WO2023190128A1 - ラミネートフィルム外装体を備えた電池の製造方法 - Google Patents

ラミネートフィルム外装体を備えた電池の製造方法 Download PDF

Info

Publication number
WO2023190128A1
WO2023190128A1 PCT/JP2023/011762 JP2023011762W WO2023190128A1 WO 2023190128 A1 WO2023190128 A1 WO 2023190128A1 JP 2023011762 W JP2023011762 W JP 2023011762W WO 2023190128 A1 WO2023190128 A1 WO 2023190128A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate film
sealing
resin layer
inner resin
electrode tab
Prior art date
Application number
PCT/JP2023/011762
Other languages
English (en)
French (fr)
Inventor
和博 奥田
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Publication of WO2023190128A1 publication Critical patent/WO2023190128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing a battery equipped with a laminate film packaging body, in which an electrode body including a positive electrode and a negative electrode is packaged with a laminate film including an outer resin layer, a metal layer, and an inner resin layer.
  • Secondary batteries such as lithium-ion batteries are used as power sources for various electrical devices, and especially small and thin ones are used as power sources for electronic devices such as smartphones, tablets, and notebook computers.
  • Such a laminate film exterior body has a laminate film shaped like a bag and houses an electrode body therein, but the ends of the laminate film are exposed.
  • the laminate film has three layers: the outer resin layer, the metal layer, and the inner resin layer, and the ends of the metal layer are also exposed.
  • the metal layer comes into contact with, for example, a member charged with a negative potential, metal corrosion is likely to occur. It is necessary to connect the positive and negative electrodes of the battery to the outside, and for this reason, the positive electrode tab and the negative electrode tab are exposed from the laminate film exterior body of the battery. Therefore, there is a possibility that the positive electrode tab and the negative electrode tab come into contact with the metal layer of the laminate film exterior body.
  • Patent Document 1 the above problem is solved by covering the ends of the laminate film exterior body with a heat-adhesive insulating sheet.
  • the metal layer can be insulated from the outside by reliably covering the end portion of the laminate film exterior body.
  • a method for manufacturing a battery equipped with a laminate film exterior body includes a laminate film in which an electrode body including a positive electrode and a negative electrode is exteriorized with a laminate film including an outer resin layer, a metal layer, and an inner resin layer.
  • a method for manufacturing a battery including an exterior body comprising: an exterior step of exteriorizing the electrode body with the laminate film exterior body; and a sealing step of sealing the periphery of the electrode body with the laminate film exterior body.
  • the sealing step includes a first step sealing step of leaving an unwelded portion at the tip and welding the inner resin layer inside the unwelded portion, and heating and pressing the unwelded portion to weld the inner resin layer. and a second step of sealing, in which the end face of the metal layer at the tip of the laminate film exterior body is covered with an inner resin layer by extruding the metal layer outward.
  • the end face of the metal layer of the laminate film can be covered with the inner resin layer by the second stage sealing process. Therefore, there is no need to cover the end face with another insulating material, so there is no increase in the number of parts, and the end face of the metal layer can be insulated through a relatively simple process.
  • FIG. 1 is a perspective view showing a schematic shape of a battery including a laminate film exterior body manufactured by a manufacturing method according to an embodiment. It is a figure showing the cross section of the laminate film used for a laminate film exterior body. It is a figure which shows the electrode body manufacturing process of manufacturing an electrode body. It is a figure showing a laminate film exterior process and a sealing process. It is a figure which shows the liquid injection and vacuum sealing process. It is a figure which shows the main sealing, side cutting, and side bending process. It is a figure showing an outline of a sealing process. It is a figure explaining a top sealing process. It is a figure explaining a side sealing process. It is a figure explaining the main sealing process.
  • FIG. 1 is a perspective view showing the general shape of a battery including a laminate film exterior manufactured by a manufacturing method according to an embodiment.
  • the battery 10 has a thin rectangular parallelepiped shape as a whole, and is covered with a laminate film exterior body 12. Note that in this example, the battery 10 is a lithium ion battery.
  • the laminate film exterior body 12 is a thin film, and the electrode body 50 and electrolyte are housed in the thick part of the rectangular parallelepiped.
  • the electrode body 50 is wrapped with a larger laminate film folded in half, and the remaining three sides are sealed.
  • the top sealing part 16 is on the upper side
  • the side sealing part 18 is on the left side
  • the main sealing part 20 is on the left side.
  • the side sealing portion 18 and the main sealing portion 20 are folded back in the thickness direction so as to overlap the side wall of the battery 10.
  • a positive electrode tab 22 and a negative electrode tab 24 protrude from the top sealing portion 16.
  • the positive electrode tab 22 and the negative electrode tab 24 are connected to the positive electrode 30 and the negative electrode 40, respectively.
  • insulating tab films 26 and 28 are interposed between the positive electrode tab 22 and the base of the negative electrode tab 24 and the laminate film exterior body 12.
  • the battery 10 equipped with such a laminate film exterior body 12 is connected to the outside through a positive electrode tab 22 and a negative electrode tab 24.
  • the front end surface 12a and the upper end surface 12b on both the left and right sides of the laminate film exterior body 12 which are indicated by thick lines, are two laminate films folded in half and stacked so that their inner resin layers are in contact with each other. It is glued.
  • FIG. 2 is a diagram showing a cross section of a laminate film 120 used for the laminate film exterior body 12.
  • the laminate film 120 has a three-layer structure including the outer resin layer 122, the metal layer 124, and the inner resin layer 126.
  • the metal layer 124 is made of aluminum or an aluminum alloy, for example.
  • the outer resin layer 122 is made of, for example, nylon
  • the inner resin layer 126 is made of, for example, polypropylene. Further, the metal layer 124 and the outer resin layer 122 are bonded together using, for example, a dry laminating adhesive, while the metal layer 124 and the inner resin layer 126 are bonded together using a carboxylic acid-modified polypropylene in which a carboxyl group is added to polypropylene. be able to.
  • FIG. 3 shows an electrode body manufacturing process for manufacturing the electrode body 50. As shown in FIG. First, tab films 26 and 28 are welded to the positive electrode tab 22 and negative electrode tab 24, respectively.
  • the positive electrode tab 22 is welded to the core material 32 of the positive electrode 30, and the negative electrode tab 24 is welded to the core material 42 of the negative electrode 40.
  • a positive electrode active material layer 34 is formed on the surface of the core material 32 of the positive electrode 30, and a negative electrode active material layer 44 is formed on the surface of the core material 42 of the negative electrode 40.
  • aluminum foil is used as the core material 32
  • copper foil is used as the core material 42
  • the positive electrode active material layer 34 contains a positive electrode active material such as a lithium transition metal composite oxide
  • the negative electrode active material Layer 44 includes, for example, a negative electrode active material such as graphite.
  • the positive electrode 30, the negative electrode 40, and a separator made of, for example, olefin resin are wound up using a winding machine to form an electrode body 50. Note that the winding end portion is fixed with tape 52.
  • FIG. 4 is a diagram showing a laminate film packaging process and a sealing process.
  • the laminate film 120 is folded in half to wrap around the electrode body 50.
  • the positive electrode tab 22 and the negative electrode tab 24 are made to protrude from the side opposite to the side of the laminate film 120 folded in two.
  • the side from which the positive electrode tab 22 and negative electrode tab 24 protrude is called the top. In this way, a work-in-progress 60 containing the electrode body 50 within the laminate film 120 is obtained.
  • top side end of the laminate film 120 is heated and pressed to weld the inner resin layers 126 together, thereby performing top sealing.
  • top sealing is performed by sandwiching the positive electrode tab 22 and the negative electrode tab 24 between the laminate film 120 with the tab films 26 and 28 interposed therebetween, with the positive electrode tab 22 and the negative electrode tab 24 protruding outward.
  • FIG. 5 is a diagram showing the liquid injection and vacuum sealing process.
  • the electrolytic solution is injected into the work-in-progress 60 in the dry box 70 from the opening thereof.
  • the electrolytic solution includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents used include esters, ethers, nitriles, amides, and mixed solvents of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • nonaqueous solvents examples include ethylene carbonate (EC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), and mixed solvents thereof.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DMC dimethyl carbonate
  • a lithium salt such as LiPF 6 is used as the electrolyte salt.
  • the work-in-progress 60 is housed in the vacuum box 74, and the work-in-progress 60 is sealed under reduced pressure. After that, a part of the vacuum sealing part is first cut.
  • FIG. 6 is a diagram showing the main sealing, side cutting, and finishing steps.
  • the temporarily sealed side of the work-in-progress 60 that has been sealed under reduced pressure is permanently sealed to form the final sealed portion 20 .
  • This main sealing portion 20 is located on the work-in-progress 60 side of the primary cut portion. This allows the inner resin layer 126 extruded by the main sealing to spread out like a free end. Then, this portion is side-cut to remove unnecessary laminate film 120.
  • both sides of the laminate film exterior body 12 are bent toward the side surfaces of the work-in-progress 60, and the battery 10 of FIG. 1 is completed.
  • the laminate film 120 is sealed in three sealing processes: the top sealing process, the side sealing process, and the main sealing process. In this sealing process, a two-stage sealing process is performed.
  • FIG. 7 is a diagram schematically showing the sealing process.
  • the tip portion of the laminate film 120 which is folded in half and overlapped with the inner resin layer 126 facing each other, is sealed.
  • a mold 80 having a shape corresponding to the sealing portion is prepared, and the overlapping laminate film 120 is pressed with the mold 80 from both sides and heated.
  • the inner resin layer 126 is welded.
  • the heating temperature is approximately 180 to 200°C.
  • the outer resin layer 122 is made of, for example, nylon
  • the inner resin layer 126 is made of, for example, polypropylene, so that the inner resin layers 126 can be welded together.
  • there are various types of resin and by using a resin for the inner resin layer 126 that is more resistant to heat than the outer resin layer 122, the inner resin layers 126 can be welded together.
  • the portion to which the mold 80 is pressed is recessed in a corresponding shape.
  • a band-shaped tip area that is not pressed by the mold 80 remains on the tip side of the laminate film 120. This is to prevent the tip from being damaged due to a large load being applied to it.
  • the tip region of the laminate film 120 curves outward starting from the tip end of the mold 80, and the tip points diagonally upward.
  • the part heated and pressed by the mold 80 becomes a welded sealing area, and a band-shaped unwelded part remains on the tip side. Further, the pressed pair of laminate films 120 move toward the tips where the pair of inner resin layers 126 are free ends, and take on a bulged shape with a protruding central portion.
  • the combined portion of the pair of inner resin layers 126 that had bulged toward the tip side is pressed from both sides, but in this case, the metal layer 124 and the outer resin layer 122 move inward, and the inner resin layer 126 is pressed, the end surfaces of the metal layer 124 and the outer resin layer 122 are covered with the inner resin layer 126. That is, the heating and pressing of the mold 82 is performed at a relatively low temperature and the pressing is performed halfway, so that the bulges 126a of the combined pair of inner resin layers 126 expand outward, and at least the metal The end faces of layer 124 can be covered.
  • different molds are used for the mold 80 for the first stage sealing process and the mold 82 for the second stage sealing process, but it is also possible to use the same mold.
  • FIG. 8 is a diagram illustrating the top sealing process. As shown in the figure, in the top sealing, the vicinity of the tip of the top side from which the positive electrode tab 22 and the negative electrode tab 24 of the work-in-process product 60 protrude is sealed with a band-shaped sealing portion 90-1.
  • the sealing portion 90-1 is welded by heating and pressing with the mold 86.
  • an unwelded portion 90-2 is left on the tip side of the sealing portion 90.
  • On the right side a plan view and a side sectional view of a mold 86 used in the first-stage sealing process are shown.
  • the molds 86 are rod-shaped with a rectangular cross section that crosses the entire one side (top) of the work-in-progress 60, and by sandwiching the sides of the work-in-progress 60 between the pair of molds 86, a band-shaped seal is formed. Form a stop.
  • the pair of molds 86 has a tab relief 84, which is a recess corresponding to the thickness of the positive electrode tab 22 and the negative electrode tab 24, at the portion where the positive electrode tab 22 and the negative electrode tab 24 are sandwiched. This allows for proper sealing, including the area where the electrode tab is present.
  • the end surface of the metal layer 124 can be covered by the bulging portion 126b of the inner resin layer 126 by heating and pressing the unwelded portion 90-2 with the mold 88.
  • the top sealing it is also possible to use the same mold for the mold 86 for the first stage sealing process and the mold 88 for the second stage sealing process.
  • FIG. 9 is a diagram illustrating the side sealing process. In this way, the vicinity of the tip on one side of the work-in-progress 60 is sealed with the band-shaped sealing portion 92-1.
  • the sealing portion 92-1 is heated and pressed by the mold 80 to be welded. At this time, an unwelded portion 92-2 is left on the tip side of the sealing portion 92-1.
  • a plan view and a side sectional view of a mold 80 used in the first-stage sealing process are shown, and the mold 80 has a shape corresponding to the sealing part 92-1.
  • the end surface of the metal layer 124 can be covered by the bulging portion 126b of the inner resin layer 126. .
  • FIG. 10 is a diagram illustrating the main sealing process. The vicinity of the unsealed side of the work-in-process 60 opposite to the side sealed side of the work-in-process 60 is sealed with a band-shaped sealing part 90.
  • the sealing part 94-1 is heated and pressed using a mold 80 having the same shape as the side sealing, so that an unwelded part 94-2 remains on the tip side of the sealing part 94-1.
  • the pair of laminate films 120 overlapped by folding in two are not cut.
  • the inner resin layer 126 swells here, and the outer side of the sealing portion 90 swells as in the case of side cutting.
  • the unwelded portions 94-2 are left outside the sealing portions 90 of the pair of laminate films 120, and side cutting is performed to separate unnecessary overlapping portions of the laminate films 120 on the sides. Note that after the first-stage sealing process, side cutting can be performed, and then the second-stage sealing process can be performed.
  • the end surface of the metal layer 124 can be covered with the bulge portion 126b of the inner resin layer 126.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

電極体(50)をラミネートフィルム(120)によって外装した、ラミネートフィルム外装体を備えた電池の製造方法に関する。電極体(50)をラミネートフィルム外装体で外装する外装工程と、電極体(50)の周辺をラミネートフィルム外装体で封止する封止工程と、を含む。封止工程は、先端部分に未溶着部を残して、その内側に前記内側樹脂層を溶着する第1段階封止工程と、前記未溶着部を加熱および押圧して、内側樹脂層を外方に向けて押し出すことによって、ラミネートフィルム外装体の先端の金属層の端面を内側樹脂層で覆う、第2段階封止工程と、を含む。

Description

ラミネートフィルム外装体を備えた電池の製造方法
 本開示は、正極と負極を含む電極体を、外側樹脂層と、金属層と、内側樹脂層と、を含むラミネートフィルムによって外装した、ラミネートフィルム外装体を備えた電池の製造方法に関する。
 リチウムイオン電池などの二次電池は、各種電気機器の電源として利用されており、特にスマートフォン、タブレット、ノートパソコンなどの電子機器の電源としては、小型、薄型のものが利用されている。
 このような、小型、薄型の電源として、ラミネートフィルム外装体を備えた二次電池、特に扁平型のものが広く利用されている。
 このような、ラミネートフィルム外装体は、ラミネートフィルムを袋状にして内部に電極体を収容するが、ラミネートフィルムの端部が露出する。ラミネートフィルムは、上述したように、外側樹脂層と、金属層と、内側樹脂層の3層であり、金属層の端部も露出することになる。
 そして、金属層が、例えば負電位を帯びた部材と接触すると、金属腐蝕が発生しやすい。電池は正極と負極を外部と接続する必要があり、そのために電池の本体からは正極タブや負極タブがラミネートフィルム外装体から露出することになる。そこで、正極タブや負極タブとラミネートフィルム外装体の金属層が接触する可能性がある。
 特許文献1では、ラミネートフィルム外装体の端部を熱接着性絶縁シートで覆うことで、上記問題を解決する。
特開2007-95465号公報
 特許文献1によれば、ラミネートフィルム外装体の端部を確実に覆って、金属層を外部から絶縁できる。
 しかしながら、このような別部品を設けると、別部品のコストもかかり、また作業量が多くなる。
 本開示に係るラミネートフィルム外装体を備えた電池の製造方法は、正極と負極を含む電極体を、外側樹脂層と、金属層と、内側樹脂層と、を含むラミネートフィルムによって外装した、ラミネートフィルム外装体を備えた電池の製造方法であって、前記電極体を前記ラミネートフィルム外装体で外装する外装工程と、前記電極体の周辺を前記ラミネートフィルム外装体で封止する封止工程と、を含み、前記封止工程は、先端部分に未溶着部を残して、その内側の前記内側樹脂層を溶着する第1段階封止工程と、前記未溶着部を加熱および押圧して、内側樹脂層を外方に向けて押し出すことによって、前記ラミネートフィルム外装体の先端の金属層の端面を内側樹脂層で覆う、第2段階封止工程と、を含む。
 本開示によれば、第2段階封止工程により、ラミネートフィルムの金属層の端面を内側樹脂層により覆うことができる。従って、別の絶縁材などで端面を覆う必要がないため、部品の増加がなく、また比較的簡単な工程で金属層の端面の絶縁処理が行える。
実施形態に係る製造方法により製造されたラミネートフィルム外装体を備えた電池の概略形状を示す斜視図である。 ラミネートフィルム外装体に使用するラミネートフィルムの断面を示す図である。 電極体を作製する電極体作製工程を示す図である。 ラミネートフィルム外装工程および封止工程を示す図である。 注液および減圧封止工程を示す図である。 本封止、サイドカットおよびサイド折り曲げ工程を示す図である。 封止工程の概略を示す図である。 トップ封止工程を説明する図である。 サイド封止工程を説明する図である。 本封止工程を説明する図である。
 以下、図面を参照しながら、本開示の実施形態について以下に説明する。なお、以下の実施形態は本開示を限定するものではなく、また複数の例示を選択的に組み合わせてなる構成も本開示に含まれる。
「電池の構成」
 図1は、実施形態に係る製造方法により製造されたラミネートフィルム外装体を備えた電池の概略形状を示す斜視図である。
 電池10は、全体として薄型の直方体形状を有し、ラミネートフィルム外装体12で覆われている。なお、この例においては、電池10は、リチウムイオン電池である。
 ラミネートフィルム外装体12は、薄いフィルムであり、直方体の厚みのある部分に電極体50と電解質が収容されている。
 後述するように、電極体50を大きめのラミネートフィルムを2つ折りにして包み、残った三方を封止している。
 この例では、上側がトップ封止部16、左側がサイド封止部18、左側が本封止部20である。そして、サイド封止部18、本封止部20は、厚み方向に折り返すことによって、電池10の側壁に重なるようになっている。
 また、トップ封止部16からは、正極タブ22と、負極タブ24が突出している。これら正極タブ22と、負極タブ24は、正極30と、負極40にそれぞれ接続されている。また、正極タブ22と、負極タブ24の根元の部分には、ラミネートフィルム外装体12との間に絶縁性のタブフィルム26,28が介在している。
 このようなラミネートフィルム外装体12を備えた電池10は、正極タブ22と、負極タブ24により外部と接続される。
 なお、図において、太線で示す、ラミネートフィルム外装体12の左右両側の前側の端面12a、および上側の端面12bは、2つ折りされた2枚のラミネートフィルムが内側樹脂層を接するようにして重ねられて接着されている。
「ラミネートフィルムの構成」
 図2は、ラミネートフィルム外装体12に使用するラミネートフィルム120の断面を示す図である。このように、ラミネートフィルム120は、外側樹脂層122と、金属層124と、内側樹脂層126の3層構造である。
 金属層124は、例えばアルミニウムまたはアルミニウム合金から構成されている。外側樹脂層122は、例えばナイロン、内側樹脂層126は、例えばポリプロピレンで構成される。また、金属層124と外側樹脂層122とは、例えばドライラミネート接着剤により接着され、他方、金属層124と内側樹脂層126とは、ポリプロピレンにカルボキシル基が付加されたカルボン酸変性ポリプロピレンによって接着することができる。
 なお、上記構成は一例を示したものであって、これに限定されるものはない。
「製造工程の説明」
 ラミネートフィルム外装体12を備えた電池10の製造工程について、図3~図6に基づいて簡単に説明する。
「電極体作製工程」
 図3は、電極体50を作製する電極体作製工程を示す。まず、正極タブ22、負極タブ24にそれぞれタブフィルム26,28を溶着する。
 次に、正極タブ22を正極30の芯材32に溶接するとともに、負極タブ24を負極40の芯材42に溶接する。なお、正極30の芯材32の表面には、正極活物質層34が形成されており、負極40の芯材42の表面には負極活物質層44が形成されている。芯材32には、例えばアルミ箔が、芯材42には、例えば銅箔が採用され、正極活物質層34には例えばリチウム遷移金属複合酸化物などの正極活物質が含まれ、負極活物質層44には例えば黒鉛などの負極活物質が含まれる。
 このようにして作製された正極30と、負極40と、例えばオレフィン系樹脂からなるセパレータとを巻き取り機により巻き取って、電極体50を形成する。なお、巻き取り端部はテープ52で固定する。
「ラミネートフィルム外装工程・封止工程」
 図4は、ラミネートフィルム外装工程および封止工程を示す図である。このように、ラミネートフィルム120を2つ折りして電極体50を包み込む。この際、正極タブ22、負極タブ24を2つ折りにしたラミネートフィルム120の辺の反対側の辺から突出させる。この正極タブ22、負極タブ24が突出している側をトップと呼ぶ。このようにして、ラミネートフィルム120内に電極体50を収容した仕掛品60が得られる。
 そして、ラミネートフィルム120のトップ側の端部を加熱押圧して内側樹脂層126同士を溶着することでトップ封止を行う。なお、トップ封止は、正極タブ22、負極タブ24を、タブフィルム26,28を介在させてラミネートフィルム120で挟み込み、正極タブ22、負極タブ24が外部突出した状態で行う。
 次に、電極体50を包み込んだ状態のラミネートフィルム120の側方の一方を溶着することでサイド封止を行う。これによって、電極体50を包み込んだ状態のラミネートフィルム120の側方の他方の辺のみが開口した状態の仕掛品60が得られる。
 図5は、注液および減圧封止工程を示す図である。このように、ドライボックス70内で仕掛品60内に、その開口部から電解液が注液される。電解液は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。非水溶媒の一例としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、およびこれらの混合溶媒等が挙げられる。電解質塩には、例えば、LiPF等のリチウム塩が使用される。
 電解液を注液したあと、開口側を仮封止する。次いで、電解液を浸透させた後、所定の充電を行う。
 充電が終了した後、仕掛品60を減圧ボックス74内に収容して、仕掛品60を減圧封止する。その後、減圧封止部の一部を一次カットする。
 図6は、本封止、サイドカットおよび仕上げ工程を示す図である。減圧封止された、仕掛品60について、仮封止された側について、本封止を行い、本封止部20を形成する。この本封止部20は、一次カットした部分の仕掛品60側とする。これによって、本封止によって押し出される内側樹脂層126が自由端のようにして広がることができる。そして、この部分についてサイドカットし、不要なラミネートフィルム120を除去する。
 このようにして、電極体50がラミネートフィルム外装体12内に封入された仕掛品60が得られる。
 そして、ラミネートフィルム外装体12の両サイドが仕掛品60の側面側に折り曲げられ、図1の電池10が完成する。
「封止工程」
 上述のように、本実施形態では、トップ封止工程、サイド封止工程、本封止工程の3回の封止工程において、ラミネートフィルム120についての封止を行う。そして、この封止工程において、2段階の封止工程を実施する。
<第1段階>
 図7は、封止工程の概略を示す図である。まず、第1段階では、2つ折りで内側樹脂層126を向かい合わせて重畳されたラミネートフィルム120の先端部分を封止する。この封止には、封止部分に対応する形状の金型80を用意し、金型80で重畳されたラミネートフィルム120の両側から押圧するとともに加熱する。これによって、内側樹脂層126が溶着する。加熱温度は180~200°C程度とする。上述のように、外側樹脂層122は、例えばナイロン、内側樹脂層126は、例えばポリプロピレンで構成することで、内側樹脂層126同士の溶着ができる。なお、樹脂には、各種のものがあり、内側樹脂層126が外側樹脂層122より熱に弱いものを使うことで、内側樹脂層126同士の溶着が行える。
 金型80により、加圧することで、金型80を押し当てた部分が対応した形状で凹むことになる。ここで、ラミネートフィルム120の先端側には金型80により押されない帯状の先端領域を残留させる。これは、先端部分に大きな荷重が掛かり、先端部分が破壊さ
れるのを防止するためである。
 このため、ラミネートフィルム120の先端領域は、金型80の先端側端部を始点として、外方に向かって曲がり、先端は斜め上方に向くことになる
 このようにして、第1段階封止工程により、金型80で加熱押圧された部分が溶着された封止領域となり、先端側に帯状の未溶着部が残ることになる。また、押し付けられた一対のラミネートフィルム120は、一対の内側樹脂層126が自由端となっている先端に向けて移動して、中央部分が突出した膨出形状となる。
<第2段階>
 第1段階封止工程が終了した場合には、次に第2段階封止工程を実施する。この第2段階封止工程では、先端側の未溶着部を金型82によって、加熱押圧する。この際に、金型82は、ラミネートフィルム120側への移動を中途で止める。すなわち、外方に向いて広がっている一対のラミネートフィルム120の先端部分が平行になる位置にて移動を停止する。
 これによって、先端側に向けて膨出していた一対の内側樹脂層126が合体した部分が両側から押し付けられるが、この場合に金属層124、外側樹脂層122が内側に移動して、内側樹脂層126が押し付けられることで、金属層124、外側樹脂層122の先端側端面が内側樹脂層126により覆われることになる。すなわち、金型82の加熱押圧は、比較的低温の加熱であって、かつ押圧が中途までであることにより、合体した一対の内側樹脂層126の膨出部126aが外側方向に広がり、少なくとも金属層124の端面を覆うことができる。
 ここで、第1段階封止工程の金型80と、第2段階封止工程の金型82について、異なるものを使用しているが、同じ金型を使用することも可能である。
<トップ封止>
 図8は、トップ封止工程を説明する図である。図に示すように、トップ封止は、仕掛品60の正極タブ22、負極タブ24が突出するトップ側の先端付近を帯状の封止部90-1で封止する。
 第1段階封止工程では、封止部90-1を金型86により加熱押圧することで溶着する。この時、封止部90の先端側に未溶着部90-2を残留させる。右側には、第1段階封止工程で使用する金型86の平面図および側断面図を示してある。このように、金型86は、仕掛品60の一辺(トップ)の全体を横断する断面四角形の棒状であり、一対の金型86で、仕掛品60の側部を挟み込むことで、帯状の封止部を形成する。また、一対の金型86は、正極タブ22、負極タブ24を挟み込む部分にこれらの厚みに対応した凹部であるタブ逃がし84を有している。これによって、電極タブが存在している部分を含め、適切な封止が行える。
 そして、第2封止工程において、未溶着部分を金型88によって、未溶着部90-2加熱押圧することで、金属層124の端面を内側樹脂層126の膨出部126bによって覆うことができる。なお、トップ封止においても、第1段階封止工程の金型86と、第2段階封止工程の金型88について同じ金型を使用することも可能である。
<サイド封止>
 図9は、サイド封止工程を説明する図である。このように、仕掛品60の一側の先端付近を帯状の封止部92-1で封止する。
 第1段階封止工程では、封止部92-1を金型80により加熱押圧することで溶着する。この時、封止部92-1の先端側に未溶着部92-2を残留させる。右側には、第1段階封止工程で使用する金型80の平面図および側断面図を示してあり、封止部92-1に対応した形状を有している。
 そして、第2段階封止工程において、未溶着部92-2を金型82で部分的に加熱押圧することで、金属層124の端面を内側樹脂層126の膨出部126bによって覆うことができる。
<本封止>
 図10は、本封止工程を説明する図である。仕掛品60のサイド封止した側と反対の未封止側の仕掛品60の近傍を帯状の封止部90で封止する。
 第1段階封止工程では、封止部94-1をサイド封止と同様に形状の金型80により加熱押圧し、封止部94-1の先端側に未溶着部94-2を残留させる。ここで、本封止の場合、2つ折りにより重畳した一対のラミネートフィルム120が切断されていない。しかし、一対のラミネートフィルム120は、一次カットされているため、ここにおいて内側樹脂層126が膨らみ、サイドカットの場合と同様に封止部90の外方側が膨らむ。
 そして、一対のラミネートフィルム120の封止部90の外方に未溶着部94-2を残留させてサイドカットして側方の不要なラミネートフィルム120の重畳部分を切り離す。なお、第1段階封止工程の後、サイドカットし、その後に第2段階封止工程を実施する
こともできる。
 次に、切断部の内側に残る未溶着部94-2を金型82で部分的に加熱押圧することで、金属層124の端面を内側樹脂層126の膨出部126bによって覆うことができる。
「実施形態の効果」
 本実施形態では、ラミネートフィルム120による仕掛品60の封止工程において、2段階の封止工程を実施し、第2段階封止工程により、ラミネートフィルム120の金属層124の端面を内側樹脂層126により覆うことができる。従って、別の絶縁材などで端面を覆う必要がなく、部品の増加がなく、また比較的簡単な工程で金属層124の端面の絶縁処理が行える。
 10 電池、12 ラミネートフィルム外装体、16 トップ封止部、18 サイド封止部、20 本封止部、22 正極タブ、24 負極タブ、50 電極体、60 仕掛品、80,82 金型、120ラミネートフィルム、122 外側樹脂層、124 金属層、126 内側樹脂層。
 

Claims (3)

  1.  正極と負極を含む電極体を、外側樹脂層と、金属層と、内側樹脂層と、を含むラミネートフィルムによって外装した、ラミネートフィルム外装体を備えた電池の製造方法であって、
     前記電極体を前記ラミネートフィルム外装体で外装する外装工程と、
     前記電極体の周辺を前記ラミネートフィルム外装体で封止する封止工程と、
     を含み、
     前記封止工程は、
     先端部分に未溶着部を残して、その内側の前記内側樹脂層を溶着する第1段階封止工程と、
     前記未溶着部を加熱および押圧して、内側樹脂層を外方に向けて押し出すことによって、前記ラミネートフィルム外装体の先端の金属層の端面を内側樹脂層で覆う、第2段階封止工程と、
     を含む、
     ラミネートフィルム外装体を備えた電池の製造方法。
  2.  前記正極および前記負極は、それぞれ正極タブおよび負極タブを有し、
     前記外装工程では、前記正極タブおよび前記負極タブが外部に突出する状態で、前記電極体を前記ラミネートフィルム外装体で外装し、
     前記第1段階封止工程では、前記正極タブと、前記負極タブが外部に突出する状態で、前記電極体の周囲の前記内側樹脂層同士を溶着させる、
     請求項1に記載のラミネートフィルム外装体を備えた電池の製造方法。
  3.  前記外装工程では、前記ラミネートフィルム外装体を2つ折りにして前記電極体を内部に収容し、前記封止工程では、前記電極体の両側、および上辺の封止し、
     上辺において、前記正極タブおよび前記負極タブが外部に露出した状態での封止を行う、
     請求項2に記載のラミネートフィルム外装体を備えた電池の製造方法。

     
PCT/JP2023/011762 2022-03-30 2023-03-24 ラミネートフィルム外装体を備えた電池の製造方法 WO2023190128A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055282 2022-03-30
JP2022055282 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190128A1 true WO2023190128A1 (ja) 2023-10-05

Family

ID=88201383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011762 WO2023190128A1 (ja) 2022-03-30 2023-03-24 ラミネートフィルム外装体を備えた電池の製造方法

Country Status (1)

Country Link
WO (1) WO2023190128A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280271A (ja) * 2001-03-19 2002-09-27 Nissan Diesel Motor Co Ltd 電気二重層キャパシタおよびその製造方法
JP2005108486A (ja) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd ラミネート電池、その製造方法及びラミネート電池製造用金型
JP2005129344A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法
JP2010080326A (ja) * 2008-09-26 2010-04-08 Asahi Kasei Corp 蓄電素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280271A (ja) * 2001-03-19 2002-09-27 Nissan Diesel Motor Co Ltd 電気二重層キャパシタおよびその製造方法
JP2005108486A (ja) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd ラミネート電池、その製造方法及びラミネート電池製造用金型
JP2005129344A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法
JP2010080326A (ja) * 2008-09-26 2010-04-08 Asahi Kasei Corp 蓄電素子およびその製造方法

Similar Documents

Publication Publication Date Title
JP5541514B2 (ja) 積層型二次電池
KR101216422B1 (ko) 실링부의 절연성이 향상된 이차전지
JP4620552B2 (ja) ゼリーロール型電極組立体を有する二次電池
JP5835433B2 (ja) フィルム外装電気デバイス
JP2004071301A (ja) 蓄電素子用ケースの製造方法
US20210119285A1 (en) Battery cell
JP7304330B2 (ja) 二次電池
JP2013077447A (ja) ラミネート電池及びその製造方法
JP5676172B2 (ja) ラミネートフィルム外装積層型電池の製造方法
JP6560877B2 (ja) ラミネート形電池及びその製造方法
JP2022549056A (ja) 二次電池
JP6136466B2 (ja) 蓄電素子及び蓄電素子の被覆方法
JP2015153513A (ja) ラミネート外装電池
JP2006164784A (ja) フィルム外装電気デバイス
JP2009181899A (ja) 積層式電池
JP2017076576A (ja) 電池セル及びその製造方法
WO2023190128A1 (ja) ラミネートフィルム外装体を備えた電池の製造方法
JP2013157172A (ja) フィルム外装電池の製造方法とフィルム外装電池
JP6330253B2 (ja) 蓄電素子、電源モジュール及び蓄電素子の製造方法
JP2009032451A (ja) ラミネート外装電池
JP2019160659A (ja) 電気化学素子
JP2018195393A (ja) フィルム外装電池の製造方法およびフィルム外装電池
JP6736264B2 (ja) 二次電池
JPH10270059A (ja) 電池の製造方法
JP3751947B2 (ja) フィルム外装電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780138

Country of ref document: EP

Kind code of ref document: A1