WO2023190103A1 - 積層体、光学部材、及び光学装置 - Google Patents

積層体、光学部材、及び光学装置 Download PDF

Info

Publication number
WO2023190103A1
WO2023190103A1 PCT/JP2023/011697 JP2023011697W WO2023190103A1 WO 2023190103 A1 WO2023190103 A1 WO 2023190103A1 JP 2023011697 W JP2023011697 W JP 2023011697W WO 2023190103 A1 WO2023190103 A1 WO 2023190103A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesive
meth
void
adhesive layer
Prior art date
Application number
PCT/JP2023/011697
Other languages
English (en)
French (fr)
Inventor
千絵 濱田
晶子 杉野
俊哉 吉見
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023190103A1 publication Critical patent/WO2023190103A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to a laminate, an optical member, and an optical device.
  • an air layer with a low refractive index is used as a total reflection layer.
  • each optical film member for example, a light guide plate and a reflection plate
  • a liquid crystal device is laminated with an air layer in between.
  • problems such as deflection of the member may occur, especially when the member is large.
  • each component is integrated with an adhesive without using an air layer (for example, Patent Document 1).
  • the air layer that plays the role of total reflection disappears, optical properties such as light leakage may deteriorate.
  • Patent Document 2 describes a structure in which a layer having a lower refractive index than the light guide plate is inserted between the light guide plate and the reflection plate.
  • the low refractive index layer for example, a void layer having voids is used in order to have a low refractive index as close to that of air as possible.
  • Patent Document 3 Furthermore, in order to introduce a void layer into a device, an integral configuration with an adhesive layer has also been proposed (Patent Document 3).
  • the void layer is used, for example, by being laminated with another layer via an adhesive layer.
  • the adhesive or adhesive constituting the adhesive layer permeates into the voids of the void layer and fills the voids.
  • the higher the porosity of the void layer the easier the pressure-sensitive adhesive or adhesive will penetrate.
  • the pressure-sensitive adhesive or adhesive easily penetrates into the voids due to molecular movement (decrease in elastic modulus) of the pressure-sensitive adhesive or adhesive.
  • the pressure-sensitive adhesive or adhesive absorbs water, making it easier for the pressure-sensitive adhesive or adhesive to penetrate into the voids.
  • the pressure-sensitive adhesive or adhesive may have as high a modulus of elasticity as possible (hard). However, if the elastic modulus of the pressure-sensitive adhesive or adhesive is high (hard), there is a possibility that the adhesive force or adhesive force may be reduced. On the other hand, if the elastic modulus of the pressure-sensitive adhesive or adhesive is low (soft), high adhesive force or adhesive force can be easily obtained, but there is a possibility that the pressure-sensitive adhesive or adhesive will easily penetrate into the voids.
  • an object of the present invention is to provide a laminate, an optical member, and an optical device that have both adhesive strength or adhesive strength and difficulty in penetrating the adhesive or adhesive into the voids of the void layer.
  • the laminate of the present invention has the following features: including a void layer and an adhesive layer,
  • the adhesive layer is directly laminated on one or both sides of the void layer,
  • the adhesive layer is formed of an adhesive containing a (meth)acrylic polymer and an oligomer-type silane coupling agent,
  • the content of the oligomer-type silane coupling agent is 1 part by mass or less based on 100 parts by mass of the (meth)acrylic polymer.
  • the optical member of the present invention is characterized by including the laminate of the present invention.
  • the optical device of the present invention is characterized by including the optical member of the present invention.
  • the present invention it is possible to provide a laminate, an optical member, and an optical device that have both adhesive force or adhesive force and difficulty in penetrating the adhesive or adhesive into the voids of the void layer.
  • FIGS. 1(a) and 1(b) are cross-sectional views illustrating the structure of the laminate of the present invention.
  • FIGS. 2(a) and 2(b) are cross-sectional views showing another example of the structure of the laminate of the present invention.
  • FIGS. 3A and 3B are cross-sectional views showing still another example of the structure of the laminate of the present invention.
  • the oligomer-type silane coupling agent may contain an epoxy group.
  • the (meth)acrylic polymer may have a weight average molecular weight (Mw) of 1.5 million to 4 million, for example.
  • the oligomer-type silane coupling agent may have a weight average molecular weight (Mw) of 300 or more, for example.
  • the adhesive layer is formed of an adhesive containing the (meth)acrylic polymer and a crosslinking agent, and the adhesive has a gel fraction of 85%. It may exceed.
  • the (meth)acrylic polymer may contain 1 to 30% by mass of a nitrogen-containing monomer as a monomer unit.
  • % by mass and “% by weight” may be read interchangeably, and “parts by mass” and “parts by weight” may be read interchangeably.
  • the amount of increase in the refractive index of the void layer satisfies the following formula (1) before and after a heating durability test held at a temperature of 65° C. and a relative humidity of 95% for 1000 hours, and
  • the initial refractive index before the heating durability test may satisfy the following formula (2).
  • n is the refractive index of the void layer after the heating durability test.
  • n 0 is the refractive index of the void layer before the heating durability test.
  • an intermediate layer exists between the void layer and the adhesive layer, and the intermediate layer is formed by combining the void layer and the adhesive layer. It may be a layer.
  • the intermediate layer may have a thickness of 10 to 100 nm, for example.
  • the "adhesive layer” refers to a layer formed of at least one of an adhesive and an adhesive.
  • the “adhesive layer” may be an “adhesive layer” formed of an adhesive, or may be an “adhesive layer” formed of an adhesive, unless otherwise specified. , it may be a layer containing both an adhesive and an adhesive.
  • pressure-sensitive adhesives and adhesives may be collectively referred to as "adhesives”.
  • an agent with relatively weak adhesive force or bonding force e.g., an agent that can be removable from the adhered object
  • an agent with relatively strong adhesive force or adhesion force e.g., an agent that can be removable from the adhered object
  • Adhesives that are impossible or extremely difficult to re-peel are sometimes called “adhesives" to distinguish them.
  • pressure-sensitive adhesives and adhesives.
  • adhesive strength and "adhesive strength”.
  • on or “on a surface” may be in direct contact with the surface or on the surface, or may be in a state via another layer or the like.
  • the (meth)acrylic polymer contains, as monomer components, 3 to 20% by mass of a heterocycle-containing acrylic monomer (heterocycle-containing acrylate) and 0.5 to 5% by mass of (meth)acrylic acid.
  • (meth)acrylic type having a weight average molecular weight of 2 million to 3.5 million obtained by polymerizing 0.05 to 2 mass % of hydroxyalkyl (meth)acrylate, and 83 to 96.45 mass % of alkyl (meth)acrylate. It may also be a polymer.
  • the nitrogen-containing monomer may be a monomer having one or two reactive double bonds in one molecule.
  • the monomer having one or two reactive double bonds in one molecule may be, for example, a heterocycle-containing acrylic monomer (heterocycle-containing acrylate).
  • the gel fraction of the adhesive forming the adhesive layer may be, for example, 85% by mass or more, or may exceed 85% by mass as described above, For example, it may be 90% by mass or more, 91% by mass or more, or 93% by mass or more, and may be, for example, 100% by mass or less, 99% by mass or less, or 98% by mass or less.
  • the initial refractive index (hereinafter sometimes referred to as "initial refractive index") of the void layer before the heating durability test may be, for example, less than 1.23, as described above. , for example, 1.22 or less, less than 1.22, 1.21 or less, or less than 1.21.
  • the amount of increase in the refractive index of the void layer before and after the heating durability test held at a temperature of 65° C. and a relative humidity of 95% for 1000 hours may be, for example, 0.015 or less, as described above. For example, it may be less than 0.015, less than 0.01, or less than 0.01.
  • the lower limit of the amount of increase in the refractive index is not particularly limited, and may be, for example, 0 or more, or a numerical value exceeding 0.
  • the void layer may have a porosity of 35% by volume or more, for example.
  • the void layer may be a porous body in which microporous particles are chemically bonded to each other.
  • the adhesive layer is formed by, for example, a step of preparing an adhesive coating liquid containing a (meth)acrylic polymer; It is formed by a method including a pressure-sensitive adhesive coating liquid application step of applying a coating liquid to a base material, and a heating drying step of heating and drying the base material coated with the pressure-sensitive adhesive coating liquid.
  • the adhesive layer may be formed from an adhesive coating liquid having a specific composition as described above, and may be integrated with the void layer. Thereby, for example, it is possible to suppress significant penetration of the adhesive layer into the void layer even under a particularly long-term heating durability test.
  • the pressure-sensitive adhesive coating liquid may further contain, for example, a crosslinking agent, or may contain other components as described below.
  • the reason (mechanism) that the laminate of the present invention can achieve both adhesive strength and difficulty in penetrating the adhesive or adhesive into the voids is considered to be, for example, as follows.
  • a pressure-sensitive adhesive layer using a specific pressure-sensitive adhesive it is possible to achieve both high adhesive force or adhesive force and difficulty in penetrating the pressure-sensitive adhesive or adhesive into the void.
  • an adhesive layer using a specific (meth)acrylic polymer as described above and a crosslinking agent as necessary a part of the void layer and the adhesive layer may be formed.
  • An intermediate layer is formed by coalescence with a part of the deposited layer.
  • the intermediate layer does not spread excessively even under the conditions of the heat durability test.
  • the intermediate layer acts as a stopper, and it is possible to suppress a decrease in porosity due to filling of the voids in the void layer with the adhesive. Even if the molecular motion of the adhesive increases under heating, if the elastic modulus of the adhesive is high, the intermediate layer formed from the adhesive and the high-porosity layer will tend to become a strong and dense stopper, which will prevent the adhesive from reaching the high-porosity layer. Penetration is suppressed.
  • these mechanisms are merely examples and do not limit the present invention in any way.
  • the pressure-sensitive adhesive coating liquid contains, for example, a monomer having one or two reactive double bonds in one molecule, so that it can be heated, for example, with an isocyanate-based crosslinking agent, an epoxy-based crosslinking agent, etc. It is possible to perform a crosslinking reaction with a crosslinking agent.
  • the coexistence of a monomer having one or two reactive double bonds in one molecule and an organic peroxide, which is a hydrogen abstraction initiator, makes it possible for the adhesive coating solution to It is believed that the semi-high molecular weight polymer components contained therein having a molecular weight of 10,000 or less are also cross-linked with high density, making it possible to suppress the penetration of the components from the adhesive coating solution into the void layer to an even higher level.
  • a semi-high molecular weight polymer component with a molecular weight of 10,000 or less easily penetrates into the voids of the void layer due to its small molecular size, but as the molecular size increases due to crosslinking reaction, it is difficult to penetrate into the voids of the void layer. It is thought that penetration is suppressed.
  • the coexistence of a monomer having one or two reactive double bonds in one molecule during the crosslinking reaction allows the graft reaction with the (meth)acrylic polymer main chain and the graft chain to be the starting point. It is presumed that high-density crosslinking becomes possible and the amount of semi-high molecular weight polymers that can become sol components decreases.
  • these mechanisms are also illustrative and do not limit the present invention in any way.
  • the nitrogen-containing monomer has a number of functional groups (in one molecule) in order to efficiently crosslink the main chains in the graft reaction. It is preferable that the number of reactive double bonds is small. For example, as mentioned above, it is preferable that the number of reactive double bonds is one or two in one molecule.
  • (meth)acrylic means at least one of acrylic and methacryl.
  • (meth)acrylic acid means at least one of acrylic acid and methacrylic acid.
  • (Meth)acrylic ester means at least one of acrylic ester and methacrylic ester.
  • “Methyl (meth)acrylate” means at least one of methyl acrylate and methyl methacrylate.
  • the "(meth)acrylic polymer” is at least one selected from the group consisting of acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, a monomer having an acryloyl group, and a monomer having a methacryloyl group.
  • the component may appropriately contain a substance other than at least one selected from the group consisting of acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, a monomer having an acryloyl group, and a monomer having a methacryloyl group. However, it does not have to be included.
  • the "acrylic monomer” refers to a monomer containing at least one selected from the group consisting of acrylic acid, acrylic acid ester, and a monomer having an acryloyl group.
  • the "isocyanate-based crosslinking agent” refers to, for example, a crosslinking agent having an isocyanate group in its molecule.
  • the number of isocyanate groups (isocyanato groups) in one molecule of the isocyanate crosslinking agent is not particularly limited, but is preferably 2 or more, for example, it may be 2, 3, or 4, and the upper limit is not particularly limited, but For example, it is 10 or less.
  • the "epoxy crosslinking agent” refers to, for example, a crosslinking agent having an epoxy group in its molecule.
  • the number of epoxy groups in one molecule of the epoxy crosslinking agent is not particularly limited, but is preferably 2 or more, for example, it may be 2, 3, or 4, and the upper limit is not particularly limited, but is, for example, 10 or less. be.
  • the laminate of the present invention includes a void layer and an adhesive layer, and the adhesive layer is directly laminated on one or both surfaces of the void layer.
  • the adhesive layer is "directly laminated" on the void layer, for example, the adhesive layer may be in direct contact with the void layer, or the adhesive layer may be directly laminated on the void layer. It may be laminated on the void layer with an intermediate layer interposed therebetween.
  • FIG. 1(a) An example of the structure of the laminate of the present invention is shown in the cross-sectional view of FIG. 1(a). As shown in the figure, in this laminate 10, an adhesive layer 12 is directly laminated on one side of a void layer 11. Moreover, another example of the structure of the laminated body of this invention is shown in the cross-sectional view of FIG.1(b). As shown in the figure, in this laminate 10a, adhesive layers 12 are directly laminated on both sides of a void layer 11.
  • an intermediate layer exists between the void layer and the adhesive layer, and the intermediate layer is a combination of the void layer and the adhesive layer. It may be a layer formed by.
  • FIG. 2 shows an example of such a laminate of the present invention.
  • the adhesive layer 12 is directly laminated on one side of the void layer 11.
  • This laminate 10b is the same as the laminate 10 in FIG. 1(a) except that an intermediate layer 13 is present between the void layer 11 and the adhesive layer 12.
  • the intermediate layer 13 is a layer formed by combining the void layer 11 and the adhesive layer 12.
  • adhesive layers 12 are directly laminated on both sides of a void layer 11.
  • This laminate 10c is the same as the laminate 10a in FIG. 1(b) except that an intermediate layer 13 is present between the void layer 11 and each adhesive layer 12.
  • the intermediate layer 13 is a layer formed by combining the void layer 11 and the adhesive layer 12, as in FIG. 2(a).
  • the laminate of the present invention may or may not contain other components other than the void layer, the adhesive layer, and the intermediate layer.
  • the other constituent elements are also not particularly limited, and may be, for example, a base material.
  • the base material is not particularly limited either, but may be, for example, a film (for example, a resin film), a glass plate, etc., as described later.
  • FIG. 3 shows an example of such a laminate of the present invention.
  • the laminate 10d in FIG. 3(a) is provided on the surface of the void layer 11 opposite to the adhesive layer 12, and on the surface of the adhesive layer 12 opposite to the void layer 11. , is the same as the laminate 10b in FIG. 2(a) except that the base materials 14 are provided in direct contact with each other.
  • the laminate 10e in FIG. 3(b) is configured such that the base materials 14 are provided in direct contact with each other on the surfaces of the adhesive layers 12 on both sides opposite to the void layer 11. This is the same as the laminate 10c in FIG. 3(b).
  • base materials 14 are provided on both sides of the laminate.
  • the present invention is not limited thereto, and for example, the base material 14 may be provided only on one side.
  • the base material 14 is provided in direct contact with the void layer 11 or the adhesive layer 12.
  • the present invention is not limited thereto, and other components may be present between the base material 14 and the void layer 11 or the adhesive layer 12, for example.
  • the other constituent elements are also not particularly limited, and may be, for example, an optical functional layer.
  • the optical functional layer is not particularly limited, and may be, for example, an optical functional layer used in general optical films, such as a microlens film, a prism film, a diffusion film, a polarizing reflective film, a polarizing film, a retardation film, a high-performance film, etc. It may also be a refractive index layer or the like.
  • a laminate of the adhesive layer and the void layer, or a laminate of the adhesive layer, the intermediate layer, and the void layer has a light transmittance of 80% or more.
  • the haze of the laminate may be 3% or less.
  • the light transmittance may be, for example, 82% or more, 84% or more, 86% or more, or 88% or more, and the upper limit is not particularly limited, but is ideally 100%, for example, 95% or more. % or less, 92% or less, 91% or less, or 90% or less.
  • the haze of the laminate can be measured, for example, in the same manner as the haze of the void layer described below.
  • the light transmittance is a transmittance of light having a wavelength of 550 nm, and can be measured, for example, by the following measuring method.
  • the laminate is used as a sample to be measured using a spectrophotometer U-4100 (trade name of Hitachi, Ltd.). Then, the total light transmittance (light transmittance) of the sample is measured, assuming that the total light transmittance of air is 100%.
  • the value of the total light transmittance (light transmittance) is a value measured at a wavelength of 550 nm.
  • the adhesive force or adhesive force of the adhesive layer is, for example, 0.7 N/25 mm or more, 0.8 N/25 mm or more, 1.0 N/25 mm or more, or 1.5 N/25 mm or more, for example. It may be 25 mm or more, 50 N/25 mm or less, 30 N/25 mm or less, 10 N/25 mm or less, 5 N/25 mm or less, or 3 N/25 mm or less. From the viewpoint of the risk of peeling during handling when the laminate is bonded to other layers, it is preferable that the adhesive strength or adhesive strength of the adhesive layer is not too low. Further, from the viewpoint of rework when reattaching, it is preferable that the adhesive force or adhesive force of the adhesive layer is not too high.
  • the adhesive force or adhesion force of the pressure-sensitive adhesive layer can be measured, for example, as follows.
  • the laminated film of the present invention (the laminated body of the present invention is formed on a resin film base material) is sampled in the form of a 50 mm x 140 mm strip, and the sample is fixed to a stainless steel plate with double-sided tape.
  • An acrylic adhesive layer (thickness 20 ⁇ m) was laminated to a PET film (T100: manufactured by Mitsubishi Plastic Film Co., Ltd.), and a piece of adhesive tape cut into 25 mm x 100 mm was pasted on the side opposite to the resin film of the laminated film of the present invention. Then, lamination with the PET film is performed.
  • the sample is chucked in an Autograph tensile tester (AG-Xplus, manufactured by Shimadzu Corporation) so that the distance between the chucks is 100 mm, and then a tensile test is performed at a tensile speed of 0.3 m/min. .
  • the average test force of the 50 mm peel test is defined as the adhesive peel strength, that is, the adhesive force.
  • adhesive strength can also be measured using the same measuring method. In the present invention, there is no clear distinction between "adhesive strength” and "adhesive strength”.
  • the laminate of the present invention may be formed on a base material such as a film, for example.
  • the film may be, for example, a resin film.
  • a relatively small thickness is called a "film” and a relatively thick one is sometimes called a "sheet” to distinguish between them, but in the present invention, a "film” and a “sheet” are used. There shall be no particular distinction.
  • the base material is not particularly limited, and includes, for example, a base material made of thermoplastic resin, a base material made of glass, an inorganic substrate typified by silicone, a plastic molded from thermosetting resin, etc., an element such as a semiconductor, Carbon fiber materials such as carbon nanotubes can be preferably used, but the material is not limited thereto.
  • Examples of the form of the base material include a film, a plate, and the like.
  • the thermoplastic resin include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetylcellulose (TAC), polyethylene naphthalate (PEN), and polyethylene (PE). , polypropylene (PP), and the like.
  • the optical member of the present invention is not particularly limited, but may be, for example, an optical film containing the laminate of the present invention.
  • the optical device (optical device) of the present invention is not particularly limited, and may be, for example, an image display device or a lighting device.
  • the image display device include a liquid crystal display, an organic EL (Electro Luminescence) display, a micro LED (Light Emitting Diode) display, and the like.
  • the lighting device include organic EL lighting.
  • the void layer (hereinafter sometimes referred to as "the void layer of the present invention") in the laminate of the present invention will be explained by giving an example.
  • the void layer of the present invention is not limited to this.
  • the voided layer of the present invention may have a porosity of 35% by volume or more and a peak pore diameter of 50 nm or less, for example.
  • this is just an example, and the void layer of the present invention is not limited thereto.
  • the porosity may be, for example, 35 volume% or more, 38 volume% or more, or 40 volume% or more, and may be 90 volume% or less, 80 volume% or less, or 75 volume% or less.
  • the void layer of the present invention may be a high void layer with a porosity of 60% by volume or more, for example.
  • the porosity can be measured, for example, by the following measurement method.
  • the layer to be measured for porosity is a single layer containing voids
  • the ratio (volume ratio) of the layer's constituent materials to air can be determined using a standard method (for example, by measuring weight and volume to calculate density). ), it is possible to calculate the porosity (volume %).
  • the porosity can also be calculated from the value of the refractive index of the layer, for example. Specifically, for example, the porosity is calculated from the refractive index value measured with an ellipsometer using Lorentz-Lorenz's formula.
  • the void layer of the present invention can be produced, for example, by chemically bonding pulverized gel products (microporous particles), as described below.
  • the voids in the void layer can be divided into the following three types (1) to (3).
  • the voids in (2) above are defined when each particle group generated by pulverizing the gel is regarded as one block, regardless of the size of the pulverized gel product (microporous particles).
  • the voids mentioned in (3) above are voids that occur due to irregularities in size, size, etc. of the gel pulverized product (microporous particles) during pulverization (for example, medialess pulverization, etc.).
  • the voided layer of the present invention has appropriate porosity and peak pore diameter, for example, by having the voids described in (1) to (3) above.
  • the peak pore diameter may be, for example, 5 nm or more, 10 nm or more, or 20 nm or more, or 50 nm or less, 40 nm or less, or 30 nm or less. If the void layer has a high porosity and the peak pore diameter is too large, light will be scattered and the layer will become opaque. Further, in the present invention, the lower limit of the peak pore diameter of the void layer is not particularly limited, but if the peak pore diameter is too small, it becomes difficult to increase the porosity, so it is preferable that the peak pore diameter is not too small. In the present invention, the peak pore diameter can be measured, for example, by the method below.
  • the thickness of the void layer of the present invention is not particularly limited, but may be, for example, 100 nm or more, 200 nm or more, or 300 nm or more, or 10000 nm or less, 5000 nm or less, or 2000 nm or less.
  • the void layer of the present invention As described later, by using a pulverized porous gel, the three-dimensional structure of the porous gel is destroyed, and a new three-dimensional structure different from the porous gel is created. is formed.
  • the void layer of the present invention has a new pore structure (new void structure) that cannot be obtained in the layer formed from the porous gel, and thus has a high porosity.
  • a void layer of scale can be formed.
  • the pulverized materials are chemically bonded to each other while adjusting the number of siloxane bonding functional groups of the silicon compound gel.
  • the "silicone porous material” refers to a porous polymer material containing siloxane bonds, and includes, for example, a porous material containing silsesquioxane as a constituent unit. Further, after a new three-dimensional structure is formed as a precursor of the void layer, it is chemically bonded (e.g., cross-linked) in a bonding step. In the case of a body, it has a structure with voids, but can maintain sufficient strength and flexibility. Therefore, according to the present invention, a void layer can be easily and simply applied to various objects.
  • the void layer of the present invention includes, for example, a pulverized porous gel, and the pulverized materials are chemically bonded to each other, as described later.
  • the form of chemical bonding (chemical bonding) between the pulverized materials is not particularly limited, and specific examples of the chemical bonding include, for example, crosslinking.
  • the method for chemically bonding the pulverized materials is as described in detail in the above-mentioned method for producing a void layer, for example.
  • the crosslinking bond is, for example, a siloxane bond.
  • the siloxane bond include the following T2 bond, T3 bond, and T4 bond.
  • T2 bond T3 bond
  • T4 bond T4 bond.
  • the silicone porous material of the present invention has a siloxane bond, for example, it may have any one type of bond, it may have any two types of bond, or it may have all three types of bond. Good too.
  • the greater the ratio of T2 and T3 among the siloxane bonds the greater the flexibility, and the properties inherent to gel can be expected, but the film strength becomes weaker.
  • the T4 ratio of the siloxane bonds is high, the membrane strength is likely to be developed, but the pore size becomes small and the flexibility becomes weak. For this reason, for example, it is preferable to change the T2, T3, and T4 ratios depending on the application.
  • the silicon atoms contained in the void layer of the present invention are bonded with siloxane, for example.
  • the proportion of unbonded silicon atoms (that is, residual silanol) among all the silicon atoms contained in the silicone porous body is, for example, less than 50%, 30% or less, or 15% or less.
  • the void layer of the present invention has, for example, a pore structure.
  • the void size of a pore refers to the diameter of the long axis of the long axis and the diameter of the short axis of the void (hole).
  • the pore size is, for example, 5 nm to 50 nm.
  • the lower limit of the void size is, for example, 5 nm or more, 10 nm or more, 20 nm or more, and the upper limit is, for example, 50 nm or less, 40 nm or less, 30 nm or less, and the range is, for example, 5 nm to 50 nm, 10 nm. ⁇ 40 nm. Since a preferable void size is determined depending on the use of the void structure, it is necessary to adjust the void size to a desired void size depending on the purpose, for example.
  • the void size can be evaluated, for example, by the following method.
  • the morphology of the void layer can be observed and analyzed using a SEM (scanning electron microscope).
  • SEM scanning electron microscope
  • the void layer is subjected to FIB processing (accelerating voltage: 30 kV) under cooling, and the obtained cross-sectional sample is subjected to FIB-SEM (manufactured by FEI, trade name: Helios NanoLab 600, accelerating voltage: 1 kV).
  • FIB processing accelerating voltage: 30 kV
  • FIB-SEM manufactured by FEI, trade name: Helios NanoLab 600, accelerating voltage: 1 kV.
  • the void size can be quantified by the BET test method. Specifically, after putting 0.1 g of the sample (void layer of the present invention) into the capillary of a pore distribution/specific surface area measuring device (BELLSORP MINI/trade name of Microtrack Bell Co., Ltd.), it was incubated at room temperature for 24 hours. Vacuum drying is performed to degas the gas within the void structure. Then, by adsorbing nitrogen gas onto the sample, a BET plot, a BJH plot, and an adsorption isotherm are drawn to determine the pore distribution. This allows the void size to be evaluated.
  • a pore distribution/specific surface area measuring device BELLSORP MINI/trade name of Microtrack Bell Co., Ltd.
  • the void layer of the present invention may have a pore structure (porous structure) as described above, for example, or may be an open-cell structure in which the pore structure is continuous.
  • the open cell structure means, for example, that the pore structure is three-dimensionally connected in the void layer, and can also be said to be a state in which the internal voids of the pore structure are continuous.
  • the void layer of the present invention has a three-dimensional dendritic structure in which the sol particles (pulverized porous gel forming the sol) have a three-dimensional dendritic structure.
  • the void layer of the present invention forms a monolith structure in which the open cell structure has a plurality of pore distributions.
  • the monolith structure refers to, for example, a structure in which nano-sized fine voids exist, and a hierarchical structure in which the nano-sized voids exist as an open cell structure.
  • the monolithic structure for example, fine voids provide membrane strength while coarse open voids provide high porosity, thereby making it possible to achieve both membrane strength and high porosity.
  • the monolithic structure can be formed by controlling the particle size distribution of the pulverized material to a desired size.
  • the haze indicating transparency is not particularly limited, and the lower limit is, for example, 0.1% or more, 0.2% or more, 0.3% or more, and the upper limit is, for example, , 10% or less, 5% or less, and 3% or less, and the range is, for example, 0.1 to 10%, 0.2 to 5%, and 0.3 to 3%.
  • the haze can be measured, for example, by the following method.
  • the refractive index of the medium is the ratio of the propagation speed of the wavefront of light in vacuum to the propagation speed within the medium.
  • the refractive index of the void layer of the present invention is not particularly limited, and its upper limit is, for example, 1.3 or less, less than 1.3, 1.25 or less, 1.2 or less, 1.15 or less, and its lower limit is, for example, 1.05 or more, 1.06 or more, 1.07 or more, and the range is, for example, 1.05 or more and 1.3 or less, 1.05 or more and less than 1.3, 1.05 or more and 1. .25 or less, 1.06 or more and less than 1.2, and 1.07 or more and 1.15 or less.
  • the refractive index refers to a refractive index measured at a wavelength of 550 nm, unless otherwise specified.
  • the method for measuring the refractive index is not particularly limited, and for example, the refractive index can be measured by the following method.
  • the thickness of the void layer of the present invention is not particularly limited, and the lower limit thereof is, for example, 0.05 ⁇ m or more and 0.1 ⁇ m or more, and the upper limit is, for example, 1000 ⁇ m or less, 100 ⁇ m or less, and the range is: For example, it is 0.05 to 1000 ⁇ m, 0.1 to 100 ⁇ m.
  • the form of the void layer of the present invention is not particularly limited, and may be, for example, a film shape, a block shape, or the like.
  • the method for producing the voided layer of the present invention is not particularly limited, but it can be produced, for example, by the method described in International Publication No. 2019/065999 and International Publication No. 2019/065803. The description of the publication is incorporated herein by reference.
  • Adhesive coating liquid In the laminate of the present invention, the adhesive layer can be formed using an adhesive coating liquid, for example, as described above. In the present invention, “adhesive” and “adhesive” are not necessarily clearly distinguishable, as will be described later. In the present invention, the term “adhesive” includes both “adhesive” and “adhesive” unless otherwise specified.
  • the pressure-sensitive adhesive coating liquid may be, for example, a pressure-sensitive adhesive coating liquid containing the (meth)acrylic polymer, or, for example, a pressure-sensitive adhesive coating liquid containing the oligomer-type silane coupling agent.
  • the pressure-sensitive adhesive coating liquid may be an adhesive coating liquid, or it may be an adhesive coating liquid that further contains a crosslinking agent (for example, an isocyanate crosslinking agent, an epoxy crosslinking agent), or, for example, Furthermore, it may contain a monomer having one or two reactive double bonds in one molecule and an organic peroxide.
  • a crosslinking agent for example, an isocyanate crosslinking agent, an epoxy crosslinking agent
  • the pressure-sensitive adhesive coating liquid is not particularly limited, and examples thereof include those exemplified below.
  • the (meth)acrylic polymer has, for example, 3 to 20% by mass of a heterocycle-containing acrylic monomer and a polymerizable functional group as monomer components, and (meth) ) A (meth)acrylic system containing 0.5 to 5% by mass of acrylic acid, 0.05 to 2% by mass of hydroxyalkyl (meth)acrylate, and 83 to 96.45% by mass of alkyl (meth)acrylate.
  • This (meth)acrylic polymer may be used as a base polymer.
  • heterocycle-containing acrylic monomer for example, those having a polymerizable functional group and a heterocycle can be used without particular limitation.
  • the polymerizable functional group include a (meth)acryloyl group and a vinyl ether group. Among these, a (meth)acryloyl group is preferred.
  • the heterocycle include a morpholine ring, a piperidine ring, a pyrrolidine ring, and a piperazine ring.
  • heterocycle-containing acrylic monomer include N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine.
  • N-acryloylmorpholine is preferred.
  • the heterocycle-containing acrylic monomer can improve the durability of both heat resistance and moisture resistance when the pressure-sensitive adhesive layer (adhesive layer) is made thin.
  • ACMO N-acryloylmorpholine
  • a heterocycle-containing acrylic monomer is preferable in that it can improve the adhesion of the adhesive layer (adhesive layer) to the optical film.
  • it is preferable in terms of improving the adhesive strength to cyclic polyolefins such as norbornene-based resins, and is suitable when a cyclic polyolefin is used as an optical film.
  • the heterocycle-containing acrylic monomer is used, for example, in a proportion of 3 to 20% by mass based on the total amount of monomer components forming the (meth)acrylic polymer.
  • the proportion of the heterocycle-containing acrylic monomer may be, for example, 4 to 19% by weight or 6 to 18% by weight.
  • the proportion of the heterocycle-containing acrylic monomer is preferably not less than the above range from the viewpoint of heat resistance and moisture resistance when the pressure-sensitive adhesive layer (adhesive layer) is made thin. Further, the proportion of the heterocycle-containing acrylic monomer is preferably not greater than the above range from the viewpoint of moisture resistance when the thickness is reduced.
  • the proportion of the heterocycle-containing acrylic monomer is not greater than the above range. Further, from the viewpoint of adhesive strength, the proportion of the heterocycle-containing acrylic monomer is preferably not greater than the above range.
  • acrylic acid is particularly preferred.
  • (Meth)acrylic acid is used, for example, in a proportion of 0.5 to 5% by mass based on the total amount of monomer components forming the (meth)acrylic polymer.
  • the proportion of (meth)acrylic acid may be, for example, 1 to 4.5% by weight or 1.5 to 4% by weight.
  • the proportion of (meth)acrylic acid is preferably not less than the above range from the viewpoint of heat resistance when the pressure-sensitive adhesive layer (adhesive layer) is made thin. Further, the proportion of (meth)acrylic acid is preferably not greater than the above range from the viewpoint of heat resistance and moisture resistance when thinned. Further, from the viewpoint of adhesive strength, the proportion of (meth)acrylic acid is preferably not greater than the above range.
  • hydroxyalkyl (meth)acrylate for example, those having a polymerizable functional group and a hydroxyl group can be used without particular limitation.
  • examples of the hydroxyalkyl (meth)acrylate include 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 6-hydroxy Hydroxyalkyl (meth)acrylates such as hexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, and 12-hydroxylauryl (meth)acrylate are preferred.
  • Hydroxyalkyl (meth)acrylate is used, for example, in a proportion of 0.05 to 2% by mass based on the total amount of monomer components forming the (meth)acrylic polymer.
  • the proportion of hydroxyalkyl (meth)acrylate may be, for example, from 0.075 to 1.5% by weight or from 0.1 to 1% by weight.
  • the proportion of hydroxyalkyl (meth)acrylate is preferably not less than the above range from the viewpoint of heat resistance when the adhesive layer (adhesive layer) is made thinner. Further, the proportion of hydroxyalkyl (meth)acrylate is preferably not greater than the above range from the viewpoint of heat resistance and moisture resistance when thinned. Further, from the viewpoint of adhesive strength, the proportion of hydroxyalkyl (meth)acrylate is preferably not greater than the above range.
  • the alkyl group of the alkyl (meth)acrylate may have an average carbon number of about 1 to 12.
  • (meth)acrylate refers to acrylate and/or methacrylate, and (meth) in the present invention has the same meaning.
  • Specific examples of alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, and isononyl (meth)acrylate. , lauryl (meth)acrylate, etc., which can be used alone or in combination. Among these, alkyl (meth)acrylates in which the alkyl group has 1 to 9 carbon atoms are preferred.
  • the alkyl (meth)acrylate is used, for example, in a proportion of 83 to 96.45% by mass based on the total amount of monomer components forming the (meth)acrylic polymer.
  • the alkyl (meth)acrylate is usually the remainder other than the heterocycle-containing acrylic monomer, (meth)acrylic acid, and hydroxyalkyl (meth)acrylate.
  • any monomer other than the above may be used in an amount of 10% or less of the total amount of monomers, as long as the object of the present invention is not impaired. be able to.
  • the optional monomer examples include acid anhydride group-containing monomers such as maleic anhydride and itaconic anhydride; caprolactone adducts of acrylic acid; styrenesulfonic acid, allylsulfonic acid, and 2-(meth)acrylamide-2-methylpropane.
  • Sulfonic acid group-containing monomers such as sulfonic acid, (meth)acrylamidopropanesulfonic acid, sulfopropyl (meth)acrylate, and (meth)acryloyloxynaphthalene sulfonic acid; phosphoric acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate, etc. .
  • Examples include nitrogen-containing vinyl monomers.
  • maleimide N-cyclohexylmaleimide, N-phenylmaleimide
  • examples of copolymerizable monomers other than those mentioned above include silane monomers containing silicon atoms.
  • examples of the silane monomer include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, and 8-vinyloctyltrimethoxysilane.
  • the (meth)acrylic polymer used in the adhesive layer in the laminate of the present invention may have a weight average molecular weight (Mw) of, for example, 1.5 million to 4 million.
  • the weight average molecular weight may be, for example, 1.8 million to 3.8 million, for example, 2 million to 3.5 million, or 2.2 million to 3.3 million.
  • the weight average molecular weight is preferably not smaller than the above range from the viewpoint of heat resistance and moisture resistance when the pressure-sensitive adhesive layer (adhesive layer) is made thin.
  • the weight average molecular weight is not larger than the above range from the viewpoint of the durability when thinned, bondability, and adhesive strength.
  • the weight average molecular weight refers to a value measured by, for example, GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the method for producing such a (meth)acrylic polymer is not particularly limited, and for example, known production methods such as solution polymerization, bulk polymerization, emulsion polymerization, and various radical polymerizations can be appropriately selected. Further, the obtained (meth)acrylic polymer may be a random copolymer, a block copolymer, a graft copolymer, or the like.
  • solution polymerization for example, ethyl acetate, toluene, etc. are used as a polymerization solvent.
  • the reaction is carried out under a flow of an inert gas such as nitrogen, a polymerization initiator is added, and the reaction is carried out at, for example, about 50 to 70° C. for about 1 to 30 hours.
  • the polymerization initiator, chain transfer agent, emulsifier, etc. used in radical polymerization are not particularly limited and can be appropriately selected and used.
  • the weight average molecular weight of the (meth)acrylic polymer can be controlled by the amounts of the polymerization initiator and chain transfer agent used and the reaction conditions, and the amounts used are adjusted as appropriate depending on the types of these.
  • polymerization initiator examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-2 -imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis(2-methylpropionamidine) disulfate, 2,2'-azobis(N,N'-dimethyleneisobutyramidine), 2,2 Azo initiators such as '-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] hydrate (manufactured by Wako Pure Chemical Industries, Ltd., VA-057), persulfates such as potassium persulfate, ammonium persulfate, etc.
  • Examples include, but are not limited to, initiators, redox initiators that combine peroxides and reducing agents, such as combinations of persulfates and sodium bisulfite, and combinations of peroxides and sodium ascorbate. It's not something you can do.
  • the polymerization initiators may be used alone or in combination of two or more.
  • the total content of the polymerization initiator may be, for example, about 0.005 to 1 part by weight or about 0.02 to 0.5 parts by weight based on 100 parts by weight of the monomer.
  • the amount of the polymerization initiator used is for example, the amount may be about 0.06 to 0.2 parts by weight or about 0.08 to 0.175 parts by weight based on 100 parts by weight of the total amount of components.
  • chain transfer agents examples include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, and 2,3-dimercapto-1-propanol. Chain transfer agents may be used alone or in combination of two or more. The total content of the chain transfer agent is, for example, about 0.1 parts by mass or less based on 100 parts by mass of the total monomer components.
  • emulsifiers used in emulsion polymerization include anionic emulsifiers such as sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylbenzenesulfonate, ammonium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate, and Examples include nonionic emulsifiers such as ethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, and polyoxyethylene-polyoxypropylene block polymer. These emulsifiers may be used alone or in combination of two or more.
  • examples of emulsifiers into which radically polymerizable functional groups such as propenyl groups and allyl ether groups are introduced include Aquaron HS-10, HS-20, KH-10, BC-05, etc. , BC-10, BC-20 (all manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), and Adekaria Soap SE10N (manufactured by Asahi Denka Kogyo Co., Ltd.).
  • Reactive emulsifiers are preferred because they are incorporated into the polymer chain after polymerization, resulting in improved water resistance.
  • the amount of emulsifier used is 0.3 to 5 parts by weight, more preferably 0.5 to 1 part by weight based on 100 parts by weight of the total amount of monomer components, from the viewpoint of polymerization stability and mechanical stability.
  • the content of the (meth)acrylic polymer in the adhesive coating liquid is not particularly limited, but is, for example, 3% by mass or more based on the total mass of the adhesive coating liquid, Alternatively, it may be 5% by mass or more, for example, 30% by mass or less, 20% by mass or less, or 10% by mass or less.
  • the pressure-sensitive adhesive coating liquid may or may not contain, for example, a monomer having one or two reactive double bonds in one molecule.
  • the monomer having one or two reactive double bonds in one molecule is not particularly limited, but from the viewpoint of the reaction rate of the graft reaction, acrylic monomers, vinyl monomers, methacrylic monomers, allyl monomers are preferred, and acrylic monomers are more preferred.
  • the acrylic monomer is not particularly limited, but may be the same as the monomers exemplified as monomer components of the acrylic polymer, for example.
  • the structure of the side chain is not particularly limited, but the heterocycle-containing monomer can achieve a high elastic modulus within an appropriate range and a semi-high molecular weight polymer. This is preferable from the viewpoint that a reduction in the amount can be achieved at the same time.
  • the adhesive coating liquid contains a monomer having one or two reactive double bonds in one molecule
  • the content is not particularly limited; Among them, it may be, for example, 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, for example, 30% by mass, based on the total mass of the (meth)acrylic polymer. Below, it may be 20% by mass or less, or 10% by mass or less.
  • the weight average molecular weight (Mw) of the oligomer-type silane coupling agent may be 300 or more as described above.
  • the laminate of the present invention improves the durability of the adhesive layer formed from the adhesive coating liquid by including an oligomer-type silane coupling agent in the adhesive coating liquid. In particular, it has excellent durability in a humid environment, and can maintain high durability even after being left alone for a long period of time.
  • the adhesive coating liquid may be, for example, an adhesive (adhesive composition).
  • the adhesive layer may be, for example, an adhesive layer formed from an adhesive (adhesive composition).
  • oligomer type refers to a polymer in which the monomer is about dimer (degree of polymerization 2) or more and less than 100 mer (degree of polymerization 100), and the weight average molecular weight of the oligomer type silane coupling agent. It is preferably about 300 to 30,000. In the present invention, the degree of polymerization of the oligomer-type silane coupling agent is not particularly limited.
  • the oligomer-type silane coupling agent may be, for example, a silane coupling agent having two or more alkoxysilyl groups in the molecule.
  • a silane coupling agent having two or more alkoxysilyl groups in the molecule include X-41-1053, X-41-1059A, and X-41-1056 manufactured by Shin-Etsu Chemical Co., Ltd. These coupling agents are preferred because they are difficult to volatilize and have a plurality of alkoxysilyl groups, so they are effective in improving durability.
  • the number of alkoxysilyl groups in the oligomer-type silane coupling agent is not particularly limited, but it is preferably two or more in the molecule. Further, the amount of alkoxy groups in the oligomer-type silane coupling agent is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and more preferably 20 to 50% by mass in the silane coupling agent. More preferably, it is 40% by mass.
  • the type of alkoxy group is not limited, but examples include alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy, propoxy, butoxy, pentyloxy, and hexyloxy. Among these, methoxy and ethoxy are preferred, and methoxy is more preferred. It is also preferable that one molecule contains both methoxy and ethoxy.
  • the oligomer-type silane coupling agent may contain an epoxy group.
  • the epoxy equivalent of the oligomer-type silane coupling agent is, for example, preferably 1000 g/mol or less, more preferably 500 g/mol or less, and even more preferably 300 g/mol or less. Further, the lower limit of the epoxy equivalent is not particularly limited, but is preferably, for example, 200 g/mol or more.
  • the oligomer-type silane coupling agent preferably contains an epoxy group, but may also contain an acid anhydride group.
  • an oligomer-type silane coupling agent containing an acid anhydride group By using an oligomer-type silane coupling agent containing an acid anhydride group, the amount of change in the refractive index after the heating durability test is reduced compared to the case where no silane coupling agent is used. The adhesive force between the adhesive layer and the low refractive index layer after the durability test can be improved.
  • the oligomer-type silane coupling agents may be used alone or in combination of two or more.
  • the total content of the oligomer-type silane coupling agent is 1 part by mass or less with respect to 100 parts by mass of the (meth)acrylic polymer, but for example, 0.2 parts by mass or less is preferable.
  • a silane coupling agent other than the oligomer-type silane coupling agent can also be added to the adhesive coating liquid (for example, adhesive composition) used in the present invention.
  • other coupling agents include 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, and 3-triethoxysilyl-N-(1,3-dimethylbutylene).
  • silane coupling agents such as propylamine, N-phenyl- ⁇ -aminopropyltrimethoxysilane, and (meth)acrylic groups such as 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltriethoxysilane.
  • silane coupling agents containing isocyanate groups examples include silane coupling agents containing isocyanate groups, and silane coupling agents containing isocyanate groups such as 3-isocyanatepropyltriethoxysilane.
  • Silane coupling agents other than the oligomer-type silane coupling agents can be added within a range that does not impair the effects of the present invention, and the amount added is not particularly limited.
  • the adhesive coating liquid may contain a crosslinking agent, for example, as described above.
  • the crosslinking agent is not particularly limited, and examples thereof include isocyanate crosslinking agents and epoxy crosslinking agents.
  • the isocyanate-based crosslinking agent is not particularly limited, and examples thereof include aromatic isocyanates such as tolylene diisocyanate and xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, and aliphatic isocyanates such as hexamethylene diisocyanate.
  • the epoxy crosslinking agent is not particularly limited, but includes, for example, bisphenol A/epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6- Hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl erythritol, diglycerol polyglycidyl ether, 1,3'-bis(N,N-diglycidyl amino (methyl) cyclohexane, N,N,N',N'-tetraglycidyl-m-xylene diamine, and the like.
  • the isocyanate-based crosslinking agent includes, for example, lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate; Aromatic diisocyanates such as 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, and polymethylene polyphenylisocyanate, trimethylolpropane/tolylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Kogyo Co., Ltd.) , trade name Coronate L), trimethylolpropane/hexamethylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Kogyo)
  • epoxy crosslinking agent More specific examples of the epoxy crosslinking agent include “Tetrad C” manufactured by Mitsubishi Gas Chemical Company, “Tetrad X” manufactured by Mitsubishi Gas Chemical Company, and “S-610” manufactured by Synasia Company. .
  • the crosslinking agent (for example, isocyanate crosslinking agent, epoxy crosslinking agent) may be used alone or in combination of two or more types, but the total content is
  • the crosslinking agent may be contained in an amount of, for example, 0.02 to 2 parts by weight, 0.04 to 1.5 parts by weight, or 0.05 to 1 part by weight per 100 parts by weight of the acrylic polymer.
  • the content of the isocyanate-based crosslinking agent is preferably 0.02 parts by mass or more from the viewpoint of cohesive force, and on the other hand, from the viewpoint of suppressing or preventing a decrease in adhesive strength due to excessive crosslinking formation, it is preferably 2 parts by mass or less.
  • the content of the epoxy crosslinking agent is preferably 0.01 part by mass or more from the viewpoint of void remaining ratio, while from the viewpoint of peeling durability it is preferably 0.5 part by mass or less.
  • the crosslinking agent may consist of either an isocyanate crosslinking agent or an epoxy crosslinking agent, or may further include a compound other than an isocyanate crosslinking agent or an epoxy crosslinking agent. It may or may not contain other crosslinking agents.
  • the other crosslinking agents include organic crosslinking agents and polyfunctional metal chelates.
  • organic crosslinking agents include epoxy crosslinking agents and imine crosslinking agents.
  • isocyanate crosslinking agents and epoxy crosslinking agents are preferred.
  • a polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinately bonded to an organic compound.
  • Examples of polyvalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc. can give.
  • Examples of atoms in organic compounds that form covalent bonds or coordinate bonds include oxygen atoms, and examples of organic compounds include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
  • the adhesive coating liquid may or may not contain, for example, an organic peroxide.
  • the organic peroxide is not particularly limited, but includes, for example, di(2-ethylhexyl)peroxydicarbonate, di(4-t-butylcyclohexyl)peroxydicarbonate, di-sec-butylperoxydicarbonate, t -Butyl peroxyneodecanoate, t-hexyl peroxy pivalate, t-butyl peroxy pivalate, dilauroyl peroxide, di-n-octanoyl peroxide, 1,1,3,3-tetramethylbutyl Peroxy-2-ethylhexanoate, di(4-methylbenzoyl) peroxide, dibenzoyl peroxide, t-butyl peroxyisobutyrate, 1,1-di(t-hexylperoxy)cyclohexane, t-butyl Hydroperoxid
  • the adhesive coating liquid contains the organic peroxide
  • its content is not particularly limited, but for example, all of the (meth)acrylic polymer in the adhesive coating liquid is Based on the mass, it may be, for example, 0.02% by mass or more, 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 2.5% by mass or more, for example, 20% by mass. Below, it may be 10% by mass or less, 8% by mass or less, or 6% by mass or less.
  • the adhesive coating liquid may further contain a solvent and the like.
  • the solvent is not particularly limited, but for example, the polymerization solvent used in solution polymerization in the production of the (meth)acrylic polymer may be used as is.
  • the adhesive coating liquid may optionally contain fillers such as tackifiers, plasticizers, glass fibers, glass beads, metal powders, other inorganic powders, pigments, colorants, etc. Fillers, antioxidants, ultraviolet absorbers, silane coupling agents, etc., and various additives may also be used as appropriate without departing from the purpose of the present invention. It may also be an adhesive layer (adhesive layer) containing fine particles and exhibiting light diffusing properties.
  • fillers such as tackifiers, plasticizers, glass fibers, glass beads, metal powders, other inorganic powders, pigments, colorants, etc. Fillers, antioxidants, ultraviolet absorbers, silane coupling agents, etc., and various additives may also be used as appropriate without departing from the purpose of the present invention. It may also be an adhesive layer (adhesive layer) containing fine particles and exhibiting light diffusing properties.
  • the adhesive layer in the laminate of the present invention can be formed using the adhesive coating liquid, for example, by the method described below. Even if the weight average molecular weight of the sol component of the adhesive layer is 30,000 to 600,000 when the molecular weight of the adhesive layer is measured by gel permeation chromatography, for example, good. For example, in measuring the molecular weight of the adhesive layer by gel permeation chromatography, the content of low molecular weight components with a molecular weight of 10,000 or less in the sol portion of the adhesive layer is 20% by weight (mass% ) or less.
  • the weight average molecular weight of the sol portion may be, for example, 50,000 or more, 550,000 or less, or 500,000 or less, for example, 50,000 to 550,000 or 60,000 to 500,000.
  • the content (ratio) of components having a molecular weight of 10,000 or less in the sol may be, for example, 20% by mass or less, as described above, based on the total amount of the sol (100% by mass), for example. , 15% by mass or less, or 10% by mass or less.
  • the lower limit of the content (proportion) of components having a molecular weight of 10,000 or less in the sol is not particularly limited, but may be, for example, 0% by mass or more or a value exceeding 0% by mass, for example, 3% by mass or more. But that's fine.
  • the content (ratio) of components having a molecular weight of 10,000 or less in the sol may be, for example, 3 to 15% by mass or 3 to 10% by mass.
  • the method for manufacturing the laminate of the present invention is not particularly limited, it can be performed, for example, by the manufacturing method described below. However, the following explanation is an example and does not limit the present invention in any way.
  • the void layer of the present invention is not particularly limited, but may be as described above, for example.
  • the method for manufacturing the void layer of the present invention is not particularly limited, and it can be manufactured, for example, by the method described in International Publication No. 2019/065999 and International Publication No. 2019/065803.
  • the method for producing a laminate of the present invention may include, for example, an adhesive layer manufacturing step of manufacturing the adhesive layer, and a bonding step of bonding the adhesive layer to the void layer. good.
  • the method for producing the adhesive layer includes, for example, a step of applying the adhesive coating liquid to a base material, and a step of applying the adhesive coating liquid to the base material, and a step of applying the adhesive coating liquid to the base material.
  • the method may also include a heating drying step of heating and drying the base material. For example, by laminating the adhesive layer side of an adhesive tape, etc. in which the adhesive layer of the present invention is laminated on a base material, onto the void layer of the present invention, The adhesive layer may also be formed.
  • the base material such as the adhesive tape may be left attached as is or may be peeled off from the adhesive layer.
  • the thickness can be significantly reduced, and the increase in thickness of devices, etc. can be suppressed.
  • “adhesive” and “adhesive layer” refer to, for example, an agent or layer intended to be re-peelable from an adherend.
  • “adhesive” and “adhesive layer” refer to, for example, an agent or layer that is not intended to be removable from an adherend.
  • the adhesive layer can be manufactured using the adhesive coating liquid, for example, as described above.
  • the adhesive layer manufacturing process can be performed, for example, as follows.
  • the adhesive coating liquid is manufactured by a mixing step of mixing all components of the adhesive coating liquid.
  • the adhesive coating liquid may, for example, contain the (meth)acrylic polymer as described above, and may further contain a crosslinking agent (such as an isocyanate crosslinking agent or an epoxy crosslinking agent). May contain.
  • the adhesive coating liquid may contain, for example, the (meth)acrylic polymer, a monomer having one or two reactive double bonds in one molecule, and an organic peroxide. good.
  • the other components may also be mixed together.
  • the (meth)acrylic polymer may be mixed as a component of the pressure-sensitive adhesive coating liquid without removing the polymerization solvent used in producing the polymer.
  • the method for producing the adhesive coating liquid may or may not include other steps other than the mixing step, and the method for producing the adhesive coating liquid may include steps other than the mixing step, and the method may include steps other than the mixing step, and the method may include steps other than the mixing step. It is also possible to simply mix all the components of the solution.
  • the base material is not particularly limited, and may be, for example, a base material such as a film.
  • the base material include a thermoplastic resin base material, a glass base material, an inorganic substrate typified by silicone, a plastic molded from a thermosetting resin, an element such as a semiconductor, and a carbon nanotube. Carbon fiber materials and the like can be preferably used, but the material is not limited thereto.
  • Examples of the form of the base material include a film, a plate, and the like.
  • thermoplastic resin examples include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetylcellulose (TAC), polyethylene naphthalate (PEN), and polyethylene (PE). , polypropylene (PP), and the like.
  • the coating thickness of the adhesive coating liquid is not particularly limited, but for example, the thickness of the adhesive coating layer after drying is set to a predetermined thickness. You can adjust it accordingly.
  • the thickness of the adhesive layer after drying is also not particularly limited, and is, for example, as described below.
  • the heating drying temperature is not particularly limited, and may be, for example, 50°C or higher, 80°C or higher, 100°C or higher, or 155°C or higher, and, for example, 200°C or lower, 180°C or lower. , or 160°C or lower.
  • the heating drying time is not particularly limited, and may be, for example, 0.5 minutes or more, 1 minute or more, or 3 minutes or more, and for example, 60 minutes or less, 30 minutes or less, 20 minutes or less, or 10 minutes. It may be the following.
  • this heat drying step for example, a crosslinking reaction and graft polymerization occur between the (meth)acrylic polymer and the crosslinking agent.
  • the amount of the semi-high molecular weight polymer present in the pressure-sensitive adhesive coating solution decreases, making it difficult for the pressure-sensitive adhesive layer to penetrate into the voids of the void layer.
  • the adhesive layer used in the laminate of the present invention can be manufactured.
  • the adhesive layer is bonded to the void layer (bonding step).
  • This method is not particularly limited, but for example, as described above, the adhesive layer side of an adhesive tape, etc., in which the adhesive layer of the present invention is laminated on a base material, is placed on the void layer of the present invention.
  • the adhesive layer may be formed on the void layer of the present invention by bonding. In the manner described above, the laminate of the present invention can be manufactured.
  • a heating step of heating the adhesive layer and the void layer may be further performed after the bonding step.
  • this heating step may be referred to as an "aging step.”
  • the heating temperature is not particularly limited, but may be, for example, 40° C. or higher, 45° C. or higher, or 50° C. or higher; for example, 80° C. or lower, 70° C. or lower, or 60° C. or below, or below 55°C.
  • the heating time is not particularly limited, but may be, for example, 1 minute or more, 10 minutes or more, 60 minutes or more, or 1800 minutes or more, and for example, 3000 minutes or less, 2800 minutes or less, 2500 minutes or less, or 2000 minutes. It may be the following.
  • the intermediate layer is formed by combining the void layer and the adhesive layer.
  • the intermediate layer acts as a stopper, and it is possible to suppress a decrease in porosity due to filling of the voids in the void layer with the adhesive.
  • the union of the void layer and the adhesive layer may be such that the adhesive layer is embedded in the voids of the void layer and chemically bonded, or the adhesive layer may be chemically bonded to the void layer.
  • the layer may be embedded in the voids of the void layer.
  • the adhesive layer can protect the void layer from physical damage (especially scratches).
  • the adhesive layer preferably has excellent pressure resistance so that the void layer does not collapse even when used as a void layer-containing adhesive sheet without a base material (substrate-less).
  • the thickness of the adhesive layer is not particularly limited, but is, for example, 0.1 to 100 ⁇ m, 5 to 50 ⁇ m, 10 to 30 ⁇ m, or 12 to 25 ⁇ m.
  • the laminate of the present invention thus obtained may be further laminated with another film (layer) to form a laminate structure including the void layer (porous structure), for example, as described above.
  • each component in the laminated structure, may be laminated, for example, via the adhesive layer (adhesive or adhesive).
  • the lamination may be performed by continuous processing using a long film (so-called Roll to Roll, etc.), and when the base material is a molded article, an element, etc. may be laminated after batch processing.
  • a long film so-called Roll to Roll, etc.
  • the base material may be the resin film described above.
  • the void layer of the present invention can be obtained by forming the void layer on the base material.
  • the void layer of the present invention can also be obtained by forming the void layer on the base material and then laminating the void layer on the resin film described above in the description of the void layer of the present invention.
  • the method for manufacturing the laminate 10d in FIG. 3A includes, for example, first forming the void layer 11 on the base material 14, further forming the adhesive layer 12 on the void layer 11, and further forming the void layer 11 on the void layer 11.
  • An intermediate layer 13 is formed by combining the adhesive layer and the adhesive layer 12. More specifically, this manufacturing method includes, for example, a coating step (1) in which a sol particle liquid of a pulverized gel compound is coated on a base material (resin film) 14 to form a coating film. , a drying step (2) of drying the sol particle liquid to form a dried coating film; and a chemical treatment of forming a void layer 11 by subjecting the coating film to chemical treatment (for example, crosslinking treatment).
  • the method includes an intermediate layer forming step (5) of forming an intermediate layer.
  • the method for producing the sol particle liquid of the pulverized gel-like compound is not particularly limited. Specifically, the sol particle liquid can be manufactured, for example, by the method described in International Publication No. 2019/065999 or International Publication No. 2019/065803.
  • the sol particle liquid can also be produced, for example, by the method described in "Reference Example 1" of the Examples of the present application, which will be described later.
  • the method for producing a laminate of the present invention includes, as described above, an adhesive layer production method in which the adhesive layer is produced by the method for producing an adhesive layer of the present invention. and a bonding step of bonding the adhesive layer to the void layer.
  • the method for producing an adhesive layer of the present invention includes a step of applying an adhesive coating liquid to a base material, and a step of applying the adhesive coating liquid to a base material. and a heating drying step of heating and drying the base material coated with.
  • the chemical treatment step (crosslinking step) (3) corresponds to the "void layer forming step” for forming the void layer in the laminate of the present invention.
  • the intermediate layer forming step (5) corresponds to the above-mentioned heating step (aging step).
  • the intermediate layer forming step (5) (hereinafter sometimes referred to as "aging step"), for example, also serves as a step of improving the strength of the void layer 11 (a crosslinking reaction step of causing a crosslinking reaction inside the void layer 11). In that case, after the intermediate layer forming step (5), the void layer 11 changes into a void layer 11 with further improved strength.
  • the present invention is not limited to this, and for example, the void layer 11 does not need to change after the intermediate layer forming step (5).
  • the bonding step (4) may include bonding an adhesive tape having an adhesive layer on the base material.
  • the base material coated with the adhesive coating liquid on which the adhesive layer is formed
  • the adhesive layer 12 is peeled off and removed from the adhesive layer 12, for example.
  • it may be left on the adhesive layer 12 as it is.
  • the void layer 11, intermediate layer 13, and adhesive layer 12 are laminated in the above order on the resin film 14, as shown in FIG. 3(a). A laminated film (laminate) can be produced.
  • the intermediate layer forming step (5) may be omitted, and the produced laminate of the present invention may not include an intermediate layer.
  • the method for manufacturing a laminate of the present invention may or may not include steps other than those described above, as appropriate.
  • the adhesive layer 12 is provided only on one side of the void layer 11, but for example, as in the laminated film 10e in FIG. 3(b), The adhesive layer 12 may be provided on both sides of the void layer 11.
  • the method for coating the sol particle liquid is not particularly limited, and a general coating method can be adopted.
  • the coating method include slot die method, reverse gravure coating method, microgravure coating method, dip coating method, spin coating method, brush coating method, roll coating method, and flexographic printing. method, wire bar coating method, spray coating method, extrusion coating method, curtain coating method, reverse coating method, etc. Among these, extrusion coating, curtain coating, roll coating, microgravure coating, etc. are preferred from the viewpoint of productivity, coating film smoothness, etc.
  • the coating amount of the sol particle liquid is not particularly limited, and can be appropriately set, for example, so that the thickness of the void layer 11 becomes appropriate.
  • the thickness of the void layer 11 is not particularly limited, and is, for example, as described above.
  • the sol particle liquid is dried (that is, the dispersion medium contained in the sol particle liquid is removed) to form the dried coating film (precursor of the void layer).
  • the conditions for the drying treatment are not particularly limited and are as described above.
  • the drying agent containing the catalyst or the catalyst generator for example, a photoactive catalyst, a photocatalyst generator, a thermally active catalyst, or a thermal catalyst generator
  • the coated film is irradiated with light or heated, and the pulverized materials in the dried coated film are chemically bonded (for example, crosslinked) to form the void layer 11.
  • the light irradiation or heating conditions in the chemical treatment step (3) are not particularly limited and are as described above.
  • the adhesive layer of the present invention is separately manufactured by the adhesive layer manufacturing process.
  • the adhesive layer manufacturing process (the adhesive layer manufacturing method of the present invention) is, for example, as described above.
  • the intermediate layer forming step (5) is a heating step in which the adhesive layer 12 and the void layer 11 are heated after the bonding step (4).
  • the adhesive is an adhesive composition containing a polymer (for example, a (meth)acrylic polymer) and a crosslinking agent
  • the polymer may be crosslinked by the crosslinking agent in the heating step.
  • the heating step may also serve as a step of drying the adhesive. Further, for example, the heating step may also serve as the intermediate layer forming step (5).
  • the temperature in the heating step is not particularly limited, and is, for example, 70 to 160°C, 80 to 155°C, or 90 to 150°C.
  • the time for the heating step is not particularly limited, and is, for example, 1 to 10 minutes, 1 to 7 minutes, or 2 to 5 minutes.
  • the number of parts (relative usage amount) of each substance is in parts by mass (parts by weight) unless otherwise specified.
  • the adhesive as the adhesive.
  • the "adhesive layer” corresponds to the "adhesive layer”. That is, in the following Reference Examples, Examples, and Comparative Examples, unless otherwise specified, "adhesive layer" and “adhesive layer” have the same meaning.
  • the weight average molecular weight (Mw) of the (meth)acrylic polymer, the gel fraction of the adhesive layer, the thickness of each layer, and the refractive index are as follows. It was measured by the measurement method.
  • the weight average molecular weight (Mw) of the (meth)acrylic polymer was calculated from the molecular weight weight distribution curve measured by gel permeation chromatography (GPC).
  • ⁇ Analyzer Waters, Alliance ⁇ Column: Manufactured by Tosoh Corporation, G7000HXL+GMHXL+GMHXL ⁇ Column size: 7.8mm ⁇ each x 30cm total 90cm ⁇ Column temperature: 40°C ⁇ Flow rate: 0.8mL/min ⁇ Injection volume: 100 ⁇ L ⁇ Eluent: THF (acid added) ⁇ Detector: Differential refractometer (RI) ⁇ Standard sample: polystyrene
  • Sample 1 was obtained by scraping off about 0.1 g from the optical adhesive layer formed on the peel-treated surface of the separator film within 1 minute of production. Sample 1 was wrapped in a Teflon (registered trademark) film (trade name: "NTF1122", manufactured by Nitto Denko Corporation) having a diameter of 0.2 ⁇ m, and then tied with a kite string to form Sample 2. The weight of Sample 2 before being subjected to the following test was measured, and this was designated as Weight A. Note that the weight A is the total weight of sample 1 (adhesive layer), the Teflon (registered trademark) film, and the kite string.
  • the total weight of the Teflon (registered trademark) film and the kite string was defined as weight B.
  • the thickness of the adhesive layer was determined by measuring the thickness of the adhesive layer at five points using a dial gauge, and taking the average value.
  • the thickness of the intermediate layer is determined by determining the thickness of the intermediate layer that exists between the adhesive layer and the low refractive index layer in the SEM image and that has a different contrast. The average value was used.
  • the polymer (acrylic polymer) was crosslinked with a crosslinking agent by heating and drying the applied adhesive, and a crosslinked structure was formed. Although it is speculated, the crosslinked structure has not been confirmed.
  • the coating liquid for forming a void layer (liquid containing pulverized gel material) of this reference example (reference example 1) was produced. Further, the peak pore diameter of the gel pulverized material (microporous particles) in the void layer forming coating solution (gel pulverized material-containing solution) was measured by the method described above, and was found to be 12 nm.
  • the acrylic adhesive composition was applied to one side of a polyethylene terephthalate film (separator film: manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., MRF38) treated with a silicone release agent so that the thickness of the adhesive layer after drying was adjusted.
  • the adhesive layer was coated to a thickness of 10 ⁇ m and dried at 155° C. for 1 minute to form an adhesive layer (adhesive layer) on the surface of the separator film.
  • Example 1 Manufacture of laminate
  • the high porosity layer forming coating liquid prepared in Reference Example 1 was applied onto an acrylic base material and dried to form a porosity layer with a thickness of about 850 nm (porosity 59% by volume).
  • UV irradiation 300 mJ was performed from the surface of the void layer.
  • the adhesive layer with a thickness of 10 ⁇ m obtained in Reference Example 2 was laminated onto the surface of the void layer, and aging was performed at 60° C. for 20 hours to produce a laminate of this example.
  • Example 2 to 4 and Comparative Examples 1 to 3 The laminates of Examples 2 to 4 and Comparative Examples 1 to 3 were manufactured as follows.
  • Example 3 and Comparative Example 3 as shown in Table 1 below, in the preparation of the adhesive composition shown in Reference Example 2, (meth)acrylic polymer (A1) was replaced with (meth)acrylic polymer (A1). A2) was used.
  • Example 4 an oligomer-type silane coupling agent "X-24-9591F" (trade name of Shin-Etsu Silicone Co., Ltd.) was used instead of the oligomer-type silane coupling agent "X-41-1056.”
  • Comparative Example 1 as shown in Table 1 below, from the composition of the adhesive composition shown in Reference Example 2, a monomer-type silane coupling agent (manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of the oligomer-type silane coupling agent. (trade name "KBM-403") was used. In Comparative Example 2, the oligomer type silane coupling agent was not used.
  • Examples 2 to 4 and Comparative Examples 1 to 3 the amounts of the silane coupling agent, crosslinking agent, and peroxide used were as shown in Table 1 below.
  • Examples 2 to 2 were carried out in the same manner as in Example 1, except that the types of the (meth)acrylic polymer and silane coupling agent, and the amounts of peroxide and crosslinking agent used were changed as appropriate.
  • Solutions of the acrylic adhesive compositions used in the production of the laminates of Example 4 and Comparative Examples 1 to 3 were prepared. Furthermore, using the solution of the acrylic adhesive composition, an adhesive layer was prepared in the same manner as in Example 1, and laminates of Examples 2 to 4 and Comparative Examples 1 to 3 were manufactured.
  • the evaluation criteria for the initial refractive index in Table 1 are as follows. ⁇ : 1.20 or less ⁇ : More than 1.20, 1.21 or less ⁇ : More than 1.21, less than 1.23 ⁇ : 1.23 or more
  • the evaluation criteria for the refractive index (change amount) after the heating durability test in Table 1 are as follows. ⁇ : 0.005 or less ⁇ : More than 0.005, 0.01 or less ⁇ : More than 0.01, 0.015 or less ⁇ : More than 0.015
  • Isocyanate Adduct of tolylene diisocyanate of trimethylolpropane (trade name “Coronate L” manufactured by Tosoh Corporation)
  • Epoxy 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (trade name "Tetrad C” manufactured by Mitsubishi Gas Chemical Co., Ltd.)
  • Peroxide Benzoyl peroxide (trade name “Niper BMT” manufactured by NOF Corporation)
  • the refractive index (change amount) after the test was also low, and the peeling durability was also excellent.
  • the laminates of Examples 1 to 4 have a low initial refractive index and excellent heat durability because the adhesive is difficult to penetrate into the voids in the void layer. and strong adhesion with the low refractive index layer.
  • the present invention provides a laminate, an optical member, and an optical device that have both adhesive force or adhesive force and difficulty in penetrating the adhesive or adhesive into the voids of the void layer. can do.
  • the use of the present invention is not particularly limited.
  • the optical device of the present invention is not particularly limited, and examples include an image display device, a lighting device, and the like.
  • the image display device include a liquid crystal display, an organic EL display, a micro LED display, and the like.
  • the lighting device include organic EL lighting.
  • the laminate of the present invention it is difficult for the adhesive or adhesive to penetrate into the voids of the void layer even under high temperature and high humidity conditions, so it is particularly suitable for use under high durability conditions such as for use in vehicles.
  • the use of the laminate of the present invention is not limited to the optical member and optical device of the present invention, but is arbitrary, and can be used for a wide range of purposes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesive Tapes (AREA)

Abstract

本発明は、粘着力または接着力と、空隙層の空隙への粘着剤または接着剤の浸透しにくさとを両立した積層体の提供を目的とする。 【解決手段】 本発明の積層体は、空隙層と、粘接着層とを含み、粘接着層が、空隙層の片面または両面に直接積層されており、粘接着層が、(メタ)アクリル系ポリマー及びオリゴマー型のシランカップリング剤を含む粘接着剤により形成され、オリゴマー型のシランカップリング剤の含有量が、(メタ)アクリル系ポリマー100質量部に対して1質量部以下であることを特徴とする。

Description

積層体、光学部材、及び光学装置
 本発明は、積層体、光学部材、及び光学装置に関する。
 光学デバイスにおいては、例えば、全反射層として、低屈折率である空気層が利用されている。具体的には、例えば、液晶デバイスにおける各光学フィルム部材(例えば、導光板と反射板)は、空気層を介して積層される。しかしながら、各部材間が空気層により隔てられていると、特に部材が大型である場合等は、部材のたわみ等の問題が起こるおそれがある。また、デバイスの薄型化のトレンドにより、各部材の一体化が望まれている。このため、各部材を、空気層を介さずに粘接着剤で一体化させることが行われている(例えば特許文献1)。しかし、全反射の役割を果たす空気層が無くなると、光漏れなど光学特性が低下してしまうおそれがある。
 そこで、空気層に代えて低屈折率層を用いることが提案されている。例えば、特許文献2では、導光板と反射板との間に導光板よりも低屈折率である層を挿入した構造が記載されている。低屈折率層としては、例えば、屈折率をなるべく空気に近い低屈折率とするために、空隙を有する空隙層が用いられる。
 さらに、空隙層をデバイス中に導入するために、粘接着層との一体構成も提案されている(特許文献3)。
特開2012-156082号公報 特開平10-62626号公報 特開2014-46518号公報
 空隙層は、例えば、粘接着層を介して他の層と積層させて用いる。しかしながら、空隙層と粘接着層とを積層させると、前記空隙層の空隙内部に、前記粘接着層を構成する粘着剤または接着剤が浸透して前記空隙が埋まり、それにより空隙層の空隙率が低下して屈折率が上昇してしまうおそれがある。そして、前記空隙層の空隙率が高いほど、前記粘着剤または接着剤が浸透しやすくなる。また、高温の環境下では、前記粘着剤または接着剤の分子運動(弾性率低下)により、前記粘着剤または接着剤が前記空隙に浸透しやすくなる。高湿度の環境下では、前記粘着剤または接着剤の吸水により、前記粘着剤または接着剤が前記空隙に浸透しやすくなる。
 前記空隙への前記粘着剤または接着剤の浸透を抑制または防止するためには、前記粘着剤または接着剤として、なるべく弾性率が高い(硬い)ものを用いればよい。しかし、前記粘着剤または接着剤の弾性率が高い(硬い)と、粘着力または接着力が低下するおそれがある。逆に、前記粘着剤または接着剤の弾性率が低い(柔らかい)と、高い粘着力または接着力が得られやすいが、前記粘着剤または接着剤が前記空隙に浸透しやすくなるおそれがある。
 そこで、本発明は、粘着力または接着力と、空隙層の空隙への粘着剤または接着剤の浸透しにくさとを両立した、積層体、光学部材、及び光学装置の提供を目的とする。
 前記目的を達成するために、本発明の積層体は、
 空隙層と、粘接着層とを含み、
 前記粘接着層が、前記空隙層の片面または両面に直接積層されており、
 前記粘接着層が、(メタ)アクリル系ポリマー及びオリゴマー型のシランカップリング剤を含む粘接着剤により形成され、
 前記オリゴマー型のシランカップリング剤の含有量が、前記(メタ)アクリル系ポリマー100質量部に対して1質量部以下であることを特徴とする。
 本発明の光学部材は、前記本発明の積層体を含むことを特徴とする。
 本発明の光学装置は、前記本発明の光学部材を含むことを特徴とする。
 本発明によれば、粘着力または接着力と、空隙層の空隙への粘着剤または接着剤の浸透しにくさとを両立した、積層体、光学部材、及び光学装置を提供することができる。
図1(a)及び(b)は、本発明の積層体の構成を例示する断面図である。 図2(a)及び(b)は、本発明の積層体の構成における別の例を示す断面図である。 図3(a)及び(b)は、本発明の積層体の構成におけるさらに別の例を示す断面図である。
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。
 本発明の積層体は、例えば、前記オリゴマー型のシランカップリング剤が、エポキシ基を含有してもよい。
 本発明の積層体は、例えば、前記(メタ)アクリル系ポリマーの重量平均分子量(Mw)が150万~400万であってもよい。
 本発明の積層体は、例えば、前記オリゴマー型のシランカップリング剤の重量平均分子量(Mw)が300以上であってもよい。
 本発明の積層体は、例えば、前記粘接着層が、前記(メタ)アクリル系ポリマー及び架橋剤を含む粘接着剤により形成され、前記粘接着剤は、ゲル分率が85%を超えていてもよい。
 本発明の積層体は、例えば、前記(メタ)アクリル系ポリマーが、モノマー単位として窒素含有モノマーを1~30質量%含有していてもよい。なお、本発明において、特に断らない限り、「質量%」と「重量%」とは互いに読み替えてもよく、「質量部」と「重量部」とは互いに読み替えてもよい。
 本発明の積層体は、例えば、温度65℃かつ相対湿度95%で1000時間保持する加熱耐久性試験前後で、前記空隙層の屈折率の増加量が、下記数式(1)を満たし、かつ、加熱耐久試験前の初期屈折率が、下記数式(2)を満たしていてもよい。
 
 n-n≦0.015   (1)
 n<1.23      (2)
 
 前記数式(1)において、nは、前記加熱耐久試験後の前記空隙層の屈折率である。
 前記数式(2)において、nは、前記加熱耐久試験前の前記空隙層の屈折率である。
 本発明の積層体は、例えば、前記空隙層と前記粘接着層との間に中間層が存在し、前記中間層は、前記空隙層と前記粘接着層との合一によって形成された層であってもよい。
 本発明の積層体は、例えば、前記中間層の厚みが10~100nmであってもよい。
 本発明において、「粘接着層」は、粘着剤及び接着剤の少なくとも一方により形成された層をいう。本発明において、「粘接着層」は、特に断らない限り、粘着剤により形成された「粘着剤層」であってもよく、接着剤により形成された「接着剤層」であってもよく、粘着剤及び接着剤の両方を含む層であってもよい。また、本発明において、粘着剤と接着剤とをまとめて「粘接着剤」という場合がある。一般的に、粘着力又は接着力が比較的弱い剤(例えば、被接着物の再剥離が可能な剤)を「粘着剤」と呼び、粘着力又は接着力が比較的強い剤(例えば、被接着物の再剥離が不可能であるか、又はきわめて困難な剤)を「接着剤」と呼んで区別する場合がある。本発明において、粘着剤と接着剤とに明確な区別は無い。また、本発明において、「粘着力」と「接着力」とに明確な区別はない。
 また、本発明において、「上に」又は「面上に」は、上に、又は面上に直接接触した状態でもよいし、他の層等を介した状態でもよい。
 本発明の積層体は、例えば、前記(メタ)アクリル系ポリマーが、モノマー成分として、複素環含有アクリルモノマー(複素環含有アクリレート)3~20質量%、(メタ)アクリル酸0.5~5質量%、ヒドロキシアルキル(メタ)アクリレート0.05~2質量%、およびアルキル(メタ)アクリレート83~96.45質量%を重合させて得られる重量平均分子量が200万~350万の(メタ)アクリル系ポリマーであってもよい。
 本発明の積層体は、例えば、前記粘接着層において、前記窒素含有モノマーが、反応性二重結合を1分子中に1つ又は2つ有するモノマーであってもよい。前記反応性二重結合を1分子中に1つ又は2つ有するモノマーは、例えば、複素環含有アクリルモノマー(複素環含有アクリレート)であってもよい。
 本発明の積層体において、前記粘接着層を形成する前記粘接着剤のゲル分率は、例えば85質量%以上であってもよく、前述のとおり85質量%を超えていてもよく、例えば、90質量%以上、91質量%以上、又は93質量%以上であってもよく、例えば、100質量%以下、99質量%以下、又は98質量%以下であってもよい。
 本発明の積層体において、前記空隙層の前記加熱耐久試験前の初期屈折率(以下、「初期屈折率」という場合もある。)は、前述のとおり、例えば1.23未満であってもよく、例えば、1.22以下、1.22未満、1.21以下、又は1.21未満であってもよい。
 本発明の積層体において、温度65℃かつ相対湿度95%で1000時間保持する加熱耐久性試験前後における前記空隙層の屈折率の増加量は、前述のとおり、例えば0.015以下であってもよく、例えば、0.015未満、0.01以下、又は0.01未満であってもよい。前記屈折率の増加量の下限値は、特に限定されないが、例えば、0以上であってもよく、又は0を超える数値であってもよい。
 本発明の積層体は、例えば、前記空隙層の空隙率が35体積%以上であってもよい。
 本発明の積層体において、例えば、前記空隙層は、微細孔粒子同士が化学的に結合している多孔体であってもよい。
 本発明の積層体において、前記粘接着層は、例えば、(メタ)アクリル系ポリマーを含む粘接着剤塗工液を準備する粘接着剤塗工液準備工程と、前記粘接着剤塗工液を基材に塗布する粘接着剤塗工液塗布工程と、前記粘接着剤塗工液が塗布された前記基材を加熱乾燥する加熱乾燥工程と、を含む方法によって形成される層であってもよい。本発明の積層体は、例えば、このように、特定の組成を有する粘接着剤塗工液から粘接着層を形成し、空隙層と一体化させてもよい。これにより、例えば、特に長期での加熱耐久性試験下でも、粘接着層の空隙層への著しい浸透を抑制することができる。前記粘接着剤塗工液は、例えば、さらに架橋剤を含んでいてもよいし、後述するように、その他の成分を含んでいてもよい。
 前記本発明の積層体において、粘着力または接着力と、空隙への粘着剤または接着剤の浸透しにくさとを両立できる理由(メカニズム)は、例えば、以下のように考えられる。例えば、特定の粘着剤を用いて粘接着層を形成することで、粘着力または接着力と、空隙への粘着剤または接着剤の浸透しにくさとを両立できる。より具体的には、例えば、前述のような特定の(メタ)アクリル系ポリマー及び必要に応じて架橋剤を用いて粘接着層を形成することで、前記空隙層の一部と前記粘接着層の一部との合一により中間層が形成される。そして、前述のような特定の(メタ)アクリル系ポリマーを用いたことにより、前記加熱耐久性試験のような条件下でも、前記中間層が過度に広がることがない。かつ、前記中間層がストッパーとなり、前記空隙層の空隙が粘着剤によって埋まることによる空隙率の減少を抑制できる。加熱下で粘着剤の分子運動が大きくなっても、粘着剤の弾性率が高いと粘着剤と高空隙層から形成される中間層が強固で緻密なストッパーとなりやすく粘着剤の高空隙層への浸透が抑制される。ただし、これらのメカニズムは、単なる例示であり、本発明をなんら限定しない。
 また、粘接着剤塗工液は、例えば、反応性二重結合を1分子中に1つ又は2つ有するモノマーを含むことで、加熱によって、例えば、イソシアネート系架橋剤やエポキシ系架橋剤等の架橋剤と架橋反応することが可能である。その架橋反応時に、反応性二重結合を1分子中に1つ又は2つ有するモノマーと、水素引き抜き開始剤である有機過酸化物とが共存していることで、粘接着剤塗工液中に含まれる分子量が1万以下の半高分子ポリマー成分も高密度に架橋し、粘接着剤塗工液から空隙層への成分浸透をさらに高いレベルで抑制可能となると考えられる。すなわち、分子量が1万以下の半高分子ポリマー成分は、分子サイズが小さいために空隙層の空隙中に浸透しやすいが、架橋反応により分子サイズが大きくなることで、空隙層の空隙中への浸透が抑制されると考えられる。さらに、前記架橋反応時に反応性二重結合を1分子中に1つ又は2つ有するモノマーが共存していることで、(メタ)アクリル系ポリマー主鎖とのグラフト反応およびグラフト鎖を起点とした高密度な架橋が可能となり、ゾル成分になりうる半高分子ポリマーの存在量自体が減少すると推測される。ただし、これらのメカニズムも例示であり、本発明をなんら限定しない。
 本発明の積層体における粘接着層を形成するための粘接着剤塗工液において、前記窒素含有モノマーは、グラフト反応において主鎖同士を効率よく架橋させるために官能基数(1分子中の反応性二重結合の数)が小さいことが好ましく、例えば、前述のとおり、反応性二重結合の数が1分子中に1つ又は2つであることが好ましい。
 なお、(メタ)アクリル系ポリマーの製造時に、反応性二重結合を1つ又は2つ有するモノマーを混合しても、前述のような半高分子ポリマー(分子量が小さく空隙層の空隙中に浸透しやすい)の量を低減することが困難である。しかし、本発明によれば、(メタ)アクリル系ポリマーに後から反応性二重結合を1つ又は2つ有するモノマーを混合した粘接着剤塗工液を用い、それを架橋反応させることで、例えば、前述のようなグラフト反応が起こり、半高分子ポリマーの量を低減させることができる。
 本発明において、「(メタ)アクリル」は、アクリルおよびメタクリルの少なくとも一方を意味する。例えば、「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の少なくとも一方を意味する。「(メタ)アクリル酸エステル」は、アクリル酸エステルおよびメタクリル酸エステルの少なくとも一方を意味する。「(メタ)アクリル酸メチル」は、アクリル酸メチルおよびメタクリル酸メチルの少なくとも一方を意味する。
 本発明において、「(メタ)アクリル系ポリマー」は、例えば、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリロイル基を有するモノマー、およびメタクリロイル基を有するモノマーからなる群から選択される少なくとも一つを含む成分を重合させて得られる構造を有するポリマーをいう。前記成分は、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリロイル基を有するモノマー、およびメタクリロイル基を有するモノマーからなる群から選択される少なくとも一つ以外の物質を適宜含んでいてもよいし、含んでいなくてもよい。
 本発明において、「アクリル系モノマー」は、例えば、アクリル酸、アクリル酸エステル、およびアクリロイル基を有するモノマーからなる群から選択される少なくとも一つを含むモノマーをいう。
 本発明において、「イソシアネート系架橋剤」は、例えば、分子中にイソシアネート基(イソシアナト基)を有する架橋剤をいう。本発明において、イソシアネート系架橋剤1分子中のイソシアネート基(イソシアナト基)の数は、特に限定されないが、2以上が好ましく、例えば、2でも3でも4でもよく、上限値は特に限定されないが、例えば10以下である。
 本発明において、「エポキシ系架橋剤」は、例えば、分子中にエポキシ基を有する架橋剤をいう。本発明において、エポキシ系架橋剤1分子中のエポキシ基の数は、特に限定されないが、2以上が好ましく、例えば、2でも3でも4でもよく、上限値は特に限定されないが、例えば10以下である。
[1.積層体、光学部材および光学装置]
 本発明の積層体は、前述のとおり、空隙層と、粘接着層とを含み、前記粘接着層が、前記空隙層の片面または両面に直接積層されている。本発明において、前記粘接着層が前記空隙層に「直接積層され」は、例えば、前記粘接着層が前記空隙層に直接接触していてもよいし、前記粘接着層が、前記中間層を介して前記空隙層に積層されていてもよい。
 図1(a)の断面図に、本発明の積層体における構成の一例を示す。図示のとおり、この積層体10は、空隙層11の片面に粘接着層12が直接積層されている。また、図1(b)の断面図に、本発明の積層体における構成の別の一例を示す。図示のとおり、この積層体10aは、空隙層11の両面に粘接着層12が直接積層されている。
 また、本発明の積層体は、前述のとおり、前記空隙層と前記粘接着層との間に中間層が存在し、前記中間層は、前記空隙層と前記粘接着層との合一によって形成された層であってもよい。図2に、そのような本発明の積層体の例を示す。図2(a)の積層体10bは、図示のとおり、空隙層11の片面に粘接着層12が直接積層されている。この積層体10bは、空隙層11と粘接着層12との間に中間層13が存在していること以外は、図1(a)の積層体10と同じである。中間層13は、空隙層11と粘接着層12との合一によって形成された層である。図2(b)の積層体10cは、図示のとおり、空隙層11の両面に粘接着層12が直接積層されている。この積層体10cは、空隙層11とそれぞれの粘接着層12との間に中間層13が存在していること以外は、図1(b)の積層体10aと同じである。中間層13は、図2(a)と同様に、空隙層11と粘接着層12との合一によって形成された層である。
 また、本発明の積層体は、前記空隙層、前記粘接着層、及び前記中間層以外の他の構成要素を含んでいてもよいし、含んでいなくてもよい。前記他の構成要素も特に限定されないが、例えば、基材等であってもよい。前記基材も特に限定されないが、例えば、後述するように、フィルム(例えば樹脂フィルム)、ガラス板等であってもよい。図3に、そのような本発明の積層体の例を示す。図3(a)の積層体10dは、図示のとおり、空隙層11における粘接着層12と反対側の面上に、及び、粘接着層12における空隙層11と反対側の面上に、それぞれ基材14が直接接触して設けられていること以外は図2(a)の積層体10bと同じである。図3(b)の積層体10eは、図示のとおり、両側の粘接着層12における空隙層11と反対側の面上に、それぞれ基材14が直接接触して設けられていること以外は図3(b)の積層体10cと同じである。図3(a)及び図3(b)では積層体の両側に基材14が設けられている。しかし、本発明はこれに限定されず、例えば、いずれか一方の側のみに基材14が設けられていてもよい。また、図3(a)及び図3(b)では、基材14が空隙層11又は粘接着層12に直接接触するように設けられている。しかし、本発明はこれに限定されず、例えば、基材14と空隙層11又は粘接着層12との間に他の構成要素が存在していてもよい。前記他の構成要素も特に限定されないが、例えば、光学機能層でもよい。前記光学機能層も特に限定されず、例えば、一般的な光学フィルムに用いられる光学機能層でもよく、例えば、マイクロレンズフィルム、プリズムフィルム、拡散フィルム、偏光反射フィルム、偏光フィルム、位相差フィルム、高屈折率層等であってもよい。
 本発明の積層体は、例えば、前記粘接着層および前記空隙層の積層体、または、前記粘接着層、前記中間層および前記空隙層の積層体の光透過率が、80%以上であってもよい。また、例えば、前記積層体のヘイズが3%以下であってもよい。前記光透過率は、例えば、82%以上、84%以上、86%以上、または88%以上であってもよく、上限は、特に限定されないが、理想的には100%であり、例えば、95%以下、92%以下、91%以下、または90%以下であってもよい。前記積層体のヘイズの測定は、例えば、後述する空隙層のヘイズの測定と同様の方法で行うことができる。また、前記光透過率は、波長550nmの光の透過率であり、例えば、以下の測定方法により測定することができる。
(光透過率の測定方法)
 分光光度計U-4100(株式会社日立製作所の商品名)を用いて、前記積層体を、測定対象のサンプルとする。そして、空気の全光線透過率を100%とした際の前記サンプルの全光線透過率(光透過率)を測定する。前記全光線透過率(光透過率)の値は、波長550nmでの測定値をその値とする。
 本発明の積層体は、例えば、前記粘接着層の粘着力または接着力が、例えば、0.7N/25mm以上、0.8N/25mm以上、1.0N/25mm以上、または1.5N/25mm以上であってもよく、50N/25mm以下、30N/25mm以下、10N/25mm以下、5N/25mm以下、または3N/25mm以下であってもよい。該積層体をその他の層と貼り合わせをした際の取扱い時の剥がれのリスクという観点からは、前記粘接着層の粘着力または接着力が低すぎないことが好ましい。また、貼り直しの際のリワークという観点からは、前記粘接着層の粘着力または接着力が高すぎないことが好ましい。前記粘接着層の粘着力または接着力は、例えば、以下のようにして測定することができる。
(粘着力または接着力の測定方法)
 本発明の積層フィルム(樹脂フィルム基材上に、本発明の積層体が形成されたもの)を、50mm×140mmの短冊状にサンプリングを行い、前記サンプルをステンレス板に両面テープで固定する。PETフィルム(T100:三菱樹脂フィルム社製)にアクリル粘着層(厚み20μm)を貼合し、25mm×100mmにカットした粘着テープ片を、前記本発明の積層フィルムにおける、樹脂フィルムと反対側に貼合し、前記PETフィルムとのラミネートを行う。次に、前記サンプルを、オートグラフ引っ張り試験機(島津製作所社製:AG-Xplus)にチャック間距離が100mmになるようにチャッキングした後に、0.3m/minの引張速度で引っ張り試験を行う。50mmピール試験を行った平均試験力を、粘着ピール強度、すなわち粘着力とする。また、接着力も同一の測定方法で測定できる。本発明において、「粘着力」と「接着力」とに明確な区別はない。
 本発明の積層体は、例えば、フィルム等の基材上に形成されていてもよい。前記フィルムは、例えば、樹脂フィルムであってもよい。なお、一般に、比較的厚みが小さいものを「フィルム」と呼び、比較的厚みが大きいものを「シート」と呼んで区別する場合があるが、本発明では、「フィルム」と「シート」とに特に区別はないものとする。
 前記基材は、特に制限されず、例えば、熱可塑性樹脂製の基材、ガラス製の基材、シリコンに代表される無機基板、熱硬化性樹脂等で成形されたプラスチック、半導体等の素子、カーボンナノチューブに代表される炭素繊維系材料等が好ましく使用できるが、これらに限定されない。前記基材の形態は、例えば、フィルム、プレート等があげられる。前記熱可塑性樹脂は、例えば、ポリエチレンテレフタレート(PET)、アクリル、セルロースアセテートプロピオネート(CAP)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)等があげられる。
 本発明の光学部材は、特に限定されないが、例えば、前記本発明の積層体を含む光学フィルムでもよい。
 本発明の光学装置(光学デバイス)は、特に限定されないが、例えば、画像表示装置でも照明装置でもよい。画像表示装置としては、例えば、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、マイクロLED(Light Emitting Diode)ディスプレイ等があげられる。照明装置としては、例えば、有機EL照明等があげられる。
[2.空隙層]
 以下、本発明の積層体における前記空隙層(以下、「本発明の空隙層」という場合がある。)について、例を挙げて説明する。ただし、本発明の空隙層は、これに限定されない。
 本発明の空隙層は、例えば、空隙率が35体積%以上であり、かつ、ピーク細孔径が50nm以下であってもよい。ただし、これは例示であって、本発明の空隙層は、これに限定されない。
 前記空隙率は、例えば、35体積%以上、38体積%以上、または40体積%以上であってもよく、90体積%以下、80体積%以下、または75体積%以下であってもよい。前記本発明の空隙層は、例えば、空隙率が60体積%以上の高空隙層であっても良い。
 前記空隙率は、例えば、下記の測定方法により測定することができる。
(空隙率の測定方法)
 空隙率の測定対象となる層が単一層で空隙を含んでいるだけならば、層の構成物質と空気との割合(体積比)は、定法(例えば重量および体積を測定して密度を算出する)により算出することが可能であるため、これにより、空隙率(体積%)を算出できる。また、屈折率と空隙率は相関関係があるため、例えば、層としての屈折率の値から空隙率を算出することもできる。具体的には、例えば、エリプソメーターで測定した屈折率の値から、Lorentz‐Lorenz’s formula(ローレンツ-ローレンツの式)より空隙率を算出する。
 本発明の空隙層は、例えば、後述するように、ゲル粉砕物(微細孔粒子)の化学結合により製造することができる。この場合、空隙層の空隙は、便宜上、下記(1)~(3)の3種類に分けることができる。
 
(1)原料ゲル自体(粒子内)が有する空隙
(2)ゲル粉砕物単位が有する空隙
(3)ゲル粉砕物の堆積により生じる粉砕物間の空隙
 前記(2)の空隙は、ゲル粉砕物(微細孔粒子)のサイズ、大きさ等にかかわらず、前記ゲルを粉砕することにより生成された各粒子群を一つの塊(ブロック)とみなした際に、各ブロック内に形成されうる前記(1)とは別に粉砕時に形成される空隙である。また、前記(3)の空隙は、粉砕(例えば、メディアレス粉砕等)において、ゲル粉砕物(微細孔粒子)のサイズ、大きさ等が不ぞろいとなるために生じる空隙である。本発明の空隙層は、例えば、前記(1)~(3)の空隙を有することで、適切な空隙率およびピーク細孔径を有する。
 また、前記ピーク細孔径は、例えば、5nm以上、10nm以上、または20nm以上であってもよく、50nm以下、40nm以下、または30nm以下であってもよい。空隙層において、空隙率が高い状態でピーク細孔径が大きすぎると、光が散乱して不透明になる。また、本発明において、空隙層のピーク細孔径の下限値は特に限定されないが、ピーク細孔径が小さすぎると、空隙率を高くしにくくなるため、ピーク細孔径が小さすぎないことが好ましい。本発明において、ピーク細孔径は、例えば、下記の方法により測定することができる。
(ピーク細孔径の測定方法)
 細孔分布/比表面積測定装置(BELLSORP MINI/マイクロトラックベル社の商品名)を用いて、窒素吸着によるBJHプロットおよびBETプロット、等温吸着線を算出した結果から、ピーク細孔径を算出する。
 また、本発明の空隙層の厚みは、特に限定されないが、例えば、100nm以上、200nm以上、または300nm以上であってもよく、10000nm以下、5000nm以下、または2000nm以下であってもよい。
 本発明の空隙層は、例えば、後述するように、多孔体ゲルの粉砕物を使用することで、前記多孔体ゲルの三次元構造が破壊され、前記多孔体ゲルとは異なる新たな三次元構造が形成されている。このように、本発明の空隙層は、前記多孔体ゲルから形成される層では得られない新たな孔構造(新たな空隙構造)が形成された層となったことで、空隙率が高いナノスケールの空隙層を形成することができる。また、本発明の空隙層は、例えば、前記空隙層がシリコーン多孔体である場合、例えば、ケイ素化合物ゲルのシロキサン結合官能基数を調整しつつ、前記粉砕物同士を化学的に結合する。ここで、「シリコーン多孔体」はシロキサン結合を含む高分子多孔体のことであり、例えば、シルセスキオキサンを構成単位として含む多孔体を含む。また、前記空隙層の前駆体として新たな三次元構造が形成された後に、結合工程で化学結合(例えば、架橋)されるため、本発明の空隙層は、例えば、前記空隙層が機能性多孔体である場合、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。したがって、本発明によれば、容易且つ簡便に、空隙層を、様々な対象物に付与することができる。
 本発明の空隙層は、例えば、後述するように、多孔体ゲルの粉砕物を含み、前記粉砕物同士が化学的に結合している。本発明の空隙層において、前記粉砕物同士の化学的な結合(化学結合)の形態は、特に制限されず、前記化学結合の具体例は、例えば、架橋結合等が挙げられる。なお、前記粉砕物同士を化学的に結合させる方法は、例えば、前述した空隙層の製造方法において、詳細に説明したとおりである。
 前記架橋結合は、例えば、シロキサン結合である。シロキサン結合は、例えば、以下に示す、T2の結合、T3の結合、T4の結合が例示できる。本発明のシリコーン多孔体がシロキサン結合を有する場合、例えば、いずれか一種の結合を有してもよいし、いずれか二種の結合を有してもよいし、三種全ての結合を有してもよい。前記シロキサン結合のうち、T2およびT3の比率が多いほど、可撓性に富み、ゲル本来の特性を期待できるが、膜強度が脆弱になる。一方で、前記シロキサン結合のうちT4比率が多いと、膜強度が発現しやすいが、空隙サイズが小さくなり、可撓性が脆くなる。このため、例えば、用途に応じて、T2、T3、T4比率を変えることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 本発明の空隙層が前記シロキサン結合を有する場合、T2、T3およびT4の割合は、例えば、T2を「1」として相対的に表した場合、T2:T3:T4=1:[1~100]:[0~50]、1:[1~80]:[1~40]、1:[5~60]:[1~30]である。
 また、本発明の空隙層は、例えば、含まれるケイ素原子がシロキサン結合していることが好ましい。具体例として、前記シリコーン多孔体に含まれる全ケイ素原子のうち、未結合のケイ素原子(つまり、残留シラノール)の割合は、例えば、50%未満、30%以下、15%以下、である。
 本発明の空隙層は、例えば、孔構造を有している。本発明において、孔の空隙サイズは、空隙(孔)の長軸の直径および短軸の直径のうち、前記長軸の直径を指すものとする。空孔サイズは、例えば、5nm~50nmである。前記空隙サイズは、その下限が、例えば、5nm以上、10nm以上、20nm以上であり、その上限が、例えば、50nm以下、40nm以下、30nm以下であり、その範囲が、例えば、5nm~50nm、10nm~40nmである。空隙サイズは、空隙構造を用いる用途に応じて好ましい空隙サイズが決まるため、例えば、目的に応じて、所望の空隙サイズに調整する必要がある。空隙サイズは、例えば、以下の方法により評価できる。
(空隙層の断面SEM観察)
 本発明において、空隙層の形態は、SEM(走査型電子顕微鏡)を用いて観察および解析できる。具体的には、例えば、前記空隙層を、冷却下でFIB加工(加速電圧:30kV)し、得られた断面サンプルについてFIB-SEM(FEI社製:商品名Helios NanoLab600、加速電圧:1kV)により、観察倍率100,000倍にて断面電子像を得ることができる。
(空隙サイズの評価)
 本発明において、前記空隙サイズは、BET試験法により定量化できる。具体的には、細孔分布/比表面積測定装置(BELLSORP MINI/マイクロトラックベル社の商品名)のキャピラリに、サンプル(本発明の空隙層)を0.1g投入した後、室温で24時間、減圧乾燥を行って、空隙構造内の気体を脱気する。そして、前記サンプルに窒素ガスを吸着させることで、BETプロットおよびBJHプロット、吸着等温線を描き、細孔分布を求める。これによって、空隙サイズが評価できる。
 本発明の空隙層は、例えば、前述のように孔構造(多孔質構造)を有していてもよく、例えば、前記孔構造が連続した連泡構造体であってもよい。前記連泡構造体とは、例えば、前記空隙層において、三次元的に、孔構造が連なっていることを意味し、前記孔構造の内部空隙が連続している状態ともいえる。多孔質体が連泡構造を有する場合、これにより、バルク中に占める空隙率を高めることが可能であるが、中空シリカのような独泡粒子を使用する場合は、連泡構造を形成できない。これに対して、本発明の空隙層は、ゾル粒子(ゾルを形成する多孔体ゲルの粉砕物)が三次元の樹状構造を有するために、塗工膜(前記多孔体ゲルの粉砕物を含むゾルの塗工膜)中で、前記樹状粒子が沈降・堆積することで、容易に連泡構造を形成することが可能である。また、本発明の空隙層は、より好ましくは、連泡構造が複数の細孔分布を有するモノリス構造を形成することが好ましい。前記モノリス構造は、例えば、ナノサイズの微細な空隙が存在する構造と、同ナノ空隙が集合した連泡構造として存在する階層構造を指すものとする。前記モノリス構造を形成する場合、例えば、微細な空隙で膜強度を付与しつつ、粗大な連泡空隙で高空隙率を付与し、膜強度と高空隙率とを両立することができる。それらのモノリス構造を形成するには、例えば、まず、前記粉砕物に粉砕する前段階の前記多孔体ゲルにおいて、生成する空隙構造の細孔分布を制御することが重要である。また、例えば、前記多孔体ゲルを粉砕する際、前記粉砕物の粒度分布を、所望のサイズに制御することで、前記モノリス構造を形成させることができる。
 本発明の空隙層において、透明性を示すヘイズは、特に制限されず、その下限が、例えば、0.1%以上、0.2%以上、0.3%以上であり、その上限が、例えば、10%以下、5%以下、3%以下であり、その範囲が、例えば、0.1~10%、0.2~5%、0.3~3%である。
 前記ヘイズは、例えば、以下のような方法により測定できる。
(ヘイズの評価)
 空隙層(本発明の空隙層)を50mm×50mmのサイズにカットし、ヘイズメーター(村上色彩技術研究所社製:HM-150)にセットしてヘイズを測定する。ヘイズ値については、以下の式より算出を行う。
    ヘイズ(%)=[拡散透過率(%)/全光線透過率(%)]×100(%)
 前記屈折率は、一般に、真空中の光の波面の伝達速度と、媒質内の伝播速度との比を、その媒質の屈折率という。本発明の空隙層の屈折率は、特に制限されず、その上限が、例えば、1.3以下、1.3未満、1.25以下、1.2以下、1.15以下であり、その下限が、例えば、1.05以上、1.06以上、1.07以上であり、その範囲が、例えば、1.05以上1.3以下、1.05以上1.3未満、1.05以上1.25以下、1.06以上1.2未満、1.07以上1.15以下である。
 本発明において、前記屈折率は、特に断らない限り、波長550nmにおいて測定した屈折率をいう。また、屈折率の測定方法は、特に限定されず、例えば、下記の方法により測定できる。
(屈折率の評価)
 空隙層上に粘着剤を貼り合わせた積層体サンプルを調整する。前記サンプルの基材面側に、プリズムカプラ(メリトリコン社製)のプリズムを密着させ、レーザーを用いて全反射臨界角を測定する。その臨界角の値から屈折率を算出する。
 本発明の空隙層の厚みは、特に制限されず、その下限が、例えば、0.05μm以上、0.1μm以上であり、その上限が、例えば、1000μm以下、100μm以下であり、その範囲が、例えば、0.05~1000μm、0.1~100μmである。
 本発明の空隙層の形態は、特に制限されず、例えば、フィルム形状でもよいし、ブロック形状等でもよい。
 本発明の空隙層の製造方法は、特に制限されないが、例えば、国際公開第2019/065999号、国際公開第2019/065803号に記載された方法で製造することができる。当該公報の記載は、本明細書に参考として援用される。
[3.粘接着剤塗工液]
 本発明の積層体において、前記粘接着層は、例えば、前述のとおり、粘接着剤塗工液を用いて形成することができる。本発明において、「粘着剤」と「接着剤」とは、後述するように、必ずしも明確に区別できるものではない。本発明において、「粘接着剤」という場合は、特に断らない限り、「粘着剤」と「接着剤」との両方を含む。前記粘接着剤塗工液は、例えば、前記(メタ)アクリル系ポリマーを含む粘接着剤塗工液であってもよく、また、例えば、前記オリゴマー型のシランカップリング剤を含む粘接着剤塗工液であってもよく、また、例えば、さらに、架橋剤(例えばイソシアネート系架橋剤、エポキシ系架橋剤)を含む粘接着剤塗工液であってもよく、また、例えば、さらに、反応性二重結合を1分子中に1つ又は2つ有するモノマーと、有機過酸化物とを含んでいてもよい。前記粘接着剤塗工液は、特に限定されないが、例えば、以下に例示するとおりである。
 前記粘接着剤塗工液は、例えば、前記(メタ)アクリル系ポリマーが、例えば、モノマー成分として、複素環含有アクリルモノマー3~20質量%、重合性の官能基を有し、かつ(メタ)アクリル酸0.5~5質量%、およびヒドロキシアルキル(メタ)アクリレート0.05~2質量%、および、アルキル(メタ)アクリレート83~96.45質量%を含有してなる(メタ)アクリル系ポリマーであり、この(メタ)アクリル系ポリマーをベースポリマーとして用いてもよい。
 複素環含有アクリルモノマーとしては、例えば、重合性の官能基を有し、かつ複素環を有するものを特に制限なく用いることができる。重合性官能基は、(メタ)アクリロイル基、ビニルエーテル基等があげられる。これらのなかで、(メタ)アクリロイル基が好適である。複素環としては、モルホリン環、ピペリジン環、ピロリジン環、ピペラジン環等があげられる。複素環含有アクリルモノマーとしては、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等があげられる。これらのなかでも、N-アクリロイルモルホリンが好適である。なお、複素環含有アクリルモノマーは、粘着剤層(粘接着層)を薄型化した場合の耐熱性、耐湿性のいずれの耐久性を向上させることができる。なお、以下において、N-アクリロイルモルホリンを「ACMO」ということがある。
 また、複素環含有アクリルモノマーは、粘着剤層(粘接着層)の光学フィルムへの粘着力を向上できる点で好ましい。特に、ノルボルネン系樹脂等の環状ポリオレフィンに対する粘着力を向上させる点で好ましく、光学フィルムとして、環状ポリオレフィンを用いている場合に、好適である。
 複素環含有アクリルモノマーは、例えば、(メタ)アクリル系ポリマーを形成するモノマー成分の全量に対して3~20質量%の割合で用いられる。複素環含有アクリルモノマーの割合は、例えば、4~19質量%または6~18質量%であってもよい。複素環含有アクリルモノマーの割合は、粘着剤層(粘接着層)を薄型化した場合の耐熱性、耐湿性の観点から、前記範囲よりも少なくないことが好ましい。また、複素環含有アクリルモノマーの割合は、薄型化した場合の耐湿性の観点から、前記範囲よりも多くないことが好ましい。また、複素環含有アクリルモノマーの割合は、粘着剤層(粘接着層)の貼り合せ性を向上させる観点から、複素環含有アクリルモノマーの割合が前記範囲よりも多くないことが好ましい。また、複素環含有アクリルモノマーの割合は、粘着力の観点から、前記範囲よりも多くないことが好ましい。
 (メタ)アクリル酸としては、特にアクリル酸が好ましい。
 (メタ)アクリル酸は、例えば、(メタ)アクリル系ポリマーを形成するモノマー成分の全量に対して、0.5~5質量%の割合で用いられる。(メタ)アクリル酸の割合は、例えば、1~4.5質量%または1.5~4質量%であってもよい。(メタ)アクリル酸の割合は、粘着剤層(粘接着層)を薄型化した場合の耐熱性の観点から、前記範囲よりも少なくないことが好ましい。また、(メタ)アクリル酸の割合は、薄型化した場合の耐熱性、耐湿性の観点から、前記範囲よりも多くないことが好ましい。また、(メタ)アクリル酸の割合は、粘着力の観点から、前記範囲よりも多くないことが好ましい。
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、重合性の官能基を有し、かつヒドロキシル基を有するものを特に制限なく用いることができる。ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートが好適である。
 ヒドロキシアルキル(メタ)アクリレートは、例えば、(メタ)アクリル系ポリマーを形成するモノマー成分の全量に対して、0.05~2質量%の割合で用いられる。ヒドロキシアルキル(メタ)アクリレートの割合は、例えば、0.075~1.5質量%または0.1~1質量%であってもよい。ヒドロキシアルキル(メタ)アクリレートの割合は、粘着剤層(粘接着層)を薄型化した場合の耐熱性の観点から、前記範囲よりも少なくないことが好ましい。また、ヒドロキシアルキル(メタ)アクリレートの割合は、薄型化した場合の耐熱性、耐湿性の観点から、前記範囲よりも多くないことが好ましい。また、ヒドロキシアルキル(メタ)アクリレートの割合は、粘着力の観点から、前記範囲よりも多くないことが好ましい。
 アルキル(メタ)アクリレートとしては、例えば、アルキル(メタ)アクリレートのアルキル基の平均炭素数が1~12程度であってもよい。なお、(メタ)アクリレートはアクリレートおよび/またはメタクリレートをいい、本発明の(メタ)とは同様の意味である。アルキル(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレート等を例示でき、これらは単独または組み合わせて使用できる。これらの中でもアルキル基の炭素数1~9のアルキル(メタ)アクリレートが好ましい。
 アルキル(メタ)アクリレートは、例えば、(メタ)アクリル系ポリマーを形成するモノマー成分の全量に対して、83~96.45質量%の割合で用いられる。アルキル(メタ)アクリレートは、通常、前記複素環含有アクリルモノマー、(メタ)アクリル酸およびヒドロキシアルキル(メタ)アクリレートの以外の残部である。
 前記(メタ)アクリル系ポリマーを形成するモノマー成分としては、例えば、前記モノマーの他に、本発明の目的を損なわない範囲で、前記以外の任意モノマーを、モノマー全量の10%以下の範囲で用いることができる。
 前記任意モノマーとしては、例えば、無水マレイン酸、無水イタコン酸などの酸無水物基含有モノマー;アクリル酸のカプロラクトン付加物;スチレンスルホン酸やアリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。窒素含有ビニルモノマーがあげられる。例えば、マレイミド、N-シクロへキシルマレイミド、N-フェニルマレイミド;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミドやN-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミドなどの(N-置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチル、3-(3-ピリニジル)プロピル(メタ)アクリレートなどの(メタ)アクリル酸アルキルアミノアルキル系モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミドやN-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマーなどがあげられる。
 さらに、酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N-ビニルカルボン酸アミド類、スチレン、α-メチルスチレン、N-ビニルカプロラクタムなどのビニル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレートや2-メトキシエチルアクリレートなどのアクリル酸エステル系モノマーなども使用することができる。
 さらに、上記以外の共重合可能なモノマーとして、ケイ素原子を含有するシラン系モノマーなどがあげられる。シラン系モノマーとしては、例えば、3-アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、4-ビニルブチルトリメトキシシラン、4-ビニルブチルトリエトキシシラン、8-ビニルオクチルトリメトキシシラン、8-ビニルオクチルトリエトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、10-アクリロイルオキシデシルトリメトキシシラン、10-メタクリロイルオキシデシルトリエトキシシラン、10-アクリロイルオキシデシルトリエトキシシランなどがあげられる。
本発明の積層体における前記粘接着層で用いる(メタ)アクリル系ポリマーは、前述のとおり、重量平均分子量(Mw)が、例えば150万~400万であってもよい。前記重量平均分子量は、例えば、重量平均分子量が180万~380万であってもよく、例えば、200万~350万または220万~330万であってもよい。前記重量平均分子量は、粘着剤層(粘接着層)を薄型化した場合の耐熱性、耐湿性の観点から、前記範囲よりも小さくないことが好ましい。また、前記重量平均分子量は、薄型化した場合の前記耐久性、および、貼り合せ性、粘着力の観点から、前記範囲よりも大きくないことが好ましい。なお、本発明において、重量平均分子量は、例えば、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値をいう。
 このような(メタ)アクリル系ポリマーの製造方法は、特に限定されず、例えば、溶液重合、塊状重合、乳化重合、各種ラジカル重合などの公知の製造方法を適宜選択できる。また、得られる(メタ)アクリル系ポリマーは、ランダム共重合体、ブロック共重合体、グラフト共重合体などいずれでもよい。
 なお、溶液重合においては、重合溶媒として、例えば、酢酸エチル、トルエンなどが用いられる。具体的な溶液重合例としては、反応は窒素などの不活性ガス気流下で、重合開始剤を加え、例えば、50~70℃程度で、1~30時間程度の反応条件で行われる。
 ラジカル重合に用いられる重合開始剤、連鎖移動剤、乳化剤などは特に限定されず適宜選択して使用することができる。なお、(メタ)アクリル系ポリマーの重量平均分子量は、重合開始剤、連鎖移動剤の使用量、反応条件により制御可能であり、これらの種類に応じて適宜その使用量が調整される。
 重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]ハイドレート(和光純薬社製、VA-057)などのアゾ系開始剤、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジラウロイルパーオキシド、ジ-n-オクタノイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキシド、ジベンゾイルパーオキシド、t-ブチルパーオキシイソブチレート、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、t-ブチルハイドロパーオキシド、過酸化水素などの過酸化物系開始剤、過硫酸塩と亜硫酸水素ナトリウムの組み合わせ、過酸化物とアスコルビン酸ナトリウムの組み合わせなどの過酸化物と還元剤とを組み合わせたレドックス系開始剤などをあげることができるが、これらに限定されるものではない。
 前記重合開始剤は、単独で使用してもよく、また2種以上を混合して使用してもよい。前記重合開始剤の全体としての含有量は、モノマー100質量部に対して、例えば、0.005~1質量部程度または0.02~0.5質量部程度であってもよい。
 なお、重合開始剤として、例えば、2,2’-アゾビスイソブチロニトリルを用いて、前記重量平均分子量の(メタ)アクリル系ポリマーを製造するには、重合開始剤の使用量は、モノマー成分の全量100質量部に対して、例えば、0.06~0.2質量部程度または0.08~0.175質量部程度であってもよい。
 連鎖移動剤としては、例えば、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、2-メルカプトエタノール、チオグリコール酸、チオグルコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノールなどがあげられる。連鎖移動剤は、単独で使用してもよく、また2種以上を混合して使用してもよい。前記連鎖移動剤の、全体としての含有量はモノマー成分の全量100質量部に対して、例えば、0.1質量部程度以下である。
 また、乳化重合する場合に用いる乳化剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウムなどのアニオン系乳化剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン-ポリオキシプロピレンブロックポリマーなどのノニオン系乳化剤などがあげられる。これらの乳化剤は、単独で用いてもよく2種以上を併用してもよい。
 さらに、反応性乳化剤として、プロペニル基、アリルエーテル基などのラジカル重合性官能基が導入された乳化剤として、具体的には、例えば、アクアロンHS-10、HS-20、KH-10、BC-05、BC-10、BC-20(以上、いずれも第一工業製薬社製)、アデカリアソープSE10N(旭電化工社製)などがある。反応性乳化剤は、重合後にポリマー鎖に取り込まれるため、耐水性がよくなり好ましい。乳化剤の使用量は、モノマー成分の全量100質量部に対して、0.3~5質量部、重合安定性や機械的安定性から0.5~1質量部がより好ましい。
 前記粘接着剤塗工液中における前記(メタ)アクリル系ポリマーの含有率は、特に限定されないが、例えば、前記粘接着剤塗工液の全質量に対し、例えば、3質量%以上、または5質量%以上であってもよく、例えば、30質量%以下、20質量%以下、または10質量%以下であってもよい。
 また、前記粘接着剤塗工液は、例えば、反応性二重結合を1分子中に1つ又は2つ有するモノマーを含んでいてもよいし、含んでいなくてもよい。前記反応性二重結合を1分子中に1つ又は2つ有するモノマーとしては、特に限定されないが、グラフト反応の反応速度の観点から、アクリル系モノマー、ビニル系モノマー、メタクリル系モノマー、アリル系モノマーが好ましく、アクリル系モノマーがより好ましい。前記アクリル系モノマーは、特に限定されないが、例えば、前記アクリル系ポリマーのモノマー成分として例示したモノマーと同様でもよい。前記反応性二重結合を1分子中に1つ又は2つ有するモノマーにおいて、側鎖の構造は特に限定されないが、複素環含有モノマーが、適正な範囲での高弾性率化と半高分子ポリマー量の低減を同時に達成できる点から好ましい。
 前記粘接着剤塗工液が、前記反応性二重結合を1分子中に1つ又は2つ有するモノマーを含む場合、その含有率は、特に限定されないが、前記粘接着剤塗工液中において、例えば、前記(メタ)アクリル系ポリマーの全質量に対し、例えば、0.1質量%以上、0.5質量%以上、または1質量%以上であってもよく、例えば、30質量%以下、20質量%以下、または10質量%以下であってもよい。
 前記オリゴマー型のシランカップリング剤の重量平均分子量(Mw)は、前述のとおり300以上であってもよい。本発明の積層体は、前記粘接着剤塗工液にオリゴマー型のシランカップリング剤を含むことで、前記粘接着剤塗工液から形成される粘接着層の耐久性を向上することができ、特に、加湿環境下での耐久性に優れ、長期間放置後であっても高い耐久性を維持することができるものである。ここで、本発明において、前記粘接着剤塗工液は、例えば、粘着剤(粘着剤組成物)であってもよい。前記粘接着層は、例えば、粘着剤(粘着剤組成物)から形成された粘着剤層であってもよい。また、ここで、オリゴマー型とは、モノマーの2量体(重合度2)以上100量体(重合度100)未満程度の重合体を指すものであり、オリゴマー型シランカップリング剤の重量平均分子量としては、300~30000程度が好ましい。なお、本発明において、前記オリゴマー型のシランカップリング剤の重合度は、特に限定されない。
 前記オリゴマー型のシランカップリング剤は、例えば、分子内に2個以上のアルコキシシリル基を有するシランカップリング剤であってもよい。具体的には、例えば、信越化学工業(株)製のX-41-1053、X-41-1059A、X-41-1056等が挙げられる。これらのカップリング剤は、揮発しにくく、アルコキシシリル基を複数有することから耐久性向上に効果的であり好ましい。
 前記オリゴマー型のシランカップリング剤のアルコキシシリル基の数は、特に限定されるものではないが、分子内に2個以上であることが好ましい。また、前記オリゴマー型のシランカップリング剤のアルコキシ基の量は、シランカップリング剤中、例えば、10~60質量%であることが好ましく、20~50質量%であることがより好ましく、20~40質量%であることがさらに好ましい。アルコキシ基の種類は限定されないが、例えば、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ等の炭素数1~6のアルコキシ基を挙げることができる。これらの中でも、メトキシ、エトキシが好ましく、メトキシがより好ましい。また、一分子中、メトキシとエトキシの両方を含むことも好ましい。
 前記オリゴマー型のシランカップリング剤は、前述のとおり、エポキシ基を含有してもよい。前記オリゴマー型のシランカップリング剤のエポキシ当量は、例えば、1000g/mol以下であることが好ましく、500g/mol以下であることがより好ましく、300g/mol以下であることがより好ましい。また、前記エポキシ当量の下限値は特に限定されるものではないが、例えば、200g/mol以上であることが好ましい。
 前記オリゴマー型のシランカップリング剤は、エポキシ基を含有することが好ましいが、酸無水物基を含有しても良い。酸無水物基を含有するオリゴマー型のシランカップリング剤を使用することで、シランカップリング剤を使用しない場合と比べ、前記加熱耐久試験後の屈折率の変化量を低減し、さらに、前記加熱耐久試験後の粘着層と低屈折率層との接着力を向上させることができる。
 前記オリゴマー型のシランカップリング剤は、単独で使用してもよく、また2種以上を混合して使用してもよい。全体としての前記オリゴマー型のシランカップリング剤の含有量は、前記(メタ)アクリル系ポリマー100質量部に対し、前述のとおり、1質量部以下であるが、例えば、0.2質量部以下が好ましい。含有量を前述の範囲にすることで、前記初期屈折率の上昇を抑制し、さらに、前記加熱耐久試験後の屈折率の変化量を低減することができる。
 また、本発明で用いる前記粘接着剤塗工液(例えば粘着剤組成物)には、前記オリゴマー型のシランカップリング剤以外のシランカップリング剤も添加することができる。その他のカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリル基含有シランカップリング剤、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤等を挙げることができる。
 前記オリゴマー型のシランカップリング剤以外のシランカップリング剤は、本発明の効果を損なわない範囲で添加することができ、その添加量は特に限定されるものではない。
 また、前記粘接着剤塗工液は、例えば、前述のとおり、架橋剤を含んでいてもよい。前記架橋剤は、特に限定されないが、例えば、イソシアネート系架橋剤やエポキシ系架橋剤が挙げられる。前記イソシアネート系架橋剤としては、特に限定されないが、例えば、トリレンジイソシアネート、キシレンジイソシアネートなどの芳香族イソシアネート、イソホロンジイソシアネートなどの脂環族イソシアネート、ヘキサメチレンジイソシアネートなどの脂肪族イソシアネートなどがあげられる。前記エポキシ系架橋剤としては、特に限定されないが、例えば、ビスフェノールA・エピクロルヒドリン型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエリスリトール、ジグリセロールポリグリシジルエーテル、1,3′-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N′,N′-テトラグリシジル-m-キシレンジアミンなどが挙げられる。
 前記イソシアネート系架橋剤としては、より具体的には、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネートなどの脂環族イソシアネート類、2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニルイソシアネートなどの芳香族ジイソシアネート類、トリメチロールプロパン/トリレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名コロネートL)、トリメチロールプロパン/ヘキサメチレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名コロネートHL)、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、商品名コロネートHX)などのイソシアネート付加物、ポリエーテルポリイソシアネート、ポリエステルポリイソシアネート、ならびにこれらと各種のポリオールとの付加物、イソシアヌレート結合、ビューレット結合、アロファネート結合などで多官能化したポリイソシアネートなどを挙げることができる。
 前記エポキシ系架橋剤としては、より具体的には、例えば、三菱ガス化学社製「テトラッドC」、三菱ガス化学社製「テトラッドX」、Synasia社製「S-610」などを挙げることができる。
 前記架橋剤(例えばイソシアネート系架橋剤、エポキシ系架橋剤)は単独で使用してもよく、また2種以上を混合して使用してもよいが、全体としての含有量は、前記(メタ)アクリル系ポリマー100質量部に対し、前記系架橋剤を、例えば、0.02~2質量部、0.04~1.5質量部、または0.05~1質量部含有していてもよい。前記イソシアネート系架橋剤の含有量は、凝集力の観点から0.02質量部以上が好ましく、一方、架橋形成の過多による接着力低下を抑制または防止する観点からは、2質量部以下が好ましい。前記エポキシ系架橋剤の含有量は、空隙残存率の観点から0.01質量部以上が好ましく、一方、剥がれ耐久性の観点からは0.5質量部以下が好ましい。
 前記粘接着剤塗工液において、前記架橋剤は、例えば、イソシアネート系架橋剤又はエポキシ系架橋剤のいずれかのみからなっていてもよいし、さらに、イソシアネート系架橋剤又はエポキシ系架橋剤以外の他の架橋剤を含んでいてもよいし含んでいなくてもよい。前記他の架橋剤としては、有機系架橋剤や多官能性金属キレートがあげられる。有機系架橋剤としては、エポキシ系架橋剤、イミン系架橋剤などがあげられる。有機系架橋剤としてはイソシアネート系架橋剤、エポキシ系架橋剤が好ましい。多官能性金属キレートは、多価金属が有機化合物と共有結合または配位結合しているものである。多価金属原子としては、Al、Cr、Zr、Co、Cu、Fe、Ni、V、Zn、In、Ca、Mg、Mn、Y、Ce、Sr、Ba、Mo、La、Sn、Ti等があげられる。共有結合または配位結合する有機化合物中の原子としては酸素原子等があげられ、有機化合物としてはアルキルエステル、アルコール化合物、カルボン酸化合物、エーテル化合物、ケトン化合物等があげられる。
 また、前記粘接着剤塗工液は、例えば、有機過酸化物を含んでいてもよいし、含んでいなくてもよい。前記有機過酸化物は、特に限定されないが、例えば、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジラウロイルパーオキシド、ジ-n-オクタノイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキシド、ジベンゾイルパーオキシド、t-ブチルパーオキシイソブチレート、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、t-ブチルハイドロパーオキシド、等が挙げられ、1種類のみ用いても複数種類併用してもよい。
 前記粘接着剤塗工液が前記有機過酸化物を含む場合、その含有率は、特に限定されないが、前記粘接着剤塗工液中において、例えば、前記(メタ)アクリル系ポリマーの全質量に対し、例えば、0.02質量%以上、0.1質量%以上、0.5質量%以上、1質量%以上、または2.5質量%以上であってもよく、例えば、20質量%以下、10質量%以下、8質量%以下、または6質量%以下であってもよい。
 前記粘接着剤塗工液は、さらに、溶媒等を含んでいてもよい。前記溶媒は、特に限定されないが、例えば、前記(メタ)アクリル系ポリマーの製造における溶液重合で用いた重合溶媒をそのまま用いてもよい。
 さらには、前記粘接着剤塗工液には、必要に応じて、粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤、顔料、着色剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を、また本発明の目的を逸脱しない範囲で各種の添加剤を適宜に使用することもできる。また微粒子を含有して光拡散性を示す粘着剤層(粘接着層)などとしても良い。
 前記粘接着剤塗工液を用いて、例えば、後述する方法により、本発明の積層体における前記粘接着層を形成することができる。前記粘接着層は、例えば、ゲル・パーミエーション・クロマトグラフィー法による前記粘接着層の分子量測定において、前記粘接着層のゾル分の重量平均分子量が3万~60万であってもよい。また、例えば、ゲル・パーミエーション・クロマトグラフィー法による前記粘接着層の分子量測定において、前記粘接着層のゾル分における分子量1万以下の低分子量成分の含有率が20重量%(質量%)以下であってもよい。前記ゾル分の重量平均分子量または前記ゾル分中の分子量が1万以下の低分子量成分の含有量を前記特定範囲とすることで、さらに、前記空隙層の空隙に前記粘着剤が浸透しにくくなる。前記ゾル分の重量平均分子量は、例えば、5万以上でもよく、例えば、55万以下または50万以下でもよく、例えば、5~55万または6~50万でもよい。また、前記ゾル分中の分子量が1万以下の成分の含有量(割合)は、前記ゾル分全量(100質量%)に対し、例えば、前述のとおり20質量%以下であってもよく、例えば、15質量%以下または10質量%以下であってもよい。前記ゾル分中の分子量が1万以下の成分の含有量(割合)の下限値は、特に限定されないが、例えば、0質量%以上または0質量%を超える数値でもよく、例えば、3質量%以上でもよい。前記ゾル分中の分子量が1万以下の成分の含有量(割合)は、例えば、3~15質量%または3~10質量%でもよい。
[4.積層体の製造方法]
 本発明の積層体の製造方法は、特に限定されないが、例えば、以下に説明する製造方法により行うことができる。ただし、以下の説明は例示であり、本発明をなんら限定しない。なお、本発明の空隙層は、特に制限されないが、例えば前述のとおりである。また、本発明の空隙層の製造方法も、前述のとおり、特に制限されず、例えば、国際公開第2019/065999号、国際公開第2019/065803号に記載された方法で製造することができる。
 本発明の積層体の製造方法は、例えば、前記粘接着層を製造する粘接着層製造工程と、前記粘接着層を前記空隙層に貼り合せる貼合工程と、を含んでいてもよい。前記粘接着層の製造方法は、例えば、前記粘接着剤塗工液を基材に塗布する粘接着剤塗工液塗布工程と、前記粘接着剤塗工液が塗布された前記基材を加熱乾燥する加熱乾燥工程と、を含んでいてもよい。例えば、基材上に前記本発明の粘接着層が積層された粘着テープ等の、前記粘接着層側を、本発明の空隙層上に貼り合せることにより、本発明の空隙層上に前記粘接着層を形成しても良い。この場合、前記粘着テープ等の基材は、そのまま貼り合せたままにしても良いし、前記粘接着層から剥離しても良い。特に、基材を剥離して、基材を有しない(基材レスの)空隙層含有粘接着シートとすることで、厚みを大幅に低減することができ、デバイス等の厚み増加を抑制できる。本発明において、「粘着剤」および「粘着層」は、例えば、被着体の再剥離を前提とした剤または層をいう。本発明において、「接着剤」および「接着層」は、例えば、被着体の再剥離を前提としない剤または層をいう。ただし、本発明において、「粘着剤」と「接着剤」は、必ずしも明確に区別できるものではなく、「粘着層」と「接着層」は、必ずしも明確に区別できるものではない。本発明において、前記粘接着層は、例えば、前述のとおり、前記粘接着剤塗工液を用いて製造することができる。
 前記粘接着層製造工程は、例えば、以下のようにして行うことができる。まず、前記粘接着剤塗工液の全成分を混合する混合工程により、前記粘接着剤塗工液を製造する。前記粘接着剤塗工液は、例えば、前述のとおり、前記(メタ)アクリル系ポリマーを含んでいてもよく、また、例えば、さらに架橋剤(例えばイソシアネート系架橋剤、エポキシ系架橋剤)を含んでいてもよい。前記粘接着剤塗工液は、例えば、前記(メタ)アクリル系ポリマーと、反応性二重結合を1分子中に1つ又は2つ有するモノマーと、有機過酸化物とを含んでいてもよい。このとき、前記粘接着剤塗工液が、他の成分を含む場合は、前記他の成分も一緒に混合してもよい。例えば、前記(メタ)アクリル系ポリマー製造時の重合溶媒を除去せずに、そのまま前記粘接着剤塗工液の成分として混合してもよい。また、前記粘接着剤塗工液の製造方法は、前記混合工程以外の他の工程を含んでいてもよいが、含んでいなくてもよく、単に前記混合工程により前記粘接着剤塗工液の全成分を混合するのみでもよい。
 つぎに、前記粘接着剤塗工液を基材に塗布する(粘接着剤塗工液塗布工程)。前記基材は、特に制限されず、例えば、フィルム等の基材であってもよい。前記基材は、例えば、熱可塑性樹脂製の基材、ガラス製の基材、シリコンに代表される無機基板、熱硬化性樹脂等で成形されたプラスチック、半導体等の素子、カーボンナノチューブに代表される炭素繊維系材料等が好ましく使用できるが、これらに限定されない。前記基材の形態は、例えば、フィルム、プレート等があげられる。前記熱可塑性樹脂は、例えば、ポリエチレンテレフタレート(PET)、アクリル、セルロースアセテートプロピオネート(CAP)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)等があげられる。また、前記粘接着剤塗工液塗布工程において、前記粘接着剤塗工液の塗布厚みは、特に限定されないが、例えば、乾燥後の粘接着層の厚みが所定の厚みになるように適宜調整すればよい。乾燥後の粘接着層の厚みも特に限定されないが、例えば、後述のとおりである。
 つぎに、前記粘接着剤塗工液が塗布された前記基材を加熱乾燥する(加熱乾燥工程)。この加熱乾燥工程において、加熱乾燥の温度は、特に限定されないが、例えば、50℃以上、80℃以上、100℃以上、または155℃以上であってもよく、例えば、200℃以下、180℃以下、または160℃以下であってもよい。加熱乾燥の時間は、特に限定されないが、例えば、0.5分以上、1分以上、または3分以上であってもよく、例えば、60分以下、30分以下、20分以下、または10分以下であってもよい。この加熱乾燥工程において、例えば、前記(メタ)アクリル系ポリマーと架橋剤との間で、架橋反応及びグラフト重合が起こる。これにより、例えば、前述のとおり、前記粘接着剤塗工液中に存在する半高分子ポリマーの量が減少し、前記粘接着層が前記空隙層の空隙中に浸透しにくくなる。以上のようにして、本発明の積層体に用いる前記粘接着層を製造できる。
 つぎに、前記粘接着層を前記空隙層に貼り合せる(貼合工程)。この方法は特に限定されないが、例えば、前述のとおり、基材上に前記本発明の粘接着層が積層された粘着テープ等の、前記粘接着層側を、本発明の空隙層上に貼り合せることにより、本発明の空隙層上に前記粘接着層を形成しても良い。以上のようにして、前記本発明の積層体を製造できる。
 前記本発明の積層体の製造方法において、例えば、さらに、前記貼合工程後に前記粘接着層および前記空隙層を加熱する加熱工程を行ってもよい。以下において、この加熱工程を「エージング工程」という場合がある。前記加熱工程(エージング工程)において、加熱温度は、特に限定されないが、例えば、40℃以上、45℃以上、または50℃以上であってもよく、例えば、80℃以下、70℃以下、60℃以下、または55℃以下であってもよい。加熱時間は、特に限定されないが、例えば、1分以上、10分以上、60分以上、または1800分以上であってもよく、例えば、3000分以下、2800分以下、2500分以下、または2000分以下であってもよい。このエージング工程において、例えば、前記空隙層と前記粘接着層との合一によって前記中間層が形成される。そして、例えば前述のとおり、前記中間層がストッパーとなり、前記空隙層の空隙が粘着剤によって埋まることによる空隙率の減少を抑制できる。なお、前記空隙層と前記粘接着層との合一は、前記粘接着層が前記空隙層の空隙に埋まり込んで且つ化学的に結合したものであってもよいし、前記粘接着層が前記空隙層の空隙に埋まり込んだものであってもよい。
 前記粘接着層により、前記空隙層を、物理的ダメージ(特に擦傷)から保護することが可能である。また、前記粘接着層は、基材を有しない(基材レスの)空隙層含有粘接着シートとしても前記空隙層が潰れないように、耐圧性に優れたものが好ましいが、特には限定されない。また、前記粘接着層の厚みは、特に制限されないが、例えば、0.1~100μm、5~50μm、10~30μm、または12~25μmである。
 このようにして得られる本発明の積層体は、例えば、前述のとおり、さらに、他のフィルム(層)と積層して、前記空隙層(多孔質構造)を含む積層構造体としてもよい。この場合、前記積層構造体において、各構成要素は、例えば、前記粘接着層(粘着剤または接着剤)を介して積層させてもよい。
 前記各構成要素の積層は、例えば、効率的であることから、長尺フィルムを用いた連続処理(いわゆるRoll to Roll等)により積層を行ってもよく、基材が成形物・素子等の場合はバッチ処理を行ったものを積層してもよい。
 以下に、基材(樹脂フィルム)上に前記本発明の積層体を形成する方法について、連続処理工程に関して、図3(a)の積層体10dを例にあげて説明する。なお、以下に説明する製膜方式はあくまで一例であり、これらに限定されない。
 なお、前記基材は、前述した樹脂フィルムでもよい。この場合、前記基材上への前記空隙層の形成により、本発明の空隙層が得られる。また、前記基材上で前記空隙層を形成した後、前記空隙層を、本発明の空隙層の説明において前述した樹脂フィルムに積層することによっても、本発明の空隙層が得られる。
 図3(a)の積層体10dの製造方法は、例えば、まず、基材14上に空隙層11を形成し、さらに空隙層11上に粘接着層12を形成し、さらに、空隙層11と粘接着層12との合一によって中間層13を形成する。この製造方法は、より具体的には、例えば、基材(樹脂フィルム)14上に、ゲル状化合物の粉砕物のゾル粒子液を塗工して塗工膜を形成する塗工工程(1)、前記ゾル粒子液を乾燥させて、乾燥後の塗工膜を形成する乾燥工程(2)、前記塗工膜に化学処理(例えば、架橋処理)をして、空隙層11を形成する化学処理工程(例えば、架橋工程)(3)、空隙層20上に粘接着層12を貼合する貼合工程(4)、および、空隙層11を粘接着層12と反応させて中間層13を形成する中間層形成工程(5)を含む。前記ゲル状化合物の粉砕物のゾル粒子液を製造する方法は、特に制限されない。前記ゾル粒子液は、具体的には、例えば、国際公開第2019/065999号または国際公開第2019/065803号に記載された方法で製造することができる。また、前記ゾル粒子液は、例えば、後述する本願実施例の「参考例1」に記載の方法で製造することもできる。なお、図示していないが、本発明の積層体の製造方法は、他に、前述のとおり、前記本発明の粘接着層の製造方法により前記粘接着層を製造する粘接着層製造工程と、前記粘接着層を前記空隙層に貼り合せる貼合工程と、を含む。前記本発明の粘接着層の製造方法は、前述のとおり、前記粘接着剤塗工液を基材に塗布する粘接着剤塗工液塗布工程と、前記粘接着剤塗工液が塗布された前記基材を加熱乾燥する加熱乾燥工程と、を含む。前記化学処理工程(架橋工程)(3)は、本発明の積層体における空隙層を形成する「空隙層形成工程」に該当する。また、中間層形成工程(5)は、前述の加熱工程(エージング工程)に該当する。中間層形成工程(5)(以下「エージング工程」という場合がある。)は、例えば、空隙層11の強度を向上させる工程(空隙層11内部で架橋反応を起こさせる架橋反応工程)を兼ねていてもよく、その場合、中間層形成工程(5)の後に、空隙層11が、さらに強度の向上した空隙層11に変化する。ただし、本発明はこれに限定されず、例えば、中間層形成工程(5)の後に空隙層11が変化していなくても良い。また、貼合工程(4)は、前述のとおり、基材上に粘接着層を有する粘着テープの貼合等であっても良い。図1において、前記粘接着剤塗工液が塗布された(前記粘接着層が形成された)前記基材は図示していないが、例えば、粘接着層12から剥離して除去してもよいし、粘接着層12上にそのまま残してもよい。以上の工程(1)~(5)により、図3(a)に示すとおり、樹脂フィルム14上に、空隙層11と、中間層13と、粘接着層12とが、前記順序で積層された積層フィルム(積層体)を製造できる。ただし、中間層形成工程(5)がなく、製造される本発明の積層体が中間層を含まなくてもよい。さらに、本発明の積層体の製造方法は、以上で説明した以外の工程を、適宜含んでいても良いし、含んでいなくても良い。また、例えば、図3(a)の積層フィルム(積層体)10dのように、粘接着層12の上にさらにもう1枚の記載14を貼り合せてもよい。また、図3(a)の積層フィルム(積層体)10dは、粘接着層12を空隙層11の片面のみに設けているが、例えば、図3(b)の積層体10eのように、粘接着層12を空隙層11の両面に設けてもよい。
 前記塗工工程(1)において、前記ゾル粒子液の塗工方法は特に限定されず、一般的な塗工方法を採用できる。前記塗工方法としては、例えば、スロットダイ法、リバースグラビアコート法、マイクログラビア法(マイクログラビアコート法)、ディップ法(ディップコート法)、スピンコート法、刷毛塗り法、ロールコート法、フレキソ印刷法、ワイヤーバーコート法、スプレーコート法、エクストルージョンコート法、カーテンコート法、リバースコート法等が挙げられる。これらの中で、生産性、塗膜の平滑性等の観点から、エクストルージョンコート法、カーテンコート法、ロールコート法、マイクログラビアコート法等が好ましい。前記ゾル粒子液の塗工量は、特に限定されず、例えば、空隙層11の厚みが適切になるように、適宜設定可能である。空隙層11の厚みは、特に限定されず、例えば、前述の通りである。
 前記乾燥工程(2)において、前記ゾル粒子液を乾燥し(すなわち、前記ゾル粒子液に含まれる分散媒を除去し)、前記乾燥後の塗工膜(空隙層の前駆体)を形成する。乾燥処理の条件は、特に限定されず、前述の通りである。
 さらに、前記化学処理工程(3)において、塗工前に添加した前記触媒または前記触媒発生剤(例えば、光活性触媒、光触媒発生剤、熱活性触媒または熱触媒発生剤)を含む前記乾燥後の塗工膜(に対し、光照射または加熱し、前記乾燥後の塗工膜(中の前記粉砕物同士を化学的に結合させて(例えば、架橋させて)、空隙層11を形成する。前記化学処理工程(3)における光照射または加熱条件は、特に限定されず、前述の通りである。
 一方、図示していないが、別途、前記粘接着層製造工程により、前記本発明の粘接着層を製造する。前記粘接着層製造工程(前記本発明の粘接着層の製造方法)については、例えば、前述のとおりである。
 さらに、貼合工程(4)および中間層形成工程(5)を行なう。中間層形成工程(5)は、前述のとおり、貼合工程(4)後に粘接着層12および空隙層11を加熱する加熱工程である。例えば、前記粘着剤がポリマー(例えば(メタ)アクリル系ポリマー)および架橋剤を含む粘着剤組成物である場合、前記加熱工程によって、前記ポリマーが前記架橋剤により架橋されてもよい。前記加熱工程は、例えば、前記粘着剤を乾燥する工程を兼ねていてもよい。また、例えば、前記加熱工程は、前記中間層形成工程(5)を兼ねていてもよい。前記加熱工程の温度は、特に限定されないが、例えば70~160℃、80~155℃、90~150℃である。前記加熱工程の時間は、特に限定されないが、例えば1~10分、1~7分、または2~5分である。
 つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。
 なお、以下の参考例、実施例および比較例において、各物質の部数(相対的な使用量)は、特に断らない限り、質量部(重量部)である。以下の参考例、実施例および比較例において、粘接着剤としては、後述する粘着剤(粘着剤組成物)を用いた。以下の参考例、実施例および比較例において、「粘着剤層」は、「粘接着層」に該当する。すなわち、以下の参考例、実施例および比較例においては、特に断らない限り、「粘着剤層」と「粘接着層」とは同義である。
 また、以下の参考例、実施例および比較例において、(メタ)アクリル系ポリマーの重量平均分子量(Mw)、粘接着層のゲル分率、各層の厚み、及び屈折率は、それぞれ、下記の測定方法により測定した。
<(メタ)アクリル系ポリマーの分子量の測定方法>
 ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した分子量重量分布曲線から、(メタ)アクリル系ポリマーの重量平均分子量(Mw)を算出した。
 ・分析装置:Waters,Alliance
 ・カラム:東ソー社製、G7000HXL+GMHXL+GMHXL
 ・カラムサイズ:各7.8mmφ×30cm 計90cm
 ・カラム温度:40℃
 ・流量:0.8mL/min
 ・注入量:100μL
 ・溶離液:THF(酸添加)
 ・検出器:示差屈折計(RI)
 ・標準試料:ポリスチレン
<粘接着層のゲル分率の測定方法>
 作製して1分間以内のセパレータフィルムの剥離処理面に形成した光学用粘着剤層から約0.1gを掻きとったものをサンプル1とした。前記サンプル1を0.2μm径を有するテフロン(登録商標)フィルム(商品名「NTF1122」,日東電工株式会社製)に包んだ後、凧糸で縛り、これをサンプル2とした。下記試験に供する前のサンプル2の重量を測定し、これを重量Aとした。なお、前記重量Aは、サンプル1(粘着剤層)と、テフロン(登録商標)フィルムと、凧糸との総重量である。また、前記テフロン(登録商標)フィルムと凧糸との総重量を重量Bとした。次に、前記サンプル2を、酢酸エチルで満たした50ml容器に入れ、23℃にて1週間静置した。その後、容器からサンプル2を取り出し、130℃で2時間、乾燥機中で乾燥して酢酸エチルを除去した後、サンプル2の重量を測定した。前記試験に供した後のサンプル2の重量を測定し、これを重量Cとした。そして、下記式からゲル分率を算出した。
 ゲル分率(質量%)=(C-B)/(A-B)×100
<厚みの測定方法>
 粘着剤層の厚みは、粘着剤層の5地点の厚みを、ダイヤルゲージを用いて測定し、その平均値とした。中間層の厚みは、SEM画像において粘着剤層と低屈折率層との間に存在している、コントラストが異なる厚み部分を中間層とし、その厚みをSEM画像上の2地点で読み取った値の平均値とした。
<屈折率の測定方法>
 前述の屈折率の評価方法により、屈折率を測定した。
 なお、以下の各参考例、実施例および比較例における粘接着層においては、塗工した粘着剤の加熱乾燥によって、ポリマー(アクリル系ポリマー)が架橋剤により架橋され、架橋構造が形成されたと推測されるが、架橋構造については確認していない。
[参考例1:空隙層形成用塗工液の製造]
 まず、ケイ素化合物のゲル化(下記工程(1))および熟成工程(下記工程(2))を行ない、多孔質構造を有するゲル(シリコーン多孔体)を製造した。さらにその後、下記(3)形態制御工程、(4)溶媒置換工程、および(5)ゲル粉砕工程を行ない、空隙層形成用塗工液(ゲル粉砕物含有液)を得た。なお、本参考例では、下記のとおり、下記(3)形態制御工程を、下記工程(1)とは別の工程として行なった。しかし、本発明は、これに限定されず、例えば、下記(3)形態制御工程を、下記工程(1)中に行なっても良い。
(1)ケイ素化合物のゲル化
 DMSO 22kgに、ケイ素化合物の前駆体であるMTMSを9.5kg溶解させた。前記混合液に、0.01mol/Lのシュウ酸水溶液を5kg添加し、室温で120分、撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを生成した。
 DMSO 55kgに、28%濃度のアンモニア水3.8kg、および純水2kgを添加した後、さらに、前記加水分解処理した前記混合液を追添し、室温で60分撹拌した。60分撹拌後の液を、長さ30cm×幅30cm×高さ5cmのステンレス容器中に流し込んで室温で静置することにより、トリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物を得た。
(2)熟成工程
 前記ゲル化処理を行なって得られた、ゲル状ケイ素化合物を40℃で20時間インキュベートして、熟成処理を行ない、前記直方体形状の塊のゲルを得た。このゲルは、原料中におけるDMSO(沸点130℃以上の高沸点溶媒)の使用量が、原料全体の約83質量%であったことから、沸点130℃以上の高沸点溶媒を50質量%以上含んでいることが明らかであった。また、このゲルは、原料中におけるMTMS(ゲルの構成単位であるモノマー)の使用量が、原料全体の約8質量%であったことから、ゲルの構成単位であるモノマー(MTMS)の加水分解により発生する沸点130℃未満の溶媒(この場合はメタノール)の含有量は、20質量%以下であることが明らかであった。
(3)形態制御工程
前記工程(1)(2)によって前記30cm×30cm×5cmのステンレス容器中で合成されたゲル上に、置換溶媒である水を流し込んだ。つぎに、前記ステンレス容器中でゲルに対して上部から切断用治具の切断刃をゆっくり挿入し、ゲルを1.5cm×2cm×5cmのサイズの直方体に切断した。
(4)溶媒置換工程
 つぎに、下記(4-1)~(4-3)のようにして溶媒置換工程を行った。
(4-1)
 前記「(3)形態制御工程」の後、前記ゲル状ケイ素化合物の8倍の重量の水中に前記ゲル状ケイ素化合物を浸漬させ、水のみ対流するようにゆっくり1h撹拌した。1h後に水を同量の水に交換し、さらに3h撹拌した。さらにその後、再度水を交換し、その後、60℃でゆっくり撹拌しながら3h加熱した。
(4-2)
 (4-1)の後、水を、前記ゲル状ケイ素化合物の4倍の重量のイソプロピルアルコールに交換し、同じく60℃で撹拌しながら6h加熱した。
(4-3)
 (4-2)の後、イソプロピルアルコールを同じ重量のイソブチルアルコールに交換し、同じく60℃で6h加熱し、前記ゲル状ケイ素化合物中に含まれる溶媒をイソブチルアルコールに置換した。以上のようにして、本発明の空隙層製造用ゲルを製造した。
(5)ゲル粉砕工程
 前記(4)溶媒置換工程後の前記ゲル(ゲル状ケイ素化合物)に対して、第1の粉砕段階で連続式乳化分散(太平洋機工社製、マイルダーMDN304型)、第2の粉砕段階で高圧メディアレス粉砕(スギノマシン社製、スターバーストHJP-25005型)の2段階で粉砕を行なった。この粉砕処理は、前記溶媒置換されたゲル状ケイ素化合物を含有したゲル43.4kgに対しイソブチルアルコール26.6kgを追加、秤量した後、第1の粉砕段階は循環粉砕にて20分間、第2の粉砕段階は粉砕圧力100MPaの粉砕を行なった。このようにして、ナノメートルサイズの粒子(前記ゲルの粉砕物)が分散したイソブチルアルコール分散液(ゲル粉砕物含有液)を得た。さらに、前記ゲル粉砕物含有液3kg中にWPBG-266(商品名、Wako製)のメチルイソブチルケトン1.5%濃度溶液を224g添加し、さらにビス(トリメトキシリル)エタン(TCI製)のメチルイソブチルケトン5%濃度溶液を67.2g添加したあと、N,N-ジメチルホルムアミドを31.8g添加・混合し塗工液を得た。
 以上のようにして、本参考例(参考例1)の空隙層形成用塗工液(ゲル粉砕物含有液)を製造した。また、空隙層形成用塗工液(ゲル粉砕物含有液)中におけるゲル粉砕物(微細孔粒子)のピーク細孔径を、前述の方法で測定したところ、12nmであった。
[参考例2:粘接着層の形成]
 下記(1)~(2)の手順により、本参考例(参考例2)の粘接着層を形成した。
(1)(メタ)アクリル系ポリマーの調整
((メタ)アクリル系ポリマー(A1)の調製)
 撹持羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート79.5部、N-アクリロイルモルホリン15部、アクリル酸5部、4-ヒドロキシブチルアクリレート0.5部を含有するモノマー混合物を仕込んだ。さらに、前記モノマー混合物100部に対して、重合開始剤として2,2'-アゾビスイソブチロニトリル0.1部を酢酸エチル70部と共に仕込み、緩やかに撹枠しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って2時間重合反応を行って、重量平均分子量(Mw)340万、Mw/Mn=2.5の(メタ)アクリル系ポリマー(A1) の溶液を調製した。
((メタ)アクリル系ポリマー(A2)の調製)
 ((メタ)アクリル系ポリマー(A1)の調製)において、仕込みのモノマー組成を、ブチルアクリレート79.5部、N-アクリロイルモルホリン7.5部、アクリル酸5部、4-ヒドロキシブチルアクリレート0.5部、重合反応時間を8時間とし、その他は同様にして、重量平均分子量(Mw)290万、Mw/Mn=4.2の(メタ)アクリル系ポリマー(A2)の溶液を調製した。
(2)(粘着剤組成物の調製)
 (メタ)アクリル系ポリマー(A1)の固形分100部に対して、オリゴマー型のシランカップリング剤(信越シリコーン社製の商品名「X-41-1056」)0.2部、イソシアネート架橋剤(日本ポリウレタン工業社製の商品名「コロネートL」、トリメチロールプロパンのトリレンジイソシアネートのアダクト体)0.2部、エポキシ系架橋剤(三菱ガス化学社製の商品名「テトラッドC」)0.1部、ベンゾイルパーオキサイド(日本油脂社製の商品名「ナイパーBMT」)0.2部を配合して、アクリル系粘着剤組成物を調製した。
(3)(粘接着層の形成)
 次いで、前記アクリル系粘着剤組成物を、シリコーン系剥離剤で処理されたポリエチレンテレフタレートフィルム(セパレータフィルム:三菱化学ポリエステルフィルム(株)製、MRF38)の片面に、乾燥後の粘着剤層の厚さが10μmになるように塗布し、155℃で1分間乾燥を行い、セパレータフィルムの表面に粘着剤層(粘接着層)を形成した。
[実施例1]
(積層体の製造)
 参考例1で作製した高空隙率層形成塗工液を、アクリル基材上に塗工・乾燥し、膜厚約850nmの空隙層(空隙率59体積%)を形成した。つぎに、空隙層面からUV照射(300mJ)を行なった。その後、参考例2で得られた厚み10μmの粘着剤層を前記空隙層面上に貼り合わせし、60℃で20hエージングを行ない、本実施例の積層体を製造した。
[実施例2~4、及び比較例1~3]
 以下のようにして、実施例2~4、及び比較例1~3の積層体を製造した。
 実施例3、及び比較例3においては、下記表1に示すとおり、参考例2に示す粘着組成物の調整において、(メタ)アクリル系ポリマー(A1)に代えて、(メタ)アクリル系ポリマー(A2)を使用した。
 実施例4においては、オリゴマー型のシランカップリング剤「X-41-1056」に代えて、オリゴマー型のシランカップリング剤「X-24-9591F」(信越シリコーン社の商品名)を使用した。比較例1においては、下記表1に示すとおり、参考例2に示す粘着剤組成物の組成から、前記オリゴマー型のシランカップリング剤に代えて、モノマー型のシランカップリング剤(信越シリコーン社製の商品名「KBM-403」)を使用した。比較例2においては、前記オリゴマー型のシランカップリング剤を使用しなかった。
 さらに、実施例2~4、及び比較例1~3においては、シランカップリング剤、架橋剤、過酸化物の使用量は、下記表1のとおりとした。このように(メタ)アクリル系ポリマーならびにシランカップリング剤の種類、及び過酸化物ならびに架橋剤の使用量のいずれかを適宜変更したこと以外は、実施例1と同様にして、実施例2~4、及び比較例1~3の積層体の製造で用いたアクリル系粘着剤組成物の溶液を調製した。さらに、前記アクリル系粘着剤組成物の溶液を用いて、実施例1と同様にして粘接着層を作製し、実施例2~4、及び比較例1~3の積層体を製造した。
[加熱耐久性試験]
 さらに、前記のようにして製造した本実施例および比較例の積層体を、温度65℃かつ相対湿度95%のオーブンに投入し、1000hの加熱耐久性試験を行なった。前記加熱耐久性試験前後の屈折率から、前記数式(1)より屈折率の変化率を算出した。また、前記加熱耐久性試験後の中間層と被着体の剥がれ(以下、「剥がれ耐久性」という場合もある。)を目視確認した。これらの結果を表1に示す。
 表1の、初期の屈折率における評価基準は以下のとおりである。
 
◎:1.20以下
○:1.20を超え、1.21以下
△:1.21を超え、1.23未満 
×:1.23以上
表1の、加熱耐久試験後の屈折率(変化量)における評価基準は以下のとおりである。 
◎:0.005以下
○:0.005を超え、0.01以下
△:0.01を超え、0.015以下
×:0.015を超える
 
 なお、下記表1に示す略号等の意味は、下記のとおりである。
 
イソシアネート:トリメチロールプロパンのトリレンジイソシアネートのアダクト体(東ソー株式会社製の商品名「コロネートL」)
エポキシ:1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学社製の商品名「テトラッドC」)
過酸化物:ベンゾイルパーオキサイド(日本油脂社製の商品名「ナイパーBMT」)
Figure JPOXMLDOC01-appb-T000002
 前記表1に示したとおり、オリゴマー型のシランカップリング剤を使用し、かつ、シランカップリング剤の添加量が1質量部以下である実施例1~4は、初期屈折率が低く、加熱耐久試験後の屈折率(変化量)も低く、かつ、剥がれ耐久性にも優れていた。すなわち、実施例1~4の積層体は、空隙層の空隙に粘着剤が浸透しにくいために、初期屈折率が低く、加熱耐久性にも優れ、かつ、これらの効果と、粘接着層と低屈折率層との強固な接着を両立できていた。これに対し、モノマー型のシランカップリング剤を使用した場合(比較例1)、オリゴマー型のシランカップリング剤の添加量が1質量部を超える場合(比較例3)、又はシランカップリング剤を使用しなかった場合(比較例2)は、空隙層の空隙に粘着剤が浸透しやすかったために、初期屈折率、加熱耐久性、及び粘接着層と低屈折率層との接着のいずれかが不良となる結果となった。また、オリゴマー型のシランカップリング剤の置換基に酸無水物を有する場合、シランカップリング剤を使用しなかった比較例2と比べて、加熱耐久性、及び粘着層と低屈折率層との接着がともに良好であった。
 以上、説明したとおり、本発明によれば、粘着力または接着力と、空隙層の空隙への粘着剤または接着剤の浸透しにくさとを両立した、積層体、光学部材および光学装置を提供することができる。本発明の用途は特に限定されない。例えば、本発明の光学装置は、特に限定されず、画像表示装置、照明装置等が挙げられる。前記画像表示装置としては、例えば、液晶ディスプレイ、有機ELディスプレイ、マイクロLEDディスプレイ等が挙げられる。前記照明装置としては、例えば、有機EL照明等が挙げられる。本発明の積層体によれば、例えば、高温かつ高湿度下でも空隙層の空隙に粘着剤または接着剤が浸透しにくいので、特に、車載用など高耐久条件下での使用に適する。さらに、本発明の積層体の用途は、本発明の光学部材および光学装置に限定されず任意であり、広範な用途に使用可能である。
 この出願は、2022年03月28日に出願された日本出願特願2022-052541を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
10、10a、10b、10c、10d、10e 積層体
11 空隙層
12 粘接着層
13 中間層
14 基材

Claims (12)

  1.  空隙層と、粘接着層とを含み、
     前記粘接着層が、前記空隙層の片面または両面に直接積層されており、
     前記粘接着層が、(メタ)アクリル系ポリマー及びオリゴマー型のシランカップリング剤を含む粘接着剤により形成され、
     前記オリゴマー型のシランカップリング剤の含有量が、前記(メタ)アクリル系ポリマー100質量部に対して1質量部以下であることを特徴とする積層体。
  2.  前記オリゴマー型のシランカップリング剤が、エポキシ基を含有することを特徴とする請求項1記載の積層体。
  3.  前記(メタ)アクリル系ポリマーの重量平均分子量(Mw)が150万~400万である請求項1または2記載の積層体。
  4.  前記オリゴマー型のシランカップリング剤の重量平均分子量(Mw)が300以上である請求項1から3のいずれか一項に記載の積層体。
  5.  前記粘接着層が、前記(メタ)アクリル系ポリマー及び架橋剤を含む粘接着剤により形成され、
     前記粘接着剤は、ゲル分率が85%を超える請求項1から4のいずれか一項に記載の積層体。
  6.  前記(メタ)アクリル系ポリマーが、モノマー単位として窒素含有モノマーを1~30質量%含有する請求項1から5のいずれか一項に記載の積層体。
  7.  前記窒素含有モノマーが、複素環含有アクリルモノマーである請求項6記載の積層体。
  8.  温度65℃かつ相対湿度95%で1000時間保持する加熱耐久性試験前後で、前記空隙層の屈折率の増加量が、下記数式(1)を満たし、かつ、加熱耐久試験前の初期屈折率が、下記数式(2)を満たすことを特徴とする請求項1から7のいずれか一項に記載の積層体。
     
     n-n≦0.015   (1)
     n<1.23      (2)
     
     前記数式(1)において、nは、前記加熱耐久試験後の前記空隙層の屈折率である。
     前記数式(2)において、nは、前記加熱耐久試験前の前記空隙層の屈折率である。
  9.  前記空隙層と前記粘接着層との間に中間層が存在し、
     前記中間層は、前記空隙層と前記粘接着層との合一によって形成された層である請求項1から8のいずれか一項に記載の積層体。
  10.  前記中間層の厚みが10~100nmである請求項9記載の積層体。
  11.  請求項1から10のいずれか一項に記載の積層体を含むことを特徴とする光学部材。
  12.  請求項11記載の光学部材を含むことを特徴とする光学装置。
PCT/JP2023/011697 2022-03-28 2023-03-24 積層体、光学部材、及び光学装置 WO2023190103A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052541A JP2023145198A (ja) 2022-03-28 2022-03-28 積層体、光学部材、及び光学装置
JP2022-052541 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190103A1 true WO2023190103A1 (ja) 2023-10-05

Family

ID=88202186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011697 WO2023190103A1 (ja) 2022-03-28 2023-03-24 積層体、光学部材、及び光学装置

Country Status (3)

Country Link
JP (1) JP2023145198A (ja)
TW (1) TW202340638A (ja)
WO (1) WO2023190103A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022690A1 (ja) * 2015-07-31 2017-02-09 日東電工株式会社 光学積層体、光学積層体の製造方法、光学部材、画像表示装置
JP2019064259A (ja) * 2017-09-29 2019-04-25 日東電工株式会社 積層体、光学部材および光学装置
JP2019119845A (ja) * 2017-12-28 2019-07-22 日東電工株式会社 樹脂組成物、樹脂層、および積層シート
JP2020012098A (ja) * 2018-07-10 2020-01-23 三菱ケミカル株式会社 粘着剤組成物、及びそれを用いてなる粘着剤、偏光板用粘着剤、ならびに画像表示装置
WO2020067344A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 両面粘着剤層付光学積層体
JP2020128552A (ja) * 2018-12-27 2020-08-27 藤森工業株式会社 粘着剤層、及び粘着剤層付き光学フィルム
JP2021080422A (ja) * 2019-11-22 2021-05-27 三菱ケミカル株式会社 粘着剤組成物、粘着剤、偏光板用粘着剤、ならびに画像表示装置
JP2021143221A (ja) * 2020-03-10 2021-09-24 三菱ケミカル株式会社 粘着剤組成物、粘着剤、偏光板用粘着剤及び画像表示装置
JP2022114690A (ja) * 2021-01-27 2022-08-08 日東電工株式会社 積層体、粘接着剤塗工液の製造方法、粘接着剤塗工液、粘接着剤層の製造方法、積層体の製造方法、光学部材、光学装置、光学部材の製造方法、および光学装置の製造方法
JP2023051480A (ja) * 2021-09-30 2023-04-11 日東電工株式会社 積層体、積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022690A1 (ja) * 2015-07-31 2017-02-09 日東電工株式会社 光学積層体、光学積層体の製造方法、光学部材、画像表示装置
JP2019064259A (ja) * 2017-09-29 2019-04-25 日東電工株式会社 積層体、光学部材および光学装置
JP2019119845A (ja) * 2017-12-28 2019-07-22 日東電工株式会社 樹脂組成物、樹脂層、および積層シート
JP2020012098A (ja) * 2018-07-10 2020-01-23 三菱ケミカル株式会社 粘着剤組成物、及びそれを用いてなる粘着剤、偏光板用粘着剤、ならびに画像表示装置
WO2020067344A1 (ja) * 2018-09-28 2020-04-02 日東電工株式会社 両面粘着剤層付光学積層体
JP2020128552A (ja) * 2018-12-27 2020-08-27 藤森工業株式会社 粘着剤層、及び粘着剤層付き光学フィルム
JP2021080422A (ja) * 2019-11-22 2021-05-27 三菱ケミカル株式会社 粘着剤組成物、粘着剤、偏光板用粘着剤、ならびに画像表示装置
JP2021143221A (ja) * 2020-03-10 2021-09-24 三菱ケミカル株式会社 粘着剤組成物、粘着剤、偏光板用粘着剤及び画像表示装置
JP2022114690A (ja) * 2021-01-27 2022-08-08 日東電工株式会社 積層体、粘接着剤塗工液の製造方法、粘接着剤塗工液、粘接着剤層の製造方法、積層体の製造方法、光学部材、光学装置、光学部材の製造方法、および光学装置の製造方法
JP2023051480A (ja) * 2021-09-30 2023-04-11 日東電工株式会社 積層体、積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法

Also Published As

Publication number Publication date
JP2023145198A (ja) 2023-10-11
TW202340638A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
TWI493002B (zh) An adhesive composition, an adhesive, and an adhesive sheet
WO2017033741A1 (ja) 光学部材用粘着剤層、粘着剤層付光学部材、及び画像表示装置
KR101833574B1 (ko) 점착제 조성물, 점착제층 및 점착제 시트
KR20110039413A (ko) 점착제 조성물, 점착제층, 및 점착제 시트
US11420413B2 (en) Laminate, optical member, and optical apparatus
JP2024001067A (ja) 積層体、光学部材および光学装置
JP2010275524A (ja) 光学フィルム用粘着剤組成物、光学フィルム用粘着剤層、粘着型光学フィルムおよび画像表示装置
JP4968764B2 (ja) 粘着剤組成物、粘着剤層およびその製造方法、ならびに粘着シート類
JP2011241377A (ja) 光学部材用の粘接着剤組成物、粘接着剤層、粘接着剤層が設けられた光学部材、光学部材付画像表示装置、および画像表示装置の製造方法
JP2008255253A (ja) 研磨材用両面感圧接着シート
JP2011057794A (ja) 溶剤系光学部材用粘着剤組成物、粘着剤層、および粘着剤付光学部材
TWI546363B (zh) Adhesive and adhesive tape
WO2023053913A1 (ja) 積層体、積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
KR101327631B1 (ko) 점착제조성물 및 그것을 이용한 점착제부착 광학기능성부재
JP5969761B2 (ja) 粘着剤組成物の製造方法、粘着剤層の製造方法及び保護フィルムの製造方法
TWI537360B (zh) Adhesive and adhesive tape
JP2022114690A (ja) 積層体、粘接着剤塗工液の製造方法、粘接着剤塗工液、粘接着剤層の製造方法、積層体の製造方法、光学部材、光学装置、光学部材の製造方法、および光学装置の製造方法
WO2023190103A1 (ja) 積層体、光学部材、及び光学装置
JP2011219587A (ja) 粘着性組成物、粘着剤および粘着シート
WO2023053912A1 (ja) 積層体、光学部材、及び光学装置
JP2023051690A (ja) 積層体、光学部材、及び光学装置
EP4276499A1 (en) Air gap layer, multilayer body, method for producing air gap layer, optical member and optical device
CN118159615A (zh) 层叠体、光学构件及光学装置
WO2024106486A1 (ja) 粘着剤組成物、粘着シート、光学積層体、及び画像表示装置
TWI759438B (zh) 偏光薄膜用黏著劑組成物、偏光薄膜用黏著劑層、附黏著劑層之偏光薄膜、液晶面板及液晶顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780113

Country of ref document: EP

Kind code of ref document: A1