WO2023190184A1 - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2023190184A1
WO2023190184A1 PCT/JP2023/011871 JP2023011871W WO2023190184A1 WO 2023190184 A1 WO2023190184 A1 WO 2023190184A1 JP 2023011871 W JP2023011871 W JP 2023011871W WO 2023190184 A1 WO2023190184 A1 WO 2023190184A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
weight
crosslinked
resin particles
particles
Prior art date
Application number
PCT/JP2023/011871
Other languages
English (en)
French (fr)
Inventor
亜里紗 園山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023190184A1 publication Critical patent/WO2023190184A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a thermoplastic resin composition.
  • thermoplastic resin be heated and melted during molding and then solidified in a short time.
  • thermoplastic resins As a method for improving such solidification properties, it is known to blend various additives into thermoplastic resins.
  • Patent Document 1 based on 100 parts by weight of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxyalkanoate) having an average particle size of 300 ⁇ m or less and a relatively high melting temperature is It is described that crystal solidification of the thermoplastic resin poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) is promoted by blending 0.1 to 20 parts by weight of ester). .
  • Patent Document 1 Although it is possible to promote crystal solidification of a thermoplastic resin, the effect is not necessarily sufficient and needs to be further improved.
  • the present invention aims to provide a thermoplastic resin composition whose solidification after melting is promoted.
  • thermoplastic resin As a result of extensive studies, the present inventors found that by blending crosslinked resin particles made of polyhydroxyalkanoate resin and satisfying a specific gel fraction into a thermoplastic resin, the solidification of the thermoplastic resin after melting can be reduced.
  • the present invention was completed based on the discovery that this can be promoted.
  • the present invention provides crosslinked resin particles (B) containing 80 to 99.9 parts by weight of a thermoplastic resin (A) and a polyhydroxyalkanoate resin and having a gel fraction of 50% or more. 1 to 20 parts by weight [provided that the total amount of (A) and (B) is 100 parts by weight].
  • the present invention also relates to a molded article of the thermoplastic resin composition.
  • the present invention also relates to a thermoplastic resin solidification accelerator containing crosslinked resin particles (B) containing a polyhydroxyalkanoate resin and having a gel fraction of 50% or more.
  • thermoplastic resin composition whose solidification after melting is promoted.
  • the thermoplastic resin composition according to the present invention is advantageous in terms of biodegradability because it contains crosslinked resin particles made of a polyhydroxyalkanoate resin.
  • the crosslinked resin particles can be used as a solidification accelerator for thermoplastic resins.
  • the thermoplastic resin composition according to the present embodiment includes at least a thermoplastic resin (A) and crosslinked resin particles (B) containing a polyhydroxyalkanoate resin and having a gel fraction of 50% or more. It contains.
  • thermoplastic resin composition the solidification after melting proceeds at a relatively high temperature and the start of solidification is accelerated, so that productivity during melt processing can be improved.
  • crosslinked resin particles (B) will be explained.
  • the crosslinked resin particles (B) are particles composed of a polyhydroxyalkanoate resin as a main resin component.
  • polyhydroxyalkanoate resin may be abbreviated as "PHA”.
  • PHA is a general term for polymers containing hydroxyalkanoic acids as monomer units, and is generally biodegradable.
  • PHA is an aliphatic polyester, preferably a polyester containing no aromatic rings.
  • the PHA is not particularly limited, but includes, for example, polyglycolic acid, poly(3-hydroxyalkanoate) resin, poly(4-hydroxyalkanoate) resin, and the like. As PHA, only one type may be used, or two or more types may be used in combination. Among these, poly(3-hydroxyalkanoate) resins are preferred. Hereinafter, poly(3-hydroxyalkanoate) resin may be abbreviated as "P3HA".
  • the P3HA is a 3-hydroxyalkanoic acid repeating unit represented by the formula: [-CHR-CH 2 -CO-O-] (wherein R is an alkyl group represented by C n H 2n+1 , and n is 1 or more is an integer of 15 or less) as an essential repeating unit.
  • the P3HA preferably contains the 3-hydroxyalkanoic acid repeating unit in an amount of 50 mol% or more of the total monomer repeating units (100 mol%), more preferably 70 mol% or more.
  • P3HA is not particularly limited, but examples include poly(3-hydroxybutyrate) (abbreviation: P3HB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (abbreviation: P3HB3HH), etc. .
  • P3HA poly(3-hydroxybutyrate)
  • P3HB3HH poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
  • P3HA3HH poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
  • P3HA can be produced by microorganisms. Such microorganism-produced P3HA is usually P3HA composed only of D-form (R-form) hydroxyalkanoic acid repeating units. Among microorganism-produced P3HA, P3HB and P3HB3HH are preferred, and P3HB3HH is more preferred, since industrial production is easy.
  • the composition ratio of 3HB repeating units is 60 to 99 mol% in all monomer repeating units (100 mol%) from the viewpoint of balance between flexibility and strength. It is preferably 65 to 97 mol%, and even more preferably 67 to 95 mol%.
  • the composition ratio of 3HB repeating units is 60 mol% or more, the rigidity of the crosslinked resin particles (B) can be further improved.
  • the composition ratio of 3HB repeating units is 99 mol% or less, the flexibility of the crosslinked resin particles (B) tends to be further improved.
  • the monomer composition ratio of P3HA can be measured by gas chromatography or the like (for example, see International Publication No. 2014/020838). As P3HA, two or more types having mutually different composition ratios of 3HB repeating units may be used in combination.
  • the microorganism that produces P3HA is not particularly limited as long as it has the ability to produce P3HA.
  • the first P3HB-producing bacterium was Bacillus megaterium, which was discovered in 1925, and other bacteria include Cupriavidus necator (former classification: Alcaligenes eutrophus), Ralstonia eutrophus Hua (Ralstonia eutropha)) , Alcaligenes latus and other natural microorganisms are known. In these microorganisms, P3HB accumulates inside the cells.
  • Aeromonas caviae which is a P3HB3HH producing bacterium
  • Aeromonas caviae which is a P3HB3HH producing bacterium
  • a producing bacterium of copolymers of 3HB and other hydroxyalkanoates in particular, in order to increase the productivity of P3HB3HH, the Alcaligenes eutrophus AC32 strain (FERM BP-6038) into which genes of the P3HA synthetase group were introduced (T. Fukui, Y. Doi, J. Bateriol., 17 9 , p. 4821-4830 (1997)) is preferred. Microbial cells obtained by culturing such microorganisms under appropriate conditions and accumulating P3HA inside the cells are used. In addition to the above, genetically modified microorganisms into which various P3HA synthesis-related genes have been introduced may be used, and culture conditions including the type of substrate may be optimized, depending on the P3HA to be produced.
  • the molecular weight of PHA is not particularly limited, but the weight average molecular weight is preferably 50,000 to 3,000,000, preferably 100,000 to 2,000,000, and preferably 150,000 to 1,500,000. More preferred. By setting the weight average molecular weight to 50,000 or more, it is possible to avoid a tendency for the strength of the crosslinked resin particles to decrease, or to avoid a tendency for the crosslinked resin particles to become sticky due to low molecular weight components. On the other hand, PHAs with weight average molecular weights exceeding 3,000,000 may be difficult to produce themselves or to handle for purposes of the present invention.
  • the numerical value of the weight average molecular weight is a value measured before performing the crosslinking treatment of PHA.
  • the method for measuring the weight average molecular weight is to use gel permeation chromatography (GPC) ("High Performance Liquid Chromatograph 20A System” manufactured by Shimadzu Corporation) and use polystyrene gel ("K-G 4A", "K -806M, etc.), using chloroform as a mobile phase, and calculating the molecular weight in terms of polystyrene.
  • GPC gel permeation chromatography
  • K-G 4A "K -806M, etc.
  • the calibration curve can be created using polystyrene having weight average molecular weights of 31,400, 197,000, 668,000, and 1,920,000.
  • a column suitable for measuring the molecular weight may be used as a column in the GPC.
  • the crosslinked resin particles (B) have a crosslinked structure in which molecular chains of PHA are bonded to each other. Since the crosslinked resin particles (B) have a certain amount or more of such a crosslinked structure, the crosslinked resin particles (B) exhibit a high gel fraction, specifically, a gel fraction of 50% or more. By exhibiting such a high gel fraction, crystal solidification of the thermoplastic resin (A) can be promoted.
  • the value of the gel fraction is preferably 60% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more. Further, it may be 85% or more, or 90% or more.
  • the upper limit of the gel fraction is not particularly limited and may be 100% or less, but from the viewpoint of production efficiency of crosslinked resin particles (B), it is preferably 99.5% or less, and 99% or less is more preferable. preferable. Moreover, it may be 98% or less, 97% or less, or 96% or less.
  • the gel fraction is a value measured as follows. Dry crosslinked resin particles (B) are added to chloroform at a concentration of 0.7% by weight, and dissolved at 60° C. for 30 minutes to obtain a chloroform solution. After that, the chloroform solution is left to stand at room temperature for 3 hours, and then filtered through a membrane filter with a pore size of 0.45 ⁇ m. The gel remaining on the filter is dried and weighed together with the filter, and the gel fraction is calculated using the following formula.
  • Gel fraction (weight of filter containing dry gel - weight of filter only) / weight of crosslinked resin particles used for measurement x 100 (%)
  • the volume average particle diameter of the crosslinked resin particles (B) is preferably within the range of 0.1 ⁇ m or more and 10 ⁇ m or less. By having such a particle size, it becomes possible to promote crystal solidification of the thermoplastic resin (A) more efficiently.
  • the lower limit of the particle size is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 0.5 ⁇ m or more, from the viewpoint of practical use opportunities.
  • the upper limit of the particle size is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the original shape of the crosslinked resin particles (B) may collapse and the volume average particle diameter may decrease.
  • the volume average particle diameter is a value measured in a state where the crosslinked resin particles (B) are dispersed in an aqueous solvent.
  • a general-purpose measuring device can be used, and an example of such a device is Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd.
  • the type of crosslinking in the crosslinked resin particles (B) is not particularly limited, but it is preferably crosslinked using a peroxide.
  • peroxide radicals generated by decomposition of peroxide act on PHA molecules, and the PHA molecular chains are directly bonded to each other, thereby forming the crosslinked structure.
  • the peroxide may be an organic peroxide or an inorganic peroxide.
  • Organic peroxides are preferred because they can increase the gel fraction more efficiently.
  • the organic peroxide may include diacyl peroxide, alkyl peroxy ester, dialkyl peroxide, hydroperoxide, peroxy ketal, peroxy carbonate, and peroxy, taking into account the heating temperature and time during crosslinking treatment. It is preferred to use at least one selected from the group consisting of dicarbonates.
  • organic peroxides include butyl peroxyneododecanoate, octanoyl peroxide, dilauroyl peroxide, succinic peroxide, a mixture of toluoyl peroxide and benzoyl peroxide, and benzoyl peroxide.
  • t-butylperoxyisopropyl monocarbonate t-pentylperoxyisopropyl monocarbonate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-pentylperoxy 2-ethylhexyl Monocarbonate, t-hexylperoxy 2-ethylhexyl monocarbonate, t-amylperoxyisopropyl monocarbonate, di-t-hexyl peroxide, t-butylperoxy 2-ethylhexanoate, t-butylperoxyisobutyl rate, t-hexylperoxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, t-butylperoxypivalate, t-hexylperoxypivalate, t-he
  • the peroxide is preferably a compound whose 1-hour half-life temperature is 200°C or lower, more preferably 170°C or lower, and 140°C or lower, since the heating temperature during crosslinking treatment can be set low. It is even more preferable that there be.
  • the lower limit may be 50°C or higher, 60°C or higher, or 70°C or higher.
  • Organic peroxides exhibiting such a 1-hour half-life temperature include t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, di-sec-butylperoxydicarbonate, and t-butylperoxy.
  • the inorganic peroxide may be, for example, hydrogen peroxide, potassium peroxide, calcium peroxide, or Examples include sodium, magnesium peroxide, potassium persulfate, sodium persulfate, ammonium persulfate, and the like.
  • hydrogen peroxide, potassium persulfate, sodium persulfate, and ammonium persulfate are preferred because they are easy to handle and have a decomposition temperature suitable for the heating temperature during crosslinking treatment.
  • One type of inorganic peroxide may be used alone, or two or more types may be used in combination. Further, organic peroxides and inorganic peroxides may be used in combination.
  • the crosslinked structure in the crosslinked resin particles (B) may be introduced using only peroxide, or may be introduced using both peroxide and a polyfunctional compound. good. The latter makes it possible to increase the gel fraction of the crosslinked resin particles (B) with a smaller amount of peroxide.
  • the polyfunctional compound refers to a compound that has two or more functional groups in one molecule that can crosslink PHA.
  • compounds having reactivity with radicals generated from peroxides are preferred, and compounds having two or more radical-reactive groups in one molecule are particularly preferred.
  • the radical-reactive group is preferably at least one selected from the group consisting of a vinyl group, an allyl group, an acryloyl group, or a methacryloyl group.
  • Such polyfunctional compounds are not particularly limited, but include, for example, allyl (meth)acrylate; allyl alkyl (meth) acrylates; allyloxyalkyl (meth) acrylates; ethylene glycol di (meth) acrylate, butane diol di (meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol (meth)acrylate, etc.
  • Polyfunctional (meth)acrylates having two or more meth)acrylic groups examples include divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene.
  • examples include divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene.
  • Preferred are allyl methacrylate, triallyl isocyanurate, butanediol di(meth)acrylate, and divinylbenzene, and particularly preferred are allyl methacrylate and triallyl isocyanurate.
  • the obtained crosslinked resin particles (B) may usually contain a structure derived from the polyfunctional compound.
  • the molecular chains of PHA are bonded to each other via a structure derived from the polyfunctional compound.
  • the crosslinked resin particles (B) may be composed only of PHA having a crosslinked structure, or may further contain components other than PHA having a crosslinked structure.
  • components other than PHA having a crosslinked structure include resins other than PHA, antioxidants, hydrolysis inhibitors, antiblocking agents, crystal nucleating agents, ultraviolet absorbers, and the like.
  • the proportion of PHA in the crosslinked resin particles (B) is not particularly limited, but may be 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and even more preferably 90% by weight or more. , 95% by weight or more is particularly preferred. It may be 99% by weight or more.
  • the upper limit is not particularly limited, as long as it is 100% by weight or less.
  • resins other than PHA include aliphatic polyesters having a structure in which aliphatic diols and aliphatic dicarboxylic acids are polycondensed, and aliphatic aromatic polyesters having both an aliphatic compound and an aromatic compound as monomers. It will be done.
  • the former include polyethylene succinate, polybutylene succinate (PBS), polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polybutylene succinate adipate (PBSA), polyethylene sebacate, poly Examples include butylene sebacate.
  • Examples of the latter include poly(butylene adipate-co-butylene terephthalate) (PBAT), poly(butylene sebacate-co-butylene terephthalate), poly(butylene azelate-co-butylene terephthalate), and poly(butylene succinate-co-butylene terephthalate). co-butylene terephthalate) (PBST).
  • PBAT poly(butylene adipate-co-butylene terephthalate)
  • PBST poly(butylene sebacate-co-butylene terephthalate)
  • PBST co-butylene terephthalate
  • the other resins may be used alone or in combination of two or more.
  • the crosslinked resin particles (B) are different from the foamed resin particles as disclosed in International Publication No. 2007/049694 and International Publication No. 2019/146555, and are not foamed, i.e.
  • the particles preferably contain substantially no air bubbles inside the particles.
  • the apparent density of the crosslinked resin particles (B) exhibits a relatively large value, preferably exceeding 0.6 g/cm 3 , more preferably 0.7 g/cm 3 or more, and More preferably, it is .9 g/cm 3 or more.
  • the apparent density of the crosslinked resin particles (B) can be determined by the method described in JIS K0061 (method for measuring density and specific gravity of chemical products) or JIS Z8807 (method for measuring density and specific gravity of solids).
  • the average weight per crosslinked resin particle (B) is not particularly limited, but since the crosslinked resin particle (B) has a small volume average particle size of 10 ⁇ m or less, it is far less than 0.1 mg. It is a value.
  • the crosslinked resin particles (B) may be dried.
  • the shape after drying can be powder, pellet, crumb, sheet, etc. depending on the drying method.
  • the crosslinked resin particles (B) can be produced by crosslinking PHA in the presence of peroxide in an aqueous dispersion containing PHA particles before crosslinking treatment. In order to efficiently crosslink PHA, it is preferable to heat an aqueous dispersion of PHA particles containing peroxide to a temperature suitable for decomposing the peroxide.
  • the method for producing crosslinked resin particles (B) includes a step (1) of preparing an aqueous dispersion of PHA particles in which PHA particles before crosslinking treatment are dispersed in water; Step (2) of adding peroxide to the liquid and impregnating the PHA particles with peroxide, and heating the aqueous dispersion of PHA particles impregnated with peroxide to a heating temperature to crosslink the PHA ( 3) is preferably included. Furthermore, it is more preferable to include a step (4) of maintaining the heating temperature after all the peroxide is added.
  • the aqueous dispersion of PHA particles is prepared by culturing PHA-producing microorganisms to accumulate PHA in the microbial cells, and then destroying the microbial cells in the culture solution and separating and removing the bacterial components.
  • the aqueous dispersion may be the obtained aqueous dispersion, or an aqueous dispersion obtained by concentrating or diluting the aqueous dispersion. According to such a method, the process from producing PHA particles by culturing PHA-producing microorganisms to crosslinking treatment can be carried out without separating the PHA particles from water.
  • an aqueous dispersion of PHA particles can also be prepared by dispersing dried PHA particles in water.
  • the aqueous dispersion may contain, in addition to water, an organic solvent that is compatible with water.
  • the volume average particle diameter of the PHA particles is preferably within the same range as the volume average particle diameter of the crosslinked resin particles (B) described above.
  • the volume average particle size can usually be within the above range, so a desired volume average particle size can be achieved without implementing a special process to adjust the particle size.
  • An aqueous dispersion of PHA particles can be obtained.
  • the concentration of PHA particles in the aqueous dispersion is not particularly limited and can be set as appropriate, but may be, for example, about 1 to 70% by weight, preferably about 5 to 50% by weight.
  • the aqueous dispersion of PHA particles preferably contains a dispersant in order to improve the dispersibility of the PHA particles and allow the crosslinking reaction to proceed uniformly.
  • dispersants include anionic surfactants such as sodium dioctyl sulfosuccinate, sodium dodecyl sulfate, sodium lauryl sulfate, and sodium oleate; cationic surfactants such as lauryl trimethylammonium chloride; glycerin fatty acid ester, sorbitan fatty acid ester.
  • nonionic surfactants such as sucrose fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene polyoxypropylene glycol; polyvinyl alcohol, ethylene-modified polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, ethylcellulose, Examples include water-soluble polymers such as hydroxymethyl cellulose, hydroxyethyl cellulose, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, polymethacrylic acid, and sodium polymethacrylate. These dispersants may be used alone or in combination of two or more.
  • the amount added is not particularly limited, but may be, for example, 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of PHA particles. .
  • step (2) peroxide is added to the aqueous dispersion of PHA particles obtained in step (1) to impregnate the PHA particles with peroxide.
  • peroxide those mentioned above can be used.
  • Peroxide can be added in various forms such as solid or liquid. Alternatively, a liquid diluted with a diluent or the like may be added. Peroxide may be added all at once, continuously or in portions.
  • the polyfunctional compound is also added to the aqueous dispersion of PHA particles in this step (2).
  • the polyfunctional compound those mentioned above can be used.
  • the polyfunctional compound can be added in various forms such as solid or liquid. Alternatively, a liquid diluted with a diluent or the like may be added.
  • the polyfunctional compound may be added all at once, continuously or in portions.
  • the temperature of the aqueous dispersion is increased, e.g.
  • the temperature may be set below a temperature suitable for decomposing the peroxide used in the next step (3), and the temperature may be maintained, for example, for about 1 minute to 5 hours while stirring the aqueous dispersion.
  • the temperature of the aqueous dispersion during impregnation may be about 10 to 60°C.
  • the amount of peroxide to be used can be appropriately set in consideration of the gel fraction of the crosslinked resin particles (B), but for example, it should be 0.01 to 10 parts by weight based on 100 parts by weight of PHA particles. is preferable, 0.1 to 8 parts by weight is more preferable, even more preferably 0.3 to 5 parts by weight, and particularly preferably 0.5 to 3 parts by weight.
  • the amount of the polyfunctional compound to be used may be appropriately determined in consideration of the gel fraction of the crosslinked resin particles (B), and is, for example, 0.01 to 20 parts by weight based on 100 parts by weight of the PHA particles. It is preferably 0.05 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, even more preferably 0.2 to 5 parts by weight, and particularly preferably 0.3 to 3 parts by weight.
  • step (3) the aqueous dispersion of PHA particles impregnated with peroxide is heated to a temperature suitable for decomposing the peroxide.
  • the heating temperature is preferably within a range of about 25° C. above and below the 1-hour half-life temperature of the peroxide described above. Specifically, the heating temperature is preferably 30 to 140°C, more preferably 50 to 135°C, and even more preferably 60 to 130°C. According to this method, since it is possible to crosslink PHA at a temperature lower than the melting temperature of PHA, it is possible to avoid deterioration of PHA due to heating during crosslinking treatment.
  • the heating temperature is not particularly limited, but is preferably from 1 minute to 15 hours, more preferably from 1 hour to 10 hours.
  • dry crosslinked resin particles (B) can be obtained by separating the crosslinked resin particles (B) from the aqueous dispersion and removing water.
  • the method for separating the crosslinked resin particles (B) is not particularly limited, and for example, filtration, centrifugation, heat drying, freeze drying, spray drying, etc. can be used.
  • spray drying dried crosslinked resin particles (B) can be obtained directly from the aqueous dispersion.
  • the crosslinked resin particles (B) can be obtained in the form of pellets while completely removing residual moisture.
  • a coagulation step using a coagulant or pH adjustment may be carried out.
  • the blending amount of the crosslinked resin particles (B) is 0.1 to 20 parts by weight based on the total of 100 parts by weight of the thermoplastic resin (A) and the crosslinked resin particles (B). Parts by weight.
  • the blending amount is preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, particularly preferably 1 part by weight or more.
  • the upper limit of the blending amount is preferably 15 parts by weight or less, more preferably 12 parts by weight or less, and particularly preferably 10 parts by weight or less.
  • thermoplastic resin (A) that is the matrix resin is not particularly limited as long as it is a resin that can be molded into a desired shape by melting by heating and then cooling and solidifying.
  • polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, polytetrafluoroethylene, acrylic resins such as polymethyl methacrylic acid, AS resins, polyamides, polyacetals, polycarbonates, Examples include modified polyphenylene ether, polyester resin, and cyclic polyolefin.
  • These thermoplastic resins may be used alone or in combination of two or more.
  • polyester resin is particularly preferred.
  • the polyester resin include the aforementioned PHA, an aliphatic polyester such as a polyester having a structure in which an aliphatic diol and an aliphatic dicarboxylic acid are polycondensed, and monomers containing both an aliphatic compound and an aromatic compound.
  • examples include aliphatic aromatic polyester.
  • aliphatic polyesters other than PHA examples include polycaprolactone, polyethylene succinate, polybutylene succinate (PBS), polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polybutylene succinate adipate (PBSA), polyethylene sebacate, polybutylene sebacate, and the like.
  • polyesters examples include poly(butylene adipate-co-butylene terephthalate) (PBAT), poly(butylene sebacate-co-butylene terephthalate), poly(butylene azelate-co-butylene terephthalate), poly( butylene succinate-co-butylene terephthalate) (PBST) and the like. These polyester resins may be used alone or in combination of two or more.
  • thermoplastic resin (A) also contains a biodegradable resin. In this case, the biodegradability of the thermoplastic resin composition as a whole can be improved.
  • thermoplastic resin (A) is also a resin produced from plant-derived raw materials.
  • thermoplastic resin (A) contains a biodegradable resin
  • the content thereof is preferably 10 to 100% by weight, more preferably 30% by weight or more, based on the entire thermoplastic resin (A). It is more preferably 50% by weight or more, even more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the biodegradable resin used as the thermoplastic resin (A) preferably contains the above-mentioned aliphatic polyester, and particularly preferably contains PHA, since it has an excellent solidification promoting effect due to the crosslinked resin particles (B). Note that the PHA used as the thermoplastic resin (A) preferably does not have a crosslinked structure.
  • thermoplastic resin (A) contains PHA
  • its content is preferably 10 to 100% by weight, more preferably 30% by weight or more, and 50% by weight based on the entire thermoplastic resin (A).
  • the content is more preferably 70% by weight or more, even more preferably 90% by weight or more.
  • thermoplastic resin (A) that can be used as the thermoplastic resin (A) is not particularly limited, and examples thereof include polyglycolic acid, P3HA, poly(4-hydroxyalkanoate)-based resins, and the like.
  • PHA only one type may be used, or two or more types may be used in combination. Among these, P3HA is particularly preferred.
  • thermoplastic resin (A) is the same as the P3HA associated with the crosslinked resin particles (B), and the various P3HAs described above can be used.
  • the P3HA used as the thermoplastic resin (A) and the P3HA used for the crosslinked resin particles (B) may be the same or different.
  • thermoplastic resin (A) contains 3-hydroxybutanoic acid (3HB) repeating units
  • 3HB repeating units are included in all monomer repeating units (100 mol%).
  • the composition ratio is preferably 80 to 99 mol%, more preferably 82 to 97 mol%.
  • the composition ratio of 3HB repeating units is 80 mol% or more, the rigidity of P3HA can be further improved.
  • the composition ratio of 3HB repeating units is 99 mol% or less, the flexibility of P3HA tends to be further improved.
  • two or more types having mutually different composition ratios of 3HB repeating units may be used in combination.
  • the molecular weight of PHA used as the thermoplastic resin (A) is not particularly limited, but the weight average molecular weight is preferably 50,000 to 3,000,000, preferably 100,000 to 2,000,000, and 150 ,000 to 1,500,000 is more preferable. By setting the weight average molecular weight to 50,000 or more, sufficient rigidity and strength can be obtained in the thermoplastic resin composition according to the present embodiment. On the other hand, PHA with a weight average molecular weight exceeding 3,000,000 may be difficult to produce itself or to handle in order to achieve the purpose of the present invention.
  • the thermoplastic resin composition may further contain a crystal nucleating agent.
  • a crystal nucleating agent By containing the crystal nucleating agent in the thermoplastic resin composition, when the thermoplastic resin (A) is a crystalline resin, crystallization during molding is further promoted, and molding processability, productivity, etc. It can be improved further. Furthermore, a thermoplastic resin composition with excellent heat resistance or mechanical properties can be obtained.
  • the crystal nucleating agent is not particularly limited, and conventionally known ones can be used, such as talc, kaolinite, montmorinite, mica, synthetic mica, clay, zeolite, silica, carbon black, graphite, and boron nitride.
  • inorganic substances such as zinc oxide, titanium oxide, tin oxide, calcium carbonate, magnesium carbonate, aluminum oxide, neodymium oxide, barium sulfate, sodium chloride, metal phosphates; natural substances such as erythritol, pentaerythritol, galactitol, mannitol, arabitol, etc.
  • polysaccharides such as chitin and chitosan
  • polyols such as aliphatic alcohols (polyols), polyvinyl alcohol, and polyethylene oxide
  • the content of the crystal nucleating agent is not particularly limited as long as it can promote crystallization of the thermoplastic resin (A), but it is preferably 0.05 to 12 parts by weight based on 100 parts by weight of the thermoplastic resin (A). , more preferably 0.1 to 10 parts by weight, and even more preferably 0.5 to 8 parts by weight.
  • the content of the crystal nucleating agent is within the above range, the effect as a crystal nucleating agent can be obtained while suppressing deterioration of the viscosity during molding and the physical properties of the molded article.
  • the thermoplastic resin composition may further contain a lubricant.
  • a lubricant By containing a lubricant, the surface smoothness of the obtained molded article can be improved.
  • the lubricant include, but are not limited to, fatty acid metal salts such as magnesium stearate and calcium stearate, behenic acid amide, stearic acid amide, erucic acid amide, oleic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, etc.
  • fatty acid amides polyethylene wax, oxidized polyester wax, glycerin monofatty acid esters such as glycerin monostearate, glycerin monobehenate, glycerin monolaurate; organic acid monoglycerides such as succinic acid saturated fatty acid monoglyceride; sorbitan behenate, sorbitan stear sorbitan fatty acid esters such as sorbitan laurate and sorbitan laurate; polyglycerin fatty acid esters such as diglycerin stearate, diglycerin laurate, tetraglycerin stearate, tetraglycerin laurate, decaglycerin stearate, and decaglycerin laurate; stearyl stearate Examples include higher alcohol fatty acid esters such as, but are not limited to.
  • the lubricants may be used alone or in combination of two or more.
  • the content of the lubricant is not particularly limited as long as it can impart lubricity to the molded article, but it is 0.01 parts by weight per 100 parts by weight of the thermoplastic resin (A). -20 parts by weight is preferred, more preferably 0.05-10 parts by weight, even more preferably 0.1-10 parts by weight, even more preferably 0.2-5 parts by weight, and even more preferably 0.3-4 parts by weight. part is particularly preferred.
  • the content of the lubricant is within the above range, the lubricant effect can be obtained while avoiding bleeding out of the lubricant onto the surface of the molded article.
  • the thermoplastic resin composition according to the present embodiment includes a plasticizer; an organic filler; an inorganic filler; an antioxidant; a hydrolysis inhibitor; an ultraviolet absorber; a dye; It may contain other components such as colorants such as pigments and antistatic agents.
  • the plasticizer is not particularly limited, but includes, for example, polyester plasticizers such as polypropylene glycol sebacate; fats such as di-1-butyl adipate, di-n-butyl sebacate, and di-2-ethylhexyl azelate.
  • polyester plasticizers such as polypropylene glycol sebacate
  • fats such as di-1-butyl adipate, di-n-butyl sebacate, and di-2-ethylhexyl azelate.
  • Group dibasic acid ester plasticizers Glycerin plasticizers such as glycerin diacetomonolaurate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate; Polyvalent carboxylic acid ester plasticizer; polyalkylene glycol plasticizer such as polyethylene glycol, polypropylene glycol, poly(ethylene oxide/propylene oxide) block and/or random copolymer, polytetramethylene glycol; diphenyl-2-phosphate Phosphate ester plasticizers such as ethylhexyl and diphenyloctyl phosphate; Epoxy plasticizers such as epoxidized soybean oil and epoxidized linseed oil fatty acid butyl ester; Castor oil fatty acid ester, methyl ricinoleate, ethyl ricinoleate, isopropyl ricinoleate , butyl ricinoleate,
  • the organic filler is not particularly limited, but includes, for example, wood-based materials such as wood chips, wood flour, and sawdust, and naturally derived materials such as rice husk, rice flour, starch, corn starch, rice straw, wheat straw, and natural rubber.
  • fillers organic fibers such as vegetable natural fibers, animal natural fibers, and synthetic fibers; polyester, polyacrylic, polyamide, nylon, polyethylene, polyolefin, polyvinyl alcohol, polyvinyl chloride, polyurethane, polyacetal, aramid, PBO (
  • fillers include synthetic resin materials such as poly(p-phenylenebenzobisoxazole), polyphenylene sulfide, acetyl cellulose, polybenzazole, polyarylate, polyvinyl acetate, and synthetic rubber.
  • Examples of the vegetable natural fibers include kenaf fiber, abaca fiber, bamboo fiber, jute fiber, hemp fiber, linen fiber, heneken (sisal hemp), ramie fiber, hemp, cotton, banana fiber, coconut fiber, coconut fiber, palm fiber, etc. , mulberry, mulberry, bagasse, etc.
  • Other examples include pulp processed from plant fibers, cellulose fibers, and recycled fibers such as rayon.
  • Examples of animal natural fibers include wool, silk, cashmere, and mohair.
  • the inorganic filler is not particularly limited, but includes, for example, silica such as quartz, fumed silica, silicic anhydride, fused silica, crystalline silica, amorphous silica, filler formed by condensing alkoxysilane, and ultrafine amorphous silica.
  • silica such as quartz, fumed silica, silicic anhydride, fused silica, crystalline silica, amorphous silica, filler formed by condensing alkoxysilane, and ultrafine amorphous silica.
  • Inorganic fillers alumina, zircon, iron oxide, zinc oxide, titanium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass, silicone rubber, silicone resin, titanium oxide, carbon fiber, mica, graphite, carbon black, Examples include ferrite, graphite, diatomaceous earth, clay, clay, talc, calcium carbonate, manganese carbonate, magnesium carbonate, barium sulfate, and silver powder. These may be surface-treated to improve dispersibility in the resin composition. Further, these may be used alone or in combination of two or more.
  • the antioxidant is not particularly limited, but examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. These may be used alone or in combination of two or more.
  • the hydrolysis inhibitor is not particularly limited, but includes, for example, carbodiimide compounds, epoxy compounds, isocyanate compounds, oxazoline compounds, and the like. These may be used alone or in combination of two or more.
  • the ultraviolet absorber is not particularly limited, but includes, for example, benzophenone compounds, benzotriazole compounds, triazine compounds, salicylic acid compounds, cyanoacrylate compounds, nickel complex compounds, and the like. These may be used alone or in combination of two or more.
  • the colorants such as pigments and dyes are not particularly limited, but include inorganic colorants such as titanium oxide, calcium carbonate, chromium oxide, cuprous oxide, calcium silicate, iron oxide, carbon black, graphite, titanium yellow, and cobalt blue.
  • Colorants such as Lake Red, Lysol Red, Brilliant Carmine, insoluble azo pigments such as Dinitriane Orange, Fast Yellow, phthalocyanine pigments such as Monochlorophthalocyanine Blue, Polychlorophthalocyanine Blue, Polybromophthalocyanine Green, Indigo Blue
  • Examples include fused polycyclic pigments such as perylene red, isoindolinone yellow, and quinacridone red, and dyes such as oracet yellow. These may be used alone or in combination of two or more.
  • the antistatic agent is not particularly limited, but examples include low molecular weight antistatic agents such as fatty acid ester compounds, aliphatic ethanolamine compounds, aliphatic ethanolamide compounds, and polymeric antistatic agents. can. These may be used alone or in combination of two or more.
  • the thermoplastic resin composition according to the present embodiment also contains catalyst deactivators (hindered phenol compounds, thioether compounds, vitamin compounds, triazole compounds, polyvalent amine compounds, hydrazine derivative compounds, phosphorus compounds, etc.). compounds), mold release agents (montanic acid and its salts, its esters, its half esters, stearyl alcohol, stearamide and polyethylene wax, etc.), color inhibitors (phosphites, hypophosphites, etc.), silane cups Ring agents (epoxy silane coupling agents, amino silane coupling agents, (meth)acrylic silane coupling agents, isocyanate silane coupling agents, etc.), flame retardants (red phosphorus, phosphoric acid esters, brominated polystyrene, brominated polyphenylene ether, bromine) polycarbonate, aluminum hydroxide, magnesium hydroxide, melamine and cyanuric acid or its salts, silicon compounds, etc.), conductive agents (carbon black, etc.), sliding properties improver
  • thermoplastic resin composition can be manufactured by a known method. Specifically, the thermoplastic resin (A), crosslinked resin particles (B), and optional components such as a crystal nucleating agent, a lubricant, and other components are mixed using an extruder, kneader, Banbury mixer, kneading roll, etc. Examples include a method of melt-kneading. When melt-kneading, it is preferable to mix while paying attention to molecular weight reduction due to thermal decomposition.
  • the thermoplastic resin composition can also be produced by dissolving each component in a soluble solvent and then removing the solvent.
  • each component When producing by melt-kneading, each component may be individually charged into an extruder, etc., or each component may be mixed in advance and then charged into an extruder, etc.
  • an aqueous dispersion of thermoplastic resin (A) and an aqueous dispersion of crosslinked resin particles (B) may be mixed, dried to obtain a mixed powder, and the mixed powder may be fed into an extruder or the like.
  • thermoplastic resin composition When melt-kneaded using an extruder, the resulting thermoplastic resin composition is extruded into strands and then cut to produce particle shapes such as bar, cylinder, elliptical cylinder, sphere, cube, and rectangular parallelepiped. It may be processed into
  • the resin temperature during melt-kneading cannot be determined unconditionally because it depends on the melting point and melt viscosity of the resin used, but it is necessary to uniformly disperse the crosslinked resin particles (B) while avoiding thermal decomposition of the thermoplastic resin (A).
  • the temperature is preferably 140 to 220°C, more preferably 150 to 210°C, and even more preferably 160 to 200°C.
  • a molded article can be manufactured from the thermoplastic resin composition according to this embodiment.
  • the molding method is not particularly limited, and commonly used molding methods can be applied, but specifically, blown film molding, extrusion blow molding, injection blow molding, extrusion molding, calendar molding, vacuum molding, injection molding Examples include.
  • solidification of the resin is promoted in these molding methods, and sheets, films, blow molded products, extrusion molded products, vacuum molded products, and injection molded products can be manufactured with good productivity. .
  • the molded body made of the thermoplastic resin composition according to the present embodiment is suitable for agriculture, fishing, forestry, horticulture, medicine, sanitary products, food industry, clothing, non-clothing, packaging, automobiles, building materials, and other fields. It can be used for.
  • thermoplastic resin composition 80 to 99.9 parts by weight of thermoplastic resin (A), and 0.1 to 20 parts by weight of crosslinked resin particles (B) containing a polyhydroxyalkanoate resin and having a gel fraction of 50% or more [however, the total amount of (A) and (B) is 100 parts by weight
  • a thermoplastic resin composition comprising: [Item 2] The thermoplastic resin composition according to item 1, wherein the polyhydroxyalkanoate-based resin is a poly(3-hydroxyalkanoate)-based resin.
  • thermoplastic resin composition according to item 1 or 2 wherein the crosslinked resin particles (B) have a volume average particle diameter of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • thermoplastic resin composition according to any one of items 1 to 3 wherein the crosslinked resin particles (B) are crosslinked using a peroxide.
  • thermoplastic resin composition according to any one of items 1 to 4 wherein the crosslinked resin particles (B) are further crosslinked in the presence of a polyfunctional compound.
  • thermoplastic resin composition according to any one of items 1 to 5 wherein the crosslinked resin particles (B) are not foamed.
  • thermoplastic resin composition according to any one of items 1 to 7 wherein the thermoplastic resin (A) contains a biodegradable resin.
  • thermoplastic resin composition according to item 8 contains a biodegradable resin.
  • biodegradable resin is a polyhydroxyalkanoate resin.
  • thermoplastic resin composition according to any one of items 1 to 9 further comprising a crystal nucleating agent and/or a lubricant.
  • thermoplastic resin solidification accelerator comprising crosslinked resin particles (B) containing a polyhydroxyalkanoate resin and having a gel fraction of 50% or more.
  • volume average Particle Diameter The volume average particle diameter of crosslinked resin particles or uncrosslinked resin particles was measured in the state of resin particle latex.
  • Microtrac MT3300EXII manufactured by Nikkiso Co., Ltd. was used as a measuring device.
  • the contents in the autoclave were stirred at room temperature for 1 hour to impregnate the inside of the uncrosslinked resin particles with the peroxide and the polyfunctional compound, and then the temperature was raised to 94°C. After reaching 94° C., the reaction was carried out at the temperature for 1 hour to obtain an aqueous dispersion in which crosslinked resin particles were dispersed in water. After adjusting the pH of the aqueous dispersion, it was dried in an oven to obtain solidified crosslinked resin particles.
  • the volume average particle diameter and gel fraction of the obtained crosslinked resin particles were measured by the above-mentioned method, the volume average particle diameter was 1.7 ⁇ m and the gel fraction was 74.7%.
  • the volume average particle diameter and gel fraction of the uncrosslinked resin particles before the crosslinking reaction were measured by the method described above, and the volume average particle diameter was 1.7 ⁇ m and the gel fraction was 0%.
  • the uncrosslinked resin particles were used in Comparative Example 2.
  • Evaluation method Fill an aluminum pan with 2 to 3 mg of the resin mixture obtained by the method described above, and raise the temperature from -40°C to 180°C at a rate of 10°C/min under a nitrogen stream using a differential scanning calorimeter. After completely melting the resin kneaded material, the exothermic peak obtained while lowering the temperature from 180°C to -40°C at a rate of 10°C/min, the top temperature of the exothermic peak with the maximum calorific value. The temperature at the peak when heat generation started was defined as the starting point of Tmc. The results are shown in the table.
  • Example 4 when comparing Example 4 with Comparative Example 2, which used uncrosslinked resin particles with the same amount of resin particles but a low gel fraction, Example 4 had higher Tmc and the starting point of Tmc. It can be seen that the solidification promoting effect of crosslinked resin particles is superior to that of uncrosslinked resin particles. Furthermore, when comparing Example 1 and Comparative Example 2, in Example 1, although the amount of resin particles blended is only one-tenth that of Comparative Example 2, the Tmc is the same, and the starting point of Tmc is From this fact, it can be said that the solidification promoting effect of crosslinked resin particles is superior to that of uncrosslinked resin particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱可塑性樹脂(A)80~99.9重量部、及び、ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)0.1~20重量部[但し、(A)と(B)の合計量を100重量部とする]、を含む、熱可塑性樹脂組成物を提供する。前記ポリヒドロキシアルカノエート系樹脂が、ポリ(3-ヒドロキシアルカノエート)系樹脂であってよい。前記架橋樹脂粒子(B)は体積平均粒子径が0.1μm以上10μm以下であってよい。前記熱可塑性樹脂組成物は、成形体とすることができる。

Description

熱可塑性樹脂組成物
 本発明は、熱可塑性樹脂組成物に関する。
 熱可塑性樹脂は、工業上の生産性の観点から、成形加工時に、加熱溶融させた後、短時間で固化することが望まれる。
 そのような固化性を改善する手法として種々の添加剤を熱可塑性樹脂に配合することが知られている。
 例えば、特許文献1では、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)100重量部に対して、平均粒径300μm以下で、融解温度が比較的高いポリ(3-ヒドロキシアルカノエート)0.1~20重量部を配合することで、熱可塑性樹脂である前記ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)の結晶固化を促進することが記載されている。
特開2004-161802号公報
 特許文献1に記載の方法によると、熱可塑性樹脂の結晶固化を促進することができるものの、その効果は必ずしも十分ではなく、更に改善する必要がある。
 本発明は、上記現状に鑑み、溶融後の固化が促進された熱可塑性樹脂組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、ポリヒドロキシアルカノエート系樹脂から構成され特定のゲル分率を満たす架橋樹脂粒子を熱可塑性樹脂に配合することで、当該熱可塑性樹脂の溶融後の固化が促進されることを見出し、本発明を完成するに至った。
 即ち、本発明は、熱可塑性樹脂(A)80~99.9重量部、及び、ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)0.1~20重量部[但し、(A)と(B)の合計量を100重量部とする]、を含む、熱可塑性樹脂組成物に関する。
 また本発明は、前記熱可塑性樹脂組成物の成形体にも関する。
 さらに本発明は、ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)を含む、熱可塑性樹脂の固化促進剤にも関する。
 本発明によれば、溶融後の固化が促進された熱可塑性樹脂組成物を提供することができる。
 本発明に係る熱可塑性樹脂組成物は、ポリヒロドキシアルカノエート系樹脂から構成される架橋樹脂粒子を含むものであるため、生分解性の観点で有利である。
 前記架橋樹脂粒子は、熱可塑性樹脂の固化促進剤として利用することができる。
 以下に、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
 本実施形態に係る熱可塑性樹脂組成物は、少なくとも、熱可塑性樹脂(A)、及び、ポリヒロドキシアルカノエート系樹脂を含みゲル分率が50%以上である架橋樹脂粒子(B)、を含有するものである。当該熱可塑性樹脂組成物では、溶融後の固化が比較的高い温度で進行し、固化開始が早まるため、溶融加工時の生産性を高めることができる。
 まず、架橋樹脂粒子(B)について説明する。
 <架橋樹脂粒子(B)>
 架橋樹脂粒子(B)は、ポリヒドロキシアルカノエート系樹脂を主要樹脂成分として構成される粒子である。以下では、ポリヒドロキシアルカノエート系樹脂を「PHA」と略する場合がある。
 <PHA>
 「PHA」は、ヒドロキシアルカン酸をモノマーユニットとする重合体の総称であり、一般的に生分解性を有する。PHAは、脂肪族ポリエステルであって、好ましくは芳香環を含まないポリエステルである。
 PHAとしては特に限定されないが、例えば、ポリグリコール酸、ポリ(3-ヒドロキシアルカノエート)系樹脂、ポリ(4-ヒドロキシアルカノエート)系樹脂等が挙げられる。PHAとしては、1種類のみを用いてもよいし、2種類以上を併用してもよい。このうち、ポリ(3-ヒドロキシアルカノエート)系樹脂が好ましい。以下では、ポリ(3-ヒドロキシアルカノエート)系樹脂を「P3HA」と略する場合がある。
 前記P3HAは、式:[-CHR-CH-CO-O-]で示される3-ヒドロキシアルカン酸繰り返し単位(式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)を必須の繰り返し単位として含むポリヒドロキシアルカノエートである。前記P3HAは、前記3-ヒドロキシアルカン酸繰り返し単位を、全モノマー繰り返し単位(100モル%)のうち50モル%以上含むものが好ましく、70モル%以上含むものがより好ましい。
 P3HAとしては特に限定されないが、例えば、ポリ(3-ヒドロキシブチレート)(略称:P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(略称:P3HB3HH)等が挙げられる。P3HAとしては、1種類のみを用いてもよいし、2種類以上を併用してもよい。
 P3HAは微生物によって産生され得る。このような微生物産生P3HAは、通常、D体(R体)のヒドロキシアルカン酸繰り返し単位のみから構成されるP3HAである。微生物産生P3HAの中でも、工業的生産が容易である点から、P3HB、P3HB3HHが好ましく、P3HB3HHがより好ましい。
 P3HAが3-ヒドロキシブタン酸(3HB)繰り返し単位を含むものである場合、柔軟性と強度のバランスの観点から、全モノマー繰り返し単位(100モル%)中、3HB繰り返し単位の組成比が60~99モル%であることが好ましく、65~97モル%がより好ましく、67~95モル%が更に好ましい。3HB繰り返し単位の組成比が60モル%以上であることにより、架橋樹脂粒子(B)の剛性がより向上し得る。一方、3HB繰り返し単位の組成比が99モル%以下であることにより、架橋樹脂粒子(B)の柔軟性がより向上する傾向がある。なお、P3HAのモノマー組成比は、ガスクロマトグラフィー等によって測定することができる(例えば、国際公開第2014/020838号参照)。P3HAとしては、3HB繰り返し単位の組成比が互いに異なる2種類以上を併用してもよい。
 P3HAを生産する微生物としては、P3HAの生産能を有する微生物であれば特に限定されない。例えば、P3HB生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus)、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)などの天然微生物が知られている。これらの微生物ではP3HBが菌体内に蓄積される。
 また、3HBとその他のヒドロキシアルカノエートとの共重合体の生産菌としては、P3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)などが知られている。特に、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))が好ましい。このような微生物を適切な条件で培養して菌体内にP3HAを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいP3HAに合わせて、各種P3HA合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。
 PHAの分子量は特に限定されないが、重量平均分子量が50,000~3,000,000であることが好ましく、100,000~2,000,000が好ましく、150,000~1,500,000がより好ましい。重量平均分子量を50,000以上とすることにより、架橋樹脂粒子の強度が低くなる傾向を避ける、又は低分子量成分によりべとつく傾向を避けることができる。一方、重量平均分子量が3,000,000を超えるPHAは、それ自体を作製したり、本発明の目的で取り扱うことが難しい場合がある。当該重量平均分子量の数値は、PHAの架橋処理を行う前に測定される値である。
 前記重量平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)(島津製作所製「高速液体クロマトグラフ20Aシステム」)を用い、カラムにポリスチレンゲル(昭和電工社製「K-G 4A」、「K-806M」など)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。この際、検量線は重量平均分子量31,400、197,000、668,000、1,920,000のポリスチレンを使用して作成することができる。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。
 <ゲル分率>
 架橋樹脂粒子(B)は、PHAの分子鎖同士が結合した架橋構造を有するものである。このような架橋構造を一定量以上有するため、架橋樹脂粒子(B)は高いゲル分率を示し、具体的には50%以上のゲル分率を示す。このように高いゲル分率を示すことで、熱可塑性樹脂(A)の結晶固化を促進することができる。
 前記ゲル分率の値は、60%以上であることが好ましく、70%以上がより好ましく、75%以上がさらに好ましく、80%以上が特に好ましい。また、85%以上であってもよいし、90%以上であってもよい。前記ゲル分率の上限は特に限定されず、100%以下であればよいが、架橋樹脂粒子(B)の生産効率の観点から、99.5%以下であることが好ましく、99%以下がより好ましい。また、98%以下であってもよいし、97%以下であってもよいし、96%以下であってもよい。
 前記ゲル分率は以下のようにして測定される値である。架橋樹脂粒子(B)の乾燥物を、クロロホルムに対し0.7重量%の濃度になるように添加し、60℃で30分間溶解させてクロロホルム溶液を得る。その後、室温にて3時間静置した後、孔径0.45μmのメンブレンフィルターで前記クロロホルム溶液をろ過する。フィルター上に残ったゲルを乾燥させて、フィルターと共に重量を測定し、下記式にてゲル分率を算出する。
式:ゲル分率=(乾燥ゲルを含むフィルターの重量-フィルターのみの重量)/測定に用いた架橋樹脂粒子の重量×100(%)
 <平均粒子径>
 架橋樹脂粒子(B)は、その体積平均粒子径が0.1μm以上10μm以下の範囲内にあることが好ましい。このような粒径を有することによって、熱可塑性樹脂(A)の結晶固化をより効率良く促進することが可能となる。前記粒子径の下限値は、実用的な使用機会の観点から、0.1μm以上であることが好ましく、0.3μm以上がより好ましく、0.5μm以上がさらに好ましい。また、前記粒子径の上限値は、生産性の観点(PHAの生産や架橋処理など)から、8μm以下であることが好ましく、5μm以下がより好ましい。但し、架橋樹脂粒子(B)を熱可塑性樹脂(A)と溶融混錬することで、架橋樹脂粒子(B)本来の形状が崩壊し、体積平均粒子径が低下する場合がある。
 前記体積平均粒子径は、架橋樹脂粒子(B)が水系溶媒に分散した状態で測定した値である。測定装置としては、汎用の測定装置を使用することができ、そのような装置の一例として、日機装株式会社製のMicrotracMT3300EXIIが挙げられる。
 <過酸化物>
 架橋樹脂粒子(B)における架橋形式は特に限定されないが、過酸化物を用いて架橋されたものであることが好ましい。過酸化物を用いると、過酸化物の分解によって発生したラジカルがPHAの分子に作用してPHAの分子鎖同士が直接結合することによって、前記架橋構造が形成され得る。
 前記過酸化物は、有機過酸化物であってもよいし、無機過酸化物であってもよい。より効率よくゲル分率を高めることができるため、有機過酸化物が好ましい。
 前記有機過酸化物としては、架橋処理時の加熱温度や時間などを考慮して、ジアシルパーオキサイド、アルキルパーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、パーオキシケタール、パーオキシカーボネート、及びパーオキシジカーボネートからなる群より選択される少なくとも1つを使用することが好ましい。
 このような有機過酸化物として、具体的には、ブチルパーオキシネオドデカノエート、オクタノイルパーオキサイド、ジラウロイルパーオキサイド、サクシニックパーオキサイド、トルオイルパーオキサイドとベンゾイルパーオキサイドとの混合物、ベンゾイルパーオキサイド、ビス(ブチルパーオキシ)トリメチルシクロヘキサン、ブチルパーオキシラウレート、ジメチルジ(ベンゾイルパーオキシ)ヘキサン、ビス(ブチルパーオキシ)メチルシクロヘキサン、ビス(ブチルパーオキシ)シクロヘキサン、ブチルパーオキシベンゾエート、ブチルビス(ブチルパーオキシ)バレレート、ジクミルパーオキサイド、ジt-ヘキシルパーオキサイド、t-ブチルパーオキシ2-エチルヘキサノエ―ト、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシメチルモノカーボネート、t-ペンチルパーオキシメチルモノカーボネート、t-ヘキシルパーオキシメチルモノカーボネート、t-ヘプチルパーオキシメチルモノカーボネート、t-オクチルパーオキシメチルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシメチルモノカーボネート、t-ブチルパーオキシエチルモノカーボネート、t-ペンチルパーオキシエチルモノカーボネート、t-ヘキシルパーオキシエチルモノカーボネート、t-ヘプチルパーオキシエチルモノカーボネート、t-オクチルパーオキシエチルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシエチルモノカーボネート、t-ブチルパーオキシn-プロピルモノカーボネート、t-ペンチルパーオキシn-プロピルモノカーボネート、t-ヘキシルパーオキシn-プロピルモノカーボネート、t-ヘプチルパーオキシn-プロピルモノカーボネート、t-オクチルパーオキシn-プロピルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシn-プロピルモノカーボネート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ペンチルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘプチルパーオキシイソプロピルモノカーボネート、t-オクチルパーオキシイソプロピルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシn-ブチルモノカーボネート、t-ペンチルパーオキシn-ブチルモノカーボネート、t-ヘキシルパーオキシn-ブチルモノカーボネート、t-ヘプチルパーオキシn-ブチルモノカーボネート、t-オクチルパーオキシn-ブチルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシn-ブチルモノカーボネート、t-ブチルパーオキシイソブチルモノカーボネート、t-ペンチルパーオキシイソブチルモノカーボネート、t-ヘキシルパーオキシイソブチルモノカーボネート、t-ヘプチルパーオキシイソブチルモノカーボネート、t-オクチルパーオキシイソブチルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシイソブチルモノカーボネート、t-ブチルパーオキシsec-ブチルモノカーボネート、t-ペンチルパーオキシsec-ブチルモノカーボネート、t-ヘキシルパーオキシsec-ブチルモノカーボネート、t-ヘプチルパーオキシsec-ブチルモノカーボネート、t-オクチルパーオキシsec-ブチルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシsec-ブチルモノカーボネート、t-ブチルパーオキシt-ブチルモノカーボネート、t-ペンチルパーオキシt-ブチルモノカーボネート、t-ヘキシルパーオキシt-ブチルモノカーボネート、t-ヘプチルパーオキシt-ブチルモノカーボネート、t-オクチルパーオキシt-ブチルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシt-ブチルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ペンチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘプチルパーオキシ2-エチルヘキシルモノカーボネート、t-オクチルパーオキシ2-エチルヘキシルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキシルモノカーボネート、ジイソブチルパーオキサイド、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ビス(2-エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジ(3,5,5-トリメチルヘキサノイル)パ-オキサイド、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジコハク酸パーオキサイド、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、t-ブチルパーオキシ2-エチルヘキシルカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,6-ビス(t-ブチルパーオキシカルボニロキシ)ヘキサン、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-アミルパーオキシ,3,5,5-トリメチルヘキサノエート、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシ)プロパン、2,2-ジ-t-ブチルパーオキシブタン等が挙げられる。有機過酸化物は、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、t-ブチルパーオキシイソプロピルモノカーボネート、t-ペンチルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ペンチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキシルモノカーボネート、t-アミルパーオキシイソプロピルモノカーボネート、ジt-ヘキシルパーオキサイド、t-ブチルパーオキシ2-エチルヘキサノエ―ト、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、及び1,1,3,3-テトラメチルブチルパーオキシネオデカノエートは、PHAの架橋を効率よく進めることができるため、好ましい有機過酸化物である。
 前記過酸化物は、架橋処理時の加熱温度を低く設定できるため、1時間半減期温度が200℃以下を示す化合物であることが好ましく、170℃以下であることがより好ましく、140℃以下であることがさらに好ましい。下限は、50℃以上であってよく、60℃以上であってもよく、70℃以上であってもよい。
 このような1時間半減期温度を示す有機過酸化物としてt-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシ2-エチルヘキサノエ―ト、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、及び1,1,3,3-テトラメチルブチルパーオキシネオデカノエートが特に好ましい。
 前記過酸化物が無機過酸化物である場合、当該無機過酸化物としては、架橋処理時の加熱温度や時間を考慮して、例えば、過酸化水素、過酸化カリウム、過酸化カルシウム、過酸化ナトリウム、過酸化マグネシウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。中でも、過酸化水素、過硫酸カリウム、過硫酸ナトリウム、及び過硫酸アンモニウムが、取り扱い易さや、架橋処理時の加熱温度に適した分解温度を有する点で好ましい。無機過酸化物は、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、有機過酸化物と無機過酸化物を組み合わせて用いてもよい。
 <多官能性化合物>
 架橋樹脂粒子(B)における架橋構造は、過酸化物のみを用いて導入されたものであってもよいが、過酸化物と多官能性化合物の双方を用いて導入されたものであってもよい。後者の方が、架橋樹脂粒子(B)のゲル分率を、少ない過酸化物量で高めることが可能になる。
 前記多官能性化合物は、PHAを架橋できる官能基を1分子中に2個以上する化合物を指す。特に限定されないが、過酸化物から発生したラジカルとの反応性を有する化合物が好ましく、ラジカル反応性基を1分子中に2個以上有する化合物が特に好ましい。ラジカル反応性基としては、ビニル基、アリル基、アクリロイル基、又はメタクリロイル基からなる群より選択される少なくとも1種が好ましい。
 このような多官能性化合物としては特に限定されないが、例えば、アリル(メタ)アクリレート;アリルアルキル(メタ)アクリレート類;アリルオキシアルキル(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の、(メタ)アクリル基を2個以上有する多官能(メタ)アクリレート類;ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等が挙げられる。好ましくはアリルメタクリレート、トリアリルイソシアヌレート、ブタンジオールジ(メタ)アクリレート、ジビニルベンゼンであり、特に好ましくはアリルメタクリレート、トリアリルイソシアヌレートである。
 多官能性化合物の存在下で架橋構造を形成した場合、得られた架橋樹脂粒子(B)には、通常、当該多官能性化合物に由来する構造が含まれ得る。この場合、PHAの分子鎖同士が、当該多官能性化合物に由来する構造を介して結合することになる。
 架橋樹脂粒子(B)は、架橋構造を有するPHAのみから構成されるものであってもよいし、架橋構造を有するPHA以外の成分をさらに含有するものであってもよい。架橋構造を有するPHA以外の成分としては、例えば、PHA以外の樹脂、酸化防止剤、加水分解抑制剤、ブロッキング防止剤、結晶核剤、紫外線吸収剤等が挙げられる。
 架橋樹脂粒子(B)中のPHAの割合は、特に限定されないが、50重量%以上であって良く、70重量%以上が好ましく、80重量%以上がより好ましく、90重量%以上がより更に好ましく、95重量%以上が特に好ましい。99重量%以上であってもよい。上限は特に限定されず、100重量%以下であればよい。
 PHA以外の樹脂としては、例えば、脂肪族ジオール及び脂肪族ジカルボン酸が重縮合した構造からなる脂肪族ポリエステルや、脂肪族化合物と芳香族化合物の両方をモノマーとする脂肪族芳香族ポリエステル等が挙げられる。前者の例としては、ポリエチレンサクシネート、ポリブチレンサクシネート(PBS)、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリブチレンサクシネートアジペート(PBSA)、ポリエチレンセバケート、ポリブチレンセバケート等が挙げられる。後者の例としては、ポリ(ブチレンアジペート-co-ブチレンテレフタレート)(PBAT)、ポリ(ブチレンセバケート-co-ブチレンテレフタレート)、ポリ(ブチレンアゼレート-co-ブチレンテレフタレート)、ポリ(ブチレンサクシネート-co-ブチレンテレフタレート)(PBST)等が挙げられる。前記他の樹脂は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 架橋樹脂粒子(B)は、国際公開第2007/049694号及び国際公開第2019/146555号に開示されているような発泡樹脂粒子とは相違しており、発泡していないものであって、即ち、粒子内部に気泡を実質的に含まないものであることが好ましい。
 発泡していない場合、架橋樹脂粒子(B)の見掛け密度は比較的大きい値を示し、0.6g/cmを超えることが好ましく、0.7g/cm以上であることがより好ましく、0.9g/cm以上であることがさらに好ましい。架橋樹脂粒子(B)の見掛け密度は、JIS K0061(化学製品の密度及び比重測定方法)、又は、JIS Z8807(固体の密度及び比重の測定方法)に記載の方法で決定できる。
 架橋樹脂粒子(B)の1粒あたりの平均重量は特に限定されないが、架橋樹脂粒子(B)は体積平均粒子径が10μm以下と粒径が小さいものであるので、0.1mgを遥かに下回る値である。
 架橋樹脂粒子(B)は、乾燥したものであってよい。乾燥後の形状は、乾燥方法によって、粉末状、ペレット状、クラム状、シート状などの形状を有するものになり得る。
 <架橋樹脂粒子(B)の製造方法>
 架橋樹脂粒子(B)を製造する方法の一例を具体的に説明する。架橋樹脂粒子(B)は、架橋処理前のPHA粒子を含む水分散液中、過酸化物の存在下で、PHAを架橋させることにより製造できる。PHAを効率良く架橋させるには、過酸化物を含むPHA粒子の水分散液を、過酸化物の分解に適した温度に加熱することが好ましい。
 より具体的には、架橋樹脂粒子(B)の製造方法は、架橋処理前のPHA粒子が水に分散しているPHA粒子の水分散液を準備する工程(1)、該PHA粒子の水分散液に過酸化物を添加して過酸化物をPHA粒子に含浸させる工程(2)、及び、過酸化物が含浸したPHA粒子の水分散液を加熱温度に加熱してPHAを架橋させる工程(3)を含むことが好ましい。更に、過酸化物をすべて添加した後に前記加熱温度を維持する工程(4)を含むことがより好ましい。
 工程(1)において、PHA粒子の水分散液は、PHA産生微生物を培養してPHAを菌体内に蓄積させた後、培養液中の該菌体を破壊して菌体成分を分離除去して得られた水分散液、あるいは、当該水分散液を濃縮又は希釈して得られた水分散液であってよい。このような方法によると、PHA産生微生物の培養でPHA粒子を作製してから架橋処理までの間を、PHA粒子を水から分離することなく実施することができる。
 また、PHA粒子の水分散液は、乾燥したPHA粒子を水に分散させることによっても作製できる。該水分散液は、水に加えて、水に相溶性のある有機溶媒を含むものであってもよい。
 前記水分散液において、PHA粒子の体積平均粒子径は、上述した架橋樹脂粒子(B)の体積平均粒子径と同じ範囲内にあることが好ましい。PHA産生微生物が産生したPHA粒子の場合、その体積平均粒子径は通常、前記範囲内にあり得るので、粒径を調節するための特別な工程を実施しなくても、望ましい体積平均粒子径を有するPHA粒子の水分散液を得ることができる。
 水分散液中のPHA粒子の濃度は特に限定されず、適宜設定することができるが、例えば、1~70重量%程度であってよく、5~50重量%程度が好ましい。
 PHA粒子の水分散液は、PHA粒子の分散性を高めて架橋反応を均一に進行させるため、分散剤を含むことが好ましい。分散剤としては、例えば、ジオクチルスルホコハク酸ナトリウム、ドデシル硫酸ナトリウム、ラウリル硫酸ソーダ、オレイン酸ソーダ等のアニオン性界面活性剤;ラウリルトリメチルアンモニウムクロライド等のカチオン性界面活性剤;グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等の非イオン性界面活性剤;ポリビニルアルコール、エチレン変性ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム等の水溶性高分子等が挙げられる。これら分散剤は1種類のみを使用してもよいし、2種類以上を併用してもよい。
 分散剤を使用する場合、その添加量は特に限定されないが、PHA粒子100重量部に対し、例えば、0.1~10重量部であってよく、0.5~5重量部であることが好ましい。
 工程(2)では、工程(1)で得られたPHA粒子の水分散液に過酸化物を添加して過酸化物をPHA粒子に含浸させる。過酸化物としては上述したものを使用することができる。過酸化物は、固体状や液体状など様々な形態のものを添加することができる。また、希釈剤等によって希釈された液体状のものを添加してもよい。過酸化物は一括して添加してもよく、連続的に又は分割して添加してもよい。
 過酸化物と前記多官能性化合物を併用する場合には、この工程(2)において、多官能性化合物もPHA粒子の水分散液に添加することが好ましい。多官能性化合物としては上述したものを使用することができる。多官能性化合物は、固体状や液体状など様々な形態のものを添加することができる。また、希釈剤等によって希釈された液体状のものを添加してもよい。多官能性化合物は一括して添加してもよく、連続的に又は分割して添加してもよい。
 過酸化物及び任意の多官能性化合物をPHA粒子に含浸させるには、これら化合物をPHA粒子の水分散液に添加した後、又は添加しながら、水分散液の温度を、例えば0℃以上、次の工程(3)で採用する過酸化物の分解に適した温度未満に設定し、水分散液を撹拌しつつ、当該温度を、例えば1分間~5時間程度保持すればよい。含浸時の水分散液の温度は、具体的には、10~60℃程度であってよい。
 過酸化物の使用量は、架橋樹脂粒子(B)のゲル分率を考慮して適宜設定することができるが、例えば、PHA粒子100重量部に対して0.01~10重量部であることが好ましく、0.1~8重量部がより好ましく、0.3~5重量部がさらに好ましく、0.5~3重量部が特に好ましい。
 過酸化物を用いてPHA粒子を水分散液中で架橋させる製造方法によると、架橋前の粒子径(体積)を維持したままで架橋を進行させ、架橋樹脂粒子を得ることが容易である。一方、過酸化物の存在下で溶融混錬して樹脂を架橋させる方法では、これを達成することが難しい場合がある。
 また、過酸化物を用いてPHA粒子を水分散液中で架橋させる製造方法によると、架橋反応中に生ずる熱による温度上昇を制御しやすく、安全かつ安定した架橋構造(品質)を有する架橋樹脂粒子を効率よく得る上で有利である。
 また、多官能性化合物の使用量も、架橋樹脂粒子(B)のゲル分率を考慮して適宜設定すればよく、例えば、PHA粒子100重量部に対して0.01~20重量部であることが好ましく、0.05~15重量部がより好ましく、0.1~10重量部がさらに好ましく、0.2~5重量部がより更に好ましく、0.3~3重量部が特に好ましい。
 工程(3)では、過酸化物が含浸したPHA粒子の水分散液を、過酸化物の分解に適した温度まで加熱する。該加熱温度は、前述した過酸化物が示す1時間半減期温度を基準とし、上下25℃程度の範囲内であることが好ましい。具体的には、該加熱温度は、30~140℃であることが好ましく、50~135℃がより好ましく、60~130℃がさらに好ましい。本方法によると、PHAの溶融温度よりも低い温度でPHAを架橋させることが可能であるので、架橋処理時の加熱によるPHAの劣化を回避することができる。
 続く工程(4)では、前記加熱温度を維持することが好ましい。これにより、過酸化物を用いた架橋反応を十分に進めることができる。前記加熱温度を維持する時間は特に限定されないが、1分間~15時間が好ましく、1時間~10時間がより好ましい。
 架橋反応の終了後、水分散液から、架橋樹脂粒子(B)を分離し、水を除去することによって、乾燥した架橋樹脂粒子(B)を得ることができる。架橋樹脂粒子(B)を分離する方法は特に限定されず、例えば、濾過、遠心分離、加熱乾燥、凍結乾燥、噴霧乾燥等を用いることができる。例えば噴霧乾燥を用いると、水分散液から直接、乾燥した架橋樹脂粒子(B)を取得することができる。また、水分散液から分離した後に架橋樹脂粒子(B)を単独で押出することで、残存水分を完全に除去しつつ、ペレット形状で架橋樹脂粒子(B)を取得することもできる。また、凝固剤や、pH調整による凝集工程を実施しても良い。
 本実施形態に係る熱可塑性樹脂組成物において、架橋樹脂粒子(B)の配合量は、熱可塑性樹脂(A)と架橋樹脂粒子(B)の合計100重量部に対して、0.1~20重量部である。架橋樹脂粒子(B)を前記範囲で使用すると、熱可塑性樹脂組成物の固化が促進され、溶融加工時の生産性を高めることができる。前記配合量は、0.3重量部以上が好ましく、0.5重量部以上がより好ましく、1重量部以上が特に好ましい。また、前記配合量の上限は、15重量部以下が好ましく、12重量部以下がより好ましく、10重量部以下が特に好ましい。
 <熱可塑性樹脂(A)>
 本実施形態に係る熱可塑性樹脂組成物において、マトリクス樹脂である熱可塑性樹脂(A)としては、加熱により溶融し、その後冷却固化させることで所望の形状に成形可能な樹脂であれば特に限定されない。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、ポリメチルメタクリル酸等のアクリル系樹脂、AS樹脂、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエステル系樹脂、環状ポリオレフィン等が挙げられる。これら熱可塑性樹脂は1種類のみを使用してもよいし、2種類以上を併用してもよい。
 熱可塑性樹脂(A)としては、ポリエステル系樹脂が特に好ましい。当該ポリエステル系樹脂としては、例えば、前述したPHAや、脂肪族ジオール及び脂肪族ジカルボン酸が重縮合した構造からなるポリエステル等の脂肪族ポリエステルや、脂肪族化合物と芳香族化合物の両方をモノマーとする脂肪族芳香族ポリエステル等が挙げられる。PHA以外の脂肪族ポリエステルの例としては、ポリカプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート(PBS)、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリブチレンサクシネートアジペート(PBSA)、ポリエチレンセバケート、ポリブチレンセバケート等が挙げられる。脂肪族芳香族ポリエステルの例としては、ポリ(ブチレンアジペート-co-ブチレンテレフタレート)(PBAT)、ポリ(ブチレンセバケート-co-ブチレンテレフタレート)、ポリ(ブチレンアゼレート-co-ブチレンテレフタレート)、ポリ(ブチレンサクシネート-co-ブチレンテレフタレート)(PBST)等が挙げられる。これらポリエステル系樹脂は1種類のみを使用してもよいし、2種類以上を併用してもよい。
 架橋樹脂粒子(B)が生分解性を示すPHAから構成されるものであるため、熱可塑性樹脂(A)も生分解性を示す樹脂を含むことが好ましい。この場合、熱可塑性樹脂組成物全体としての生分解性を高めることができる。
 また、架橋樹脂粒子(B)が植物由来の原料から製造されるものである場合、資源循環の観点から、熱可塑性樹脂(A)も植物由来の原料から製造される樹脂であることが好ましい。
 熱可塑性樹脂(A)が生分解性樹脂を含有する場合、その含有割合は、熱可塑性樹脂(A)全体のうち、10~100重量%であることが好ましく、30重量%以上がより好ましく、50重量%以上がさらに好ましく、70重量%以上がより更に好ましく、90重量%以上が特に好ましい。
 熱可塑性樹脂(A)として使用する生分解性樹脂は、架橋樹脂粒子(B)による固化促進効果に優れることから、前述した脂肪族ポリエステルを含むことが好ましく、PHAを含むことが特に好ましい。尚、熱可塑性樹脂(A)として使用されるPHAは、架橋構造を有しないものであることが好ましい。
 熱可塑性樹脂(A)がPHAを含有する場合、その含有割合は、熱可塑性樹脂(A)全体のうち、10~100重量%であることが好ましく、30重量%以上がより好ましく、50重量%以上がさらに好ましく、70重量%以上がより更に好ましく、90重量%以上が特に好ましい。
 熱可塑性樹脂(A)として使用可能なPHAは特に限定されず、例えば、ポリグリコール酸、P3HA、ポリ(4-ヒドロキシアルカノエート)系樹脂等が挙げられる。PHAとしては、1種類のみを用いてもよいし、2種類以上を併用してもよい。このうち、P3HAが特に好ましい。
 熱可塑性樹脂(A)として使用可能なP3HAは、架橋樹脂粒子(B)に関わるP3HAと同様であり、上述した各種P3HAを使用することができる。熱可塑性樹脂(A)として使用するP3HAと、架橋樹脂粒子(B)に関して使用するP3HAは、同じものであってもよいし、異なるものであってもよい。
 熱可塑性樹脂(A)として使用するP3HAが3-ヒドロキシブタン酸(3HB)繰り返し単位を含むものである場合、柔軟性と強度のバランスの観点から、全モノマー繰り返し単位(100モル%)中、3HB繰り返し単位の組成比が80~99モル%であることが好ましく、82~97モル%がより好ましい。3HB繰り返し単位の組成比が80モル%以上であることにより、P3HAの剛性がより向上し得る。一方、3HB繰り返し単位の組成比が99モル%以下であることにより、P3HAの柔軟性がより向上する傾向がある。P3HAとしては、3HB繰り返し単位の組成比が互いに異なる2種類以上を併用してもよい。
 熱可塑性樹脂(A)として使用するPHAの分子量は特に限定されないが、重量平均分子量が50,000~3,000,000であることが好ましく、100,000~2,000,000が好ましく、150,000~1,500,000がより好ましい。重量平均分子量を50,000以上とすることにより、本実施形態に係る熱可塑性樹脂組成物において十分な剛性や強度を得ることができる。一方、重量平均分子量が3,000,000を超えるPHAは、それ自体を作製したり、本発明の目的を達成する為に取り扱うことが難しい場合がある。
 <結晶核剤>
 前記熱可塑性樹脂組成物は、結晶核剤をさらに含有するものであってもよい。前記熱可塑性樹脂組成物が結晶核剤を含有することにより、熱可塑性樹脂(A)が結晶性の樹脂の場合、成形加工する際の結晶化がより促進され、成形加工性、生産性等がより向上し得る。さらに、耐熱性または機械物性に優れた熱可塑性樹脂組成物を得ることができる。
 前記結晶核剤としては特に限定されず、従来公知のものを使用することができるが、例えば、タルク、カオリナイト、モンモリナイト、マイカ、合成マイカ、クレイ、ゼオライト、シリカ、カーボンブラック、グラファイト、窒化ホウ素、酸化亜鉛、酸化チタン、酸化スズ、炭酸カルシウム、炭酸マグネシウム、酸化アルミニウム、酸化ネオジウム、硫酸バリウム、塩化ナトリウム、金属リン酸塩等の無機物;エリスリトール、ペンタエリスリトール、ガラクチトール、マンニトール、アラビトール等の天然物由来の糖アルコール化合物;キチン、キトサン等の多糖類;脂肪族アルコール(ポリオール)、ポリビニルアルコール、ポリエチレンオキシド等のポリオール類;安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シュウ酸カルシウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、オクタコサン酸ナトリウム、オクタコサン酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾエート、ナトリウムβ-ナフタレート、ナトリウムシクロヘキサンカルボキシレートなどの有機カルボン酸金属塩、p-トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウムなどの有機スルホン酸塩、エチレンスステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t-ブチルアミド)などのカルボン酸アミド、ラウリン酸エステル、パルミチン酸エステル、オレイン酸エステル、ステアリン酸エステル、エルカ酸エステル、N-オレイルパルミチン酸エステル、N-オレイルオレイン酸エステル、N-オレイルステアリン酸エステル、N-ステアリルオレイン酸エステル、N-ステアリルステアリン酸エステル、N-ステアリルエルカ酸エステル、メチレンビスステアリン酸エステル、エチレンビスラウリン酸エステル、エチレンビスカプリン酸エステル、エチレンビスオレイン酸エステル、エチレンビスステアリン酸エステル、エチレンビスエルカ酸エステル、エチレンビスイソステアリン酸エステル、ブチレンビスステアリン酸エステル、p-キシリレンビスステアリン酸エステル等のカルボン酸エステル;ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート、ジブチルセバケート等のジカルボン酸誘導体;インジゴ、キナクリドン、キナクリドンマゼンタ等の官能基C=Oと、NH、SおよびOから選ばれる官能基と、を分子内に有する環状化合物;ビスベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール等のソルビトール系誘導体;ピリジン、トリアジン、イミダゾール等の窒素含有ヘテロ芳香族核を含む化合物;リン酸エステル化合物、高級脂肪酸のビスアミドおよび高級脂肪酸の金属塩;分岐状ポリ乳酸;低分子量ポリ3-ヒドロキシブチレート等が挙げられる。これらの結晶核剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記結晶核剤の含有量は、熱可塑性樹脂(A)の結晶化を促進できれば特に限定されないが、熱可塑性樹脂(A)100重量部に対して0.05~12重量部であることが好ましく、0.1~10重量部がより好ましく、0.5~8重量部がさらに好ましい。結晶核剤の含有量が前記範囲内にあると、成形加工時の粘度や成形体の物性の低下を抑制しつつ、結晶核剤としての効果を得ることができる。
 <滑剤>
 前記熱可塑性樹脂組成物は、滑剤をさらに含有するものであってもよい。滑剤を含有することにより、得られる成形体の表面平滑性が向上し得る。前記滑剤としては、特に限定されないが、ステアリン酸マグネシウム、ステアリン酸カルシウムなどの脂肪酸金属塩、ベヘン酸アミド、ステアリン酸アミド、エルカ酸アミド、オレイン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド;ポリエチレンワックス、酸化ポリエステルワックス、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンモノラウレート等のグリセリンモノ脂肪酸エステル;コハク酸飽和脂肪酸モノグリセライド等の有機酸モノグリセライド;ソルビタンベヘネート、ソルビタンステアレート、ソルビタンラウレート等のソルビタン脂肪酸エステル;ジグリセリンステアレート、ジグリセリンラウレート、テトラグリセリンステアレート、テトラグリセリンラウレート、デカグリセリンステアレート、デカグリセリンラウレート等のポリグリセリン脂肪酸エステル;ステアリルステアレート等の高級アルコール脂肪酸エステル等が挙げられるが、これらに限定されない。滑剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記滑剤の含有量(滑剤を複数使用する場合は、その合計含有量)は、成形体に滑性を付与できれば特に限定はないが、熱可塑性樹脂(A)100重量部に対して0.01~20重量部であることが好ましく、0.05~10重量部がより好ましく、0.1~10重量部がさらに好ましく、0.2~5重量部がより更に好ましく、0.3~4重量部が特に好ましい。滑剤の含有量が前記範囲内にあると、成形体表面への滑剤のブリードアウトを回避しつつ、滑剤としての効果を得ることができる。
 <その他の成分>
 本実施形態に係る熱可塑性樹脂組成物は、得られる成形体の機能を損なわない範囲で、可塑剤;有機充填材;無機充填剤;酸化防止剤;加水分解抑制剤;紫外線吸収剤;染料、顔料等の着色剤;帯電防止剤等の他の成分を含有することができる。
 前記可塑剤としては特に限定されないが、例えば、ポリプロピレングリコールセバシン酸エステル等のポリエステル系可塑剤;アジピン酸ジ-1-ブチル、セバシン酸ジ-n-ブチルおよびアゼライン酸ジ-2-エチルヘキシル等の脂肪族二塩基酸エステル系可塑剤;グリセリンジアセトモノラウレート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノデカノエート等のグリセリン系可塑剤;アセチルクエン酸トリ-2-エチルヘキシルやアセチルクエン酸トリブチル等の多価カルボン酸エステル系可塑剤;ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロックおよび/またはランダム共重合体、ポリテトラメチレングリコール等のポリアルキレングリコール系可塑剤;リン酸ジフェニル-2-エチルヘキシルやリン酸ジフェニルオクチル等のリン酸エステル系可塑剤;エポキシ化大豆油やエポキシ化アマニ油脂肪酸ブチルエステル等のエポキシ系可塑剤;ヒマシ油脂肪酸エステル、メチルリシノレート、エチルリシノレート、イソプロピルリシノレート、ブチルリシノレート、エチレングリコールモノリシレート、プロピレングリコールモノリシレート、トリメチロールプロパンモノリシレート、ソルビタンモノリシレート、ヒマシ油脂肪酸ポリエチレングリコールエステル、ヒマシ油エチレンオキシド付加物、ヒマシ油系ポリオール、ヒマシ油系トルオールまたはヒマシ油系ジオール等のヒマシ油系可塑剤等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記有機充填材としては特に限定されないが、例えば、木屑、木粉、オガ屑などの木質系材料、米殻、米粉、澱粉、コーンスターチ、稲わら、麦わら、天然ゴム等の天然由来の材料から構成される充填材;植物性天然繊維、動物性天然繊維、合成繊維等の有機繊維;ポリエステル、ポリアクリル、ポリアミド、ナイロン、ポリエチレン、ポリオレフィン、ポリビニルアルコール、ポリ塩化ビニル、ポリウレタン、ポリアセタール、アラミド、PBO(ポリ-p-フェニレンベンゾビスオキサゾール)、ポリフェニレンスルフィド、アセチルセルロース、ポリベンザゾール、ポリアリレート、ポリビニルアセテート、合成ゴム等の合成樹脂の材料から構成される充填材が挙げられる。
 前記植物性天然繊維としては、例えば、ケナフ繊維、アバカ繊維、竹繊維、ジュート繊維、麻繊維、リネン繊維、ヘネケン(サイザル麻)、ラミー繊維、ヘンプ、綿、バナナ繊維、ココナッツ繊維、ヤシ、パーム、コウゾ、ミツマタ、バガス等が挙げられる。また、植物繊維から加工されたパルプやセルロース繊維、レーヨン等の再生繊維も挙げられる。動物性天然繊維としては、羊毛、絹、カシミア、モヘヤ等が挙げられる。
 前記無機充填剤としては特に限定されないが、例えば、石英、ヒュームドシリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、アモルファスシリカ、アルコキシシランを縮合してなるフィラー、超微粉無定型シリカ等のシリカ系無機フィラー、アルミナ、ジルコン、酸化鉄、酸化亜鉛、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミニウム、炭化ケイ素、ガラス、シリコーンゴム、シリコーンレジン、酸化チタン、炭素繊維、マイカ、黒鉛、カーボンブラック、フェライト、グラファイト、ケイソウ土、白土、クレー、タルク、炭酸カルシウム、炭酸マンガン、炭酸マグネシウム、硫酸バリウム、銀粉等が挙げられる。これらは、樹脂組成物中での分散性を上げるために表面処理されたものであってもよい。また、これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記酸化防止剤としては特に限定されないが、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記加水分解抑制剤としては特に限定されないが、例えば、カルボジイミド化合物、エポキシ化合物、イソシアネート化合物、オキサゾリン化合物等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記紫外線吸収剤としては特に限定されないが、例えば、ベンゾフェノン系化合物類、ベンゾトリアゾール系化合物類、トリアジン系化合物類、サリチル酸系化合物類、シアノアクリレート系化合物類、ニッケル錯塩系化合物類等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記顔料、染料等の着色剤としては特に限定されないが、例えば、酸化チタン、炭酸カルシウム、酸化クロム、亜酸化銅、珪酸カルシウム、酸化鉄、カーボンブラック、グラファイト、チタンイエロー、コバルトブルー等の無機系着色剤、レーキレッド、リソールレッド、ブリリアントカーミン等の溶性アゾ顔料、ジニトリアンオレンジ、ファストイエロー等の不溶性アゾ顔料、モノクロロフタロシアニンブルー、ポリクロロフタロシアニンブルー、ポリブロモフタロシアニングリーン等のフタロシアニン顔料、インジゴブルー、ペリレンレッド、イソインドリノンイエロー、キナクリドンレッド等の縮合多環系顔料、オラセットイエロー等の染料等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記帯電防止剤としては特に限定されないが、例えば、脂肪酸エステル化合物、脂肪族エタノールアミン化合物、脂肪族エタノールアミド化合物、等の低分子型帯電防止剤や、高分子型帯電防止剤等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本実施形態に係る熱可塑性樹脂組成物は、触媒失活剤(ヒンダードフェノール系化合物、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物、リン系化合物など)、離型剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、着色防止剤(亜リン酸塩、次亜リン酸塩など)、シランカップリング剤(エポキシシランカップリング剤、アミノシランカップリング剤、(メタ)アクリルシランカップリング剤、イソシアネートシランカップリング剤など)、難燃剤(赤燐、燐酸エステル、ブロム化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、水酸化アルミニウム、水酸化マグネシウム、メラミンおよびシアヌール酸またはその塩、シリコン化合物など)、導電剤(カーボンブラックなど)、摺動性改良剤(グラファイト、フッ素樹脂など)、エポキシ化合物(グリシジルエーテル化合物、グリシジルエステル化合物、グリシジル化合物をグラフトまたは共重合した高分子化合物など)、酸無水物化合物(無水マレイン酸、無水コハク酸、酸無水物をグラフトまたは共重合した高分子化合物など)、カルボジイミド化合物(N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド、2,6,2’,6’-テトライソプロピルジフェニルカルボジイミド、ポリカルボジイミドなど)等を含有することもできる。
 以上説明した他の成分それぞれの含有量は、発明の効果を奏する限り特に限定されず、当業者により適宜設定され得る。
 [熱可塑性樹脂組成物の製造方法]
 本実施形態に係る熱可塑性樹脂組成物は、公知の方法により製造することができる。具体的には、熱可塑性樹脂(A)、架橋樹脂粒子(B)、並びに、任意成分として結晶核剤、滑剤、及び他の成分を、押出機、ニーダー、バンバリーミキサー、混練ロール等を用いて溶融混練する方法が挙げられる。溶融混錬する場合、熱分解による分子量低下に注意して混合することが好ましい。また、可溶溶媒中に各成分を溶解した後に、溶媒を除去することにより、前記熱可塑性樹脂組成物を製造することもできる。
 溶融混錬によって製造する場合、各成分をそれぞれ個別に押出機などに投入してもよいし、各成分を予め混合してから押出機などに投入してもよい。例えば、熱可塑性樹脂(A)の水分散液と、架橋樹脂粒子(B)の水分散液を混合した後、乾燥させて混合粉末を得、当該混合粉末を押出機などに投入してもよい。
 押出機により溶融混錬した場合、得られた熱可塑性樹脂組成物を、ストランド状に押し出した後にカットすることで、バー状、円柱状、楕円柱状、球状、立方体状、直方体状等の粒子形状に加工してもよい。
 溶融混錬時の樹脂温度は、使用する樹脂の融点や溶融粘度等によるため一概には規定できないが、熱可塑性樹脂(A)の熱分解を回避しつつ架橋樹脂粒子(B)を均一に分散させる観点から、140~220℃であることが好ましく、150~210℃がより好ましく、160~200℃がさらに好ましい。
 <成形体の製造方法>
 本実施形態に係る熱可塑性樹脂組成物から、成形体を製造することができる。成形方法は特に限定されず、一般的に用いられている成形方法を適用できるが、具体的には、インフレーションフィルム成形、押出ブロー成形、インジェクションブロー成形、押出成形、カレンダー成形、真空成形、射出成形などが挙げられる。
 本実施形態によれば、これら成形方法において樹脂の固化が促進され、良好な生産性にて、シート、フィルム、ブロー成形品、押出成形品、真空成形品、射出成形品を製造することができる。
 本実施形態に係る熱可塑性樹脂組成物から構成される成形体は、農業、漁業、林業、園芸、医学、衛生品、食品産業、衣料、非衣料、包装、自動車、建材、その他の分野に好適に用いることができる。
 以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
[項目1]
 熱可塑性樹脂(A)80~99.9重量部、及び、
 ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)0.1~20重量部[但し、(A)と(B)の合計量を100重量部とする]、を含む、熱可塑性樹脂組成物。
[項目2]
 前記ポリヒドロキシアルカノエート系樹脂が、ポリ(3-ヒドロキシアルカノエート)系樹脂である、項目1に記載の熱可塑性樹脂組成物。
[項目3]
 前記架橋樹脂粒子(B)は体積平均粒子径が0.1μm以上10μm以下である、項目1又は2に記載の熱可塑性樹脂組成物。
[項目4]
 前記架橋樹脂粒子(B)が、過酸化物を用いて架橋されたものである、項目1~3のいずれか1項に記載の熱可塑性樹脂組成物。
[項目5]
 前記架橋樹脂粒子(B)が、更に多官能性化合物の存在下で架橋されたものである、項目1~4のいずれか1項に記載の熱可塑性樹脂組成物。
[項目6]
 前記架橋樹脂粒子(B)が発泡していないものである、項目1~5のいずれか1項に記載の熱可塑性樹脂組成物。
[項目7]
 前記架橋樹脂粒子(B)中の前記ポリヒドロキシアルカノエート系樹脂の割合が、80重量%以上である、項目1~6のいずれか1項に記載の熱可塑性樹脂組成物。
[項目8]
 前記熱可塑性樹脂(A)が生分解性樹脂を含む、項目1~7のいずれか1項に記載の熱可塑性樹脂組成物。
[項目9]
 前記生分解性樹脂が、ポリヒドロキシアルカノエート系樹脂である、項目8に記載の熱可塑性樹脂組成物。
[項目10]
 結晶核剤および/または滑剤を更に含む、項目1~9のいずれか1項に記載の熱可塑性樹脂組成物。
[項目11]
 項目1~10のいずれか1項に記載の熱可塑性樹脂組成物の成形体。
[項目12]
 シート、フィルム、ブロー成形品、押出成形品、真空成形品、又は、射出成形品である、項目11に記載の成形体。
[項目13]
 ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)を含む、熱可塑性樹脂の固化促進剤。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[1]測定条件
1-1.重量平均分子量
 測定対象の樹脂をクロロホルムに溶解させて60℃の温水槽中で30分間加温し、可溶分をPTFE製0.45μm孔径ディスポーザーブルフィルターにてろ過した後、そのろ液を用いて、以下の条件でGPC測定を行うことにより測定し、重量平均分子量を求めた。
GPC測定装置:島津製作所製高速液体クロマトグラフ20Aシステム
カラム:昭和電工社製K-G 4A(1本)、K-806M(2本)
試料濃度:1mg/ml
遊離液:クロロホルム溶液
遊離液流量:1.0ml/分
試料注入量:100μL
分析時間:30分
標準試料:標準ポリスチレン
1-2.体積平均粒子径
 架橋樹脂粒子又は未架橋樹脂粒子の体積平均粒子径は、樹脂粒子ラテックスの状態で測定した。測定装置として、日機装株式会社製のMicrotracMT3300EXIIを使用した。
1-3.ゲル分率
 架橋樹脂粒子又は未架橋樹脂粒子の乾燥物を、クロロホルムに対し0.7重量%の濃度になるように添加し、60℃で30分間溶解させてクロロホルム溶液を得た。その後、室温にて3時間静置した後、孔径0.45μmのメンブレンフィルターで前記クロロホルム溶液をろ過した。容器内部やフィルター上にクロロホルムを複数回かけて十分洗浄しながらろ過することで、ロスを防いだ。フィルター上に残ったゲルを乾燥させて、フィルターと共に重量を測定し、下記式にてゲル分率を算出した。
式:ゲル分率=(乾燥ゲルを含むフィルターの重量-フィルターのみの重量)/測定に用いた架橋樹脂粒子又は未架橋樹脂粒子の重量×100(%)
[2]架橋樹脂粒子の原料
2-1.未架橋樹脂粒子
ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート):(3-ヒドロキシブチレート)/(3-ヒドロキシヘキサノエート)=72/28(mol/mol)、重量平均分子量Mw:70~150万
2-2.過酸化物
t-ブチルパーオキシピバレート(アルケマ吉富株式会社製「ルペロックス11」、1時間半減期温度:76℃)
2-3.多官能性化合物
アリルメタクリレート
[3]架橋樹脂粒子の製造方法
 撹拌機、バッフル、窒素吹込/放出口、及び温度計を備えたオートクレーブに、未架橋樹脂粒子が水中に分散している水分散液(固形分で100重量部)、脱イオン水200重量部、過酸化物2重量部、ジオクチルスルホコハク酸ナトリウム2重量部、多官能性化合物5重量部を添加し、室温にて撹拌を開始すると同時にオートクレーブ内を窒素置換した。
 その後、室温にて1時間、オートクレーブ中の内容物を撹拌して、過酸化物と多官能性化合物を未架橋樹脂粒子の内部に含浸させた後、94℃まで昇温した。94℃に到達した後、当該温度で1時間反応させることにより、架橋樹脂粒子が水中に分散した水分散液を得た。
 水分散液のpHを調整後、オーブンで乾燥させることで、固形化した架橋樹脂粒子を取得した。
 得られた架橋樹脂粒子の体積平均粒子径およびゲル分率を上述の方法によって測定したところ、体積平均粒子径は1.7μm、ゲル分率は74.7%であった。
 前記架橋反応を実施する前の未架橋樹脂粒子について、体積平均粒子径およびゲル分率を上述の方法によって測定したところ、体積平均粒子径は1.7μm、ゲル分率は0%であった。当該未架橋樹脂粒子を比較例2で使用した。
[4]示差走査熱量分析評価
4-1.試験片の各成分
(a)熱可塑性樹脂(A):表に記載の量(重量部)
ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート(カネカ社製、カネカ生分解性ポリマーPHBH(登録商標))、(3-ヒドロキシブチレート)/(3-ヒドロキシヘキサノエート)=94.4/5.6(mol/mol)、重量平均分子量Mw:53万
(b)架橋樹脂粒子(B)又は未架橋樹脂粒子:表に記載の量(重量部)
(c)ペンタエリスリトール(日本合成化学社製ノイライザーP):1重量部
(d)ベヘン酸アミド(日本精化社製BNT22H):0.5重量部
4-2.評価用混錬物の作製方法
 前記(a)、(b)、(c)及び(d)の混合物を、バレル温度を175℃に加熱した二軸小型混錬機(DSM社製Xplore MC5)にてスクリュー回転数100rpmの条件で180秒間混錬し、混錬物を得た。この混錬物を乾燥機にて80℃で4時間乾燥し、十分水分量を減らしたものを、次の評価に使用した。
4-3.評価方法
 前述した方法で得た樹脂混錬物2~3mgをアルミパンに充填し、示差走査熱量分析器にて、窒素気流下、-40℃から180℃まで10℃/分の速度で昇温して樹脂混錬物を完全融解させた後、180℃から-40℃まで10℃/分の速度で降温させる途中で得られる発熱ピークについて、発熱量が最大となった発熱ピークのトップ温度をTmcとし、発熱が開始したピーク時の温度をTmcの開始点とした。結果を表に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1より、実施例1~4は、比較例1よりもTmcの開始点及びTmcが高く、溶融後の固化が比較的高い温度で進行し、架橋樹脂粒子が固化促進作用を有することが分かる。
 また、実施例4と、樹脂粒子の配合量が同じもののゲル分率が低い未架橋樹脂粒子を使用した比較例2とを比較すると、実施例4のほうがTmc及びTmcの開始点が高くなっており、架橋樹脂粒子の固化促進作用は未架橋樹脂粒子よりも優れていることが分かる。
 また、実施例1と比較例2を比較すると、実施例1は、樹脂粒子の配合量が比較例2のわずか10分の1であるにも関わらず、Tmcは同じで、Tmcの開始点が高くなっており、このことからも、架橋樹脂粒子の固化促進作用が未架橋樹脂粒子よりも優れていると言える。
 

Claims (13)

  1.  熱可塑性樹脂(A)80~99.9重量部、及び、
     ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)0.1~20重量部[但し、(A)と(B)の合計量を100重量部とする]、を含む、熱可塑性樹脂組成物。
  2.  前記ポリヒドロキシアルカノエート系樹脂が、ポリ(3-ヒドロキシアルカノエート)系樹脂である、請求項1に記載の熱可塑性樹脂組成物。
  3.  前記架橋樹脂粒子(B)は体積平均粒子径が0.1μm以上10μm以下である、請求項1又は2に記載の熱可塑性樹脂組成物。
  4.  前記架橋樹脂粒子(B)が、過酸化物を用いて架橋されたものである、請求項1又は2に記載の熱可塑性樹脂組成物。
  5.  前記架橋樹脂粒子(B)が、更に多官能性化合物の存在下で架橋されたものである、請求項4に記載の熱可塑性樹脂組成物。
  6.  前記架橋樹脂粒子(B)が発泡していないものである、請求項1又は2に記載の熱可塑性樹脂組成物。
  7.  前記架橋樹脂粒子(B)中の前記ポリヒドロキシアルカノエート系樹脂の割合が、80重量%以上である、請求項1又は2に記載の熱可塑性樹脂組成物。
  8.  前記熱可塑性樹脂(A)が生分解性樹脂を含む、請求項1又は2に記載の熱可塑性樹脂組成物。
  9.  前記生分解性樹脂が、ポリヒドロキシアルカノエート系樹脂である、請求項8に記載の熱可塑性樹脂組成物。
  10.  結晶核剤および/または滑剤を更に含む、請求項1又は2に記載の熱可塑性樹脂組成物。
  11.  請求項1又は2に記載の熱可塑性樹脂組成物の成形体。
  12.  シート、フィルム、ブロー成形品、押出成形品、真空成形品、又は、射出成形品である、請求項11に記載の成形体。
  13.  ポリヒロドキシアルカノエート系樹脂を含み、ゲル分率が50%以上である架橋樹脂粒子(B)を含む、熱可塑性樹脂の固化促進剤。
     
PCT/JP2023/011871 2022-03-29 2023-03-24 熱可塑性樹脂組成物 WO2023190184A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053573 2022-03-29
JP2022-053573 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190184A1 true WO2023190184A1 (ja) 2023-10-05

Family

ID=88201481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011871 WO2023190184A1 (ja) 2022-03-29 2023-03-24 熱可塑性樹脂組成物

Country Status (1)

Country Link
WO (1) WO2023190184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090484A1 (ja) * 2022-10-27 2024-05-02 株式会社カネカ 熱可塑性樹脂組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175092A (ja) * 2001-07-10 2003-06-24 Canon Inc ポリヒドロキシアルカノエートを含有する粒状体及びその製造方法ならびにその用途
JP2004161802A (ja) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd 生分解性ポリエステル系樹脂組成物およびその製造方法
JP2009190226A (ja) * 2008-02-13 2009-08-27 Sumitomo Electric Fine Polymer Inc 膜材料
JP2009298938A (ja) * 2008-06-13 2009-12-24 Sumitomo Electric Fine Polymer Inc 樹脂組成物の製造方法および樹脂組成物
WO2016058096A1 (en) * 2014-10-15 2016-04-21 Terraverdae Bioworks Inc. Bioactive biopolymer films and coatings
JP2019500403A (ja) * 2015-10-09 2019-01-10 デベデック フランツ レ 架橋粒子
WO2022014408A1 (ja) * 2020-07-17 2022-01-20 株式会社カネカ 脂肪族ポリエステル系樹脂組成物およびその利用
WO2022054870A1 (ja) * 2020-09-11 2022-03-17 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)系発泡粒子又はポリ(3-ヒドロキシアルカノエート)系発泡成形体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175092A (ja) * 2001-07-10 2003-06-24 Canon Inc ポリヒドロキシアルカノエートを含有する粒状体及びその製造方法ならびにその用途
JP2004161802A (ja) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd 生分解性ポリエステル系樹脂組成物およびその製造方法
JP2009190226A (ja) * 2008-02-13 2009-08-27 Sumitomo Electric Fine Polymer Inc 膜材料
JP2009298938A (ja) * 2008-06-13 2009-12-24 Sumitomo Electric Fine Polymer Inc 樹脂組成物の製造方法および樹脂組成物
WO2016058096A1 (en) * 2014-10-15 2016-04-21 Terraverdae Bioworks Inc. Bioactive biopolymer films and coatings
JP2019500403A (ja) * 2015-10-09 2019-01-10 デベデック フランツ レ 架橋粒子
WO2022014408A1 (ja) * 2020-07-17 2022-01-20 株式会社カネカ 脂肪族ポリエステル系樹脂組成物およびその利用
WO2022054870A1 (ja) * 2020-09-11 2022-03-17 株式会社カネカ ポリ(3-ヒドロキシアルカノエート)系発泡粒子又はポリ(3-ヒドロキシアルカノエート)系発泡成形体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090484A1 (ja) * 2022-10-27 2024-05-02 株式会社カネカ 熱可塑性樹脂組成物

Similar Documents

Publication Publication Date Title
KR101771750B1 (ko) Pbs와 pbsa를 포함하는 pha 조성물 및 그 제조 방법
US11629244B2 (en) Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
EP2291429B1 (en) Branched pha compositions, methods for their production, and use in applications
US9464187B2 (en) Biobased modifiers for polyvinylchloride blends
JP7433889B2 (ja) 脂肪族ポリエステル系樹脂組成物およびその利用
CN108047658B (zh) 一种生物降解聚酯农用地膜
WO2022014408A1 (ja) 脂肪族ポリエステル系樹脂組成物およびその利用
JP7187338B2 (ja) ポリ(3-ヒドロキシアルカノエート)樹脂組成物
KR20120104168A (ko) 강인화된 폴리하이드록시알카노에이트 조성물
US9505927B2 (en) Biobased modifiers for polyvinylchloride blends
Przybysz-Romatowska et al. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review
CN101747476B (zh) 聚羟基烷酸酯接枝聚合物及其制备方法
CN102295825A (zh) 一种生物降解组合物及其制备方法
JP7200107B2 (ja) ポリ(3-ヒドロキシアルカノエート)樹脂組成物
WO2023190184A1 (ja) 熱可塑性樹脂組成物
WO2011160053A2 (en) Melt stable polyesters
CN113631657A (zh) 聚羟基烷酸酯系树脂组合物、其成型体及膜或片
EP1781798A1 (en) Use of fatty alcohols as plasticizer to improve the physical-mechanical properties and processability of phb and its co-polymers
WO2023190185A1 (ja) 熱可塑性樹脂組成物
JP4887860B2 (ja) 射出成形用ポリ乳酸系樹脂組成物、その製造方法及び射出成形体
JP2009067856A (ja) ポリ乳酸系樹脂組成物、及びその成形体、並びに該成形体の製造方法
KR20200116482A (ko) 초분지형 폴리락티드 수지 조성물
JPWO2009110171A1 (ja) 生分解性ポリエステル樹脂組成物及びそれからなる成形体
WO2023190183A1 (ja) 架橋樹脂粒子およびその製造方法
WO2024090484A1 (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780194

Country of ref document: EP

Kind code of ref document: A1