WO2023188744A1 - モータ出力制御方法 - Google Patents

モータ出力制御方法 Download PDF

Info

Publication number
WO2023188744A1
WO2023188744A1 PCT/JP2023/002114 JP2023002114W WO2023188744A1 WO 2023188744 A1 WO2023188744 A1 WO 2023188744A1 JP 2023002114 W JP2023002114 W JP 2023002114W WO 2023188744 A1 WO2023188744 A1 WO 2023188744A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
motor
shift
motor output
requested
Prior art date
Application number
PCT/JP2023/002114
Other languages
English (en)
French (fr)
Inventor
栄治 橘高
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2023188744A1 publication Critical patent/WO2023188744A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed

Definitions

  • the present invention relates to a motor output control method.
  • a great appeal of saddle-riding vehicles such as motorcycles is that the rider can directly convey his or her intentions to the vehicle, and the vehicle can be manipulated as if it were part of the body.
  • Conventional straddle-type vehicles driven by internal combustion engines have been operated by the occupants, including adjusting the opening and closing of the throttle using the accelerator grip, braking, and variable speeds using the clutch. has made it possible.
  • BACKGROUND OF THE INVENTION Due to increased interest in environmental issues in recent years, electric two-wheeled vehicles driven by electric motors have been developed as saddle-ride vehicles. Among them, an electric two-wheeled vehicle is also disclosed that is provided with a clutch mechanism that disconnects between a motor and a gear train (for example, see International Publication No. 2014-102869).
  • the present invention provides a motor output control method for an electric two-wheeled vehicle equipped with a stepped transmission that can be manually operated by a rider, by changing the output when the motor deviates from a range of good efficiency, and prompting the rider to perform a shift operation.
  • One aspect of the present invention is a motor output control method for an electric two-wheeled vehicle equipped with a stepped transmission, including a required output calculation step of calculating a required output, and whether the required output is included in a specified region with good motor efficiency. and an output control step of controlling the motor to output a motor output changed from the requested output if the requested output is not included in the designated area.
  • This is a motor output control method. Note that this specification includes all the contents of Japanese patent application/Japanese Patent Application No. 2022-054588 filed on March 29, 2022.
  • FIG. 1 is a diagram showing the configuration of an electric two-wheeled vehicle.
  • FIG. 2 is a diagram showing a configuration for realizing the motor output control method according to the present embodiment.
  • FIG. 3 is a flowchart of output control in the electric two-wheeled vehicle.
  • FIG. 4 is a schematic diagram of motor output characteristics showing designated areas with high motor efficiency.
  • FIG. 5 is a flowchart of the motor output control method.
  • FIG. 6 is a flowchart regarding motor output change processing.
  • FIG. 7 is an explanatory diagram showing the relationship between changes in output characteristics due to shift changes and designated regions with high motor efficiency.
  • FIG. 1 is a diagram showing the left side of a saddle-ride type vehicle (electric two-wheeled vehicle) 1.
  • the electric two-wheeled vehicle 1 of this embodiment is an electric two-wheeled vehicle that includes a motor as a power unit instead of an internal combustion engine such as a gasoline engine.
  • the electric two-wheeled vehicle 1 includes an accelerator grip, a clutch lever, a speed change pedal, etc. as an operating system 2 for a rider to control the electric two-wheeled vehicle 1.
  • the electric two-wheeled vehicle 1 includes a front wheel 3 that is a steering wheel and a rear wheel 4 that is a driving wheel.
  • the rear wheel 4 is supported at the rear of a swing arm (not shown) that is swingably supported by a vehicle body frame (not shown).
  • the electric two-wheeled vehicle 1 includes an ECU (Electronic Control Unit) 5 that is a control device for performing various controls, a motor 10 that generates driving force, and a battery 15 that stores electric power.
  • the electric two-wheeled vehicle 1 includes a clutch 25 and a stepped transmission 20 in order to transmit the driving force P of the motor 10 to the rear wheel 4.
  • the motor 10 and the stepped transmission 20 are controlled by an ECU 5 that performs control according to instructions given to the operating system 2 by a passenger.
  • the ECU5 has a processor such as CPU (Central Processi Nit), ROM (READ ONLY MEMORY), RAM (RANDOM ACCESS Memory), etc. (RANDOM ACCESS Memory), etc. It is a computer to do.
  • Various control means are executed by the ECU 5, which is a computer, executing the program.
  • all or part of the ECU 5 may be configured by hardware each including one or more electronic circuit components.
  • the motor 10 is a three-phase electric motor or the like.
  • the battery 15 may be a lithium ion battery or the like.
  • the motor 10 and battery 15 are fixed to the vehicle body frame.
  • the stepped transmission 20 is a power transmission mechanism that combines a plurality of gears to change the rotational speed.
  • the clutch 25 is a device that is attached between the motor 10 and the stepped transmission 20 and transmits or cuts off the driving force P to the stepped transmission 20.
  • the clutch 25 is operated by an occupant operating a clutch lever (not shown).
  • FIG. 2 is a block diagram showing the configuration of the ECU 5 that implements the motor output control method according to the present embodiment.
  • the ECU 5 is connected to an accelerator operation amount detection means 50 that detects an accelerator operation amount.
  • the ECU 5 is connected to a motor rotation speed detection means 60 that detects the motor rotation speed of the motor 10 and a shift position detection means 60 that detects the shift position of the stepped transmission 20.
  • the ECU 5 includes a detection information acquisition unit 23 that acquires information detected by various detection units.
  • the ECU 5 also includes a calculation means 26 that performs calculations for output control based on the acquired information.
  • the ECU 5 includes a determining means 27 that determines whether or not the output is in a designated region that is an output region with good motor efficiency, as will be described later. The operation of the determining means 27 will be described later.
  • the ECU 5 includes an output control means 33 that performs output control. Each operation will be described later.
  • the ECU 5 also includes a storage means 31 that stores programs and data for implementing various means, as well as a designated area, a shift-up threshold value, and a shift-down threshold value, which will be described later.
  • the storage means 31 is realized by a storage device such as an SSD (Solid State Drive). Further, the detection information acquisition means 23 is realized by an interface circuit or the like. The calculation means 26, the determination means 27, and the output control means 33 are realized by the ECU 5 executing a program stored in the storage means 35.
  • SSD Solid State Drive
  • FIG. 3 is a flowchart of general output control in the electric two-wheeled vehicle 1.
  • the accelerator operation amount detection means 50 detects the accelerator operation amount by the occupant (step TA1). Specifically, the throttle opening in an internal combustion engine is detected from the rotation angle of the accelerator grip.
  • the detection information acquisition means 23 acquires the accelerator operation amount from the accelerator operation amount detection means 50.
  • the calculation means 26 converts the accelerator operation amount into a required output (step TA2).
  • the calculating means calculates the actual motor output from the requested output (step TA3).
  • the motor is driven with a current value corresponding to the motor output (step TA4). As a result, the motor 10 outputs an output based on the requested output (step TA5).
  • FIG. 4 is a schematic diagram of motor output characteristics showing a designated region 82 with high motor efficiency.
  • the horizontal axis is the motor rotation speed, and the vertical axis is the motor output.
  • As the motor output characteristic 85 at no-load an example is given in which the amount of torque is constant regardless of the motor rotation speed from 0 rpm to about 6500 rpm.
  • a designated area 82 which is an area in which the motor operates with high efficiency, is indicated by diagonal lines. If the output of the electric two-wheeled vehicle 1 is within this specified range 82, the electric two-wheeled vehicle 1 can run with high efficiency, that is, with good "fuel efficiency.”
  • FIG. 4 also shows a downshift threshold 90 and an upshift threshold 100. A description of the downshift threshold 90 and the upshift threshold 100 will be given later.
  • FIG. 5 is a flowchart of the motor output control method according to the present embodiment.
  • the calculation means 26 of the ECU 5 estimates the motor rotation speed and torque from the accelerator operation amount acquired from the accelerator operation amount detection means 50 and the shift of the stepped transmission 20 detected by the shift position detection means 60, and estimates the motor rotation speed and torque, and estimates the motor rotation speed and torque based on the accelerator operation amount obtained from the accelerator operation amount detection means 50 and the shift of the stepped transmission 20 detected by the shift position detection means 60.
  • the required output is calculated (step SA1: required output calculation step).
  • the determining means 27 of the ECU 5 determines whether the requested output is included in the designated region 82 with good motor efficiency (step SA2: determining step).
  • step SA2 If the requested output is not included in the designated area 82 (step SA2: NO), the ECU 5 does not cause the motor 10 to output the same value as the requested output as the motor output, but changes the motor output for change control. A process of changing the requested output is performed (step SA3: output control step). According to the changed motor output, the ECU 5 controls the motor 10 to output the motor (step SA4). If the determining means 27 determines that the requested output is included in the designated region 82 with good motor efficiency, the ECU 5 controls the motor 10 to output the same value as the requested output as the motor output, and performs motor output ( Step SA2: YES).
  • the motor output control method includes a required output calculation step (SA1) for calculating a required output, and a determination for determining whether or not the required output is included in the designated region 82 with good motor efficiency. step (SA2), and an output control step (SA3) of controlling the motor 10 to output a motor output changed from the requested output when the requested output is not included in the designated area 82. do.
  • FIG. 6 is a flowchart regarding motor output change processing.
  • the determining means 27 determines whether the requested output is included in the shift-up recommended region (step SB1).
  • the shift-up recommended region is an output region in which it is appropriate to shift up in the stepped transmission 20 for efficient operation, and in FIG. , and is an area that is not included in the designated area 82. If the requested output is included in the shift-up recommended region (step SB1: YES), the output control means 29 performs control to reduce the motor output every time a predetermined time elapses (step SB2). By performing such control, the occupant can recognize the timing of upshifting.
  • the determining means 27 determines whether the requested output is included in the downshift recommended region (step SB3).
  • the recommended downshift range is an output range in which it is appropriate to downshift in the stepped transmission 20 for efficient operation, and in FIG. , and is an area that is not included in the designated area 82.
  • the output control means 29 performs control to increase the motor output within a predetermined range (step SB4). By performing such control, the occupant can recognize the timing of downshifting. If the requested output is not included in the shift-up recommended area (step SB1: NO), the process moves to step SB3, and if the requested output is not included in the shift-down recommended area (step SB3: NO), motor output change processing is performed. Get out of.
  • FIG. 7 is an explanatory diagram showing the relationship between changes in output characteristics due to shift changes and designated regions with high motor efficiency.
  • the required output is in state A of shift position 2
  • the motor is outside the specified range 82 with good motor efficiency, and it is desirable to shift up.
  • the state A is included in a region where the motor rotation speed is higher than the line of the shift-up threshold value 100 and which is not included in the designated region 82.
  • the output control means 29 will control the motor output to reduce the motor output, thereby making it possible for the occupant to realize that the vehicle is being operated inefficiently, thereby causing the driver to shift up. can be encouraged.
  • state B is included in a region that is on the motor rotation speed side lower than the line of the downshift threshold 90 and is not included in the designated region 82.
  • the output control means 29 controls to increase the motor output, thereby making the occupant aware of inefficient driving, and downshifting. can be encouraged.
  • a motor output control method for an electric two-wheeled vehicle equipped with a stepped variable transmission including a required output calculation step of calculating a required output, and determining whether the required output is included in a specified region with good motor efficiency. and an output control step of controlling the motor to output a motor output changed from the requested output if the requested output is not included in the designated area.
  • Output control method when the required output is outside the range of good motor efficiency, the occupant can be made aware that the output is not appropriate, and the occupant can be prompted to perform a shift operation. Therefore, an excellent effect is achieved in that the motor can be operated within a region with high motor efficiency.
  • (Configuration 2) A shift-up determination step for determining whether or not the requested output is included in a shift-up recommended region in which an up-shift is to be encouraged; If it is determined that the motor output is within the recommended range, the output control step includes an output reduction step of reducing the motor output every time a predetermined time elapses. Control method. According to this configuration, when it is determined that a shift up is required for high motor efficiency, the motor output is gradually suppressed, so that the occupant does not feel excessively uncomfortable. This has the excellent effect of promoting upshifts without having to memorize them, and allowing the occupants to drive in an efficient range.
  • the motor output includes a downshift determination step of determining whether or not the motor output is included in a downshift recommended region in which downshifting should be encouraged, and in the downshift determination step, the requested output is
  • the motor output control according to configuration 1 or configuration 2, wherein when it is determined that the motor output is included in the recommended region, the output control step includes a motor output increasing step of increasing the motor output within a predetermined range.
  • the step units of the operations shown in Figures 3, 5, and 6 are divided according to the main processing contents in order to facilitate understanding of the control method of the electric two-wheeled vehicle.
  • the present invention is not limited by the method or name.
  • the process may be divided into more steps.
  • the process may be divided so that one step unit includes more processes.
  • the order of the steps may be changed as appropriate within a range that does not interfere with the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明は、乗員によるマニュアル操作が可能な有段変速機を備える電動二輪車において、モータ効率の良い領域を逸脱した場合に出力を変化させ、乗員にシフト操作を促すモータ出力制御方法を提供する。 本開示におけるモータ出力制御方法は、有段変速機(20)を備える電動二輪車(1)のモータ出力制御方法であって、要求出力を算出する要求出力算出ステップ(SA1)と、前記要求出力が、モータ効率の良い指定領域(82)に含まれるか否かを判定する判定ステップ(SA2)と、前記要求出力が前記指定領域(82)に含まれない場合、前記要求出力から変更したモータ出力を出力するようにモータ(10)を制御する出力制御ステップ(SA3)と、を有することを特徴とする。

Description

モータ出力制御方法
 本発明は、モータ出力制御方法に関する。
 自動二輪車等の鞍乗り型車両では、乗員が自分の意思をダイレクトに車両に伝えることが可能であり、まるで身体の一部であるかのように操って走行できる点に大きな魅力がある。内燃機関により駆動されるこれまでの鞍乗り型車両について、その操作対象としては、アクセルグリップによるスロットル開閉調節や、ブレーキング、そしてクラッチ操作を伴う有段変速等が挙げられ、乗員による自在な走行を可能にしてきた。
 近年の環境問題への関心の高まりにより、鞍乗り型車両についても電動モータで駆動される電動二輪車が開発されてきている。その中で、モータとギア列との間を遮断するクラッチ機構が設けられている電動二輪車も開示されている(例えば、国際公開2014-102869号公報参照)。
国際公開2014-102869号公報
 モータは高効率で運転できる回転速度とトルクの領域が限られている。しかし、モータを駆動源とする電動二輪車の場合、モータは一定の出力を出すことが可能であるため、乗員が加速したり減速したりする際に、効率の高い運転をするための変速タイミングを認識することが困難である。
 本発明は、乗員によるマニュアル操作が可能な有段変速機を備える電動二輪車において、モータ効率の良い領域を逸脱した場合に出力を変化させ、乗員にシフト操作を促すモータ出力制御方法を提供する。
 本発明の一態様は、有段変速機を備える電動二輪車のモータ出力制御方法であって、要求出力を算出する要求出力算出ステップと、前記要求出力が、モータ効率の良い指定領域に含まれるか否かを判定する判定ステップと、前記要求出力が前記指定領域に含まれない場合、前記要求出力から変更したモータ出力を出力するようにモータを制御する出力制御ステップとを有することを特徴とするモータ出力制御方法である。
 なお、この明細書には、2022年3月29日に出願された日本国特許出願・特願2022-054588号の全ての内容が含まれるものとする。
 本発明の一態様によれば、モータ効率の高い運転をするための変速タイミングを乗員が認識し易いモータ出力制御方法を提供できる。
図1は、電動二輪車の構成を示す図である。 図2は、本実施形態に係るモータ出力制御方法を実現する構成を示す図である。 図3は、電動二輪車における出力制御のフローチャートである。 図4は、モータ効率の高い指定領域を示すモータ出力特性の模式図である。 図5は、モータ出力制御方法のフローチャートである。 図6は、モータ出力変更処理についてのフローチャートである。 図7は、シフトチェンジによる出力特性の変化とモータ効率の高い指定領域の関係を示す説明図である。
 [実施の形態]
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また、以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両上方を示す矢印UPが示されている。なお本明細書では、電動モータのことをモータと呼ぶ。
 図1は、鞍乗り型車両(電動二輪車)1の左側面を示す図である。本実施形態の電動二輪車1は、パワーユニットとしてガソリンエンジン等の内燃機関の代わりに、モータを備える電動二輪車である。電動二輪車1は、内燃機関で駆動される自動二輪車と同様に、乗員が電動二輪車1の制御をおこなうための操作系2として、アクセルグリップ、クラッチレバー、変速ペダル等を備える。電動二輪車1は、操向輪である前輪3と、駆動輪である後輪4と、を備えている。後輪4は、車体フレーム(不図示)に揺動可能に支持されたスイングアーム(不図示)の後部に支持されている。
 電動二輪車1は、各種制御を行うための制御装置であるECU(Electronic Control Unit:電子制御装置)5と、駆動力を生み出すモータ10と、電力を蓄電するバッテリ15とを備える。電動二輪車1は、モータ10の駆動力Pを後輪4に伝達するために、クラッチ25と、有段変速機20を備える。モータ10と、有段変速機20は、乗員による操作系2への指示に従った制御をおこなうECU5によって制御される。
 ECU5は、具体的にはCPU(Central ProcessingU nit)等のプロセッサ、プログラムが書き込まれたROM(Read Only Memory)、データの一時記憶のためのRAM(Random Access Memory)等を有するコンピュータである。プログラムをコンピュータであるECU5が実行することで各種制御手段が実行される。上記ECU5に代えて又はこれに加えて、上記ECU5の全部又は一部を、それぞれ一つ以上の電子回路部品を含むハードウェアにより構成することもできる。
 モータ10は、三相電動モータ等である。バッテリ15はリチウムイオン電池等であってよい。モータ10と、バッテリ15は車体フレームに固定される。有段変速機20は、複数のギアを組み合わせて回転速度を変化させる動力伝達機構である。クラッチ25は、モータ10と有段変速機20の間に取り付けられて、駆動力Pを有段変速機20に伝達、又は遮断する装置である。クラッチ25は、乗員がクラッチレバー(不図示)を操作することで動作する。
 図2は、本実施形態に係るモータ出力制御方法を実現するECU5の構成を示すブロック図である。ECU5は、アクセル操作量を検知するアクセル操作量検知手段50に接続される。ECU5は、モータ10のモータ回転数を検知するモータ回転数検知手段60と、有段変速機20のシフト位置を検知するシフト位置検知手段60に接続される。
 ECU5は、各種検知手段が検知した情報を取得する検知情報取得手段23を備える。またECU5は、取得された情報に基づいて出力制御をするための演算をおこなう演算手段26を備える。ECU5は、後述するようにモータ効率のよい出力領域である指定領域に出力が入っているかどうかの判定をする判定手段27を備える。判定手段27の動作については後述する。ECU5は、出力制御をおこなう出力制御手段33を備える。それぞれの動作は後述する。またECU5は、各種手段を実現するためのプログラムやデータ、また後述する指定領域やシフトアップ閾値、シフトダウン閾値を記憶する記憶手段31を備える。記憶手段31は、SSD(Solid State Drive)等のストレージ装置で実現される。また上記検知情報取得手段23は、インターフェース回路等によって実現される。演算手段26と、判定手段27と、出力制御手段33は、記憶手段35で記憶されたプログラムをECU5が実行することで実現される。
 図3は、電動二輪車1における一般的な出力制御のフローチャートである。まずアクセル操作量検知手段50は、乗員によるアクセル操作量を検知する(ステップTA1)。具体的にはアクセルグリップの回転角度等から、内燃機関でいうスロットル開度を検知する。次にECU5は、検知情報取得手段23がアクセル操作量検知手段50からアクセル操作量を取得する。演算手段26がアクセル操作量を要求出力に変換する(ステップTA2)。次に演算手段が要求出力から実際に出力するモータ出力を算出する(ステップTA3)。モータ出力を対応する電流値でモータが駆動される(ステップTA4)。結果として、モータ10から要求出力に基づいた出力がなされる(ステップTA5)。
 図4は、モータ効率の高い指定領域82を示すモータ出力特性の模式図である。横軸がモータ回転数であり、縦軸がモータ出力である。無負荷時のモータ出力特性85として、回転数が0rpmから6500rpm程度まで、モータ回転数によらずトルク量が一定の例を挙げた。モータが高効率に動作する領域である指定領域82を斜線で示す。電動二輪車1の出力がこの指定領域82以内であれば、高効率、すなわち「燃費」の良い走行ができる。図4にはシフトダウン閾値90と、シフトアップ閾値100も示す。シフトダウン閾値90とシフトアップ閾値100についての説明は後述する。
 図5は、本実施形態に係るモータ出力制御方法のフローチャートである。まずECU5の演算手段26は、アクセル操作量検知手段50から取得したアクセル操作量やシフト位置検知手段60で検知した有段変速機20のシフト等から、モータ回転数やトルクを見積、乗員が要求する要求出力を演算する(ステップSA1:要求出力算出ステップ)。次にECU5の判定手段27は、要求出力がモータ効率の良い指定領域82に含まれるか否かを判定する(ステップSA2:判定ステップ)。要求出力が指定領域82に含まれなければ(ステップSA2:NO)、ECU5はモータ10に対して要求出力そのままの値をモータ出力として出力するようにはせず、変更制御のためのモータ出力を要求出力から変更する処理をおこなう(ステップSA3:出力制御ステップ)。そして変更されたモータ出力に従って、ECU5はモータ10を制御しモータ出力をおこなう(ステップSA4)。判定手段27が、要求出力はモータ効率の良い指定領域82に含まれると判定したならば、要求出力そのままの値をモータ出力として出力するようにECU5はモータ10を制御し、モータ出力をおこなう(ステップSA2:YES)。
 言い換えれば、本実施形態に係るモータ出力制御方法は、要求出力を算出する要求出力算出ステップ(SA1)と、前記要求出力が、モータ効率の良い指定領域82に含まれるか否かを判定する判定ステップ(SA2)と、要求出力が指定領域82に含まれない場合、前記要求出力から変更したモータ出力を出力するようにモータ10を制御する出力制御ステップ(SA3)と、を有することを特徴とする。
 図6は、モータ出力変更処理についてのフローチャートである。まず判定手段27は、要求出力がシフトアップ推奨領域に含まれているか否かを判定する(ステップSB1)。ここでシフトアップ推奨領域とは、効率の良い運転のために、有段変速機20においてシフトアップすることが適当な出力領域であり、図4ではシフトアップ閾値100のラインから高いモータ回転数側で、且つ、指定領域82に含まれない領域である。要求出力がシフトアップ推奨領域に含まれている場合(ステップSB1:YES)、出力制御手段29は、所定時間経過する毎にモータ出力を低減させる制御をおこなう(ステップSB2)。このような制御をすることにより、乗員はシフトアップのタイミングを認識することができる。
 次に判定手段27は、要求出力がシフトダウン推奨領域に含まれているか否かを判定する(ステップSB3)。ここでシフトダウン推奨領域とは、効率の良い運転のために、有段変速機20においてシフトダウンすることが適当な出力領域であり、図4ではシフトダウン閾値90のラインから低いモータ回転数側で、且つ、指定領域82に含まれない領域である。要求出力がシフトダウン推奨領域に含まれている場合(ステップSB3:YES)、出力制御手段29は、モータ出力を所定の範囲内で増大させる制御をおこなう(ステップSB4)。このような制御をすることにより、乗員はシフトダウンのタイミングを認識することができる。
 要求出力がシフトアップ推奨領域に含まれていない場合(ステップSB1:NO)、ステップSB3に移行し、要求出力がシフトダウン推奨領域に含まれていない場合(ステップSB3:NO)、モータ出力変更処理から抜ける。
 図7は、シフトチェンジによる出力特性の変化とモータ効率の高い指定領域の関係を示す説明図である。例えば、要求出力がシフトポジション2速の状態Aである場合、モータ効率の良い指定領域82からは外れており、シフトアップが望ましい。言い換えると、図7ではシフトアップ閾値100のラインより高いモータ回転数側で、且つ、指定領域82に含まれない領域に状態Aは含まれる。この場合、本実施形態のモータ出力制御方法に従えば、出力制御手段29がモータ出力を落とす制御をすることで、非効率な運転をおこなっていると乗員に気がつかせることができ、シフトアップを促すことができる。
 また、要求出力がシフトポジション5速の状態Bである場合はモータ効率の良い指定領域82からは外れており、シフトダウンが望ましい。言い換えると、図7ではシフトダウン閾値90のラインより低いモータ回転数側で、且つ、指定領域82に含まれない領域に状態Bは含まれる。この場合、本実施形態のモータ出力制御方法に従えば、出力制御手段29がモータ出力を上げる制御をすることで、非効率な運転をおこなっていることを乗員に気がつかせることができ、シフトダウンを促すことができる。
 [上記実施形態によりサポートされる構成]
 上記実施形態は、以下の構成をサポートする。
 (構成1)有段変速機)を備える電動二輪車のモータ出力制御方法であって、要求出力を算出する要求出力算出ステップと、前記要求出力が、モータ効率の良い指定領域に含まれるか否かを判定する判定ステップと、前記要求出力が前記指定領域に含まれない場合、前記要求出力から変更したモータ出力を出力するようにモータを制御する出力制御ステップと、を有することを特徴とするモータ出力制御方法。
 このような構成によれば、要求出力がモータ効率の良い領域外である場合、出力が適正でないことを乗員に認識させることができ、乗員にシフト操作を促すことができる。そのためモータ効率の高い領域内での運転が可能になるという優れた効果を奏する。
 (構成2)前記要求出力が、シフトアップを促すべきシフトアップ推奨領域に含まれているか否かを判定するシフトアップ判定ステップを有し、前記シフトアップ判定ステップで、前記要求出力が、前記シフトアップ推奨領域に含まれていると判定した場合、前記出力制御ステップは、所定時間経過するごとに前記モータ出力を低減させていく出力低減ステップを有することを特徴とする構成1に記載のモータ出力制御方法。
 このような構成によれば、モータ効率の高い運転をするためにはシフトアップが必要な状態であると判定された場合には、徐々にモータ出力を抑えていくので、乗員が過度な違和感を覚えることなく、シフトアップを促進でき、乗員に効率の良い領域で運転させることが出来るという優れた効果を奏する。
 (構成3)前記モータ出力が、シフトダウンを促すべきシフトダウン推奨領域に含まれるか否かを判定するシフトダウン判定ステップを有し、前記シフトダウン判定ステップで、前記要求出力が、前記シフトダウン推奨領域に含まれていると判定した場合、前記出力制御ステップは、前記モータ出力を所定範囲内で増大させるモータ出力増大ステップを有することを特徴とする構成1又は構成2に記載のモータ出力制御方法。
 このような構成によれば、モータ効率の高い運転をするためにはシフトダウンが必要な状態であると判定された場合には、要求出力に対してモータ出力が追いついてこないことを乗員に認識させやすいため、乗員にシフトダウンを促すことができ、乗員に効率の良い領域で運転させることが出来るという優れた効果を奏する。
 なお、上記実施の形態は本発明を適用した一態様を示すものであって、本発明は上記実施の形態に限定されるものではない。
 例えば、図3、図5、及び図6に示す動作のステップ単位は、電動二輪車の制御方法の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本発明が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本発明の趣旨に支障のない範囲で適宜に入れ替えてもよい。
  1  鞍乗り型車両(電動二輪車)
 10  モータ
 20  有段変速機
 82  指定領域
 

Claims (3)

  1.  有段変速機(20)を備える電動二輪車(1)のモータ出力制御方法であって、
     要求出力を算出する要求出力算出ステップ(SA1)と、
     前記要求出力が、モータ効率の良い指定領域(82)に含まれるか否かを判定する判定ステップ(SA2)と、
     前記要求出力が前記指定領域(82)に含まれない場合、前記要求出力から変更したモータ出力を出力するようにモータ(10)を制御する出力制御ステップ(SA3)と、
     を有することを特徴とするモータ出力制御方法。
  2.  前記要求出力が、シフトアップを促すべきシフトアップ推奨領域に含まれているか否かを判定するシフトアップ判定ステップ(SB1)を有し、
     前記シフトアップ判定ステップ(SB1)で、前記要求出力が、前記シフトアップ推奨領域に含まれていると判定した場合、
     前記出力制御ステップは、所定時間経過するごとに前記モータ出力を低減させていく出力低減ステップ(SB2)を有することを特徴とする請求項1に記載のモータ出力制御方法。
  3.  前記モータ出力が、シフトダウンを促すべきシフトダウン推奨領域に含まれるか否かを判定するシフトダウン判定ステップ(SB3)を有し、
     前記シフトダウン判定ステップ(SB3)で、前記要求出力が、前記シフトダウン推奨領域に含まれていると判定した場合、
     前記出力制御ステップ(SA3)は、前記モータ出力を所定範囲内で増大させるモータ出力増大ステップ(SB4)を有することを特徴とする請求項1又は請求項2に記載のモータ出力制御方法。
     
PCT/JP2023/002114 2022-03-29 2023-01-24 モータ出力制御方法 WO2023188744A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054588 2022-03-29
JP2022054588 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023188744A1 true WO2023188744A1 (ja) 2023-10-05

Family

ID=88200736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002114 WO2023188744A1 (ja) 2022-03-29 2023-01-24 モータ出力制御方法

Country Status (1)

Country Link
WO (1) WO2023188744A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322415A (ja) * 1994-05-20 1995-12-08 Fuji Heavy Ind Ltd 電気自動車の変速タイミング警報装置
WO2011135910A1 (ja) * 2010-04-26 2011-11-03 本田技研工業株式会社 変速機制御装置及び変速機制御方法
JP2018023223A (ja) * 2016-08-03 2018-02-08 ヤマハ発動機株式会社 電動車両
CN112109694A (zh) * 2020-09-22 2020-12-22 摩登汽车(盐城)有限公司 电动车两档变速器的匹配方法和多档变速器的匹配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322415A (ja) * 1994-05-20 1995-12-08 Fuji Heavy Ind Ltd 電気自動車の変速タイミング警報装置
WO2011135910A1 (ja) * 2010-04-26 2011-11-03 本田技研工業株式会社 変速機制御装置及び変速機制御方法
JP2018023223A (ja) * 2016-08-03 2018-02-08 ヤマハ発動機株式会社 電動車両
CN112109694A (zh) * 2020-09-22 2020-12-22 摩登汽车(盐城)有限公司 电动车两档变速器的匹配方法和多档变速器的匹配方法

Similar Documents

Publication Publication Date Title
EP2772383B1 (en) Electric vehicle
JP5711820B2 (ja) 電動車両
US7490687B2 (en) Control method for transmission for motorcycle
JP4400840B2 (ja) 電動自転車
EP3800381B1 (en) Quickshifter-equipped vehicle control unit and quickshifter-equipped motorcycle
JP2008120268A (ja) 車両のクルーズコントロール装置
JP4862742B2 (ja) 内燃機関制御装置及び内燃機関制御システム
JP2011043141A (ja) 乗物用エンジン制御装置
WO2023188744A1 (ja) モータ出力制御方法
JP6082805B2 (ja) 車両の制御装置、及びそれを備える自動二輪車
JP4254512B2 (ja) 自動車およびその制御方法
WO2023188743A1 (ja) 電動二輪車の制御方法
JPH07293649A (ja) 無段変速機の変速比制御装置
JP7458434B2 (ja) 移動体、及び移動体制御方法
JP5974606B2 (ja) 変速制御装置
JP2010112502A (ja) 車両用変速制御装置
JP5953369B2 (ja) 鞍乗型車両及び鞍乗型車両の制御方法
JP2004060734A (ja) 自動変速機の変速制御装置
JP5677824B2 (ja) 自動変速機の制御装置
JP3598867B2 (ja) 車両用駆動力制御装置
JPH059295B2 (ja)
JP2015197203A (ja) 無段変速機の制御装置
JP3627500B2 (ja) 車両用駆動力制御装置
JP5157834B2 (ja) 車両用駆動力制御装置
JPS6112442A (ja) 自動変速機付き内燃機関のスロットル制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778782

Country of ref document: EP

Kind code of ref document: A1