WO2023189240A1 - 表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板 - Google Patents

表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板 Download PDF

Info

Publication number
WO2023189240A1
WO2023189240A1 PCT/JP2023/008339 JP2023008339W WO2023189240A1 WO 2023189240 A1 WO2023189240 A1 WO 2023189240A1 JP 2023008339 W JP2023008339 W JP 2023008339W WO 2023189240 A1 WO2023189240 A1 WO 2023189240A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
treated
resin composition
conjugated diene
treated boron
Prior art date
Application number
PCT/JP2023/008339
Other languages
English (en)
French (fr)
Inventor
敦嗣 真川
剛 浜坂
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023189240A1 publication Critical patent/WO2023189240A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to surface-treated boron nitride, a method for producing surface-treated boron nitride, a resin composition, and a heat dissipation substrate.
  • thermally conductive materials are used for mounted components and surrounding components.
  • high thermal conductivity compounds such as boron nitride have been frequently used as additives (fillers) for resins.
  • the higher the concentration of the thermally conductive filler the higher the thermal conductivity of the resulting resin composition.
  • the viscosity of the resin composition also increases in direct proportion to filler concentration. Therefore, if the amount of filler blended in the resin composition exceeds a certain value, problems may arise in processing the material.
  • a method in which the filler is modified with a surface treatment agent (so-called surface treatment) to improve its affinity with the resin and to suppress the increase in viscosity when the filler is filled into the resin.
  • a surface treatment agent such as phenylene diisocyanate (Patent Document 1), a method of surface treatment with a silane coupling agent (Non-Patent Document 1), and aluminate coupling.
  • Patent Document 2 a method of surface treatment with an agent, a zirconate coupling agent, etc.
  • Patent Document 3 a method of surface treatment with an aromatic acid halide
  • Patent Document 4 etc.
  • Patent Documents 1 to 3 and Non-Patent Document 1 react with reactive groups such as -NH-, -NH 2 , and -OH groups on the particle surface to form bonds, but Since the reactive groups were present only on the end faces of the particles and no reactive groups were present on the flat portions that accounted for most of the specific surface area, the effect of surface modification of the particles was insufficient.
  • an object of the present invention is to provide a surface-treated boron nitride that can suppress an increase in viscosity of a resin composition when used as a filler, a method for producing the surface-treated boron nitride, and a method for producing the surface-treated boron nitride and a resin.
  • An object of the present invention is to provide a resin composition containing the present invention, and a heat dissipation board made of the resin composition.
  • [1] Surface-treated boron nitride that has been surface-treated with a conjugated diene compound or a compound that produces a conjugated diene upon heating.
  • a resin composition comprising the surface-treated boron nitride according to [1] or [2] and a resin.
  • a heat dissipation board made of the resin composition of [4].
  • the surface-treated boron nitride of the present invention when used as a resin filler, it is possible to suppress an increase in the viscosity of a resin composition containing the filler. Moreover, it becomes possible to increase the filler content in the resin composition, and it is possible to improve the heat dissipation performance of a heat dissipation board formed from the resin composition.
  • FIG. 2 is a schematic diagram showing how a planar portion of h-BN and a conjugated diene are bonded through conjugate addition.
  • the surface-treated boron nitride of the present invention is boron nitride surface-treated with a conjugated diene compound or a compound that produces a conjugated diene upon heating.
  • boron nitride includes hexagonal boron nitride (h-BN), which is a stable phase at normal pressure, and cubic boron nitride (c-BN), which is a stable phase at high pressure.
  • boron nitride is preferably hexagonal boron nitride (h-BN).
  • Boron nitride is not particularly limited, and any known boron nitride can be used without restriction. For example, boron nitride manufactured using a known manufacturing method may be used. Moreover, you may use what is generally commercially available as boron nitride for fillers.
  • the particle shape of boron nitride is not particularly limited, and may be scaly, flat, spherical, cubic, or irregularly shaped, and may be formed by agglomeration of particles (primary particles) of these shapes.
  • the shape of the secondary particles is not particularly limited.
  • boron nitride may be a mixture of primary particles and secondary particles.
  • the size (median diameter, D 50 ) of the primary particles or secondary particles of boron nitride is not particularly limited, but from the viewpoint of processability of the resin composition, it is preferably 0.05 to 500 ⁇ m, more preferably 0.1 to 500 ⁇ m.
  • the thickness is 300 ⁇ m, more preferably 0.1 to 100 ⁇ m.
  • the size of boron nitride can be determined by measuring with a laser diffraction/scattering type particle size distribution measuring device.
  • a conjugated diene is a conjugated diene in which double bonds are separated by one single bond
  • a conjugated diene compound is a compound containing at least one conjugated diene skeleton.
  • Conjugated diene compounds include cyclopentadiene, 1,3-cyclohexadiene, 2,4-hexadiene, isoindene, sorbic acid, ethyl sorbate, ⁇ -terpinene, 2,4-hexadienal, 1,3-butadiene, 1 , 4-diphenyl-1,3-butadiene, isoprene, myrcene, Danishevsky diene (1-methoxy-3-(trimethylsilyloxy)-1,3-butadiene), ⁇ -carotene, vitamin A, etc.
  • Compound that produces a conjugated diene when heated Compounds that can produce conjugated dienes upon heating include dicyclopentadiene, indene, 3-isochromanone, and benzocyclobutene.
  • “Surface-treated” means a state in which an organic substance derived from a conjugated diene is bonded to at least a portion of the surface of boron nitride.
  • the bond may be any bond such as a covalent bond, a coordinate bond, an ionic bond, a hydrogen bond, or a van der Waals bond, but a covalent bond is preferable.
  • the surface treatment may be performed such that the boron nitride surface is bonded to the conjugated diene polymer. Further, the surface treatment may be such that organic substances physically or chemically adsorbed onto the boron nitride surface spontaneously aggregate through intermolecular interactions to form a thin film layer. Note that the surface treatment may be applied to only a part of the boron nitride surface or to the entire surface.
  • Boron nitride includes hexagonal boron nitride, which is a stable phase at normal pressure, and cubic boron nitride, which is a stable phase at high pressure, and these are called h-BN and c-BN.
  • h-BN has a graphite-type structure of a planar six-membered ring in which B and N are bonded alternately, and the planes overlap in layers. In the planar part of h-BN, there is no functional group because a ⁇ -conjugated plane composed of B and N extends.
  • boron nitride when used as a filler, it is required to treat its surface to improve its affinity with the resin.
  • the present inventors have made extensive studies to improve the affinity of boron nitride for resins, and if surface treatment can be applied to the flat portion of boron nitride, most of the surface area of boron nitride can be surface treated. Going that it might be possible to greatly improve the affinity for resins, we continued to conduct further studies and completed the present invention.
  • N atoms and B atoms on the surface of boron nitride are conjugated and added to the conjugated diene site, resulting in a bond (hetero-Diels-Alder type). It is presumed that bonding occurs between the conjugated diene and the planar portion of boron nitride ( Figure 1 shows how the planar portion of h-BN and the conjugated diene bond through conjugate addition).
  • bonds are formed by reacting with reactive groups such as -NH-, -NH 2 , -OH groups, etc., but in this method, the surface treatment agent does not necessarily require these reactive groups, and the surface treatment agent does not necessarily require these reactive groups, and the surface treatment agent is It can also be combined with
  • the surface-treated boron nitride of the present invention Since the surface-treated boron nitride of the present invention has its flat portion surface-treated as described above, its affinity with resin is improved. Therefore, it can be suitably used as a resin filler.
  • the method for producing surface-treated boron nitride includes a step of reacting boron nitride with a conjugated diene compound or a compound that produces a conjugated diene upon heating under heating. The above step is carried out by stirring a slurry-like mixture consisting of boron nitride and a conjugated diene compound (or a compound that produces a conjugated diene when heated).
  • the conjugated diene compound or a compound that generates a conjugated diene when heated
  • boron nitride are not uniformly dispersed, reducing reaction efficiency. descend.
  • an organic solvent for example, toluene, xylene, decane, etc.
  • the above-mentioned organic solvent may be added from the viewpoint of economy.
  • the heating temperature is preferably 80°C to 250°C, more preferably 90°C to 200°C.
  • the reaction can proceed efficiently, and by setting the temperature to 250°C or lower, decomposition of each component can be prevented and energy efficiency can be improved.
  • the lower limit of the heating temperature is preferably 120°C or higher, more preferably 140°C or higher.
  • the reaction time under heating is not particularly limited, but is preferably from 30 minutes to 10 hours, more preferably from 1 hour to 7 hours, and even more preferably from 2 hours to 5 hours.
  • the reaction is carried out under stirring.
  • the reaction it is preferable to leave it to cool, isolate it by filtration (eg, Buchner), and wash the surface-treated boron nitride with an organic solvent (eg, heptane, ethanol, etc.). Further, it is preferable to perform vacuum drying at 80° C. to 120° C. for 0.5 to 3 hours.
  • an organic solvent eg, heptane, ethanol, etc.
  • the resin composition of the present invention contains the above-described surface-treated boron nitride of the present invention and a resin. Since the flat surface of boron nitride is surface-treated to improve its affinity with resin, a resin composition containing a resin and the surface-treated boron nitride of the present invention can be used as a resin filler. In this case, the increase in viscosity of the resin composition can be suppressed. Thereby, even if the resin composition contains a high content of boron nitride, it is possible to maintain the moldability of the resin composition.
  • resins to which the surface treatment boron nitride of the present invention is added include epoxy resins, silicone resins, polyimide resins, acrylic resins (methacrylic resins), phenolic resins, fluororesins, and liquid crystal polymers (LCP).
  • epoxy resin examples include biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, and dicyclopentadiene-modified phenol.
  • examples include a type epoxy resin, a naphthol type epoxy resin, and a triazine core-containing epoxy resin. One of these may be used alone or a plurality of them may be used in combination.
  • the curing agent amine compounds, acid anhydrides, imidazole or its derivatives, phenols, etc. can be used.
  • the content of the filler in the resin composition is preferably 5 Vol% or more, more preferably 10 Vol% or more, and even more preferably 15 Vol% or more, in order to effectively impart heat dissipation, which is the effect of the filler.
  • the upper limit is preferably 90 Vol% or less, more preferably 80 Vol% or less, and even more preferably 70 Vol% or less.
  • the heat dissipation substrate of the present invention is made of the above resin composition. As described above, even if the surface-treated boron nitride of the present invention is contained as a filler at a high content, the moldability of the resin composition can be ensured, so that molding defects may occur in the manufacturing process of the heat dissipation board. can be prevented. Furthermore, since the filler content can be increased compared to conventional heat dissipation substrates, it is possible to provide a heat dissipation substrate with higher heat dissipation performance than conventional ones.
  • Example 1 ⁇ Surface treatment process> (Example 1) In a reaction vessel (300 mL) equipped with a Dimroth, 30 g of boron nitride (hexagonal boron nitride S03 manufactured by Tokuyama Corporation, median diameter (D 50 ): 7 ⁇ m) and dicyclopentadiene (70 g) were added, and the mixture was heated at an oil bath temperature of 150° C. The mixture was heated and stirred for hours. The slurry after the reaction was filtered and washed with heptane (100 mL x 3 times), and the resulting cake was dried under reduced pressure at 100° C. for 1 hour to obtain surface-treated boron nitride particles A. Note that dicyclopentadiene used in Example 1 produces cyclopentadiene when heated as described below.
  • boron nitride hexagonal boronitride S03 manufactured by Tokuyama Corporation, median diameter (D 50 ): 7
  • indene was used as the treatment agent in Example 2. Indene produces isoindene by heating as described below.
  • Example 3 Furthermore, as the treatment agent in Example 3, the following ethyl sorbate was used.
  • 3-glycidoxypropyltrimethoxysilane which is a processing agent, is shown below.
  • 3-Glycidoxypropyltrimethoxysilane is commonly used as a surface treatment agent when mixing inorganic powder with resin (see Non-Patent Document 1).
  • a resin composition was similarly prepared using boron nitride without surface treatment instead of surface-treated boron nitride, and the viscosity was measured.
  • the viscosity measurement of the resin composition was performed at a shear rate of 0.2 s ⁇ 1 .
  • the measurement conditions are as follows. ⁇ Equipment used: Rheometer (HAAKE MARS40, manufactured by Thermo Fisher Scientific) ⁇ Measurement temperature: 25°C, ⁇ Sensor used: C35/1 (cone plate type, diameter 35mm, angle 1°, material titanium)
  • Table 2 shows that when using the surface-treated boron nitride of the present invention that has been surface-treated with a conjugated diene or a compound that produces a conjugated diene upon heating, the viscosity of the resulting resin composition is lower than that of the surface-untreated boron nitride (Comparative Example 1). ) and cases where conventional processing agents were used (Comparative Examples 2 and 3).
  • 1-pyrenecarboxaldehyde of Comparative Example 3 is the surface modifier (C-36) described in Table 1 of Patent Document 4 and used in Example 44.
  • paragraph [0015] describes the estimated effect of the surface treatment agent, and it is said that the surface treatment agent can be adsorbed to the inorganic nitride even without interaction with the functional groups on the end surface. The effect was low.
  • the surface-treated boron nitride of the present invention it is thought that the surface treatment agent and the boron nitride surface are bonded by strong covalent bonds, and this is considered to be more effective in reducing the viscosity of the resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

フィラーとして使用した場合に、樹脂組成物の粘度上昇を抑制できる、共役ジエン化合物または加熱により共役ジエンを生じる化合物により表面処理された表面処理窒化ホウ素、該表面処理窒化ホウ素の製造方法、該表面処理窒化ホウ素と樹脂とを含む樹脂組成物、該樹脂組成物からなる放熱基板、を提供する。

Description

表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板
 本発明は、表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、および、放熱基板に関する。
 近年、電子機器の高性能化、小型化が急速に進んでいる。それに伴い、半導体デバイスのパワー密度上昇により、発生する熱のコントロールが困難になっている。そのため、実装部品・周囲部品に熱伝導性材料が用いられている。
 従来から、窒化ホウ素等の高熱伝導化合物が樹脂の添加剤(フィラー)としてよく利用されている。一般的に、熱伝導性フィラーの濃度が高いほど、得られる樹脂組成物の熱伝導率は高くなる。しかしながら、その樹脂組成物の粘度も、フィラー濃度に正比例して増加する。そのため、樹脂組成物中のフィラー配合量が一定値を超えると、材料の加工上の問題を生じる場合がある。
 そこで、フィラーを表面処理剤で改質(いわゆる表面処理)して樹脂との親和性を向上させ、フィラーを樹脂に充填した際の粘度上昇を抑制する方法が知られている。
 窒化ホウ素粒子を表面処理剤で改質する方法としては、例えば、フェニレンジイソシアネートで表面処理する方法(特許文献1)、シランカップリング剤で表面処理する方法(非特許文献1)、アルミネートカップリング剤およびジルコネートカップリング剤等で表面処理する方法(特許文献2)、芳香族酸ハロゲン化物で表面処理する方法(特許文献3)、縮環構造を有する芳香族炭化水素化合物で表面修飾する方法(特許文献4)等が開示されている。
特開2001-192500号公報 特開2006-257392号公報 特開2009-221039号公報 WO2019/013323 花ヶ崎裕洋、他2名"表面処理したBNフィラーの放熱性樹脂用材料としての特性に関する調査研究"、広島県立西部工業技術センター研究報告、49、70-73(2006)
 しかし、特許文献1~3、非特許文献1記載の表面処理剤は、粒子表面の-NH-、-NH、―OH基等の反応基と反応し結合を形成するが、窒化ホウ素粒子表面の反応基は粒子の端面にしか存在せず、比表面積の大部分を占める平面部分には反応基が存在しないため、粒子の表面改質としては効果が不十分であった。
 上記実情を鑑み、本発明の課題は、フィラーとして使用した場合に、樹脂組成物の粘度上昇を抑制できる表面処理窒化ホウ素、該表面処理窒化ホウ素の製造方法、該表面処理窒化ホウ素と樹脂とを含む樹脂組成物、該樹脂組成物からなる放熱基板、を提供することを課題とする。
 本発明者らは、鋭意検討した結果、以下の発明を完成させた。
[1] 共役ジエン化合物または加熱により共役ジエンを生じる化合物により表面処理された、表面処理窒化ホウ素。
[2] 充填剤として使用される、[1]に記載の表面処理窒化ホウ素。
[3] 窒化ホウ素と共役ジエン化合物または加熱により共役ジエンを生じる化合物とを加熱下で反応させる工程を備える、表面処理窒化ホウ素の製造方法。
[4] [1]または[2]に記載の表面処理窒化ホウ素と、樹脂とを含む、樹脂組成物。
[5] [4]の樹脂組成物からなる、放熱基板。
 本発明の表面処理窒化ホウ素によれば、樹脂のフィラーとして用いた場合、フィラーを含む樹脂組成物の粘度上昇を抑制することができる。また、樹脂組成物中におけるフィラーの含有量を高めることが可能となり、該樹脂組成物で形成される放熱基板の放熱性能を向上させることができる。
h―BNの平面部分と、共役ジエンとが共役付加して結合する様子を示す模式図である。
 次に、実施の形態に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
 本発明において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
 また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。
 <表面処理窒化ホウ素>
 本発明の表面処理窒化ホウ素は、共役ジエン化合物または加熱により共役ジエンを生じる化合物により、窒化ホウ素を表面処理したものである。
 (窒化ホウ素)
 本発明において、窒化ホウ素とは、常圧安定相である六方晶窒化ホウ素(h-BN)と、高圧安定相である立方晶窒化ホウ素(c-BN)があるが、平面部分の表面処理ができるという効果を最大限に発揮すべく、窒化ホウ素は、六方晶窒化ホウ素(h-BN)であることが好ましい。
 窒化ホウ素は、特に限定されず公知の物を制限なく使うことが出来る。例えば、公知の製造方法に基づき製造した窒化ホウ素を使用してもよい。また、フィラー用窒化ホウ素として一般的に市販されているものを使用してもよい。
 窒化ホウ素の粒子形状は、特に制限はされず、鱗片状、平板上、球形状、立方体状、不定形状のいずれであってもよく、またこれらの形状の粒子(一次粒子)が凝集して形成された二次粒子であってもよく、その二次粒子の形状は特に制限されない。さらに窒化ホウ素は、一次粒子と二次粒子の混合物であってもよい。
 窒化ホウ素の一次粒子または二次粒子の大きさ(メジアン径、D50)は、特に限定されないが、樹脂組成物の加工性の観点から好ましくは0.05~500μm、より好ましくは0.1~300μm、さらに好ましくは0.1~100μmである。
 窒化ホウ素の大きさは、レーザー回折/散乱式の粒度分布測定装置で測定して求めることが出来る。
 (共役ジエン化合物)
 共役ジエンとは、1つの単結合によって二重結合が隔てられた共役したジエンであり、共役ジエン化合物とは、この共役ジエン骨格を少なくとも1つ含む化合物である。共役ジエン化合物としては、シクロペンタジエン、1,3-シクロヘキサジエン、2,4-ヘキサジエン、イソインデン、ソルビン酸、ソルビン酸エチル、α-テルピネン、2,4-ヘキサジエナール、1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン、イソプレン、ミルセン、ダニシェフスキージエン(1-メトキシ-3-(トリメチルシリルオキシ)-1,3-ブタジエン)、β-カロテン、ビタミンA等がある。
 (加熱により共役ジエンを生じる化合物)
 また、加熱により共役ジエンを生成しうる化合物としては、ジシクロペンタジエン、インデン、3-イソクロマノン、ベンゾシクロブテン等がある。
 (表面処理された)
 「表面処理された」とは、窒化ホウ素の表面の少なくとも一部に、共役ジエンに由来する有機物が結合している状態を意味する。結合は、共有結合、配位結合、イオン結合、水素結合、ファンデルワールス結合など、いずれの結合であってもよいが、共有結合であることが好ましい。表面処理は、窒化ホウ素表面と、共役ジエンの重合体が結合している状態でもよい。また、表面処理は、窒化ホウ素表面へ物理・化学吸着した有機物が分子間相互作用によって自発的に集合して薄膜層を形成するようになされてもよい。なお、表面処理は、窒化ホウ素表面の一部のみであっても、全体であってもよい。
 (窒化ホウ素の表面処理の難しさ)
 窒化ホウ素には、常圧安定相である六方晶窒化ホウ素と、高圧安定相である立方晶窒化ホウ素があり、h-BN、c-BNと呼び分けられる。h-BNは,BとNが交互に結合した平面六員環の黒鉛型構造で,平面は層状に重なっている。
 h-BNの平面部分には、BとNで構成されたπ共役平面が広がっているため、官能基がない。端面には、平面構造の終点となるので、-OH基、-NH基、-NH-基がある。表面の大部分は平面部分であるため、h-BNには-OH基、-NH基、-NH-基が少なく、一般的な表面処理剤で処理するのは難しかった。
 上記したように、窒化ホウ素をフィラーとして使用する場合、その表面を処理して樹脂との親和性を向上させることが求められている。本発明者らは、窒化ホウ素の樹脂への親和性を向上させるべく鋭意検討し、窒化ホウ素の平面部分に対して表面処理ができれば、窒化ホウ素の表面積の大部分を表面処理でき、これにより、樹脂への親和性を大きく向上できるのではないかと考え、さらに鋭意検討を続け、本発明を完成させた。
 本発明者らの検討によると、詳細な原理は解明できていないが、窒化ホウ素表面にあるN原子とB原子が共役ジエン部位に共役付加し、結合が生じる(ヘテロ―ディールズアルダー型)ことで、共役ジエンと窒化ホウ素の平面部分との結合が生じていると推察される(図1に、h―BNの平面部分と、共役ジエンとが共役付加して結合する様子を示す。)。
 これにより、表面処理されたフィラー界面と樹脂との親和性が向上し、樹脂組成物の粘度が未処理のものと比べ低下する。従来法は、-NH-、-NH、―OH基等の反応基と反応し結合を形成するが、本方法は、表面処理剤は必ずしもそれら反応基は必要とせず、窒化ホウ素の平面部分とも結合しうるものである。
 (表面処理窒化ホウ素の用途)
 本発明の表面処理窒化ホウ素は、上記したようにその平面部分が表面処理されているので、樹脂との親和性が向上している。よって、樹脂の充填剤(フィラー)として好適に用いることができる。
 <表面処理窒化ホウ素の製造方法>
 表面処理窒化ホウ素の製造方法は、窒化ホウ素と共役ジエン化合物または加熱により共役ジエンを生じる化合物とを加熱下で反応させる工程を備える。
 上記工程は、窒化ホウ素と共役ジエン化合物(または加熱により共役ジエンを生じる化合物)とからなるスラリー状の混合物を撹拌して実施されるが、共役ジエン化合物(または加熱により共役ジエンを生じる化合物)が固体である場合等、混合物の流動性が無いため撹拌の操作性が悪くなり、さらに、共役ジエン化合物(または加熱により共役ジエンを生じる化合物)と窒化ホウ素とが均一に分散されず、反応効率が低下する。上記の操作性、反応効率の観点から、有機溶媒(例えば、トルエン、キシレン、デカン等)を加えても良い。また、高価な共役ジエン化合物(または加熱により共役ジエンを生じる化合物)を使用する場合、経済性の観点から上記有機溶媒を加えてもよい。
 加熱温度は、好ましくは80℃~250℃であり、より好ましくは90℃~200℃である。80℃以上とすることで、反応を効率的に進めることができ、250℃以下とすることで、各成分の分解を防ぎ、エネルギー効率を向上できる。なお、加熱により共役ジエンを生じる化合物を使用する場合は、加熱温度の下限を120℃以上とすることが好ましく、140℃以上とすることがより好ましい。
 加熱下での反応時間は、特に限定されないが、30分~10時間とすることが好ましく、1時間~7時間がより好ましく、2時間~5時間がさらに好ましい。反応は、攪拌下で行うことが好ましい。
 反応後、放冷した後、ろ過(例えば、ブフナー)により単離し、有機溶媒(例えば、へプタン、エタノール等)により、表面処理窒化ホウ素を洗浄することが好ましい。また、80℃~120℃、0.5~3時間にて、減圧乾燥を行うことが好ましい。
 <樹脂組成物>
 本発明の樹脂組成物は、上記した本発明の表面処理窒化ホウ素と、樹脂とを含む。窒化ホウ素の平面部分が表面処理されることで、樹脂との親和性が向上されているので、樹脂の充填剤として使用すべく、樹脂と本発明の表面処理窒化ホウ素とを含む樹脂組成物とした場合に、該樹脂組成物の粘度の増加を抑制ことができる。これにより、樹脂組成物が窒化ホウ素を高含有した場合であっても、樹脂組成物の成形性を維持することが可能となる。
 (樹脂)
 本発明の表面処理窒化ホウ素を添加する対象である樹脂としては、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、アクリル樹脂(メタクリル樹脂)、フェノール樹脂、フッ素樹脂、液晶ポリマー(LCP)が挙げられる。中でも、エポキシ樹脂を用いることが好ましい。エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられる。これらのうち一つを単独で、あるいは複数を混合して用いればよい。硬化剤はアミン化合物、酸無水物、イミダゾールもしくはその誘導体、フェノール類などを用いることができる。
 (フィラーの含有量)
 樹脂組成物中のフィラーの含有量としては、フィラーの効果である放熱性を効果的に付与するべく、5Vol%以上が好ましく、10Vol%以上がより好ましく、15Vol%以上がさらに好ましい。また、上限は、樹脂組成物の成形性が過度に損なわれることを防ぐべく、90Vol%以下が好ましく、80Vol%以下がより好ましく、70Vol%以下がさらに好ましい。
 <放熱基板>
 本発明の放熱基板は、上記樹脂組成物からなる。上記したように、本発明の表面処理窒化ホウ素をフィラーとして高含有率で含んでいたとしても、樹脂組成物の成形性を確保することができるので、放熱基板の製造工程において、成形不良が生じるのを防止できる。また、従来の放熱基板よりも、フィラーの含有量を多くすることができるので、従来よりも放熱性能の高い放熱基板とすることができる。
 以下、実施例により本発明を詳しく説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
 <表面処理過程>
 (実施例1)
 ジムロートを備え付けた反応容器(300mL)に、窒化ホウ素(トクヤマ社製六方晶窒化ホウ素S03、メジアン径(D50):7μm)を30g、ジシクロペンタジエン(70g)入れ、オイルバス温度150℃で3時間加熱撹拌した。反応後のスラリーをろ過し、ヘプタンで洗浄(100mL×3回)し、得られたケーキを100℃で1時間減圧乾燥して、表面処理窒化ホウ素粒子Aを得た。
 なお、実施例1で使用したジシクロペンタジエンは、以下のように、加熱によりシクロペンタジエンを生じる。
Figure JPOXMLDOC01-appb-C000001
 (実施例2、3)
 表1に示した仕込み量および反応温度とした以外は、実施例1で記載した方法と同様にして、表面処理窒化ホウ素粒子B(実施例2)、および、表面処理窒化ホウ素粒子C(実施例3)を得た。
 なお、実施例2の処理剤としては、インデンを使用した。インデンは以下のように、加熱によりイソインデンを生じる。
Figure JPOXMLDOC01-appb-C000002
 また、実施例3の処理剤としては、下記のソルビン酸エチルを用いた。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-T000004
 (比較例2)
 密閉容器に窒化ホウ素を80g、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-403)を0.19g入れ密閉した。密閉容器を室温でよく振り、内容物を混合した。14日間室温で静置した後、50℃で12時間減圧乾燥し、表面処理窒化ホウ素粒子Dを得た。
 処理剤である、3-グリシドキシプロピルトリメトキシシランの構造を下記に示す。3-グリシドキシプロピルトリメトキシシランは、無機粉体を樹脂に混合する際、表面処理剤として一般的によく用いられている(非特許文献1参照)。
Figure JPOXMLDOC01-appb-C000005
 (比較例3)
 ナス型フラスコ(100mL)に窒化ホウ素を80g、イソプロピルアルコールを100g、1-ピレンカルボキシアルデヒド(富士フィルム和光純薬株式会社製)を0.06g入れ、5分間撹拌した。得られたスラリー溶液をろ過した後、イソプロピルアルコールで洗浄し、100℃で12時間減圧乾燥し、表面処理窒化ホウ素Eを得た。
 <樹脂粘度測定>
 乳鉢に上記で得られた表面処理窒化ホウ素A~Eをそれぞれ1g、エポキシ樹脂(YDF8170D、1.45g)、および、アミン硬化剤(KAYAHARD A-A、0.58g)を入れ、乳棒で混錬した。得られた組成物について粘度測定した。
 比較例1として、表面処理された窒化ホウ素の代わりに、表面処理を施していない窒化ホウ素を用いて、同様に樹脂組成物を調製し粘度測定した。
 樹脂組成物の粘度測定は、せん断速度0.2s-1で行った。
 測定条件は、以下の通りである。
・使用機器:レオメータ(Thermo Fisher Scientific社製、HAAKE MARS40)
・測定温度:25℃、
・使用センサー:C35/1(コーンプレート型 直径35mm、角度1°、材質チタン)
Figure JPOXMLDOC01-appb-T000006
 表2より、共役ジエンまたは加熱により共役ジエンを生じる化合物により表面処理された本発明の表面処理窒化ホウ素を用いた場合、得られる樹脂組成物の粘度が、表面未処理の窒化ホウ素(比較例1)や、従来の処理剤を使用した場合(比較例2,3)に比べて、低くなっていることが分かる。
 なお、比較例3の1-ピレンカルボキシアルデヒドは、特許文献4の表1に記載され、実施例44で使用されている表面修飾剤(C-36)である。また、段落[0015]には表面処理剤の推定の作用が記載されており、端面の官能基との相互作用がなくとも表面処理剤が無機窒化物に吸着できるとされているが、上記のように効果は低かった。それに対し、本発明の表面処理窒化ホウ素では、表面処理剤と窒化ホウ素表面とが強い共有結合で結合していると考えられ、これにより樹脂組成物の粘度低下の効果が高くなったと思われる。

Claims (5)

  1.  共役ジエン化合物または加熱により共役ジエンを生じる化合物により表面処理された、表面処理窒化ホウ素。
  2.  充填剤として使用される、請求項1に記載の表面処理窒化ホウ素。
  3.  窒化ホウ素と共役ジエン化合物または加熱により共役ジエンを生じる化合物とを加熱下で反応させる工程を備える、表面処理窒化ホウ素の製造方法。
  4.  請求項1または2に記載の表面処理窒化ホウ素と、樹脂とを含む、樹脂組成物。
  5.  請求項4の樹脂組成物からなる、放熱基板。
PCT/JP2023/008339 2022-03-31 2023-03-06 表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板 WO2023189240A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-059675 2022-03-31
JP2022059675A JP2023150526A (ja) 2022-03-31 2022-03-31 表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板

Publications (1)

Publication Number Publication Date
WO2023189240A1 true WO2023189240A1 (ja) 2023-10-05

Family

ID=88201279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008339 WO2023189240A1 (ja) 2022-03-31 2023-03-06 表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板

Country Status (3)

Country Link
JP (1) JP2023150526A (ja)
TW (1) TW202402663A (ja)
WO (1) WO2023189240A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095555A (ja) * 2015-11-19 2017-06-01 積水化学工業株式会社 フィラー複合体及び熱硬化性材料
WO2019013323A1 (ja) * 2017-07-14 2019-01-17 富士フイルム株式会社 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
JP2020075845A (ja) * 2018-11-09 2020-05-21 株式会社トクヤマ 六方晶窒化ホウ素粉末
JP2021084814A (ja) * 2019-11-25 2021-06-03 株式会社Adeka 表面処理窒化ホウ素の製造方法、表面処理窒化ホウ素、樹脂組成物、及び硬化物
JP2021155279A (ja) * 2020-03-27 2021-10-07 株式会社トクヤマ 六方晶窒化ホウ素粉末の製造方法
JP2023049689A (ja) * 2021-09-29 2023-04-10 株式会社トクヤマ 改質六方晶窒化ホウ素粉末の製造方法および改質六方晶窒化ホウ素粉末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095555A (ja) * 2015-11-19 2017-06-01 積水化学工業株式会社 フィラー複合体及び熱硬化性材料
WO2019013323A1 (ja) * 2017-07-14 2019-01-17 富士フイルム株式会社 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
JP2020075845A (ja) * 2018-11-09 2020-05-21 株式会社トクヤマ 六方晶窒化ホウ素粉末
JP2021084814A (ja) * 2019-11-25 2021-06-03 株式会社Adeka 表面処理窒化ホウ素の製造方法、表面処理窒化ホウ素、樹脂組成物、及び硬化物
JP2021155279A (ja) * 2020-03-27 2021-10-07 株式会社トクヤマ 六方晶窒化ホウ素粉末の製造方法
JP2023049689A (ja) * 2021-09-29 2023-04-10 株式会社トクヤマ 改質六方晶窒化ホウ素粉末の製造方法および改質六方晶窒化ホウ素粉末

Also Published As

Publication number Publication date
JP2023150526A (ja) 2023-10-16
TW202402663A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
TWI700243B (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
CN103497739B (zh) 导热膏及其制备方法
JP3836649B2 (ja) 半導体封止用樹脂組成物およびその成型品
KR102442253B1 (ko) 표면 처리 실리카 필러 및 표면 처리 실리카 필러를 함유하는 수지 조성물
KR101243944B1 (ko) 분산성이 개선된 방열 코팅용 습식복합소재 및 이를 이용한 방열 코팅용 습식복합코팅막
CN109206853B (zh) 一种高导热环氧树脂基复合材料、及其制备方法和应用
WO2022131199A1 (ja) 疎水性窒化アルミニウム粉末及びその製造方法
JP5911807B2 (ja) low−k誘電体含有半導体デバイスのためのアンダーフィルシーラントとして有用な硬化性樹脂組成物
US11518867B2 (en) Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
TW202115170A (zh) 無機粒子分散樹脂組成物及無機粒子分散樹脂組成物的製造方法
CN110079050A (zh) 一种导热阻燃环氧树脂复合材料及其制备方法
JP2018030752A (ja) 窒化ホウ素粒子凝集体、その製造方法、組成物及び樹脂シート
CN115058229A (zh) 动力电池灌封胶及其制备方法
WO2023189240A1 (ja) 表面処理窒化ホウ素、表面処理窒化ホウ素の製造方法、樹脂組成物、放熱基板
JP2004161900A (ja) 塩基性シリカ粉体、その製造方法及び樹脂組成物
JP6950299B2 (ja) 封止材用樹脂組成物及びこれを用いた電子装置
JP2018030942A (ja) 熱伝導シートの製造方法
JP2005171206A (ja) 樹脂配合用粉体混合物及び樹脂組成物
JP2022142190A (ja) 表面処理窒化アルミニウム粉末
JP7336146B2 (ja) 表面処理シリカフィラーおよびその製造方法、ならびに表面処理シリカフィラーを含有する樹脂組成物
JP7257384B2 (ja) 有機無機複合粒子からなる粉末
Akhtar et al. Influence of morphology and surface modification of MgO on thermal characteristics of epoxy composite
JP2021113270A (ja) 樹脂組成物、樹脂組成物の製造方法、及び、これらに用いる無機粒子
JP2020073625A (ja) シリカ被覆窒化アルミニウム粒子分散樹脂組成物の製造方法、その硬化物からなるシートの製造方法、およびシートを備えるパワーデバイスの製造方法
JP2014127520A (ja) 半導体装置実装用ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779269

Country of ref document: EP

Kind code of ref document: A1