から発生する音響、および前記混練機から発生する振動から選択される少なくともいずれかであることを特徴とする混練状態の評価方法。
  2.  前記一対のギアの歯数がmおよびn(m<n)であって、該mおよびnの間に1より大きい最大公約数kが存在し、かつ、歯数mのギアに接続されたロータの回転数がr(単位:min-1)の場合に、前記混練パラメータに基づいてスペクトル分析し、f=(r・k)/60n(単位:Hz)とその整数倍または整数分の1の周波数成分の変化を評価することを特徴とする請求項1記載の混練状態の評価方法。
  3.  前記評価方法は、前記混練パラメータを処理してスペクトル分析する方法であり、該方法は、前記混練パラメータの移動平均値と現在値との偏差をスペクトル分析することを特徴とする請求項1記載の混練状態の評価方法。
  4.  前記混練機は、非ニュートン流体を混練する混練機であることを特徴とする請求項1記載の混練状態の評価方法。
  5.  一対のギアで連結され、電動機の駆動によって異なる速度で回転する一対の接線式ロータを備える混練機であって、
     前記ギアは、互いに素ではない異なる整数の歯数を有しており、
     前記混練機は、該混練機に備えられるセンサによって混練時において検出される混練パラメータに基づいてスペクトル分析する分析部を有し、
     前記混練パラメータが、混練材料の温度、前記電動機に供給される交流電流の実効値、前記電動機に供給される直流電流値、前記電動機が消費する電力値、前記電動機の負荷率、前記電動機の出力トルク、前記混練機から発生する音響、および前記混練機から発生する振動から選択される少なくともいずれかであることを特徴とする混練機。
  6.  前記混練機は、前記分析部により得られる所定の周波数成分の変化に基づいて、前記混練機の混練の終了タイミングを判定する判定部を有することを特徴とする請求項5記載の混練機。
  7.  一対のギアで連結されて異なる速度で回転する一対の接線式ロータを備える混練機における混練調整方法であって、
     前記混練調整方法は、前記ギアの歯数を、複数の歯数の組合せの中から、互いに素ではない異なる整数の歯数の組合せに設定し、その上で、前記ギアの複数の噛み合いパターンの中から特定の噛み合いパターンを選択して、前記特定の噛み合いパターンで前記ギアを噛み合わせることにより、前記接線式ロータの初期位相を設定する方法であり、
     前記特定の噛み合いパターンは、前記複数の噛み合いパターンで前記ギアを噛み合わせた状態からそれぞれ導かれる前記接線式ロータの回転位相パターンに基づいて選択することを特徴とする混練調整方法。
  8.  前記接線式ロータは、それぞれ複数のブレードを備えていることを特徴とする請求項7記載の混練調整方法。
  9.  前記回転位相パターンから求められる前記接線式ロータのブレード間の最接近距離に基づいて、前記特定の噛み合いパターンを選択することを特徴とする請求項8記載の混練調整方法。
  10.  前記ギアにおいて、歯数が多い方のギアの歯数は、他方のギアの歯数に対して10%~50%多いことを特徴とする請求項7記載の混練調整方法。
PCT/JP2023/012990 2022-03-30 2023-03-29 混練状態の評価方法、混練機、および混練調整方法 WO2023190764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23780772.2A EP4338913A1 (en) 2022-03-30 2023-03-29 Kneading state evaluation method, kneader, and kneading adjustment method
CN202380012389.9A CN117529362A (zh) 2022-03-30 2023-03-29 混炼状态的评价方法、混炼机以及混炼调整方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-057747 2022-03-30
JP2022057748 2022-03-30
JP2022-057748 2022-03-30
JP2022057747A JP7154664B1 (ja) 2022-03-30 2022-03-30 混練調整方法
JP2022-188782 2022-11-25
JP2022188782A JP7299655B1 (ja) 2022-03-30 2022-11-25 混練状態の評価方法および混練機

Publications (1)

Publication Number Publication Date
WO2023190764A1 true WO2023190764A1 (ja) 2023-10-05

Family

ID=88202698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012990 WO2023190764A1 (ja) 2022-03-30 2023-03-29 混練状態の評価方法、混練機、および混練調整方法

Country Status (4)

Country Link
EP (1) EP4338913A1 (ja)
CN (1) CN117529362A (ja)
TW (1) TW202339849A (ja)
WO (1) WO2023190764A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154982A (ja) * 1992-11-26 1994-06-03 Nippon Steel Corp 連続鋳造の鋳型温度監視方法および装置
JPH0716834A (ja) * 1993-07-06 1995-01-20 Kobe Steel Ltd バッチ式ミキサー
JPH09313916A (ja) 1996-05-27 1997-12-09 Suzuka Eng Kk 密閉加圧混練機
JP2003177115A (ja) * 2001-12-11 2003-06-27 Pacific Systems Corp 高流動コンクリート品質管理システム
JP2016109674A (ja) * 2014-12-02 2016-06-20 株式会社品川工業所 被処理物の状態変化を検出する装置、プログラム、および方法、ならびに処理装置
JP2018202762A (ja) * 2017-06-06 2018-12-27 日本スピンドル製造株式会社 混練装置
WO2021033390A1 (ja) 2019-08-22 2021-02-25 パナソニックIpマネジメント株式会社 判定システム、判定方法、プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06154982A (ja) * 1992-11-26 1994-06-03 Nippon Steel Corp 連続鋳造の鋳型温度監視方法および装置
JPH0716834A (ja) * 1993-07-06 1995-01-20 Kobe Steel Ltd バッチ式ミキサー
JPH09313916A (ja) 1996-05-27 1997-12-09 Suzuka Eng Kk 密閉加圧混練機
JP2003177115A (ja) * 2001-12-11 2003-06-27 Pacific Systems Corp 高流動コンクリート品質管理システム
JP2016109674A (ja) * 2014-12-02 2016-06-20 株式会社品川工業所 被処理物の状態変化を検出する装置、プログラム、および方法、ならびに処理装置
JP2018202762A (ja) * 2017-06-06 2018-12-27 日本スピンドル製造株式会社 混練装置
WO2021033390A1 (ja) 2019-08-22 2021-02-25 パナソニックIpマネジメント株式会社 判定システム、判定方法、プログラム

Also Published As

Publication number Publication date
EP4338913A1 (en) 2024-03-20
CN117529362A (zh) 2024-02-06
TW202339849A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
TWI574811B (zh) 密閉式橡膠混練機之混練效率的評估方法
US6282502B1 (en) Method of designing uniform motion, substantially vibration-free spur gears
US7599824B2 (en) Gear cutting simulation method, gear cutting simulation program, and gear cutting simulation device
WO2023190764A1 (ja) 混練状態の評価方法、混練機、および混練調整方法
EP2730203A1 (de) Küchenmaschine mit einem Rührgefäß sowie Verfahren zum Betreiben einer solchen Küchenmaschine
JP2007032836A (ja) 円弧歯形を使用した歯車及び内接歯車式ポンプ、歯車伝達装置、歯車製造法
JP6152703B2 (ja) 未加硫ゴムの混練異常判定方法および混練制御方法
CN110131058A (zh) 功率匹配控制方法及装置
JP7299655B1 (ja) 混練状態の評価方法および混練機
JP6654400B2 (ja) 被処理物の状態変化を検出する装置、プログラム、および方法、ならびに処理装置
JP2009156735A (ja) アスファルト混合物の作業性評価試験機
JP5810279B2 (ja) 自動製パン機
CN200976802Y (zh) 真空桨叶式双轴和面机
CN104416238B (zh) 渐开线齿形的加工方法及其加工机的控制装置
JP7154664B1 (ja) 混練調整方法
US20230202070A1 (en) Machine learning method, machine learning device, machine learning program, communication method, and kneading device
JP2017077649A (ja) 密閉式ゴム混練機の混練安定性の評価方法
JP6644611B2 (ja) 風車用増速機の歯数特定装置および歯数特定方法
JP4811676B2 (ja) 円弧歯形を使用した歯車及び歯車伝達装置
JP3642274B2 (ja) 歯車設計方法および歯車
JPH0742813A (ja) 鼓形ウオーム歯車
CN2856494Y (zh) 一种聚合物输送齿轮泵用齿轮
US20060147592A1 (en) Method and arrangement related to a dough forming
JP6644609B2 (ja) 歯車対の噛み合い周波数特定装置および噛み合い周波数特定方法
CN210729495U (zh) 一种控温型水杨酸甲酯反应釜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023780772

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18572179

Country of ref document: US

Ref document number: 202380012389.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023780772

Country of ref document: EP

Effective date: 20231215